cfe7a38708c3724d6fc88cc6b110d2917d85b3e9
[~shefty/rdma-dev.git] / arch / powerpc / kernel / fadump.c
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43
44 static struct fw_dump fw_dump;
45 static struct fadump_mem_struct fdm;
46 static const struct fadump_mem_struct *fdm_active;
47
48 static DEFINE_MUTEX(fadump_mutex);
49 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
50 int crash_mem_ranges;
51
52 /* Scan the Firmware Assisted dump configuration details. */
53 int __init early_init_dt_scan_fw_dump(unsigned long node,
54                         const char *uname, int depth, void *data)
55 {
56         __be32 *sections;
57         int i, num_sections;
58         unsigned long size;
59         const int *token;
60
61         if (depth != 1 || strcmp(uname, "rtas") != 0)
62                 return 0;
63
64         /*
65          * Check if Firmware Assisted dump is supported. if yes, check
66          * if dump has been initiated on last reboot.
67          */
68         token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
69         if (!token)
70                 return 0;
71
72         fw_dump.fadump_supported = 1;
73         fw_dump.ibm_configure_kernel_dump = *token;
74
75         /*
76          * The 'ibm,kernel-dump' rtas node is present only if there is
77          * dump data waiting for us.
78          */
79         fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
80         if (fdm_active)
81                 fw_dump.dump_active = 1;
82
83         /* Get the sizes required to store dump data for the firmware provided
84          * dump sections.
85          * For each dump section type supported, a 32bit cell which defines
86          * the ID of a supported section followed by two 32 bit cells which
87          * gives teh size of the section in bytes.
88          */
89         sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
90                                         &size);
91
92         if (!sections)
93                 return 0;
94
95         num_sections = size / (3 * sizeof(u32));
96
97         for (i = 0; i < num_sections; i++, sections += 3) {
98                 u32 type = (u32)of_read_number(sections, 1);
99
100                 switch (type) {
101                 case FADUMP_CPU_STATE_DATA:
102                         fw_dump.cpu_state_data_size =
103                                         of_read_ulong(&sections[1], 2);
104                         break;
105                 case FADUMP_HPTE_REGION:
106                         fw_dump.hpte_region_size =
107                                         of_read_ulong(&sections[1], 2);
108                         break;
109                 }
110         }
111         return 1;
112 }
113
114 int is_fadump_active(void)
115 {
116         return fw_dump.dump_active;
117 }
118
119 /* Print firmware assisted dump configurations for debugging purpose. */
120 static void fadump_show_config(void)
121 {
122         pr_debug("Support for firmware-assisted dump (fadump): %s\n",
123                         (fw_dump.fadump_supported ? "present" : "no support"));
124
125         if (!fw_dump.fadump_supported)
126                 return;
127
128         pr_debug("Fadump enabled    : %s\n",
129                                 (fw_dump.fadump_enabled ? "yes" : "no"));
130         pr_debug("Dump Active       : %s\n",
131                                 (fw_dump.dump_active ? "yes" : "no"));
132         pr_debug("Dump section sizes:\n");
133         pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
134         pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
135         pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
136 }
137
138 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
139                                 unsigned long addr)
140 {
141         if (!fdm)
142                 return 0;
143
144         memset(fdm, 0, sizeof(struct fadump_mem_struct));
145         addr = addr & PAGE_MASK;
146
147         fdm->header.dump_format_version = 0x00000001;
148         fdm->header.dump_num_sections = 3;
149         fdm->header.dump_status_flag = 0;
150         fdm->header.offset_first_dump_section =
151                 (u32)offsetof(struct fadump_mem_struct, cpu_state_data);
152
153         /*
154          * Fields for disk dump option.
155          * We are not using disk dump option, hence set these fields to 0.
156          */
157         fdm->header.dd_block_size = 0;
158         fdm->header.dd_block_offset = 0;
159         fdm->header.dd_num_blocks = 0;
160         fdm->header.dd_offset_disk_path = 0;
161
162         /* set 0 to disable an automatic dump-reboot. */
163         fdm->header.max_time_auto = 0;
164
165         /* Kernel dump sections */
166         /* cpu state data section. */
167         fdm->cpu_state_data.request_flag = FADUMP_REQUEST_FLAG;
168         fdm->cpu_state_data.source_data_type = FADUMP_CPU_STATE_DATA;
169         fdm->cpu_state_data.source_address = 0;
170         fdm->cpu_state_data.source_len = fw_dump.cpu_state_data_size;
171         fdm->cpu_state_data.destination_address = addr;
172         addr += fw_dump.cpu_state_data_size;
173
174         /* hpte region section */
175         fdm->hpte_region.request_flag = FADUMP_REQUEST_FLAG;
176         fdm->hpte_region.source_data_type = FADUMP_HPTE_REGION;
177         fdm->hpte_region.source_address = 0;
178         fdm->hpte_region.source_len = fw_dump.hpte_region_size;
179         fdm->hpte_region.destination_address = addr;
180         addr += fw_dump.hpte_region_size;
181
182         /* RMA region section */
183         fdm->rmr_region.request_flag = FADUMP_REQUEST_FLAG;
184         fdm->rmr_region.source_data_type = FADUMP_REAL_MODE_REGION;
185         fdm->rmr_region.source_address = RMA_START;
186         fdm->rmr_region.source_len = fw_dump.boot_memory_size;
187         fdm->rmr_region.destination_address = addr;
188         addr += fw_dump.boot_memory_size;
189
190         return addr;
191 }
192
193 /**
194  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
195  *
196  * Function to find the largest memory size we need to reserve during early
197  * boot process. This will be the size of the memory that is required for a
198  * kernel to boot successfully.
199  *
200  * This function has been taken from phyp-assisted dump feature implementation.
201  *
202  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
203  *
204  * TODO: Come up with better approach to find out more accurate memory size
205  * that is required for a kernel to boot successfully.
206  *
207  */
208 static inline unsigned long fadump_calculate_reserve_size(void)
209 {
210         unsigned long size;
211
212         /*
213          * Check if the size is specified through fadump_reserve_mem= cmdline
214          * option. If yes, then use that.
215          */
216         if (fw_dump.reserve_bootvar)
217                 return fw_dump.reserve_bootvar;
218
219         /* divide by 20 to get 5% of value */
220         size = memblock_end_of_DRAM() / 20;
221
222         /* round it down in multiples of 256 */
223         size = size & ~0x0FFFFFFFUL;
224
225         /* Truncate to memory_limit. We don't want to over reserve the memory.*/
226         if (memory_limit && size > memory_limit)
227                 size = memory_limit;
228
229         return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
230 }
231
232 /*
233  * Calculate the total memory size required to be reserved for
234  * firmware-assisted dump registration.
235  */
236 static unsigned long get_fadump_area_size(void)
237 {
238         unsigned long size = 0;
239
240         size += fw_dump.cpu_state_data_size;
241         size += fw_dump.hpte_region_size;
242         size += fw_dump.boot_memory_size;
243         size += sizeof(struct fadump_crash_info_header);
244         size += sizeof(struct elfhdr); /* ELF core header.*/
245         size += sizeof(struct elf_phdr); /* place holder for cpu notes */
246         /* Program headers for crash memory regions. */
247         size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
248
249         size = PAGE_ALIGN(size);
250         return size;
251 }
252
253 int __init fadump_reserve_mem(void)
254 {
255         unsigned long base, size, memory_boundary;
256
257         if (!fw_dump.fadump_enabled)
258                 return 0;
259
260         if (!fw_dump.fadump_supported) {
261                 printk(KERN_INFO "Firmware-assisted dump is not supported on"
262                                 " this hardware\n");
263                 fw_dump.fadump_enabled = 0;
264                 return 0;
265         }
266         /*
267          * Initialize boot memory size
268          * If dump is active then we have already calculated the size during
269          * first kernel.
270          */
271         if (fdm_active)
272                 fw_dump.boot_memory_size = fdm_active->rmr_region.source_len;
273         else
274                 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
275
276         /*
277          * Calculate the memory boundary.
278          * If memory_limit is less than actual memory boundary then reserve
279          * the memory for fadump beyond the memory_limit and adjust the
280          * memory_limit accordingly, so that the running kernel can run with
281          * specified memory_limit.
282          */
283         if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
284                 size = get_fadump_area_size();
285                 if ((memory_limit + size) < memblock_end_of_DRAM())
286                         memory_limit += size;
287                 else
288                         memory_limit = memblock_end_of_DRAM();
289                 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
290                                 " dump, now %#016llx\n",
291                                 (unsigned long long)memory_limit);
292         }
293         if (memory_limit)
294                 memory_boundary = memory_limit;
295         else
296                 memory_boundary = memblock_end_of_DRAM();
297
298         if (fw_dump.dump_active) {
299                 printk(KERN_INFO "Firmware-assisted dump is active.\n");
300                 /*
301                  * If last boot has crashed then reserve all the memory
302                  * above boot_memory_size so that we don't touch it until
303                  * dump is written to disk by userspace tool. This memory
304                  * will be released for general use once the dump is saved.
305                  */
306                 base = fw_dump.boot_memory_size;
307                 size = memory_boundary - base;
308                 memblock_reserve(base, size);
309                 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
310                                 "for saving crash dump\n",
311                                 (unsigned long)(size >> 20),
312                                 (unsigned long)(base >> 20));
313
314                 fw_dump.fadumphdr_addr =
315                                 fdm_active->rmr_region.destination_address +
316                                 fdm_active->rmr_region.source_len;
317                 pr_debug("fadumphdr_addr = %p\n",
318                                 (void *) fw_dump.fadumphdr_addr);
319         } else {
320                 /* Reserve the memory at the top of memory. */
321                 size = get_fadump_area_size();
322                 base = memory_boundary - size;
323                 memblock_reserve(base, size);
324                 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
325                                 "for firmware-assisted dump\n",
326                                 (unsigned long)(size >> 20),
327                                 (unsigned long)(base >> 20));
328         }
329         fw_dump.reserve_dump_area_start = base;
330         fw_dump.reserve_dump_area_size = size;
331         return 1;
332 }
333
334 /* Look for fadump= cmdline option. */
335 static int __init early_fadump_param(char *p)
336 {
337         if (!p)
338                 return 1;
339
340         if (strncmp(p, "on", 2) == 0)
341                 fw_dump.fadump_enabled = 1;
342         else if (strncmp(p, "off", 3) == 0)
343                 fw_dump.fadump_enabled = 0;
344
345         return 0;
346 }
347 early_param("fadump", early_fadump_param);
348
349 /* Look for fadump_reserve_mem= cmdline option */
350 static int __init early_fadump_reserve_mem(char *p)
351 {
352         if (p)
353                 fw_dump.reserve_bootvar = memparse(p, &p);
354         return 0;
355 }
356 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
357
358 static void register_fw_dump(struct fadump_mem_struct *fdm)
359 {
360         int rc;
361         unsigned int wait_time;
362
363         pr_debug("Registering for firmware-assisted kernel dump...\n");
364
365         /* TODO: Add upper time limit for the delay */
366         do {
367                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
368                         FADUMP_REGISTER, fdm,
369                         sizeof(struct fadump_mem_struct));
370
371                 wait_time = rtas_busy_delay_time(rc);
372                 if (wait_time)
373                         mdelay(wait_time);
374
375         } while (wait_time);
376
377         switch (rc) {
378         case -1:
379                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
380                         " dump. Hardware Error(%d).\n", rc);
381                 break;
382         case -3:
383                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
384                         " dump. Parameter Error(%d).\n", rc);
385                 break;
386         case -9:
387                 printk(KERN_ERR "firmware-assisted kernel dump is already "
388                         " registered.");
389                 fw_dump.dump_registered = 1;
390                 break;
391         case 0:
392                 printk(KERN_INFO "firmware-assisted kernel dump registration"
393                         " is successful\n");
394                 fw_dump.dump_registered = 1;
395                 break;
396         }
397 }
398
399 void crash_fadump(struct pt_regs *regs, const char *str)
400 {
401         struct fadump_crash_info_header *fdh = NULL;
402
403         if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
404                 return;
405
406         fdh = __va(fw_dump.fadumphdr_addr);
407         crashing_cpu = smp_processor_id();
408         fdh->crashing_cpu = crashing_cpu;
409         crash_save_vmcoreinfo();
410
411         if (regs)
412                 fdh->regs = *regs;
413         else
414                 ppc_save_regs(&fdh->regs);
415
416         fdh->cpu_online_mask = *cpu_online_mask;
417
418         /* Call ibm,os-term rtas call to trigger firmware assisted dump */
419         rtas_os_term((char *)str);
420 }
421
422 #define GPR_MASK        0xffffff0000000000
423 static inline int fadump_gpr_index(u64 id)
424 {
425         int i = -1;
426         char str[3];
427
428         if ((id & GPR_MASK) == REG_ID("GPR")) {
429                 /* get the digits at the end */
430                 id &= ~GPR_MASK;
431                 id >>= 24;
432                 str[2] = '\0';
433                 str[1] = id & 0xff;
434                 str[0] = (id >> 8) & 0xff;
435                 sscanf(str, "%d", &i);
436                 if (i > 31)
437                         i = -1;
438         }
439         return i;
440 }
441
442 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
443                                                                 u64 reg_val)
444 {
445         int i;
446
447         i = fadump_gpr_index(reg_id);
448         if (i >= 0)
449                 regs->gpr[i] = (unsigned long)reg_val;
450         else if (reg_id == REG_ID("NIA"))
451                 regs->nip = (unsigned long)reg_val;
452         else if (reg_id == REG_ID("MSR"))
453                 regs->msr = (unsigned long)reg_val;
454         else if (reg_id == REG_ID("CTR"))
455                 regs->ctr = (unsigned long)reg_val;
456         else if (reg_id == REG_ID("LR"))
457                 regs->link = (unsigned long)reg_val;
458         else if (reg_id == REG_ID("XER"))
459                 regs->xer = (unsigned long)reg_val;
460         else if (reg_id == REG_ID("CR"))
461                 regs->ccr = (unsigned long)reg_val;
462         else if (reg_id == REG_ID("DAR"))
463                 regs->dar = (unsigned long)reg_val;
464         else if (reg_id == REG_ID("DSISR"))
465                 regs->dsisr = (unsigned long)reg_val;
466 }
467
468 static struct fadump_reg_entry*
469 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
470 {
471         memset(regs, 0, sizeof(struct pt_regs));
472
473         while (reg_entry->reg_id != REG_ID("CPUEND")) {
474                 fadump_set_regval(regs, reg_entry->reg_id,
475                                         reg_entry->reg_value);
476                 reg_entry++;
477         }
478         reg_entry++;
479         return reg_entry;
480 }
481
482 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
483                                                 void *data, size_t data_len)
484 {
485         struct elf_note note;
486
487         note.n_namesz = strlen(name) + 1;
488         note.n_descsz = data_len;
489         note.n_type   = type;
490         memcpy(buf, &note, sizeof(note));
491         buf += (sizeof(note) + 3)/4;
492         memcpy(buf, name, note.n_namesz);
493         buf += (note.n_namesz + 3)/4;
494         memcpy(buf, data, note.n_descsz);
495         buf += (note.n_descsz + 3)/4;
496
497         return buf;
498 }
499
500 static void fadump_final_note(u32 *buf)
501 {
502         struct elf_note note;
503
504         note.n_namesz = 0;
505         note.n_descsz = 0;
506         note.n_type   = 0;
507         memcpy(buf, &note, sizeof(note));
508 }
509
510 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
511 {
512         struct elf_prstatus prstatus;
513
514         memset(&prstatus, 0, sizeof(prstatus));
515         /*
516          * FIXME: How do i get PID? Do I really need it?
517          * prstatus.pr_pid = ????
518          */
519         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
520         buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
521                                 &prstatus, sizeof(prstatus));
522         return buf;
523 }
524
525 static void fadump_update_elfcore_header(char *bufp)
526 {
527         struct elfhdr *elf;
528         struct elf_phdr *phdr;
529
530         elf = (struct elfhdr *)bufp;
531         bufp += sizeof(struct elfhdr);
532
533         /* First note is a place holder for cpu notes info. */
534         phdr = (struct elf_phdr *)bufp;
535
536         if (phdr->p_type == PT_NOTE) {
537                 phdr->p_paddr = fw_dump.cpu_notes_buf;
538                 phdr->p_offset  = phdr->p_paddr;
539                 phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
540                 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
541         }
542         return;
543 }
544
545 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
546 {
547         void *vaddr;
548         struct page *page;
549         unsigned long order, count, i;
550
551         order = get_order(size);
552         vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
553         if (!vaddr)
554                 return NULL;
555
556         count = 1 << order;
557         page = virt_to_page(vaddr);
558         for (i = 0; i < count; i++)
559                 SetPageReserved(page + i);
560         return vaddr;
561 }
562
563 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
564 {
565         struct page *page;
566         unsigned long order, count, i;
567
568         order = get_order(size);
569         count = 1 << order;
570         page = virt_to_page(vaddr);
571         for (i = 0; i < count; i++)
572                 ClearPageReserved(page + i);
573         __free_pages(page, order);
574 }
575
576 /*
577  * Read CPU state dump data and convert it into ELF notes.
578  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
579  * used to access the data to allow for additional fields to be added without
580  * affecting compatibility. Each list of registers for a CPU starts with
581  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
582  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
583  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
584  * of register value. For more details refer to PAPR document.
585  *
586  * Only for the crashing cpu we ignore the CPU dump data and get exact
587  * state from fadump crash info structure populated by first kernel at the
588  * time of crash.
589  */
590 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
591 {
592         struct fadump_reg_save_area_header *reg_header;
593         struct fadump_reg_entry *reg_entry;
594         struct fadump_crash_info_header *fdh = NULL;
595         void *vaddr;
596         unsigned long addr;
597         u32 num_cpus, *note_buf;
598         struct pt_regs regs;
599         int i, rc = 0, cpu = 0;
600
601         if (!fdm->cpu_state_data.bytes_dumped)
602                 return -EINVAL;
603
604         addr = fdm->cpu_state_data.destination_address;
605         vaddr = __va(addr);
606
607         reg_header = vaddr;
608         if (reg_header->magic_number != REGSAVE_AREA_MAGIC) {
609                 printk(KERN_ERR "Unable to read register save area.\n");
610                 return -ENOENT;
611         }
612         pr_debug("--------CPU State Data------------\n");
613         pr_debug("Magic Number: %llx\n", reg_header->magic_number);
614         pr_debug("NumCpuOffset: %x\n", reg_header->num_cpu_offset);
615
616         vaddr += reg_header->num_cpu_offset;
617         num_cpus = *((u32 *)(vaddr));
618         pr_debug("NumCpus     : %u\n", num_cpus);
619         vaddr += sizeof(u32);
620         reg_entry = (struct fadump_reg_entry *)vaddr;
621
622         /* Allocate buffer to hold cpu crash notes. */
623         fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
624         fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
625         note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
626         if (!note_buf) {
627                 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
628                         "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
629                 return -ENOMEM;
630         }
631         fw_dump.cpu_notes_buf = __pa(note_buf);
632
633         pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
634                         (num_cpus * sizeof(note_buf_t)), note_buf);
635
636         if (fw_dump.fadumphdr_addr)
637                 fdh = __va(fw_dump.fadumphdr_addr);
638
639         for (i = 0; i < num_cpus; i++) {
640                 if (reg_entry->reg_id != REG_ID("CPUSTRT")) {
641                         printk(KERN_ERR "Unable to read CPU state data\n");
642                         rc = -ENOENT;
643                         goto error_out;
644                 }
645                 /* Lower 4 bytes of reg_value contains logical cpu id */
646                 cpu = reg_entry->reg_value & FADUMP_CPU_ID_MASK;
647                 if (!cpumask_test_cpu(cpu, &fdh->cpu_online_mask)) {
648                         SKIP_TO_NEXT_CPU(reg_entry);
649                         continue;
650                 }
651                 pr_debug("Reading register data for cpu %d...\n", cpu);
652                 if (fdh && fdh->crashing_cpu == cpu) {
653                         regs = fdh->regs;
654                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
655                         SKIP_TO_NEXT_CPU(reg_entry);
656                 } else {
657                         reg_entry++;
658                         reg_entry = fadump_read_registers(reg_entry, &regs);
659                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
660                 }
661         }
662         fadump_final_note(note_buf);
663
664         pr_debug("Updating elfcore header (%llx) with cpu notes\n",
665                                                         fdh->elfcorehdr_addr);
666         fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
667         return 0;
668
669 error_out:
670         fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
671                                         fw_dump.cpu_notes_buf_size);
672         fw_dump.cpu_notes_buf = 0;
673         fw_dump.cpu_notes_buf_size = 0;
674         return rc;
675
676 }
677
678 /*
679  * Validate and process the dump data stored by firmware before exporting
680  * it through '/proc/vmcore'.
681  */
682 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
683 {
684         struct fadump_crash_info_header *fdh;
685         int rc = 0;
686
687         if (!fdm_active || !fw_dump.fadumphdr_addr)
688                 return -EINVAL;
689
690         /* Check if the dump data is valid. */
691         if ((fdm_active->header.dump_status_flag == FADUMP_ERROR_FLAG) ||
692                         (fdm_active->cpu_state_data.error_flags != 0) ||
693                         (fdm_active->rmr_region.error_flags != 0)) {
694                 printk(KERN_ERR "Dump taken by platform is not valid\n");
695                 return -EINVAL;
696         }
697         if ((fdm_active->rmr_region.bytes_dumped !=
698                         fdm_active->rmr_region.source_len) ||
699                         !fdm_active->cpu_state_data.bytes_dumped) {
700                 printk(KERN_ERR "Dump taken by platform is incomplete\n");
701                 return -EINVAL;
702         }
703
704         /* Validate the fadump crash info header */
705         fdh = __va(fw_dump.fadumphdr_addr);
706         if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
707                 printk(KERN_ERR "Crash info header is not valid.\n");
708                 return -EINVAL;
709         }
710
711         rc = fadump_build_cpu_notes(fdm_active);
712         if (rc)
713                 return rc;
714
715         /*
716          * We are done validating dump info and elfcore header is now ready
717          * to be exported. set elfcorehdr_addr so that vmcore module will
718          * export the elfcore header through '/proc/vmcore'.
719          */
720         elfcorehdr_addr = fdh->elfcorehdr_addr;
721
722         return 0;
723 }
724
725 static inline void fadump_add_crash_memory(unsigned long long base,
726                                         unsigned long long end)
727 {
728         if (base == end)
729                 return;
730
731         pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
732                 crash_mem_ranges, base, end - 1, (end - base));
733         crash_memory_ranges[crash_mem_ranges].base = base;
734         crash_memory_ranges[crash_mem_ranges].size = end - base;
735         crash_mem_ranges++;
736 }
737
738 static void fadump_exclude_reserved_area(unsigned long long start,
739                                         unsigned long long end)
740 {
741         unsigned long long ra_start, ra_end;
742
743         ra_start = fw_dump.reserve_dump_area_start;
744         ra_end = ra_start + fw_dump.reserve_dump_area_size;
745
746         if ((ra_start < end) && (ra_end > start)) {
747                 if ((start < ra_start) && (end > ra_end)) {
748                         fadump_add_crash_memory(start, ra_start);
749                         fadump_add_crash_memory(ra_end, end);
750                 } else if (start < ra_start) {
751                         fadump_add_crash_memory(start, ra_start);
752                 } else if (ra_end < end) {
753                         fadump_add_crash_memory(ra_end, end);
754                 }
755         } else
756                 fadump_add_crash_memory(start, end);
757 }
758
759 static int fadump_init_elfcore_header(char *bufp)
760 {
761         struct elfhdr *elf;
762
763         elf = (struct elfhdr *) bufp;
764         bufp += sizeof(struct elfhdr);
765         memcpy(elf->e_ident, ELFMAG, SELFMAG);
766         elf->e_ident[EI_CLASS] = ELF_CLASS;
767         elf->e_ident[EI_DATA] = ELF_DATA;
768         elf->e_ident[EI_VERSION] = EV_CURRENT;
769         elf->e_ident[EI_OSABI] = ELF_OSABI;
770         memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
771         elf->e_type = ET_CORE;
772         elf->e_machine = ELF_ARCH;
773         elf->e_version = EV_CURRENT;
774         elf->e_entry = 0;
775         elf->e_phoff = sizeof(struct elfhdr);
776         elf->e_shoff = 0;
777         elf->e_flags = ELF_CORE_EFLAGS;
778         elf->e_ehsize = sizeof(struct elfhdr);
779         elf->e_phentsize = sizeof(struct elf_phdr);
780         elf->e_phnum = 0;
781         elf->e_shentsize = 0;
782         elf->e_shnum = 0;
783         elf->e_shstrndx = 0;
784
785         return 0;
786 }
787
788 /*
789  * Traverse through memblock structure and setup crash memory ranges. These
790  * ranges will be used create PT_LOAD program headers in elfcore header.
791  */
792 static void fadump_setup_crash_memory_ranges(void)
793 {
794         struct memblock_region *reg;
795         unsigned long long start, end;
796
797         pr_debug("Setup crash memory ranges.\n");
798         crash_mem_ranges = 0;
799         /*
800          * add the first memory chunk (RMA_START through boot_memory_size) as
801          * a separate memory chunk. The reason is, at the time crash firmware
802          * will move the content of this memory chunk to different location
803          * specified during fadump registration. We need to create a separate
804          * program header for this chunk with the correct offset.
805          */
806         fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
807
808         for_each_memblock(memory, reg) {
809                 start = (unsigned long long)reg->base;
810                 end = start + (unsigned long long)reg->size;
811                 if (start == RMA_START && end >= fw_dump.boot_memory_size)
812                         start = fw_dump.boot_memory_size;
813
814                 /* add this range excluding the reserved dump area. */
815                 fadump_exclude_reserved_area(start, end);
816         }
817 }
818
819 /*
820  * If the given physical address falls within the boot memory region then
821  * return the relocated address that points to the dump region reserved
822  * for saving initial boot memory contents.
823  */
824 static inline unsigned long fadump_relocate(unsigned long paddr)
825 {
826         if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
827                 return fdm.rmr_region.destination_address + paddr;
828         else
829                 return paddr;
830 }
831
832 static int fadump_create_elfcore_headers(char *bufp)
833 {
834         struct elfhdr *elf;
835         struct elf_phdr *phdr;
836         int i;
837
838         fadump_init_elfcore_header(bufp);
839         elf = (struct elfhdr *)bufp;
840         bufp += sizeof(struct elfhdr);
841
842         /*
843          * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
844          * will be populated during second kernel boot after crash. Hence
845          * this PT_NOTE will always be the first elf note.
846          *
847          * NOTE: Any new ELF note addition should be placed after this note.
848          */
849         phdr = (struct elf_phdr *)bufp;
850         bufp += sizeof(struct elf_phdr);
851         phdr->p_type = PT_NOTE;
852         phdr->p_flags = 0;
853         phdr->p_vaddr = 0;
854         phdr->p_align = 0;
855
856         phdr->p_offset = 0;
857         phdr->p_paddr = 0;
858         phdr->p_filesz = 0;
859         phdr->p_memsz = 0;
860
861         (elf->e_phnum)++;
862
863         /* setup ELF PT_NOTE for vmcoreinfo */
864         phdr = (struct elf_phdr *)bufp;
865         bufp += sizeof(struct elf_phdr);
866         phdr->p_type    = PT_NOTE;
867         phdr->p_flags   = 0;
868         phdr->p_vaddr   = 0;
869         phdr->p_align   = 0;
870
871         phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
872         phdr->p_offset  = phdr->p_paddr;
873         phdr->p_memsz   = vmcoreinfo_max_size;
874         phdr->p_filesz  = vmcoreinfo_max_size;
875
876         /* Increment number of program headers. */
877         (elf->e_phnum)++;
878
879         /* setup PT_LOAD sections. */
880
881         for (i = 0; i < crash_mem_ranges; i++) {
882                 unsigned long long mbase, msize;
883                 mbase = crash_memory_ranges[i].base;
884                 msize = crash_memory_ranges[i].size;
885
886                 if (!msize)
887                         continue;
888
889                 phdr = (struct elf_phdr *)bufp;
890                 bufp += sizeof(struct elf_phdr);
891                 phdr->p_type    = PT_LOAD;
892                 phdr->p_flags   = PF_R|PF_W|PF_X;
893                 phdr->p_offset  = mbase;
894
895                 if (mbase == RMA_START) {
896                         /*
897                          * The entire RMA region will be moved by firmware
898                          * to the specified destination_address. Hence set
899                          * the correct offset.
900                          */
901                         phdr->p_offset = fdm.rmr_region.destination_address;
902                 }
903
904                 phdr->p_paddr = mbase;
905                 phdr->p_vaddr = (unsigned long)__va(mbase);
906                 phdr->p_filesz = msize;
907                 phdr->p_memsz = msize;
908                 phdr->p_align = 0;
909
910                 /* Increment number of program headers. */
911                 (elf->e_phnum)++;
912         }
913         return 0;
914 }
915
916 static unsigned long init_fadump_header(unsigned long addr)
917 {
918         struct fadump_crash_info_header *fdh;
919
920         if (!addr)
921                 return 0;
922
923         fw_dump.fadumphdr_addr = addr;
924         fdh = __va(addr);
925         addr += sizeof(struct fadump_crash_info_header);
926
927         memset(fdh, 0, sizeof(struct fadump_crash_info_header));
928         fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
929         fdh->elfcorehdr_addr = addr;
930         /* We will set the crashing cpu id in crash_fadump() during crash. */
931         fdh->crashing_cpu = CPU_UNKNOWN;
932
933         return addr;
934 }
935
936 static void register_fadump(void)
937 {
938         unsigned long addr;
939         void *vaddr;
940
941         /*
942          * If no memory is reserved then we can not register for firmware-
943          * assisted dump.
944          */
945         if (!fw_dump.reserve_dump_area_size)
946                 return;
947
948         fadump_setup_crash_memory_ranges();
949
950         addr = fdm.rmr_region.destination_address + fdm.rmr_region.source_len;
951         /* Initialize fadump crash info header. */
952         addr = init_fadump_header(addr);
953         vaddr = __va(addr);
954
955         pr_debug("Creating ELF core headers at %#016lx\n", addr);
956         fadump_create_elfcore_headers(vaddr);
957
958         /* register the future kernel dump with firmware. */
959         register_fw_dump(&fdm);
960 }
961
962 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
963 {
964         int rc = 0;
965         unsigned int wait_time;
966
967         pr_debug("Un-register firmware-assisted dump\n");
968
969         /* TODO: Add upper time limit for the delay */
970         do {
971                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
972                         FADUMP_UNREGISTER, fdm,
973                         sizeof(struct fadump_mem_struct));
974
975                 wait_time = rtas_busy_delay_time(rc);
976                 if (wait_time)
977                         mdelay(wait_time);
978         } while (wait_time);
979
980         if (rc) {
981                 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
982                         " unexpected error(%d).\n", rc);
983                 return rc;
984         }
985         fw_dump.dump_registered = 0;
986         return 0;
987 }
988
989 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
990 {
991         int rc = 0;
992         unsigned int wait_time;
993
994         pr_debug("Invalidating firmware-assisted dump registration\n");
995
996         /* TODO: Add upper time limit for the delay */
997         do {
998                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
999                         FADUMP_INVALIDATE, fdm,
1000                         sizeof(struct fadump_mem_struct));
1001
1002                 wait_time = rtas_busy_delay_time(rc);
1003                 if (wait_time)
1004                         mdelay(wait_time);
1005         } while (wait_time);
1006
1007         if (rc) {
1008                 printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
1009                         "rgistration. unexpected error(%d).\n", rc);
1010                 return rc;
1011         }
1012         fw_dump.dump_active = 0;
1013         fdm_active = NULL;
1014         return 0;
1015 }
1016
1017 void fadump_cleanup(void)
1018 {
1019         /* Invalidate the registration only if dump is active. */
1020         if (fw_dump.dump_active) {
1021                 init_fadump_mem_struct(&fdm,
1022                         fdm_active->cpu_state_data.destination_address);
1023                 fadump_invalidate_dump(&fdm);
1024         }
1025 }
1026
1027 /*
1028  * Release the memory that was reserved in early boot to preserve the memory
1029  * contents. The released memory will be available for general use.
1030  */
1031 static void fadump_release_memory(unsigned long begin, unsigned long end)
1032 {
1033         unsigned long addr;
1034         unsigned long ra_start, ra_end;
1035
1036         ra_start = fw_dump.reserve_dump_area_start;
1037         ra_end = ra_start + fw_dump.reserve_dump_area_size;
1038
1039         for (addr = begin; addr < end; addr += PAGE_SIZE) {
1040                 /*
1041                  * exclude the dump reserve area. Will reuse it for next
1042                  * fadump registration.
1043                  */
1044                 if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1045                         continue;
1046
1047                 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1048                 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1049                 free_page((unsigned long)__va(addr));
1050                 totalram_pages++;
1051         }
1052 }
1053
1054 static void fadump_invalidate_release_mem(void)
1055 {
1056         unsigned long reserved_area_start, reserved_area_end;
1057         unsigned long destination_address;
1058
1059         mutex_lock(&fadump_mutex);
1060         if (!fw_dump.dump_active) {
1061                 mutex_unlock(&fadump_mutex);
1062                 return;
1063         }
1064
1065         destination_address = fdm_active->cpu_state_data.destination_address;
1066         fadump_cleanup();
1067         mutex_unlock(&fadump_mutex);
1068
1069         /*
1070          * Save the current reserved memory bounds we will require them
1071          * later for releasing the memory for general use.
1072          */
1073         reserved_area_start = fw_dump.reserve_dump_area_start;
1074         reserved_area_end = reserved_area_start +
1075                         fw_dump.reserve_dump_area_size;
1076         /*
1077          * Setup reserve_dump_area_start and its size so that we can
1078          * reuse this reserved memory for Re-registration.
1079          */
1080         fw_dump.reserve_dump_area_start = destination_address;
1081         fw_dump.reserve_dump_area_size = get_fadump_area_size();
1082
1083         fadump_release_memory(reserved_area_start, reserved_area_end);
1084         if (fw_dump.cpu_notes_buf) {
1085                 fadump_cpu_notes_buf_free(
1086                                 (unsigned long)__va(fw_dump.cpu_notes_buf),
1087                                 fw_dump.cpu_notes_buf_size);
1088                 fw_dump.cpu_notes_buf = 0;
1089                 fw_dump.cpu_notes_buf_size = 0;
1090         }
1091         /* Initialize the kernel dump memory structure for FAD registration. */
1092         init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1093 }
1094
1095 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1096                                         struct kobj_attribute *attr,
1097                                         const char *buf, size_t count)
1098 {
1099         if (!fw_dump.dump_active)
1100                 return -EPERM;
1101
1102         if (buf[0] == '1') {
1103                 /*
1104                  * Take away the '/proc/vmcore'. We are releasing the dump
1105                  * memory, hence it will not be valid anymore.
1106                  */
1107                 vmcore_cleanup();
1108                 fadump_invalidate_release_mem();
1109
1110         } else
1111                 return -EINVAL;
1112         return count;
1113 }
1114
1115 static ssize_t fadump_enabled_show(struct kobject *kobj,
1116                                         struct kobj_attribute *attr,
1117                                         char *buf)
1118 {
1119         return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1120 }
1121
1122 static ssize_t fadump_register_show(struct kobject *kobj,
1123                                         struct kobj_attribute *attr,
1124                                         char *buf)
1125 {
1126         return sprintf(buf, "%d\n", fw_dump.dump_registered);
1127 }
1128
1129 static ssize_t fadump_register_store(struct kobject *kobj,
1130                                         struct kobj_attribute *attr,
1131                                         const char *buf, size_t count)
1132 {
1133         int ret = 0;
1134
1135         if (!fw_dump.fadump_enabled || fdm_active)
1136                 return -EPERM;
1137
1138         mutex_lock(&fadump_mutex);
1139
1140         switch (buf[0]) {
1141         case '0':
1142                 if (fw_dump.dump_registered == 0) {
1143                         ret = -EINVAL;
1144                         goto unlock_out;
1145                 }
1146                 /* Un-register Firmware-assisted dump */
1147                 fadump_unregister_dump(&fdm);
1148                 break;
1149         case '1':
1150                 if (fw_dump.dump_registered == 1) {
1151                         ret = -EINVAL;
1152                         goto unlock_out;
1153                 }
1154                 /* Register Firmware-assisted dump */
1155                 register_fadump();
1156                 break;
1157         default:
1158                 ret = -EINVAL;
1159                 break;
1160         }
1161
1162 unlock_out:
1163         mutex_unlock(&fadump_mutex);
1164         return ret < 0 ? ret : count;
1165 }
1166
1167 static int fadump_region_show(struct seq_file *m, void *private)
1168 {
1169         const struct fadump_mem_struct *fdm_ptr;
1170
1171         if (!fw_dump.fadump_enabled)
1172                 return 0;
1173
1174         mutex_lock(&fadump_mutex);
1175         if (fdm_active)
1176                 fdm_ptr = fdm_active;
1177         else {
1178                 mutex_unlock(&fadump_mutex);
1179                 fdm_ptr = &fdm;
1180         }
1181
1182         seq_printf(m,
1183                         "CPU : [%#016llx-%#016llx] %#llx bytes, "
1184                         "Dumped: %#llx\n",
1185                         fdm_ptr->cpu_state_data.destination_address,
1186                         fdm_ptr->cpu_state_data.destination_address +
1187                         fdm_ptr->cpu_state_data.source_len - 1,
1188                         fdm_ptr->cpu_state_data.source_len,
1189                         fdm_ptr->cpu_state_data.bytes_dumped);
1190         seq_printf(m,
1191                         "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1192                         "Dumped: %#llx\n",
1193                         fdm_ptr->hpte_region.destination_address,
1194                         fdm_ptr->hpte_region.destination_address +
1195                         fdm_ptr->hpte_region.source_len - 1,
1196                         fdm_ptr->hpte_region.source_len,
1197                         fdm_ptr->hpte_region.bytes_dumped);
1198         seq_printf(m,
1199                         "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1200                         "Dumped: %#llx\n",
1201                         fdm_ptr->rmr_region.destination_address,
1202                         fdm_ptr->rmr_region.destination_address +
1203                         fdm_ptr->rmr_region.source_len - 1,
1204                         fdm_ptr->rmr_region.source_len,
1205                         fdm_ptr->rmr_region.bytes_dumped);
1206
1207         if (!fdm_active ||
1208                 (fw_dump.reserve_dump_area_start ==
1209                 fdm_ptr->cpu_state_data.destination_address))
1210                 goto out;
1211
1212         /* Dump is active. Show reserved memory region. */
1213         seq_printf(m,
1214                         "    : [%#016llx-%#016llx] %#llx bytes, "
1215                         "Dumped: %#llx\n",
1216                         (unsigned long long)fw_dump.reserve_dump_area_start,
1217                         fdm_ptr->cpu_state_data.destination_address - 1,
1218                         fdm_ptr->cpu_state_data.destination_address -
1219                         fw_dump.reserve_dump_area_start,
1220                         fdm_ptr->cpu_state_data.destination_address -
1221                         fw_dump.reserve_dump_area_start);
1222 out:
1223         if (fdm_active)
1224                 mutex_unlock(&fadump_mutex);
1225         return 0;
1226 }
1227
1228 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1229                                                 0200, NULL,
1230                                                 fadump_release_memory_store);
1231 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1232                                                 0444, fadump_enabled_show,
1233                                                 NULL);
1234 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1235                                                 0644, fadump_register_show,
1236                                                 fadump_register_store);
1237
1238 static int fadump_region_open(struct inode *inode, struct file *file)
1239 {
1240         return single_open(file, fadump_region_show, inode->i_private);
1241 }
1242
1243 static const struct file_operations fadump_region_fops = {
1244         .open    = fadump_region_open,
1245         .read    = seq_read,
1246         .llseek  = seq_lseek,
1247         .release = single_release,
1248 };
1249
1250 static void fadump_init_files(void)
1251 {
1252         struct dentry *debugfs_file;
1253         int rc = 0;
1254
1255         rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1256         if (rc)
1257                 printk(KERN_ERR "fadump: unable to create sysfs file"
1258                         " fadump_enabled (%d)\n", rc);
1259
1260         rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1261         if (rc)
1262                 printk(KERN_ERR "fadump: unable to create sysfs file"
1263                         " fadump_registered (%d)\n", rc);
1264
1265         debugfs_file = debugfs_create_file("fadump_region", 0444,
1266                                         powerpc_debugfs_root, NULL,
1267                                         &fadump_region_fops);
1268         if (!debugfs_file)
1269                 printk(KERN_ERR "fadump: unable to create debugfs file"
1270                                 " fadump_region\n");
1271
1272         if (fw_dump.dump_active) {
1273                 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1274                 if (rc)
1275                         printk(KERN_ERR "fadump: unable to create sysfs file"
1276                                 " fadump_release_mem (%d)\n", rc);
1277         }
1278         return;
1279 }
1280
1281 /*
1282  * Prepare for firmware-assisted dump.
1283  */
1284 int __init setup_fadump(void)
1285 {
1286         if (!fw_dump.fadump_enabled)
1287                 return 0;
1288
1289         if (!fw_dump.fadump_supported) {
1290                 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1291                         " this hardware\n");
1292                 return 0;
1293         }
1294
1295         fadump_show_config();
1296         /*
1297          * If dump data is available then see if it is valid and prepare for
1298          * saving it to the disk.
1299          */
1300         if (fw_dump.dump_active) {
1301                 /*
1302                  * if dump process fails then invalidate the registration
1303                  * and release memory before proceeding for re-registration.
1304                  */
1305                 if (process_fadump(fdm_active) < 0)
1306                         fadump_invalidate_release_mem();
1307         }
1308         /* Initialize the kernel dump memory structure for FAD registration. */
1309         else if (fw_dump.reserve_dump_area_size)
1310                 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1311         fadump_init_files();
1312
1313         return 1;
1314 }
1315 subsys_initcall(setup_fadump);