cb313a56c21b5574f55122aad57cd454753bf0fd
[~shefty/rdma-dev.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/hardirq.h>
17 #include <asm/apic.h>
18
19 #include "perf_event.h"
20
21 /*
22  * Intel PerfMon, used on Core and later.
23  */
24 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
25 {
26         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
27         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
28         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
29         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
30         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
31         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
32         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
33         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
34 };
35
36 static struct event_constraint intel_core_event_constraints[] __read_mostly =
37 {
38         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
39         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
40         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
41         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
42         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
43         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
44         EVENT_CONSTRAINT_END
45 };
46
47 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
48 {
49         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
50         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
51         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
52         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
53         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
54         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
55         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
56         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
57         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
58         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
59         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
60         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
61         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
62         EVENT_CONSTRAINT_END
63 };
64
65 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
66 {
67         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
68         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
69         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
70         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
71         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
72         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
73         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
74         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
75         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
76         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
77         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
78         EVENT_CONSTRAINT_END
79 };
80
81 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
82 {
83         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
84         EVENT_EXTRA_END
85 };
86
87 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
88 {
89         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
90         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
91         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
92         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
93         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
94         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
95         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
96         EVENT_CONSTRAINT_END
97 };
98
99 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
100 {
101         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
102         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
103         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
104         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
105         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
106         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
107         EVENT_CONSTRAINT_END
108 };
109
110 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
111 {
112         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
113         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
114         EVENT_EXTRA_END
115 };
116
117 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
118 {
119         EVENT_CONSTRAINT_END
120 };
121
122 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
123 {
124         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
125         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
126         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
127         EVENT_CONSTRAINT_END
128 };
129
130 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
131         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
132         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
133         EVENT_EXTRA_END
134 };
135
136 static u64 intel_pmu_event_map(int hw_event)
137 {
138         return intel_perfmon_event_map[hw_event];
139 }
140
141 #define SNB_DMND_DATA_RD        (1ULL << 0)
142 #define SNB_DMND_RFO            (1ULL << 1)
143 #define SNB_DMND_IFETCH         (1ULL << 2)
144 #define SNB_DMND_WB             (1ULL << 3)
145 #define SNB_PF_DATA_RD          (1ULL << 4)
146 #define SNB_PF_RFO              (1ULL << 5)
147 #define SNB_PF_IFETCH           (1ULL << 6)
148 #define SNB_LLC_DATA_RD         (1ULL << 7)
149 #define SNB_LLC_RFO             (1ULL << 8)
150 #define SNB_LLC_IFETCH          (1ULL << 9)
151 #define SNB_BUS_LOCKS           (1ULL << 10)
152 #define SNB_STRM_ST             (1ULL << 11)
153 #define SNB_OTHER               (1ULL << 15)
154 #define SNB_RESP_ANY            (1ULL << 16)
155 #define SNB_NO_SUPP             (1ULL << 17)
156 #define SNB_LLC_HITM            (1ULL << 18)
157 #define SNB_LLC_HITE            (1ULL << 19)
158 #define SNB_LLC_HITS            (1ULL << 20)
159 #define SNB_LLC_HITF            (1ULL << 21)
160 #define SNB_LOCAL               (1ULL << 22)
161 #define SNB_REMOTE              (0xffULL << 23)
162 #define SNB_SNP_NONE            (1ULL << 31)
163 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
164 #define SNB_SNP_MISS            (1ULL << 33)
165 #define SNB_NO_FWD              (1ULL << 34)
166 #define SNB_SNP_FWD             (1ULL << 35)
167 #define SNB_HITM                (1ULL << 36)
168 #define SNB_NON_DRAM            (1ULL << 37)
169
170 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
171 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
172 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
173
174 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
175                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
176                                  SNB_HITM)
177
178 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
179 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
180
181 #define SNB_L3_ACCESS           SNB_RESP_ANY
182 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
183
184 static __initconst const u64 snb_hw_cache_extra_regs
185                                 [PERF_COUNT_HW_CACHE_MAX]
186                                 [PERF_COUNT_HW_CACHE_OP_MAX]
187                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
188 {
189  [ C(LL  ) ] = {
190         [ C(OP_READ) ] = {
191                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
192                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
193         },
194         [ C(OP_WRITE) ] = {
195                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
196                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
197         },
198         [ C(OP_PREFETCH) ] = {
199                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
200                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
201         },
202  },
203  [ C(NODE) ] = {
204         [ C(OP_READ) ] = {
205                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
206                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
207         },
208         [ C(OP_WRITE) ] = {
209                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
210                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
211         },
212         [ C(OP_PREFETCH) ] = {
213                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
214                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
215         },
216  },
217 };
218
219 static __initconst const u64 snb_hw_cache_event_ids
220                                 [PERF_COUNT_HW_CACHE_MAX]
221                                 [PERF_COUNT_HW_CACHE_OP_MAX]
222                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
223 {
224  [ C(L1D) ] = {
225         [ C(OP_READ) ] = {
226                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
227                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
228         },
229         [ C(OP_WRITE) ] = {
230                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
231                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
232         },
233         [ C(OP_PREFETCH) ] = {
234                 [ C(RESULT_ACCESS) ] = 0x0,
235                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
236         },
237  },
238  [ C(L1I ) ] = {
239         [ C(OP_READ) ] = {
240                 [ C(RESULT_ACCESS) ] = 0x0,
241                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
242         },
243         [ C(OP_WRITE) ] = {
244                 [ C(RESULT_ACCESS) ] = -1,
245                 [ C(RESULT_MISS)   ] = -1,
246         },
247         [ C(OP_PREFETCH) ] = {
248                 [ C(RESULT_ACCESS) ] = 0x0,
249                 [ C(RESULT_MISS)   ] = 0x0,
250         },
251  },
252  [ C(LL  ) ] = {
253         [ C(OP_READ) ] = {
254                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
255                 [ C(RESULT_ACCESS) ] = 0x01b7,
256                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
257                 [ C(RESULT_MISS)   ] = 0x01b7,
258         },
259         [ C(OP_WRITE) ] = {
260                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
261                 [ C(RESULT_ACCESS) ] = 0x01b7,
262                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
263                 [ C(RESULT_MISS)   ] = 0x01b7,
264         },
265         [ C(OP_PREFETCH) ] = {
266                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
267                 [ C(RESULT_ACCESS) ] = 0x01b7,
268                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
269                 [ C(RESULT_MISS)   ] = 0x01b7,
270         },
271  },
272  [ C(DTLB) ] = {
273         [ C(OP_READ) ] = {
274                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
275                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
276         },
277         [ C(OP_WRITE) ] = {
278                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
279                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
280         },
281         [ C(OP_PREFETCH) ] = {
282                 [ C(RESULT_ACCESS) ] = 0x0,
283                 [ C(RESULT_MISS)   ] = 0x0,
284         },
285  },
286  [ C(ITLB) ] = {
287         [ C(OP_READ) ] = {
288                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
289                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
290         },
291         [ C(OP_WRITE) ] = {
292                 [ C(RESULT_ACCESS) ] = -1,
293                 [ C(RESULT_MISS)   ] = -1,
294         },
295         [ C(OP_PREFETCH) ] = {
296                 [ C(RESULT_ACCESS) ] = -1,
297                 [ C(RESULT_MISS)   ] = -1,
298         },
299  },
300  [ C(BPU ) ] = {
301         [ C(OP_READ) ] = {
302                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
303                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
304         },
305         [ C(OP_WRITE) ] = {
306                 [ C(RESULT_ACCESS) ] = -1,
307                 [ C(RESULT_MISS)   ] = -1,
308         },
309         [ C(OP_PREFETCH) ] = {
310                 [ C(RESULT_ACCESS) ] = -1,
311                 [ C(RESULT_MISS)   ] = -1,
312         },
313  },
314  [ C(NODE) ] = {
315         [ C(OP_READ) ] = {
316                 [ C(RESULT_ACCESS) ] = 0x01b7,
317                 [ C(RESULT_MISS)   ] = 0x01b7,
318         },
319         [ C(OP_WRITE) ] = {
320                 [ C(RESULT_ACCESS) ] = 0x01b7,
321                 [ C(RESULT_MISS)   ] = 0x01b7,
322         },
323         [ C(OP_PREFETCH) ] = {
324                 [ C(RESULT_ACCESS) ] = 0x01b7,
325                 [ C(RESULT_MISS)   ] = 0x01b7,
326         },
327  },
328
329 };
330
331 static __initconst const u64 westmere_hw_cache_event_ids
332                                 [PERF_COUNT_HW_CACHE_MAX]
333                                 [PERF_COUNT_HW_CACHE_OP_MAX]
334                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
335 {
336  [ C(L1D) ] = {
337         [ C(OP_READ) ] = {
338                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
339                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
340         },
341         [ C(OP_WRITE) ] = {
342                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
343                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
344         },
345         [ C(OP_PREFETCH) ] = {
346                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
347                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
348         },
349  },
350  [ C(L1I ) ] = {
351         [ C(OP_READ) ] = {
352                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
353                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
354         },
355         [ C(OP_WRITE) ] = {
356                 [ C(RESULT_ACCESS) ] = -1,
357                 [ C(RESULT_MISS)   ] = -1,
358         },
359         [ C(OP_PREFETCH) ] = {
360                 [ C(RESULT_ACCESS) ] = 0x0,
361                 [ C(RESULT_MISS)   ] = 0x0,
362         },
363  },
364  [ C(LL  ) ] = {
365         [ C(OP_READ) ] = {
366                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
367                 [ C(RESULT_ACCESS) ] = 0x01b7,
368                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
369                 [ C(RESULT_MISS)   ] = 0x01b7,
370         },
371         /*
372          * Use RFO, not WRITEBACK, because a write miss would typically occur
373          * on RFO.
374          */
375         [ C(OP_WRITE) ] = {
376                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
377                 [ C(RESULT_ACCESS) ] = 0x01b7,
378                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
379                 [ C(RESULT_MISS)   ] = 0x01b7,
380         },
381         [ C(OP_PREFETCH) ] = {
382                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
383                 [ C(RESULT_ACCESS) ] = 0x01b7,
384                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
385                 [ C(RESULT_MISS)   ] = 0x01b7,
386         },
387  },
388  [ C(DTLB) ] = {
389         [ C(OP_READ) ] = {
390                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
391                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
392         },
393         [ C(OP_WRITE) ] = {
394                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
395                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
396         },
397         [ C(OP_PREFETCH) ] = {
398                 [ C(RESULT_ACCESS) ] = 0x0,
399                 [ C(RESULT_MISS)   ] = 0x0,
400         },
401  },
402  [ C(ITLB) ] = {
403         [ C(OP_READ) ] = {
404                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
405                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
406         },
407         [ C(OP_WRITE) ] = {
408                 [ C(RESULT_ACCESS) ] = -1,
409                 [ C(RESULT_MISS)   ] = -1,
410         },
411         [ C(OP_PREFETCH) ] = {
412                 [ C(RESULT_ACCESS) ] = -1,
413                 [ C(RESULT_MISS)   ] = -1,
414         },
415  },
416  [ C(BPU ) ] = {
417         [ C(OP_READ) ] = {
418                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
419                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
420         },
421         [ C(OP_WRITE) ] = {
422                 [ C(RESULT_ACCESS) ] = -1,
423                 [ C(RESULT_MISS)   ] = -1,
424         },
425         [ C(OP_PREFETCH) ] = {
426                 [ C(RESULT_ACCESS) ] = -1,
427                 [ C(RESULT_MISS)   ] = -1,
428         },
429  },
430  [ C(NODE) ] = {
431         [ C(OP_READ) ] = {
432                 [ C(RESULT_ACCESS) ] = 0x01b7,
433                 [ C(RESULT_MISS)   ] = 0x01b7,
434         },
435         [ C(OP_WRITE) ] = {
436                 [ C(RESULT_ACCESS) ] = 0x01b7,
437                 [ C(RESULT_MISS)   ] = 0x01b7,
438         },
439         [ C(OP_PREFETCH) ] = {
440                 [ C(RESULT_ACCESS) ] = 0x01b7,
441                 [ C(RESULT_MISS)   ] = 0x01b7,
442         },
443  },
444 };
445
446 /*
447  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
448  * See IA32 SDM Vol 3B 30.6.1.3
449  */
450
451 #define NHM_DMND_DATA_RD        (1 << 0)
452 #define NHM_DMND_RFO            (1 << 1)
453 #define NHM_DMND_IFETCH         (1 << 2)
454 #define NHM_DMND_WB             (1 << 3)
455 #define NHM_PF_DATA_RD          (1 << 4)
456 #define NHM_PF_DATA_RFO         (1 << 5)
457 #define NHM_PF_IFETCH           (1 << 6)
458 #define NHM_OFFCORE_OTHER       (1 << 7)
459 #define NHM_UNCORE_HIT          (1 << 8)
460 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
461 #define NHM_OTHER_CORE_HITM     (1 << 10)
462                                 /* reserved */
463 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
464 #define NHM_REMOTE_DRAM         (1 << 13)
465 #define NHM_LOCAL_DRAM          (1 << 14)
466 #define NHM_NON_DRAM            (1 << 15)
467
468 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
469 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
470
471 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
472 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
473 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
474
475 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
476 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
477 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
478
479 static __initconst const u64 nehalem_hw_cache_extra_regs
480                                 [PERF_COUNT_HW_CACHE_MAX]
481                                 [PERF_COUNT_HW_CACHE_OP_MAX]
482                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
483 {
484  [ C(LL  ) ] = {
485         [ C(OP_READ) ] = {
486                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
487                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
488         },
489         [ C(OP_WRITE) ] = {
490                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
491                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
492         },
493         [ C(OP_PREFETCH) ] = {
494                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
495                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
496         },
497  },
498  [ C(NODE) ] = {
499         [ C(OP_READ) ] = {
500                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
501                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
502         },
503         [ C(OP_WRITE) ] = {
504                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
505                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
506         },
507         [ C(OP_PREFETCH) ] = {
508                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
509                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
510         },
511  },
512 };
513
514 static __initconst const u64 nehalem_hw_cache_event_ids
515                                 [PERF_COUNT_HW_CACHE_MAX]
516                                 [PERF_COUNT_HW_CACHE_OP_MAX]
517                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
518 {
519  [ C(L1D) ] = {
520         [ C(OP_READ) ] = {
521                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
522                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
523         },
524         [ C(OP_WRITE) ] = {
525                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
526                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
527         },
528         [ C(OP_PREFETCH) ] = {
529                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
530                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
531         },
532  },
533  [ C(L1I ) ] = {
534         [ C(OP_READ) ] = {
535                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
536                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
537         },
538         [ C(OP_WRITE) ] = {
539                 [ C(RESULT_ACCESS) ] = -1,
540                 [ C(RESULT_MISS)   ] = -1,
541         },
542         [ C(OP_PREFETCH) ] = {
543                 [ C(RESULT_ACCESS) ] = 0x0,
544                 [ C(RESULT_MISS)   ] = 0x0,
545         },
546  },
547  [ C(LL  ) ] = {
548         [ C(OP_READ) ] = {
549                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
550                 [ C(RESULT_ACCESS) ] = 0x01b7,
551                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
552                 [ C(RESULT_MISS)   ] = 0x01b7,
553         },
554         /*
555          * Use RFO, not WRITEBACK, because a write miss would typically occur
556          * on RFO.
557          */
558         [ C(OP_WRITE) ] = {
559                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
560                 [ C(RESULT_ACCESS) ] = 0x01b7,
561                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
562                 [ C(RESULT_MISS)   ] = 0x01b7,
563         },
564         [ C(OP_PREFETCH) ] = {
565                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
566                 [ C(RESULT_ACCESS) ] = 0x01b7,
567                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
568                 [ C(RESULT_MISS)   ] = 0x01b7,
569         },
570  },
571  [ C(DTLB) ] = {
572         [ C(OP_READ) ] = {
573                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
574                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
575         },
576         [ C(OP_WRITE) ] = {
577                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
578                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
579         },
580         [ C(OP_PREFETCH) ] = {
581                 [ C(RESULT_ACCESS) ] = 0x0,
582                 [ C(RESULT_MISS)   ] = 0x0,
583         },
584  },
585  [ C(ITLB) ] = {
586         [ C(OP_READ) ] = {
587                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
588                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
589         },
590         [ C(OP_WRITE) ] = {
591                 [ C(RESULT_ACCESS) ] = -1,
592                 [ C(RESULT_MISS)   ] = -1,
593         },
594         [ C(OP_PREFETCH) ] = {
595                 [ C(RESULT_ACCESS) ] = -1,
596                 [ C(RESULT_MISS)   ] = -1,
597         },
598  },
599  [ C(BPU ) ] = {
600         [ C(OP_READ) ] = {
601                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
602                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
603         },
604         [ C(OP_WRITE) ] = {
605                 [ C(RESULT_ACCESS) ] = -1,
606                 [ C(RESULT_MISS)   ] = -1,
607         },
608         [ C(OP_PREFETCH) ] = {
609                 [ C(RESULT_ACCESS) ] = -1,
610                 [ C(RESULT_MISS)   ] = -1,
611         },
612  },
613  [ C(NODE) ] = {
614         [ C(OP_READ) ] = {
615                 [ C(RESULT_ACCESS) ] = 0x01b7,
616                 [ C(RESULT_MISS)   ] = 0x01b7,
617         },
618         [ C(OP_WRITE) ] = {
619                 [ C(RESULT_ACCESS) ] = 0x01b7,
620                 [ C(RESULT_MISS)   ] = 0x01b7,
621         },
622         [ C(OP_PREFETCH) ] = {
623                 [ C(RESULT_ACCESS) ] = 0x01b7,
624                 [ C(RESULT_MISS)   ] = 0x01b7,
625         },
626  },
627 };
628
629 static __initconst const u64 core2_hw_cache_event_ids
630                                 [PERF_COUNT_HW_CACHE_MAX]
631                                 [PERF_COUNT_HW_CACHE_OP_MAX]
632                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
633 {
634  [ C(L1D) ] = {
635         [ C(OP_READ) ] = {
636                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
637                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
638         },
639         [ C(OP_WRITE) ] = {
640                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
641                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
642         },
643         [ C(OP_PREFETCH) ] = {
644                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
645                 [ C(RESULT_MISS)   ] = 0,
646         },
647  },
648  [ C(L1I ) ] = {
649         [ C(OP_READ) ] = {
650                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
651                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
652         },
653         [ C(OP_WRITE) ] = {
654                 [ C(RESULT_ACCESS) ] = -1,
655                 [ C(RESULT_MISS)   ] = -1,
656         },
657         [ C(OP_PREFETCH) ] = {
658                 [ C(RESULT_ACCESS) ] = 0,
659                 [ C(RESULT_MISS)   ] = 0,
660         },
661  },
662  [ C(LL  ) ] = {
663         [ C(OP_READ) ] = {
664                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
665                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
666         },
667         [ C(OP_WRITE) ] = {
668                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
669                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
670         },
671         [ C(OP_PREFETCH) ] = {
672                 [ C(RESULT_ACCESS) ] = 0,
673                 [ C(RESULT_MISS)   ] = 0,
674         },
675  },
676  [ C(DTLB) ] = {
677         [ C(OP_READ) ] = {
678                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
679                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
680         },
681         [ C(OP_WRITE) ] = {
682                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
683                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
684         },
685         [ C(OP_PREFETCH) ] = {
686                 [ C(RESULT_ACCESS) ] = 0,
687                 [ C(RESULT_MISS)   ] = 0,
688         },
689  },
690  [ C(ITLB) ] = {
691         [ C(OP_READ) ] = {
692                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
693                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
694         },
695         [ C(OP_WRITE) ] = {
696                 [ C(RESULT_ACCESS) ] = -1,
697                 [ C(RESULT_MISS)   ] = -1,
698         },
699         [ C(OP_PREFETCH) ] = {
700                 [ C(RESULT_ACCESS) ] = -1,
701                 [ C(RESULT_MISS)   ] = -1,
702         },
703  },
704  [ C(BPU ) ] = {
705         [ C(OP_READ) ] = {
706                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
707                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
708         },
709         [ C(OP_WRITE) ] = {
710                 [ C(RESULT_ACCESS) ] = -1,
711                 [ C(RESULT_MISS)   ] = -1,
712         },
713         [ C(OP_PREFETCH) ] = {
714                 [ C(RESULT_ACCESS) ] = -1,
715                 [ C(RESULT_MISS)   ] = -1,
716         },
717  },
718 };
719
720 static __initconst const u64 atom_hw_cache_event_ids
721                                 [PERF_COUNT_HW_CACHE_MAX]
722                                 [PERF_COUNT_HW_CACHE_OP_MAX]
723                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
724 {
725  [ C(L1D) ] = {
726         [ C(OP_READ) ] = {
727                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
728                 [ C(RESULT_MISS)   ] = 0,
729         },
730         [ C(OP_WRITE) ] = {
731                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
732                 [ C(RESULT_MISS)   ] = 0,
733         },
734         [ C(OP_PREFETCH) ] = {
735                 [ C(RESULT_ACCESS) ] = 0x0,
736                 [ C(RESULT_MISS)   ] = 0,
737         },
738  },
739  [ C(L1I ) ] = {
740         [ C(OP_READ) ] = {
741                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
742                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
743         },
744         [ C(OP_WRITE) ] = {
745                 [ C(RESULT_ACCESS) ] = -1,
746                 [ C(RESULT_MISS)   ] = -1,
747         },
748         [ C(OP_PREFETCH) ] = {
749                 [ C(RESULT_ACCESS) ] = 0,
750                 [ C(RESULT_MISS)   ] = 0,
751         },
752  },
753  [ C(LL  ) ] = {
754         [ C(OP_READ) ] = {
755                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
756                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
757         },
758         [ C(OP_WRITE) ] = {
759                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
760                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
761         },
762         [ C(OP_PREFETCH) ] = {
763                 [ C(RESULT_ACCESS) ] = 0,
764                 [ C(RESULT_MISS)   ] = 0,
765         },
766  },
767  [ C(DTLB) ] = {
768         [ C(OP_READ) ] = {
769                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
770                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
771         },
772         [ C(OP_WRITE) ] = {
773                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
774                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
775         },
776         [ C(OP_PREFETCH) ] = {
777                 [ C(RESULT_ACCESS) ] = 0,
778                 [ C(RESULT_MISS)   ] = 0,
779         },
780  },
781  [ C(ITLB) ] = {
782         [ C(OP_READ) ] = {
783                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
784                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
785         },
786         [ C(OP_WRITE) ] = {
787                 [ C(RESULT_ACCESS) ] = -1,
788                 [ C(RESULT_MISS)   ] = -1,
789         },
790         [ C(OP_PREFETCH) ] = {
791                 [ C(RESULT_ACCESS) ] = -1,
792                 [ C(RESULT_MISS)   ] = -1,
793         },
794  },
795  [ C(BPU ) ] = {
796         [ C(OP_READ) ] = {
797                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
798                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
799         },
800         [ C(OP_WRITE) ] = {
801                 [ C(RESULT_ACCESS) ] = -1,
802                 [ C(RESULT_MISS)   ] = -1,
803         },
804         [ C(OP_PREFETCH) ] = {
805                 [ C(RESULT_ACCESS) ] = -1,
806                 [ C(RESULT_MISS)   ] = -1,
807         },
808  },
809 };
810
811 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
812 {
813         /* user explicitly requested branch sampling */
814         if (has_branch_stack(event))
815                 return true;
816
817         /* implicit branch sampling to correct PEBS skid */
818         if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
819                 return true;
820
821         return false;
822 }
823
824 static void intel_pmu_disable_all(void)
825 {
826         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
827
828         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
829
830         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
831                 intel_pmu_disable_bts();
832
833         intel_pmu_pebs_disable_all();
834         intel_pmu_lbr_disable_all();
835 }
836
837 static void intel_pmu_enable_all(int added)
838 {
839         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
840
841         intel_pmu_pebs_enable_all();
842         intel_pmu_lbr_enable_all();
843         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
844                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
845
846         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
847                 struct perf_event *event =
848                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
849
850                 if (WARN_ON_ONCE(!event))
851                         return;
852
853                 intel_pmu_enable_bts(event->hw.config);
854         }
855 }
856
857 /*
858  * Workaround for:
859  *   Intel Errata AAK100 (model 26)
860  *   Intel Errata AAP53  (model 30)
861  *   Intel Errata BD53   (model 44)
862  *
863  * The official story:
864  *   These chips need to be 'reset' when adding counters by programming the
865  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
866  *   in sequence on the same PMC or on different PMCs.
867  *
868  * In practise it appears some of these events do in fact count, and
869  * we need to programm all 4 events.
870  */
871 static void intel_pmu_nhm_workaround(void)
872 {
873         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
874         static const unsigned long nhm_magic[4] = {
875                 0x4300B5,
876                 0x4300D2,
877                 0x4300B1,
878                 0x4300B1
879         };
880         struct perf_event *event;
881         int i;
882
883         /*
884          * The Errata requires below steps:
885          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
886          * 2) Configure 4 PERFEVTSELx with the magic events and clear
887          *    the corresponding PMCx;
888          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
889          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
890          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
891          */
892
893         /*
894          * The real steps we choose are a little different from above.
895          * A) To reduce MSR operations, we don't run step 1) as they
896          *    are already cleared before this function is called;
897          * B) Call x86_perf_event_update to save PMCx before configuring
898          *    PERFEVTSELx with magic number;
899          * C) With step 5), we do clear only when the PERFEVTSELx is
900          *    not used currently.
901          * D) Call x86_perf_event_set_period to restore PMCx;
902          */
903
904         /* We always operate 4 pairs of PERF Counters */
905         for (i = 0; i < 4; i++) {
906                 event = cpuc->events[i];
907                 if (event)
908                         x86_perf_event_update(event);
909         }
910
911         for (i = 0; i < 4; i++) {
912                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
913                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
914         }
915
916         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
917         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
918
919         for (i = 0; i < 4; i++) {
920                 event = cpuc->events[i];
921
922                 if (event) {
923                         x86_perf_event_set_period(event);
924                         __x86_pmu_enable_event(&event->hw,
925                                         ARCH_PERFMON_EVENTSEL_ENABLE);
926                 } else
927                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
928         }
929 }
930
931 static void intel_pmu_nhm_enable_all(int added)
932 {
933         if (added)
934                 intel_pmu_nhm_workaround();
935         intel_pmu_enable_all(added);
936 }
937
938 static inline u64 intel_pmu_get_status(void)
939 {
940         u64 status;
941
942         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
943
944         return status;
945 }
946
947 static inline void intel_pmu_ack_status(u64 ack)
948 {
949         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
950 }
951
952 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
953 {
954         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
955         u64 ctrl_val, mask;
956
957         mask = 0xfULL << (idx * 4);
958
959         rdmsrl(hwc->config_base, ctrl_val);
960         ctrl_val &= ~mask;
961         wrmsrl(hwc->config_base, ctrl_val);
962 }
963
964 static void intel_pmu_disable_event(struct perf_event *event)
965 {
966         struct hw_perf_event *hwc = &event->hw;
967         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
968
969         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
970                 intel_pmu_disable_bts();
971                 intel_pmu_drain_bts_buffer();
972                 return;
973         }
974
975         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
976         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
977
978         /*
979          * must disable before any actual event
980          * because any event may be combined with LBR
981          */
982         if (intel_pmu_needs_lbr_smpl(event))
983                 intel_pmu_lbr_disable(event);
984
985         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
986                 intel_pmu_disable_fixed(hwc);
987                 return;
988         }
989
990         x86_pmu_disable_event(event);
991
992         if (unlikely(event->attr.precise_ip))
993                 intel_pmu_pebs_disable(event);
994 }
995
996 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
997 {
998         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
999         u64 ctrl_val, bits, mask;
1000
1001         /*
1002          * Enable IRQ generation (0x8),
1003          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1004          * if requested:
1005          */
1006         bits = 0x8ULL;
1007         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1008                 bits |= 0x2;
1009         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1010                 bits |= 0x1;
1011
1012         /*
1013          * ANY bit is supported in v3 and up
1014          */
1015         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1016                 bits |= 0x4;
1017
1018         bits <<= (idx * 4);
1019         mask = 0xfULL << (idx * 4);
1020
1021         rdmsrl(hwc->config_base, ctrl_val);
1022         ctrl_val &= ~mask;
1023         ctrl_val |= bits;
1024         wrmsrl(hwc->config_base, ctrl_val);
1025 }
1026
1027 static void intel_pmu_enable_event(struct perf_event *event)
1028 {
1029         struct hw_perf_event *hwc = &event->hw;
1030         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1031
1032         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1033                 if (!__this_cpu_read(cpu_hw_events.enabled))
1034                         return;
1035
1036                 intel_pmu_enable_bts(hwc->config);
1037                 return;
1038         }
1039         /*
1040          * must enabled before any actual event
1041          * because any event may be combined with LBR
1042          */
1043         if (intel_pmu_needs_lbr_smpl(event))
1044                 intel_pmu_lbr_enable(event);
1045
1046         if (event->attr.exclude_host)
1047                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1048         if (event->attr.exclude_guest)
1049                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1050
1051         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1052                 intel_pmu_enable_fixed(hwc);
1053                 return;
1054         }
1055
1056         if (unlikely(event->attr.precise_ip))
1057                 intel_pmu_pebs_enable(event);
1058
1059         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1060 }
1061
1062 /*
1063  * Save and restart an expired event. Called by NMI contexts,
1064  * so it has to be careful about preempting normal event ops:
1065  */
1066 int intel_pmu_save_and_restart(struct perf_event *event)
1067 {
1068         x86_perf_event_update(event);
1069         return x86_perf_event_set_period(event);
1070 }
1071
1072 static void intel_pmu_reset(void)
1073 {
1074         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1075         unsigned long flags;
1076         int idx;
1077
1078         if (!x86_pmu.num_counters)
1079                 return;
1080
1081         local_irq_save(flags);
1082
1083         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1084
1085         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1086                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1087                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1088         }
1089         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1090                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1091
1092         if (ds)
1093                 ds->bts_index = ds->bts_buffer_base;
1094
1095         local_irq_restore(flags);
1096 }
1097
1098 /*
1099  * This handler is triggered by the local APIC, so the APIC IRQ handling
1100  * rules apply:
1101  */
1102 static int intel_pmu_handle_irq(struct pt_regs *regs)
1103 {
1104         struct perf_sample_data data;
1105         struct cpu_hw_events *cpuc;
1106         int bit, loops;
1107         u64 status;
1108         int handled;
1109
1110         cpuc = &__get_cpu_var(cpu_hw_events);
1111
1112         /*
1113          * Some chipsets need to unmask the LVTPC in a particular spot
1114          * inside the nmi handler.  As a result, the unmasking was pushed
1115          * into all the nmi handlers.
1116          *
1117          * This handler doesn't seem to have any issues with the unmasking
1118          * so it was left at the top.
1119          */
1120         apic_write(APIC_LVTPC, APIC_DM_NMI);
1121
1122         intel_pmu_disable_all();
1123         handled = intel_pmu_drain_bts_buffer();
1124         status = intel_pmu_get_status();
1125         if (!status) {
1126                 intel_pmu_enable_all(0);
1127                 return handled;
1128         }
1129
1130         loops = 0;
1131 again:
1132         intel_pmu_ack_status(status);
1133         if (++loops > 100) {
1134                 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1135                 perf_event_print_debug();
1136                 intel_pmu_reset();
1137                 goto done;
1138         }
1139
1140         inc_irq_stat(apic_perf_irqs);
1141
1142         intel_pmu_lbr_read();
1143
1144         /*
1145          * PEBS overflow sets bit 62 in the global status register
1146          */
1147         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1148                 handled++;
1149                 x86_pmu.drain_pebs(regs);
1150         }
1151
1152         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1153                 struct perf_event *event = cpuc->events[bit];
1154
1155                 handled++;
1156
1157                 if (!test_bit(bit, cpuc->active_mask))
1158                         continue;
1159
1160                 if (!intel_pmu_save_and_restart(event))
1161                         continue;
1162
1163                 perf_sample_data_init(&data, 0, event->hw.last_period);
1164
1165                 if (has_branch_stack(event))
1166                         data.br_stack = &cpuc->lbr_stack;
1167
1168                 if (perf_event_overflow(event, &data, regs))
1169                         x86_pmu_stop(event, 0);
1170         }
1171
1172         /*
1173          * Repeat if there is more work to be done:
1174          */
1175         status = intel_pmu_get_status();
1176         if (status)
1177                 goto again;
1178
1179 done:
1180         intel_pmu_enable_all(0);
1181         return handled;
1182 }
1183
1184 static struct event_constraint *
1185 intel_bts_constraints(struct perf_event *event)
1186 {
1187         struct hw_perf_event *hwc = &event->hw;
1188         unsigned int hw_event, bts_event;
1189
1190         if (event->attr.freq)
1191                 return NULL;
1192
1193         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1194         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1195
1196         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1197                 return &bts_constraint;
1198
1199         return NULL;
1200 }
1201
1202 static int intel_alt_er(int idx)
1203 {
1204         if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1205                 return idx;
1206
1207         if (idx == EXTRA_REG_RSP_0)
1208                 return EXTRA_REG_RSP_1;
1209
1210         if (idx == EXTRA_REG_RSP_1)
1211                 return EXTRA_REG_RSP_0;
1212
1213         return idx;
1214 }
1215
1216 static void intel_fixup_er(struct perf_event *event, int idx)
1217 {
1218         event->hw.extra_reg.idx = idx;
1219
1220         if (idx == EXTRA_REG_RSP_0) {
1221                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1222                 event->hw.config |= 0x01b7;
1223                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1224         } else if (idx == EXTRA_REG_RSP_1) {
1225                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1226                 event->hw.config |= 0x01bb;
1227                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1228         }
1229 }
1230
1231 /*
1232  * manage allocation of shared extra msr for certain events
1233  *
1234  * sharing can be:
1235  * per-cpu: to be shared between the various events on a single PMU
1236  * per-core: per-cpu + shared by HT threads
1237  */
1238 static struct event_constraint *
1239 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1240                                    struct perf_event *event,
1241                                    struct hw_perf_event_extra *reg)
1242 {
1243         struct event_constraint *c = &emptyconstraint;
1244         struct er_account *era;
1245         unsigned long flags;
1246         int idx = reg->idx;
1247
1248         /*
1249          * reg->alloc can be set due to existing state, so for fake cpuc we
1250          * need to ignore this, otherwise we might fail to allocate proper fake
1251          * state for this extra reg constraint. Also see the comment below.
1252          */
1253         if (reg->alloc && !cpuc->is_fake)
1254                 return NULL; /* call x86_get_event_constraint() */
1255
1256 again:
1257         era = &cpuc->shared_regs->regs[idx];
1258         /*
1259          * we use spin_lock_irqsave() to avoid lockdep issues when
1260          * passing a fake cpuc
1261          */
1262         raw_spin_lock_irqsave(&era->lock, flags);
1263
1264         if (!atomic_read(&era->ref) || era->config == reg->config) {
1265
1266                 /*
1267                  * If its a fake cpuc -- as per validate_{group,event}() we
1268                  * shouldn't touch event state and we can avoid doing so
1269                  * since both will only call get_event_constraints() once
1270                  * on each event, this avoids the need for reg->alloc.
1271                  *
1272                  * Not doing the ER fixup will only result in era->reg being
1273                  * wrong, but since we won't actually try and program hardware
1274                  * this isn't a problem either.
1275                  */
1276                 if (!cpuc->is_fake) {
1277                         if (idx != reg->idx)
1278                                 intel_fixup_er(event, idx);
1279
1280                         /*
1281                          * x86_schedule_events() can call get_event_constraints()
1282                          * multiple times on events in the case of incremental
1283                          * scheduling(). reg->alloc ensures we only do the ER
1284                          * allocation once.
1285                          */
1286                         reg->alloc = 1;
1287                 }
1288
1289                 /* lock in msr value */
1290                 era->config = reg->config;
1291                 era->reg = reg->reg;
1292
1293                 /* one more user */
1294                 atomic_inc(&era->ref);
1295
1296                 /*
1297                  * need to call x86_get_event_constraint()
1298                  * to check if associated event has constraints
1299                  */
1300                 c = NULL;
1301         } else {
1302                 idx = intel_alt_er(idx);
1303                 if (idx != reg->idx) {
1304                         raw_spin_unlock_irqrestore(&era->lock, flags);
1305                         goto again;
1306                 }
1307         }
1308         raw_spin_unlock_irqrestore(&era->lock, flags);
1309
1310         return c;
1311 }
1312
1313 static void
1314 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1315                                    struct hw_perf_event_extra *reg)
1316 {
1317         struct er_account *era;
1318
1319         /*
1320          * Only put constraint if extra reg was actually allocated. Also takes
1321          * care of event which do not use an extra shared reg.
1322          *
1323          * Also, if this is a fake cpuc we shouldn't touch any event state
1324          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1325          * either since it'll be thrown out.
1326          */
1327         if (!reg->alloc || cpuc->is_fake)
1328                 return;
1329
1330         era = &cpuc->shared_regs->regs[reg->idx];
1331
1332         /* one fewer user */
1333         atomic_dec(&era->ref);
1334
1335         /* allocate again next time */
1336         reg->alloc = 0;
1337 }
1338
1339 static struct event_constraint *
1340 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1341                               struct perf_event *event)
1342 {
1343         struct event_constraint *c = NULL, *d;
1344         struct hw_perf_event_extra *xreg, *breg;
1345
1346         xreg = &event->hw.extra_reg;
1347         if (xreg->idx != EXTRA_REG_NONE) {
1348                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1349                 if (c == &emptyconstraint)
1350                         return c;
1351         }
1352         breg = &event->hw.branch_reg;
1353         if (breg->idx != EXTRA_REG_NONE) {
1354                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1355                 if (d == &emptyconstraint) {
1356                         __intel_shared_reg_put_constraints(cpuc, xreg);
1357                         c = d;
1358                 }
1359         }
1360         return c;
1361 }
1362
1363 struct event_constraint *
1364 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1365 {
1366         struct event_constraint *c;
1367
1368         if (x86_pmu.event_constraints) {
1369                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1370                         if ((event->hw.config & c->cmask) == c->code)
1371                                 return c;
1372                 }
1373         }
1374
1375         return &unconstrained;
1376 }
1377
1378 static struct event_constraint *
1379 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1380 {
1381         struct event_constraint *c;
1382
1383         c = intel_bts_constraints(event);
1384         if (c)
1385                 return c;
1386
1387         c = intel_pebs_constraints(event);
1388         if (c)
1389                 return c;
1390
1391         c = intel_shared_regs_constraints(cpuc, event);
1392         if (c)
1393                 return c;
1394
1395         return x86_get_event_constraints(cpuc, event);
1396 }
1397
1398 static void
1399 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1400                                         struct perf_event *event)
1401 {
1402         struct hw_perf_event_extra *reg;
1403
1404         reg = &event->hw.extra_reg;
1405         if (reg->idx != EXTRA_REG_NONE)
1406                 __intel_shared_reg_put_constraints(cpuc, reg);
1407
1408         reg = &event->hw.branch_reg;
1409         if (reg->idx != EXTRA_REG_NONE)
1410                 __intel_shared_reg_put_constraints(cpuc, reg);
1411 }
1412
1413 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1414                                         struct perf_event *event)
1415 {
1416         intel_put_shared_regs_event_constraints(cpuc, event);
1417 }
1418
1419 static void intel_pebs_aliases_core2(struct perf_event *event)
1420 {
1421         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1422                 /*
1423                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1424                  * (0x003c) so that we can use it with PEBS.
1425                  *
1426                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1427                  * PEBS capable. However we can use INST_RETIRED.ANY_P
1428                  * (0x00c0), which is a PEBS capable event, to get the same
1429                  * count.
1430                  *
1431                  * INST_RETIRED.ANY_P counts the number of cycles that retires
1432                  * CNTMASK instructions. By setting CNTMASK to a value (16)
1433                  * larger than the maximum number of instructions that can be
1434                  * retired per cycle (4) and then inverting the condition, we
1435                  * count all cycles that retire 16 or less instructions, which
1436                  * is every cycle.
1437                  *
1438                  * Thereby we gain a PEBS capable cycle counter.
1439                  */
1440                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1441
1442                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1443                 event->hw.config = alt_config;
1444         }
1445 }
1446
1447 static void intel_pebs_aliases_snb(struct perf_event *event)
1448 {
1449         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1450                 /*
1451                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1452                  * (0x003c) so that we can use it with PEBS.
1453                  *
1454                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1455                  * PEBS capable. However we can use UOPS_RETIRED.ALL
1456                  * (0x01c2), which is a PEBS capable event, to get the same
1457                  * count.
1458                  *
1459                  * UOPS_RETIRED.ALL counts the number of cycles that retires
1460                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1461                  * larger than the maximum number of micro-ops that can be
1462                  * retired per cycle (4) and then inverting the condition, we
1463                  * count all cycles that retire 16 or less micro-ops, which
1464                  * is every cycle.
1465                  *
1466                  * Thereby we gain a PEBS capable cycle counter.
1467                  */
1468                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1469
1470                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1471                 event->hw.config = alt_config;
1472         }
1473 }
1474
1475 static int intel_pmu_hw_config(struct perf_event *event)
1476 {
1477         int ret = x86_pmu_hw_config(event);
1478
1479         if (ret)
1480                 return ret;
1481
1482         if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1483                 x86_pmu.pebs_aliases(event);
1484
1485         if (intel_pmu_needs_lbr_smpl(event)) {
1486                 ret = intel_pmu_setup_lbr_filter(event);
1487                 if (ret)
1488                         return ret;
1489         }
1490
1491         if (event->attr.type != PERF_TYPE_RAW)
1492                 return 0;
1493
1494         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1495                 return 0;
1496
1497         if (x86_pmu.version < 3)
1498                 return -EINVAL;
1499
1500         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1501                 return -EACCES;
1502
1503         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1504
1505         return 0;
1506 }
1507
1508 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1509 {
1510         if (x86_pmu.guest_get_msrs)
1511                 return x86_pmu.guest_get_msrs(nr);
1512         *nr = 0;
1513         return NULL;
1514 }
1515 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1516
1517 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1518 {
1519         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1520         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1521
1522         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1523         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1524         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1525         /*
1526          * If PMU counter has PEBS enabled it is not enough to disable counter
1527          * on a guest entry since PEBS memory write can overshoot guest entry
1528          * and corrupt guest memory. Disabling PEBS solves the problem.
1529          */
1530         arr[1].msr = MSR_IA32_PEBS_ENABLE;
1531         arr[1].host = cpuc->pebs_enabled;
1532         arr[1].guest = 0;
1533
1534         *nr = 2;
1535         return arr;
1536 }
1537
1538 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1539 {
1540         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1541         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1542         int idx;
1543
1544         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1545                 struct perf_event *event = cpuc->events[idx];
1546
1547                 arr[idx].msr = x86_pmu_config_addr(idx);
1548                 arr[idx].host = arr[idx].guest = 0;
1549
1550                 if (!test_bit(idx, cpuc->active_mask))
1551                         continue;
1552
1553                 arr[idx].host = arr[idx].guest =
1554                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1555
1556                 if (event->attr.exclude_host)
1557                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1558                 else if (event->attr.exclude_guest)
1559                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1560         }
1561
1562         *nr = x86_pmu.num_counters;
1563         return arr;
1564 }
1565
1566 static void core_pmu_enable_event(struct perf_event *event)
1567 {
1568         if (!event->attr.exclude_host)
1569                 x86_pmu_enable_event(event);
1570 }
1571
1572 static void core_pmu_enable_all(int added)
1573 {
1574         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1575         int idx;
1576
1577         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1578                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1579
1580                 if (!test_bit(idx, cpuc->active_mask) ||
1581                                 cpuc->events[idx]->attr.exclude_host)
1582                         continue;
1583
1584                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1585         }
1586 }
1587
1588 PMU_FORMAT_ATTR(event,  "config:0-7"    );
1589 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
1590 PMU_FORMAT_ATTR(edge,   "config:18"     );
1591 PMU_FORMAT_ATTR(pc,     "config:19"     );
1592 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
1593 PMU_FORMAT_ATTR(inv,    "config:23"     );
1594 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1595
1596 static struct attribute *intel_arch_formats_attr[] = {
1597         &format_attr_event.attr,
1598         &format_attr_umask.attr,
1599         &format_attr_edge.attr,
1600         &format_attr_pc.attr,
1601         &format_attr_inv.attr,
1602         &format_attr_cmask.attr,
1603         NULL,
1604 };
1605
1606 ssize_t intel_event_sysfs_show(char *page, u64 config)
1607 {
1608         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
1609
1610         return x86_event_sysfs_show(page, config, event);
1611 }
1612
1613 static __initconst const struct x86_pmu core_pmu = {
1614         .name                   = "core",
1615         .handle_irq             = x86_pmu_handle_irq,
1616         .disable_all            = x86_pmu_disable_all,
1617         .enable_all             = core_pmu_enable_all,
1618         .enable                 = core_pmu_enable_event,
1619         .disable                = x86_pmu_disable_event,
1620         .hw_config              = x86_pmu_hw_config,
1621         .schedule_events        = x86_schedule_events,
1622         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1623         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1624         .event_map              = intel_pmu_event_map,
1625         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1626         .apic                   = 1,
1627         /*
1628          * Intel PMCs cannot be accessed sanely above 32 bit width,
1629          * so we install an artificial 1<<31 period regardless of
1630          * the generic event period:
1631          */
1632         .max_period             = (1ULL << 31) - 1,
1633         .get_event_constraints  = intel_get_event_constraints,
1634         .put_event_constraints  = intel_put_event_constraints,
1635         .event_constraints      = intel_core_event_constraints,
1636         .guest_get_msrs         = core_guest_get_msrs,
1637         .format_attrs           = intel_arch_formats_attr,
1638         .events_sysfs_show      = intel_event_sysfs_show,
1639 };
1640
1641 struct intel_shared_regs *allocate_shared_regs(int cpu)
1642 {
1643         struct intel_shared_regs *regs;
1644         int i;
1645
1646         regs = kzalloc_node(sizeof(struct intel_shared_regs),
1647                             GFP_KERNEL, cpu_to_node(cpu));
1648         if (regs) {
1649                 /*
1650                  * initialize the locks to keep lockdep happy
1651                  */
1652                 for (i = 0; i < EXTRA_REG_MAX; i++)
1653                         raw_spin_lock_init(&regs->regs[i].lock);
1654
1655                 regs->core_id = -1;
1656         }
1657         return regs;
1658 }
1659
1660 static int intel_pmu_cpu_prepare(int cpu)
1661 {
1662         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1663
1664         if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1665                 return NOTIFY_OK;
1666
1667         cpuc->shared_regs = allocate_shared_regs(cpu);
1668         if (!cpuc->shared_regs)
1669                 return NOTIFY_BAD;
1670
1671         return NOTIFY_OK;
1672 }
1673
1674 static void intel_pmu_cpu_starting(int cpu)
1675 {
1676         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1677         int core_id = topology_core_id(cpu);
1678         int i;
1679
1680         init_debug_store_on_cpu(cpu);
1681         /*
1682          * Deal with CPUs that don't clear their LBRs on power-up.
1683          */
1684         intel_pmu_lbr_reset();
1685
1686         cpuc->lbr_sel = NULL;
1687
1688         if (!cpuc->shared_regs)
1689                 return;
1690
1691         if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1692                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
1693                         struct intel_shared_regs *pc;
1694
1695                         pc = per_cpu(cpu_hw_events, i).shared_regs;
1696                         if (pc && pc->core_id == core_id) {
1697                                 cpuc->kfree_on_online = cpuc->shared_regs;
1698                                 cpuc->shared_regs = pc;
1699                                 break;
1700                         }
1701                 }
1702                 cpuc->shared_regs->core_id = core_id;
1703                 cpuc->shared_regs->refcnt++;
1704         }
1705
1706         if (x86_pmu.lbr_sel_map)
1707                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1708 }
1709
1710 static void intel_pmu_cpu_dying(int cpu)
1711 {
1712         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1713         struct intel_shared_regs *pc;
1714
1715         pc = cpuc->shared_regs;
1716         if (pc) {
1717                 if (pc->core_id == -1 || --pc->refcnt == 0)
1718                         kfree(pc);
1719                 cpuc->shared_regs = NULL;
1720         }
1721
1722         fini_debug_store_on_cpu(cpu);
1723 }
1724
1725 static void intel_pmu_flush_branch_stack(void)
1726 {
1727         /*
1728          * Intel LBR does not tag entries with the
1729          * PID of the current task, then we need to
1730          * flush it on ctxsw
1731          * For now, we simply reset it
1732          */
1733         if (x86_pmu.lbr_nr)
1734                 intel_pmu_lbr_reset();
1735 }
1736
1737 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1738
1739 static struct attribute *intel_arch3_formats_attr[] = {
1740         &format_attr_event.attr,
1741         &format_attr_umask.attr,
1742         &format_attr_edge.attr,
1743         &format_attr_pc.attr,
1744         &format_attr_any.attr,
1745         &format_attr_inv.attr,
1746         &format_attr_cmask.attr,
1747
1748         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1749         NULL,
1750 };
1751
1752 static __initconst const struct x86_pmu intel_pmu = {
1753         .name                   = "Intel",
1754         .handle_irq             = intel_pmu_handle_irq,
1755         .disable_all            = intel_pmu_disable_all,
1756         .enable_all             = intel_pmu_enable_all,
1757         .enable                 = intel_pmu_enable_event,
1758         .disable                = intel_pmu_disable_event,
1759         .hw_config              = intel_pmu_hw_config,
1760         .schedule_events        = x86_schedule_events,
1761         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1762         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1763         .event_map              = intel_pmu_event_map,
1764         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1765         .apic                   = 1,
1766         /*
1767          * Intel PMCs cannot be accessed sanely above 32 bit width,
1768          * so we install an artificial 1<<31 period regardless of
1769          * the generic event period:
1770          */
1771         .max_period             = (1ULL << 31) - 1,
1772         .get_event_constraints  = intel_get_event_constraints,
1773         .put_event_constraints  = intel_put_event_constraints,
1774         .pebs_aliases           = intel_pebs_aliases_core2,
1775
1776         .format_attrs           = intel_arch3_formats_attr,
1777         .events_sysfs_show      = intel_event_sysfs_show,
1778
1779         .cpu_prepare            = intel_pmu_cpu_prepare,
1780         .cpu_starting           = intel_pmu_cpu_starting,
1781         .cpu_dying              = intel_pmu_cpu_dying,
1782         .guest_get_msrs         = intel_guest_get_msrs,
1783         .flush_branch_stack     = intel_pmu_flush_branch_stack,
1784 };
1785
1786 static __init void intel_clovertown_quirk(void)
1787 {
1788         /*
1789          * PEBS is unreliable due to:
1790          *
1791          *   AJ67  - PEBS may experience CPL leaks
1792          *   AJ68  - PEBS PMI may be delayed by one event
1793          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1794          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1795          *
1796          * AJ67 could be worked around by restricting the OS/USR flags.
1797          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1798          *
1799          * AJ106 could possibly be worked around by not allowing LBR
1800          *       usage from PEBS, including the fixup.
1801          * AJ68  could possibly be worked around by always programming
1802          *       a pebs_event_reset[0] value and coping with the lost events.
1803          *
1804          * But taken together it might just make sense to not enable PEBS on
1805          * these chips.
1806          */
1807         pr_warn("PEBS disabled due to CPU errata\n");
1808         x86_pmu.pebs = 0;
1809         x86_pmu.pebs_constraints = NULL;
1810 }
1811
1812 static int intel_snb_pebs_broken(int cpu)
1813 {
1814         u32 rev = UINT_MAX; /* default to broken for unknown models */
1815
1816         switch (cpu_data(cpu).x86_model) {
1817         case 42: /* SNB */
1818                 rev = 0x28;
1819                 break;
1820
1821         case 45: /* SNB-EP */
1822                 switch (cpu_data(cpu).x86_mask) {
1823                 case 6: rev = 0x618; break;
1824                 case 7: rev = 0x70c; break;
1825                 }
1826         }
1827
1828         return (cpu_data(cpu).microcode < rev);
1829 }
1830
1831 static void intel_snb_check_microcode(void)
1832 {
1833         int pebs_broken = 0;
1834         int cpu;
1835
1836         get_online_cpus();
1837         for_each_online_cpu(cpu) {
1838                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
1839                         break;
1840         }
1841         put_online_cpus();
1842
1843         if (pebs_broken == x86_pmu.pebs_broken)
1844                 return;
1845
1846         /*
1847          * Serialized by the microcode lock..
1848          */
1849         if (x86_pmu.pebs_broken) {
1850                 pr_info("PEBS enabled due to microcode update\n");
1851                 x86_pmu.pebs_broken = 0;
1852         } else {
1853                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
1854                 x86_pmu.pebs_broken = 1;
1855         }
1856 }
1857
1858 static __init void intel_sandybridge_quirk(void)
1859 {
1860         x86_pmu.check_microcode = intel_snb_check_microcode;
1861         intel_snb_check_microcode();
1862 }
1863
1864 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1865         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1866         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1867         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1868         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1869         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1870         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1871         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1872 };
1873
1874 static __init void intel_arch_events_quirk(void)
1875 {
1876         int bit;
1877
1878         /* disable event that reported as not presend by cpuid */
1879         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1880                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1881                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
1882                         intel_arch_events_map[bit].name);
1883         }
1884 }
1885
1886 static __init void intel_nehalem_quirk(void)
1887 {
1888         union cpuid10_ebx ebx;
1889
1890         ebx.full = x86_pmu.events_maskl;
1891         if (ebx.split.no_branch_misses_retired) {
1892                 /*
1893                  * Erratum AAJ80 detected, we work it around by using
1894                  * the BR_MISP_EXEC.ANY event. This will over-count
1895                  * branch-misses, but it's still much better than the
1896                  * architectural event which is often completely bogus:
1897                  */
1898                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1899                 ebx.split.no_branch_misses_retired = 0;
1900                 x86_pmu.events_maskl = ebx.full;
1901                 pr_info("CPU erratum AAJ80 worked around\n");
1902         }
1903 }
1904
1905 __init int intel_pmu_init(void)
1906 {
1907         union cpuid10_edx edx;
1908         union cpuid10_eax eax;
1909         union cpuid10_ebx ebx;
1910         struct event_constraint *c;
1911         unsigned int unused;
1912         int version;
1913
1914         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1915                 switch (boot_cpu_data.x86) {
1916                 case 0x6:
1917                         return p6_pmu_init();
1918                 case 0xb:
1919                         return knc_pmu_init();
1920                 case 0xf:
1921                         return p4_pmu_init();
1922                 }
1923                 return -ENODEV;
1924         }
1925
1926         /*
1927          * Check whether the Architectural PerfMon supports
1928          * Branch Misses Retired hw_event or not.
1929          */
1930         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1931         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1932                 return -ENODEV;
1933
1934         version = eax.split.version_id;
1935         if (version < 2)
1936                 x86_pmu = core_pmu;
1937         else
1938                 x86_pmu = intel_pmu;
1939
1940         x86_pmu.version                 = version;
1941         x86_pmu.num_counters            = eax.split.num_counters;
1942         x86_pmu.cntval_bits             = eax.split.bit_width;
1943         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
1944
1945         x86_pmu.events_maskl            = ebx.full;
1946         x86_pmu.events_mask_len         = eax.split.mask_length;
1947
1948         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
1949
1950         /*
1951          * Quirk: v2 perfmon does not report fixed-purpose events, so
1952          * assume at least 3 events:
1953          */
1954         if (version > 1)
1955                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1956
1957         /*
1958          * v2 and above have a perf capabilities MSR
1959          */
1960         if (version > 1) {
1961                 u64 capabilities;
1962
1963                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1964                 x86_pmu.intel_cap.capabilities = capabilities;
1965         }
1966
1967         intel_ds_init();
1968
1969         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1970
1971         /*
1972          * Install the hw-cache-events table:
1973          */
1974         switch (boot_cpu_data.x86_model) {
1975         case 14: /* 65 nm core solo/duo, "Yonah" */
1976                 pr_cont("Core events, ");
1977                 break;
1978
1979         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1980                 x86_add_quirk(intel_clovertown_quirk);
1981         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1982         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1983         case 29: /* six-core 45 nm xeon "Dunnington" */
1984                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1985                        sizeof(hw_cache_event_ids));
1986
1987                 intel_pmu_lbr_init_core();
1988
1989                 x86_pmu.event_constraints = intel_core2_event_constraints;
1990                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1991                 pr_cont("Core2 events, ");
1992                 break;
1993
1994         case 26: /* 45 nm nehalem, "Bloomfield" */
1995         case 30: /* 45 nm nehalem, "Lynnfield" */
1996         case 46: /* 45 nm nehalem-ex, "Beckton" */
1997                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1998                        sizeof(hw_cache_event_ids));
1999                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2000                        sizeof(hw_cache_extra_regs));
2001
2002                 intel_pmu_lbr_init_nhm();
2003
2004                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2005                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2006                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2007                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
2008
2009                 /* UOPS_ISSUED.STALLED_CYCLES */
2010                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2011                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2012                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2013                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2014                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2015
2016                 x86_add_quirk(intel_nehalem_quirk);
2017
2018                 pr_cont("Nehalem events, ");
2019                 break;
2020
2021         case 28: /* Atom */
2022         case 38: /* Lincroft */
2023         case 39: /* Penwell */
2024         case 53: /* Cloverview */
2025         case 54: /* Cedarview */
2026                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2027                        sizeof(hw_cache_event_ids));
2028
2029                 intel_pmu_lbr_init_atom();
2030
2031                 x86_pmu.event_constraints = intel_gen_event_constraints;
2032                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2033                 pr_cont("Atom events, ");
2034                 break;
2035
2036         case 37: /* 32 nm nehalem, "Clarkdale" */
2037         case 44: /* 32 nm nehalem, "Gulftown" */
2038         case 47: /* 32 nm Xeon E7 */
2039                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2040                        sizeof(hw_cache_event_ids));
2041                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2042                        sizeof(hw_cache_extra_regs));
2043
2044                 intel_pmu_lbr_init_nhm();
2045
2046                 x86_pmu.event_constraints = intel_westmere_event_constraints;
2047                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2048                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2049                 x86_pmu.extra_regs = intel_westmere_extra_regs;
2050                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2051
2052                 /* UOPS_ISSUED.STALLED_CYCLES */
2053                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2054                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2055                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2056                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2057                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2058
2059                 pr_cont("Westmere events, ");
2060                 break;
2061
2062         case 42: /* SandyBridge */
2063         case 45: /* SandyBridge, "Romely-EP" */
2064                 x86_add_quirk(intel_sandybridge_quirk);
2065                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2066                        sizeof(hw_cache_event_ids));
2067                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2068                        sizeof(hw_cache_extra_regs));
2069
2070                 intel_pmu_lbr_init_snb();
2071
2072                 x86_pmu.event_constraints = intel_snb_event_constraints;
2073                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2074                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2075                 x86_pmu.extra_regs = intel_snb_extra_regs;
2076                 /* all extra regs are per-cpu when HT is on */
2077                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2078                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2079
2080                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2081                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2082                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2083                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2084                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2085                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2086
2087                 pr_cont("SandyBridge events, ");
2088                 break;
2089         case 58: /* IvyBridge */
2090                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2091                        sizeof(hw_cache_event_ids));
2092                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2093                        sizeof(hw_cache_extra_regs));
2094
2095                 intel_pmu_lbr_init_snb();
2096
2097                 x86_pmu.event_constraints = intel_snb_event_constraints;
2098                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2099                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2100                 x86_pmu.extra_regs = intel_snb_extra_regs;
2101                 /* all extra regs are per-cpu when HT is on */
2102                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2103                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2104
2105                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2106                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2107                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2108
2109                 pr_cont("IvyBridge events, ");
2110                 break;
2111
2112
2113         default:
2114                 switch (x86_pmu.version) {
2115                 case 1:
2116                         x86_pmu.event_constraints = intel_v1_event_constraints;
2117                         pr_cont("generic architected perfmon v1, ");
2118                         break;
2119                 default:
2120                         /*
2121                          * default constraints for v2 and up
2122                          */
2123                         x86_pmu.event_constraints = intel_gen_event_constraints;
2124                         pr_cont("generic architected perfmon, ");
2125                         break;
2126                 }
2127         }
2128
2129         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2130                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2131                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2132                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2133         }
2134         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2135
2136         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2137                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2138                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2139                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2140         }
2141
2142         x86_pmu.intel_ctrl |=
2143                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2144
2145         if (x86_pmu.event_constraints) {
2146                 /*
2147                  * event on fixed counter2 (REF_CYCLES) only works on this
2148                  * counter, so do not extend mask to generic counters
2149                  */
2150                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2151                         if (c->cmask != X86_RAW_EVENT_MASK
2152                             || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2153                                 continue;
2154                         }
2155
2156                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2157                         c->weight += x86_pmu.num_counters;
2158                 }
2159         }
2160
2161         return 0;
2162 }