2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
10 #ifndef _ASM_X86_I387_H
11 #define _ASM_X86_I387_H
15 #include <linux/sched.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/regset.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
21 #include <asm/cpufeature.h>
22 #include <asm/processor.h>
23 #include <asm/sigcontext.h>
25 #include <asm/uaccess.h>
26 #include <asm/xsave.h>
28 extern unsigned int sig_xstate_size;
29 extern void fpu_init(void);
30 extern void mxcsr_feature_mask_init(void);
31 extern int init_fpu(struct task_struct *child);
32 extern void math_state_restore(void);
33 extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
35 extern user_regset_active_fn fpregs_active, xfpregs_active;
36 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
38 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
42 * xstateregs_active == fpregs_active. Please refer to the comment
43 * at the definition of fpregs_active.
45 #define xstateregs_active fpregs_active
47 extern struct _fpx_sw_bytes fx_sw_reserved;
48 #ifdef CONFIG_IA32_EMULATION
49 extern unsigned int sig_xstate_ia32_size;
50 extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
53 extern int save_i387_xstate_ia32(void __user *buf);
54 extern int restore_i387_xstate_ia32(void __user *buf);
57 #ifdef CONFIG_MATH_EMULATION
58 extern void finit_soft_fpu(struct i387_soft_struct *soft);
60 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
63 #define X87_FSW_ES (1 << 7) /* Exception Summary */
65 static __always_inline __pure bool use_xsaveopt(void)
67 return static_cpu_has(X86_FEATURE_XSAVEOPT);
70 static __always_inline __pure bool use_xsave(void)
72 return static_cpu_has(X86_FEATURE_XSAVE);
75 static __always_inline __pure bool use_fxsr(void)
77 return static_cpu_has(X86_FEATURE_FXSR);
80 extern void __sanitize_i387_state(struct task_struct *);
82 static inline void sanitize_i387_state(struct task_struct *tsk)
86 __sanitize_i387_state(tsk);
90 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
94 /* See comment in fxsave() below. */
95 #ifdef CONFIG_AS_FXSAVEQ
96 asm volatile("1: fxrstorq %[fx]\n\t"
98 ".section .fixup,\"ax\"\n"
99 "3: movl $-1,%[err]\n"
104 : [fx] "m" (*fx), "0" (0));
106 asm volatile("1: rex64/fxrstor (%[fx])\n\t"
108 ".section .fixup,\"ax\"\n"
109 "3: movl $-1,%[err]\n"
114 : [fx] "R" (fx), "m" (*fx), "0" (0));
119 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
124 * Clear the bytes not touched by the fxsave and reserved
127 err = __clear_user(&fx->sw_reserved,
128 sizeof(struct _fpx_sw_bytes));
132 /* See comment in fxsave() below. */
133 #ifdef CONFIG_AS_FXSAVEQ
134 asm volatile("1: fxsaveq %[fx]\n\t"
136 ".section .fixup,\"ax\"\n"
137 "3: movl $-1,%[err]\n"
141 : [err] "=r" (err), [fx] "=m" (*fx)
144 asm volatile("1: rex64/fxsave (%[fx])\n\t"
146 ".section .fixup,\"ax\"\n"
147 "3: movl $-1,%[err]\n"
151 : [err] "=r" (err), "=m" (*fx)
152 : [fx] "R" (fx), "0" (0));
155 __clear_user(fx, sizeof(struct i387_fxsave_struct)))
157 /* No need to clear here because the caller clears USED_MATH */
161 static inline void fpu_fxsave(struct fpu *fpu)
163 /* Using "rex64; fxsave %0" is broken because, if the memory operand
164 uses any extended registers for addressing, a second REX prefix
165 will be generated (to the assembler, rex64 followed by semicolon
166 is a separate instruction), and hence the 64-bitness is lost. */
168 #ifdef CONFIG_AS_FXSAVEQ
169 /* Using "fxsaveq %0" would be the ideal choice, but is only supported
170 starting with gas 2.16. */
171 __asm__ __volatile__("fxsaveq %0"
172 : "=m" (fpu->state->fxsave));
174 /* Using, as a workaround, the properly prefixed form below isn't
175 accepted by any binutils version so far released, complaining that
176 the same type of prefix is used twice if an extended register is
177 needed for addressing (fix submitted to mainline 2005-11-21).
178 asm volatile("rex64/fxsave %0"
179 : "=m" (fpu->state->fxsave));
180 This, however, we can work around by forcing the compiler to select
181 an addressing mode that doesn't require extended registers. */
182 asm volatile("rex64/fxsave (%[fx])"
183 : "=m" (fpu->state->fxsave)
184 : [fx] "R" (&fpu->state->fxsave));
188 #else /* CONFIG_X86_32 */
190 /* perform fxrstor iff the processor has extended states, otherwise frstor */
191 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
194 * The "nop" is needed to make the instructions the same
206 static inline void fpu_fxsave(struct fpu *fpu)
208 asm volatile("fxsave %[fx]"
209 : [fx] "=m" (fpu->state->fxsave));
212 #endif /* CONFIG_X86_64 */
215 * These must be called with preempt disabled. Returns
216 * 'true' if the FPU state is still intact.
218 static inline int fpu_save_init(struct fpu *fpu)
224 * xsave header may indicate the init state of the FP.
226 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
228 } else if (use_fxsr()) {
231 asm volatile("fnsave %[fx]; fwait"
232 : [fx] "=m" (fpu->state->fsave));
237 * If exceptions are pending, we need to clear them so
238 * that we don't randomly get exceptions later.
240 * FIXME! Is this perhaps only true for the old-style
241 * irq13 case? Maybe we could leave the x87 state
244 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
245 asm volatile("fnclex");
251 static inline int __save_init_fpu(struct task_struct *tsk)
253 return fpu_save_init(&tsk->thread.fpu);
256 static inline int fpu_fxrstor_checking(struct fpu *fpu)
258 return fxrstor_checking(&fpu->state->fxsave);
261 static inline int fpu_restore_checking(struct fpu *fpu)
264 return fpu_xrstor_checking(fpu);
266 return fpu_fxrstor_checking(fpu);
269 static inline int restore_fpu_checking(struct task_struct *tsk)
271 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
272 is pending. Clear the x87 state here by setting it to fixed
273 values. "m" is a random variable that should be in L1 */
276 "emms\n\t" /* clear stack tags */
277 "fildl %P[addr]", /* set F?P to defined value */
278 X86_FEATURE_FXSAVE_LEAK,
279 [addr] "m" (tsk->thread.has_fpu));
281 return fpu_restore_checking(&tsk->thread.fpu);
285 * Software FPU state helpers. Careful: these need to
286 * be preemption protection *and* they need to be
287 * properly paired with the CR0.TS changes!
289 static inline int __thread_has_fpu(struct task_struct *tsk)
291 return tsk->thread.has_fpu;
294 /* Must be paired with an 'stts' after! */
295 static inline void __thread_clear_has_fpu(struct task_struct *tsk)
297 tsk->thread.has_fpu = 0;
300 /* Must be paired with a 'clts' before! */
301 static inline void __thread_set_has_fpu(struct task_struct *tsk)
303 tsk->thread.has_fpu = 1;
307 * Encapsulate the CR0.TS handling together with the
310 * These generally need preemption protection to work,
311 * do try to avoid using these on their own.
313 static inline void __thread_fpu_end(struct task_struct *tsk)
315 __thread_clear_has_fpu(tsk);
319 static inline void __thread_fpu_begin(struct task_struct *tsk)
322 __thread_set_has_fpu(tsk);
326 * FPU state switching for scheduling.
328 * This is a two-stage process:
330 * - switch_fpu_prepare() saves the old state and
331 * sets the new state of the CR0.TS bit. This is
332 * done within the context of the old process.
334 * - switch_fpu_finish() restores the new state as
337 typedef struct { int preload; } fpu_switch_t;
340 * FIXME! We could do a totally lazy restore, but we need to
341 * add a per-cpu "this was the task that last touched the FPU
342 * on this CPU" variable, and the task needs to have a "I last
343 * touched the FPU on this CPU" and check them.
345 * We don't do that yet, so "fpu_lazy_restore()" always returns
346 * false, but some day..
348 #define fpu_lazy_restore(tsk) (0)
349 #define fpu_lazy_state_intact(tsk) do { } while (0)
351 static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new)
355 fpu.preload = tsk_used_math(new) && new->fpu_counter > 5;
356 if (__thread_has_fpu(old)) {
357 if (__save_init_fpu(old))
358 fpu_lazy_state_intact(old);
359 __thread_clear_has_fpu(old);
361 /* Don't change CR0.TS if we just switch! */
364 __thread_set_has_fpu(new);
365 prefetch(new->thread.fpu.state);
369 old->fpu_counter = 0;
372 if (fpu_lazy_restore(new))
375 prefetch(new->thread.fpu.state);
376 __thread_fpu_begin(new);
383 * By the time this gets called, we've already cleared CR0.TS and
384 * given the process the FPU if we are going to preload the FPU
385 * state - all we need to do is to conditionally restore the register
388 static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
391 if (unlikely(restore_fpu_checking(new)))
392 __thread_fpu_end(new);
397 * Signal frame handlers...
399 extern int save_i387_xstate(void __user *buf);
400 extern int restore_i387_xstate(void __user *buf);
402 static inline void __clear_fpu(struct task_struct *tsk)
404 if (__thread_has_fpu(tsk)) {
405 /* Ignore delayed exceptions from user space */
406 asm volatile("1: fwait\n"
408 _ASM_EXTABLE(1b, 2b));
409 __thread_fpu_end(tsk);
414 * Were we in an interrupt that interrupted kernel mode?
416 * We can do a kernel_fpu_begin/end() pair *ONLY* if that
417 * pair does nothing at all: the thread must not have fpu (so
418 * that we don't try to save the FPU state), and TS must
419 * be set (so that the clts/stts pair does nothing that is
420 * visible in the interrupted kernel thread).
422 static inline bool interrupted_kernel_fpu_idle(void)
424 return !__thread_has_fpu(current) &&
425 (read_cr0() & X86_CR0_TS);
429 * Were we in user mode (or vm86 mode) when we were
432 * Doing kernel_fpu_begin/end() is ok if we are running
433 * in an interrupt context from user mode - we'll just
434 * save the FPU state as required.
436 static inline bool interrupted_user_mode(void)
438 struct pt_regs *regs = get_irq_regs();
439 return regs && user_mode_vm(regs);
443 * Can we use the FPU in kernel mode with the
444 * whole "kernel_fpu_begin/end()" sequence?
446 * It's always ok in process context (ie "not interrupt")
447 * but it is sometimes ok even from an irq.
449 static inline bool irq_fpu_usable(void)
451 return !in_interrupt() ||
452 interrupted_user_mode() ||
453 interrupted_kernel_fpu_idle();
456 static inline void kernel_fpu_begin(void)
458 struct task_struct *me = current;
460 WARN_ON_ONCE(!irq_fpu_usable());
462 if (__thread_has_fpu(me)) {
464 __thread_clear_has_fpu(me);
465 /* We do 'stts()' in kernel_fpu_end() */
470 static inline void kernel_fpu_end(void)
477 * Some instructions like VIA's padlock instructions generate a spurious
478 * DNA fault but don't modify SSE registers. And these instructions
479 * get used from interrupt context as well. To prevent these kernel instructions
480 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
481 * should use them only in the context of irq_ts_save/restore()
483 static inline int irq_ts_save(void)
486 * If in process context and not atomic, we can take a spurious DNA fault.
487 * Otherwise, doing clts() in process context requires disabling preemption
488 * or some heavy lifting like kernel_fpu_begin()
493 if (read_cr0() & X86_CR0_TS) {
501 static inline void irq_ts_restore(int TS_state)
508 * The question "does this thread have fpu access?"
509 * is slightly racy, since preemption could come in
510 * and revoke it immediately after the test.
512 * However, even in that very unlikely scenario,
513 * we can just assume we have FPU access - typically
514 * to save the FP state - we'll just take a #NM
515 * fault and get the FPU access back.
517 * The actual user_fpu_begin/end() functions
518 * need to be preemption-safe, though.
520 * NOTE! user_fpu_end() must be used only after you
521 * have saved the FP state, and user_fpu_begin() must
522 * be used only immediately before restoring it.
523 * These functions do not do any save/restore on
526 static inline int user_has_fpu(void)
528 return __thread_has_fpu(current);
531 static inline void user_fpu_end(void)
534 __thread_fpu_end(current);
538 static inline void user_fpu_begin(void)
542 __thread_fpu_begin(current);
547 * These disable preemption on their own and are safe
549 static inline void save_init_fpu(struct task_struct *tsk)
551 WARN_ON_ONCE(!__thread_has_fpu(tsk));
553 __save_init_fpu(tsk);
554 __thread_fpu_end(tsk);
558 static inline void unlazy_fpu(struct task_struct *tsk)
561 if (__thread_has_fpu(tsk)) {
562 __save_init_fpu(tsk);
563 __thread_fpu_end(tsk);
565 tsk->fpu_counter = 0;
569 static inline void clear_fpu(struct task_struct *tsk)
577 * i387 state interaction
579 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
582 return tsk->thread.fpu.state->fxsave.cwd;
584 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
588 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
591 return tsk->thread.fpu.state->fxsave.swd;
593 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
597 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
600 return tsk->thread.fpu.state->fxsave.mxcsr;
602 return MXCSR_DEFAULT;
606 static bool fpu_allocated(struct fpu *fpu)
608 return fpu->state != NULL;
611 static inline int fpu_alloc(struct fpu *fpu)
613 if (fpu_allocated(fpu))
615 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
618 WARN_ON((unsigned long)fpu->state & 15);
622 static inline void fpu_free(struct fpu *fpu)
625 kmem_cache_free(task_xstate_cachep, fpu->state);
630 static inline void fpu_copy(struct fpu *dst, struct fpu *src)
632 memcpy(dst->state, src->state, xstate_size);
635 extern void fpu_finit(struct fpu *fpu);
637 #endif /* __ASSEMBLY__ */
639 #endif /* _ASM_X86_I387_H */