2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/ftrace_event.h>
31 #include <linux/slab.h>
32 #include <linux/tboot.h>
33 #include "kvm_cache_regs.h"
39 #include <asm/virtext.h>
43 #include <asm/perf_event.h>
47 #define __ex(x) __kvm_handle_fault_on_reboot(x)
48 #define __ex_clear(x, reg) \
49 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
54 static bool __read_mostly enable_vpid = 1;
55 module_param_named(vpid, enable_vpid, bool, 0444);
57 static bool __read_mostly flexpriority_enabled = 1;
58 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
60 static bool __read_mostly enable_ept = 1;
61 module_param_named(ept, enable_ept, bool, S_IRUGO);
63 static bool __read_mostly enable_unrestricted_guest = 1;
64 module_param_named(unrestricted_guest,
65 enable_unrestricted_guest, bool, S_IRUGO);
67 static bool __read_mostly emulate_invalid_guest_state = 0;
68 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
70 static bool __read_mostly vmm_exclusive = 1;
71 module_param(vmm_exclusive, bool, S_IRUGO);
73 static bool __read_mostly fasteoi = 1;
74 module_param(fasteoi, bool, S_IRUGO);
77 * If nested=1, nested virtualization is supported, i.e., guests may use
78 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
79 * use VMX instructions.
81 static bool __read_mostly nested = 0;
82 module_param(nested, bool, S_IRUGO);
84 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
85 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
86 #define KVM_GUEST_CR0_MASK \
87 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
88 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
89 (X86_CR0_WP | X86_CR0_NE)
90 #define KVM_VM_CR0_ALWAYS_ON \
91 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
92 #define KVM_CR4_GUEST_OWNED_BITS \
93 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
96 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
97 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
99 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
102 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
103 * ple_gap: upper bound on the amount of time between two successive
104 * executions of PAUSE in a loop. Also indicate if ple enabled.
105 * According to test, this time is usually smaller than 128 cycles.
106 * ple_window: upper bound on the amount of time a guest is allowed to execute
107 * in a PAUSE loop. Tests indicate that most spinlocks are held for
108 * less than 2^12 cycles
109 * Time is measured based on a counter that runs at the same rate as the TSC,
110 * refer SDM volume 3b section 21.6.13 & 22.1.3.
112 #define KVM_VMX_DEFAULT_PLE_GAP 128
113 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
114 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
115 module_param(ple_gap, int, S_IRUGO);
117 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
118 module_param(ple_window, int, S_IRUGO);
120 #define NR_AUTOLOAD_MSRS 8
121 #define VMCS02_POOL_SIZE 1
130 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
131 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
132 * loaded on this CPU (so we can clear them if the CPU goes down).
138 struct list_head loaded_vmcss_on_cpu_link;
141 struct shared_msr_entry {
148 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
149 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
150 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
151 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
152 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
153 * More than one of these structures may exist, if L1 runs multiple L2 guests.
154 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
155 * underlying hardware which will be used to run L2.
156 * This structure is packed to ensure that its layout is identical across
157 * machines (necessary for live migration).
158 * If there are changes in this struct, VMCS12_REVISION must be changed.
160 typedef u64 natural_width;
161 struct __packed vmcs12 {
162 /* According to the Intel spec, a VMCS region must start with the
163 * following two fields. Then follow implementation-specific data.
168 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
169 u32 padding[7]; /* room for future expansion */
174 u64 vm_exit_msr_store_addr;
175 u64 vm_exit_msr_load_addr;
176 u64 vm_entry_msr_load_addr;
178 u64 virtual_apic_page_addr;
179 u64 apic_access_addr;
181 u64 guest_physical_address;
182 u64 vmcs_link_pointer;
183 u64 guest_ia32_debugctl;
186 u64 guest_ia32_perf_global_ctrl;
193 u64 host_ia32_perf_global_ctrl;
194 u64 padding64[8]; /* room for future expansion */
196 * To allow migration of L1 (complete with its L2 guests) between
197 * machines of different natural widths (32 or 64 bit), we cannot have
198 * unsigned long fields with no explict size. We use u64 (aliased
199 * natural_width) instead. Luckily, x86 is little-endian.
201 natural_width cr0_guest_host_mask;
202 natural_width cr4_guest_host_mask;
203 natural_width cr0_read_shadow;
204 natural_width cr4_read_shadow;
205 natural_width cr3_target_value0;
206 natural_width cr3_target_value1;
207 natural_width cr3_target_value2;
208 natural_width cr3_target_value3;
209 natural_width exit_qualification;
210 natural_width guest_linear_address;
211 natural_width guest_cr0;
212 natural_width guest_cr3;
213 natural_width guest_cr4;
214 natural_width guest_es_base;
215 natural_width guest_cs_base;
216 natural_width guest_ss_base;
217 natural_width guest_ds_base;
218 natural_width guest_fs_base;
219 natural_width guest_gs_base;
220 natural_width guest_ldtr_base;
221 natural_width guest_tr_base;
222 natural_width guest_gdtr_base;
223 natural_width guest_idtr_base;
224 natural_width guest_dr7;
225 natural_width guest_rsp;
226 natural_width guest_rip;
227 natural_width guest_rflags;
228 natural_width guest_pending_dbg_exceptions;
229 natural_width guest_sysenter_esp;
230 natural_width guest_sysenter_eip;
231 natural_width host_cr0;
232 natural_width host_cr3;
233 natural_width host_cr4;
234 natural_width host_fs_base;
235 natural_width host_gs_base;
236 natural_width host_tr_base;
237 natural_width host_gdtr_base;
238 natural_width host_idtr_base;
239 natural_width host_ia32_sysenter_esp;
240 natural_width host_ia32_sysenter_eip;
241 natural_width host_rsp;
242 natural_width host_rip;
243 natural_width paddingl[8]; /* room for future expansion */
244 u32 pin_based_vm_exec_control;
245 u32 cpu_based_vm_exec_control;
246 u32 exception_bitmap;
247 u32 page_fault_error_code_mask;
248 u32 page_fault_error_code_match;
249 u32 cr3_target_count;
250 u32 vm_exit_controls;
251 u32 vm_exit_msr_store_count;
252 u32 vm_exit_msr_load_count;
253 u32 vm_entry_controls;
254 u32 vm_entry_msr_load_count;
255 u32 vm_entry_intr_info_field;
256 u32 vm_entry_exception_error_code;
257 u32 vm_entry_instruction_len;
259 u32 secondary_vm_exec_control;
260 u32 vm_instruction_error;
262 u32 vm_exit_intr_info;
263 u32 vm_exit_intr_error_code;
264 u32 idt_vectoring_info_field;
265 u32 idt_vectoring_error_code;
266 u32 vm_exit_instruction_len;
267 u32 vmx_instruction_info;
274 u32 guest_ldtr_limit;
276 u32 guest_gdtr_limit;
277 u32 guest_idtr_limit;
278 u32 guest_es_ar_bytes;
279 u32 guest_cs_ar_bytes;
280 u32 guest_ss_ar_bytes;
281 u32 guest_ds_ar_bytes;
282 u32 guest_fs_ar_bytes;
283 u32 guest_gs_ar_bytes;
284 u32 guest_ldtr_ar_bytes;
285 u32 guest_tr_ar_bytes;
286 u32 guest_interruptibility_info;
287 u32 guest_activity_state;
288 u32 guest_sysenter_cs;
289 u32 host_ia32_sysenter_cs;
290 u32 padding32[8]; /* room for future expansion */
291 u16 virtual_processor_id;
292 u16 guest_es_selector;
293 u16 guest_cs_selector;
294 u16 guest_ss_selector;
295 u16 guest_ds_selector;
296 u16 guest_fs_selector;
297 u16 guest_gs_selector;
298 u16 guest_ldtr_selector;
299 u16 guest_tr_selector;
300 u16 host_es_selector;
301 u16 host_cs_selector;
302 u16 host_ss_selector;
303 u16 host_ds_selector;
304 u16 host_fs_selector;
305 u16 host_gs_selector;
306 u16 host_tr_selector;
310 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
311 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
312 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
314 #define VMCS12_REVISION 0x11e57ed0
317 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
318 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
319 * current implementation, 4K are reserved to avoid future complications.
321 #define VMCS12_SIZE 0x1000
323 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
325 struct list_head list;
327 struct loaded_vmcs vmcs02;
331 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
332 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
335 /* Has the level1 guest done vmxon? */
338 /* The guest-physical address of the current VMCS L1 keeps for L2 */
340 /* The host-usable pointer to the above */
341 struct page *current_vmcs12_page;
342 struct vmcs12 *current_vmcs12;
344 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
345 struct list_head vmcs02_pool;
347 u64 vmcs01_tsc_offset;
348 /* L2 must run next, and mustn't decide to exit to L1. */
349 bool nested_run_pending;
351 * Guest pages referred to in vmcs02 with host-physical pointers, so
352 * we must keep them pinned while L2 runs.
354 struct page *apic_access_page;
358 struct kvm_vcpu vcpu;
359 unsigned long host_rsp;
362 bool nmi_known_unmasked;
364 u32 idt_vectoring_info;
366 struct shared_msr_entry *guest_msrs;
370 u64 msr_host_kernel_gs_base;
371 u64 msr_guest_kernel_gs_base;
374 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
375 * non-nested (L1) guest, it always points to vmcs01. For a nested
376 * guest (L2), it points to a different VMCS.
378 struct loaded_vmcs vmcs01;
379 struct loaded_vmcs *loaded_vmcs;
380 bool __launched; /* temporary, used in vmx_vcpu_run */
381 struct msr_autoload {
383 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
384 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
388 u16 fs_sel, gs_sel, ldt_sel;
389 int gs_ldt_reload_needed;
390 int fs_reload_needed;
395 struct kvm_save_segment {
400 } tr, es, ds, fs, gs;
403 u32 bitmask; /* 4 bits per segment (1 bit per field) */
404 struct kvm_save_segment seg[8];
407 bool emulation_required;
409 /* Support for vnmi-less CPUs */
410 int soft_vnmi_blocked;
412 s64 vnmi_blocked_time;
417 /* Support for a guest hypervisor (nested VMX) */
418 struct nested_vmx nested;
421 enum segment_cache_field {
430 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
432 return container_of(vcpu, struct vcpu_vmx, vcpu);
435 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
436 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
437 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
438 [number##_HIGH] = VMCS12_OFFSET(name)+4
440 static unsigned short vmcs_field_to_offset_table[] = {
441 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
442 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
443 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
444 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
445 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
446 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
447 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
448 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
449 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
450 FIELD(HOST_ES_SELECTOR, host_es_selector),
451 FIELD(HOST_CS_SELECTOR, host_cs_selector),
452 FIELD(HOST_SS_SELECTOR, host_ss_selector),
453 FIELD(HOST_DS_SELECTOR, host_ds_selector),
454 FIELD(HOST_FS_SELECTOR, host_fs_selector),
455 FIELD(HOST_GS_SELECTOR, host_gs_selector),
456 FIELD(HOST_TR_SELECTOR, host_tr_selector),
457 FIELD64(IO_BITMAP_A, io_bitmap_a),
458 FIELD64(IO_BITMAP_B, io_bitmap_b),
459 FIELD64(MSR_BITMAP, msr_bitmap),
460 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
461 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
462 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
463 FIELD64(TSC_OFFSET, tsc_offset),
464 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
465 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
466 FIELD64(EPT_POINTER, ept_pointer),
467 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
468 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
469 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
470 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
471 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
472 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
473 FIELD64(GUEST_PDPTR0, guest_pdptr0),
474 FIELD64(GUEST_PDPTR1, guest_pdptr1),
475 FIELD64(GUEST_PDPTR2, guest_pdptr2),
476 FIELD64(GUEST_PDPTR3, guest_pdptr3),
477 FIELD64(HOST_IA32_PAT, host_ia32_pat),
478 FIELD64(HOST_IA32_EFER, host_ia32_efer),
479 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
480 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
481 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
482 FIELD(EXCEPTION_BITMAP, exception_bitmap),
483 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
484 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
485 FIELD(CR3_TARGET_COUNT, cr3_target_count),
486 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
487 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
488 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
489 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
490 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
491 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
492 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
493 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
494 FIELD(TPR_THRESHOLD, tpr_threshold),
495 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
496 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
497 FIELD(VM_EXIT_REASON, vm_exit_reason),
498 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
499 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
500 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
501 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
502 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
503 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
504 FIELD(GUEST_ES_LIMIT, guest_es_limit),
505 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
506 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
507 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
508 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
509 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
510 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
511 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
512 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
513 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
514 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
515 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
516 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
517 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
518 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
519 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
520 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
521 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
522 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
523 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
524 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
525 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
526 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
527 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
528 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
529 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
530 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
531 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
532 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
533 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
534 FIELD(EXIT_QUALIFICATION, exit_qualification),
535 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
536 FIELD(GUEST_CR0, guest_cr0),
537 FIELD(GUEST_CR3, guest_cr3),
538 FIELD(GUEST_CR4, guest_cr4),
539 FIELD(GUEST_ES_BASE, guest_es_base),
540 FIELD(GUEST_CS_BASE, guest_cs_base),
541 FIELD(GUEST_SS_BASE, guest_ss_base),
542 FIELD(GUEST_DS_BASE, guest_ds_base),
543 FIELD(GUEST_FS_BASE, guest_fs_base),
544 FIELD(GUEST_GS_BASE, guest_gs_base),
545 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
546 FIELD(GUEST_TR_BASE, guest_tr_base),
547 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
548 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
549 FIELD(GUEST_DR7, guest_dr7),
550 FIELD(GUEST_RSP, guest_rsp),
551 FIELD(GUEST_RIP, guest_rip),
552 FIELD(GUEST_RFLAGS, guest_rflags),
553 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
554 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
555 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
556 FIELD(HOST_CR0, host_cr0),
557 FIELD(HOST_CR3, host_cr3),
558 FIELD(HOST_CR4, host_cr4),
559 FIELD(HOST_FS_BASE, host_fs_base),
560 FIELD(HOST_GS_BASE, host_gs_base),
561 FIELD(HOST_TR_BASE, host_tr_base),
562 FIELD(HOST_GDTR_BASE, host_gdtr_base),
563 FIELD(HOST_IDTR_BASE, host_idtr_base),
564 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
565 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
566 FIELD(HOST_RSP, host_rsp),
567 FIELD(HOST_RIP, host_rip),
569 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
571 static inline short vmcs_field_to_offset(unsigned long field)
573 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
575 return vmcs_field_to_offset_table[field];
578 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
580 return to_vmx(vcpu)->nested.current_vmcs12;
583 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
585 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
586 if (is_error_page(page)) {
587 kvm_release_page_clean(page);
593 static void nested_release_page(struct page *page)
595 kvm_release_page_dirty(page);
598 static void nested_release_page_clean(struct page *page)
600 kvm_release_page_clean(page);
603 static u64 construct_eptp(unsigned long root_hpa);
604 static void kvm_cpu_vmxon(u64 addr);
605 static void kvm_cpu_vmxoff(void);
606 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
607 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
609 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
610 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
612 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
613 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
615 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
616 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
618 static unsigned long *vmx_io_bitmap_a;
619 static unsigned long *vmx_io_bitmap_b;
620 static unsigned long *vmx_msr_bitmap_legacy;
621 static unsigned long *vmx_msr_bitmap_longmode;
623 static bool cpu_has_load_ia32_efer;
624 static bool cpu_has_load_perf_global_ctrl;
626 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
627 static DEFINE_SPINLOCK(vmx_vpid_lock);
629 static struct vmcs_config {
633 u32 pin_based_exec_ctrl;
634 u32 cpu_based_exec_ctrl;
635 u32 cpu_based_2nd_exec_ctrl;
640 static struct vmx_capability {
645 #define VMX_SEGMENT_FIELD(seg) \
646 [VCPU_SREG_##seg] = { \
647 .selector = GUEST_##seg##_SELECTOR, \
648 .base = GUEST_##seg##_BASE, \
649 .limit = GUEST_##seg##_LIMIT, \
650 .ar_bytes = GUEST_##seg##_AR_BYTES, \
653 static struct kvm_vmx_segment_field {
658 } kvm_vmx_segment_fields[] = {
659 VMX_SEGMENT_FIELD(CS),
660 VMX_SEGMENT_FIELD(DS),
661 VMX_SEGMENT_FIELD(ES),
662 VMX_SEGMENT_FIELD(FS),
663 VMX_SEGMENT_FIELD(GS),
664 VMX_SEGMENT_FIELD(SS),
665 VMX_SEGMENT_FIELD(TR),
666 VMX_SEGMENT_FIELD(LDTR),
669 static u64 host_efer;
671 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
674 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
675 * away by decrementing the array size.
677 static const u32 vmx_msr_index[] = {
679 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
681 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
683 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
685 static inline bool is_page_fault(u32 intr_info)
687 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
688 INTR_INFO_VALID_MASK)) ==
689 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
692 static inline bool is_no_device(u32 intr_info)
694 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
695 INTR_INFO_VALID_MASK)) ==
696 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
699 static inline bool is_invalid_opcode(u32 intr_info)
701 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
702 INTR_INFO_VALID_MASK)) ==
703 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
706 static inline bool is_external_interrupt(u32 intr_info)
708 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
709 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
712 static inline bool is_machine_check(u32 intr_info)
714 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
715 INTR_INFO_VALID_MASK)) ==
716 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
719 static inline bool cpu_has_vmx_msr_bitmap(void)
721 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
724 static inline bool cpu_has_vmx_tpr_shadow(void)
726 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
729 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
731 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
734 static inline bool cpu_has_secondary_exec_ctrls(void)
736 return vmcs_config.cpu_based_exec_ctrl &
737 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
740 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
742 return vmcs_config.cpu_based_2nd_exec_ctrl &
743 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
746 static inline bool cpu_has_vmx_flexpriority(void)
748 return cpu_has_vmx_tpr_shadow() &&
749 cpu_has_vmx_virtualize_apic_accesses();
752 static inline bool cpu_has_vmx_ept_execute_only(void)
754 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
757 static inline bool cpu_has_vmx_eptp_uncacheable(void)
759 return vmx_capability.ept & VMX_EPTP_UC_BIT;
762 static inline bool cpu_has_vmx_eptp_writeback(void)
764 return vmx_capability.ept & VMX_EPTP_WB_BIT;
767 static inline bool cpu_has_vmx_ept_2m_page(void)
769 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
772 static inline bool cpu_has_vmx_ept_1g_page(void)
774 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
777 static inline bool cpu_has_vmx_ept_4levels(void)
779 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
782 static inline bool cpu_has_vmx_invept_individual_addr(void)
784 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
787 static inline bool cpu_has_vmx_invept_context(void)
789 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
792 static inline bool cpu_has_vmx_invept_global(void)
794 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
797 static inline bool cpu_has_vmx_invvpid_single(void)
799 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
802 static inline bool cpu_has_vmx_invvpid_global(void)
804 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
807 static inline bool cpu_has_vmx_ept(void)
809 return vmcs_config.cpu_based_2nd_exec_ctrl &
810 SECONDARY_EXEC_ENABLE_EPT;
813 static inline bool cpu_has_vmx_unrestricted_guest(void)
815 return vmcs_config.cpu_based_2nd_exec_ctrl &
816 SECONDARY_EXEC_UNRESTRICTED_GUEST;
819 static inline bool cpu_has_vmx_ple(void)
821 return vmcs_config.cpu_based_2nd_exec_ctrl &
822 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
825 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
827 return flexpriority_enabled && irqchip_in_kernel(kvm);
830 static inline bool cpu_has_vmx_vpid(void)
832 return vmcs_config.cpu_based_2nd_exec_ctrl &
833 SECONDARY_EXEC_ENABLE_VPID;
836 static inline bool cpu_has_vmx_rdtscp(void)
838 return vmcs_config.cpu_based_2nd_exec_ctrl &
839 SECONDARY_EXEC_RDTSCP;
842 static inline bool cpu_has_virtual_nmis(void)
844 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
847 static inline bool cpu_has_vmx_wbinvd_exit(void)
849 return vmcs_config.cpu_based_2nd_exec_ctrl &
850 SECONDARY_EXEC_WBINVD_EXITING;
853 static inline bool report_flexpriority(void)
855 return flexpriority_enabled;
858 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
860 return vmcs12->cpu_based_vm_exec_control & bit;
863 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
865 return (vmcs12->cpu_based_vm_exec_control &
866 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
867 (vmcs12->secondary_vm_exec_control & bit);
870 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
871 struct kvm_vcpu *vcpu)
873 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
876 static inline bool is_exception(u32 intr_info)
878 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
879 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
882 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
883 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
884 struct vmcs12 *vmcs12,
885 u32 reason, unsigned long qualification);
887 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
891 for (i = 0; i < vmx->nmsrs; ++i)
892 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
897 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
903 } operand = { vpid, 0, gva };
905 asm volatile (__ex(ASM_VMX_INVVPID)
906 /* CF==1 or ZF==1 --> rc = -1 */
908 : : "a"(&operand), "c"(ext) : "cc", "memory");
911 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
915 } operand = {eptp, gpa};
917 asm volatile (__ex(ASM_VMX_INVEPT)
918 /* CF==1 or ZF==1 --> rc = -1 */
919 "; ja 1f ; ud2 ; 1:\n"
920 : : "a" (&operand), "c" (ext) : "cc", "memory");
923 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
927 i = __find_msr_index(vmx, msr);
929 return &vmx->guest_msrs[i];
933 static void vmcs_clear(struct vmcs *vmcs)
935 u64 phys_addr = __pa(vmcs);
938 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
939 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
942 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
946 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
948 vmcs_clear(loaded_vmcs->vmcs);
949 loaded_vmcs->cpu = -1;
950 loaded_vmcs->launched = 0;
953 static void vmcs_load(struct vmcs *vmcs)
955 u64 phys_addr = __pa(vmcs);
958 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
959 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
962 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
966 static void __loaded_vmcs_clear(void *arg)
968 struct loaded_vmcs *loaded_vmcs = arg;
969 int cpu = raw_smp_processor_id();
971 if (loaded_vmcs->cpu != cpu)
972 return; /* vcpu migration can race with cpu offline */
973 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
974 per_cpu(current_vmcs, cpu) = NULL;
975 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
976 loaded_vmcs_init(loaded_vmcs);
979 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
981 if (loaded_vmcs->cpu != -1)
982 smp_call_function_single(
983 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
986 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
991 if (cpu_has_vmx_invvpid_single())
992 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
995 static inline void vpid_sync_vcpu_global(void)
997 if (cpu_has_vmx_invvpid_global())
998 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1001 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1003 if (cpu_has_vmx_invvpid_single())
1004 vpid_sync_vcpu_single(vmx);
1006 vpid_sync_vcpu_global();
1009 static inline void ept_sync_global(void)
1011 if (cpu_has_vmx_invept_global())
1012 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1015 static inline void ept_sync_context(u64 eptp)
1018 if (cpu_has_vmx_invept_context())
1019 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1025 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1028 if (cpu_has_vmx_invept_individual_addr())
1029 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1032 ept_sync_context(eptp);
1036 static __always_inline unsigned long vmcs_readl(unsigned long field)
1038 unsigned long value;
1040 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1041 : "=a"(value) : "d"(field) : "cc");
1045 static __always_inline u16 vmcs_read16(unsigned long field)
1047 return vmcs_readl(field);
1050 static __always_inline u32 vmcs_read32(unsigned long field)
1052 return vmcs_readl(field);
1055 static __always_inline u64 vmcs_read64(unsigned long field)
1057 #ifdef CONFIG_X86_64
1058 return vmcs_readl(field);
1060 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1064 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1066 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1067 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1071 static void vmcs_writel(unsigned long field, unsigned long value)
1075 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1076 : "=q"(error) : "a"(value), "d"(field) : "cc");
1077 if (unlikely(error))
1078 vmwrite_error(field, value);
1081 static void vmcs_write16(unsigned long field, u16 value)
1083 vmcs_writel(field, value);
1086 static void vmcs_write32(unsigned long field, u32 value)
1088 vmcs_writel(field, value);
1091 static void vmcs_write64(unsigned long field, u64 value)
1093 vmcs_writel(field, value);
1094 #ifndef CONFIG_X86_64
1096 vmcs_writel(field+1, value >> 32);
1100 static void vmcs_clear_bits(unsigned long field, u32 mask)
1102 vmcs_writel(field, vmcs_readl(field) & ~mask);
1105 static void vmcs_set_bits(unsigned long field, u32 mask)
1107 vmcs_writel(field, vmcs_readl(field) | mask);
1110 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1112 vmx->segment_cache.bitmask = 0;
1115 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1119 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1121 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1122 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1123 vmx->segment_cache.bitmask = 0;
1125 ret = vmx->segment_cache.bitmask & mask;
1126 vmx->segment_cache.bitmask |= mask;
1130 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1132 u16 *p = &vmx->segment_cache.seg[seg].selector;
1134 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1135 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1139 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1141 ulong *p = &vmx->segment_cache.seg[seg].base;
1143 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1144 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1148 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1150 u32 *p = &vmx->segment_cache.seg[seg].limit;
1152 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1153 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1157 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1159 u32 *p = &vmx->segment_cache.seg[seg].ar;
1161 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1162 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1166 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1170 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1171 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1172 if ((vcpu->guest_debug &
1173 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1174 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1175 eb |= 1u << BP_VECTOR;
1176 if (to_vmx(vcpu)->rmode.vm86_active)
1179 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1180 if (vcpu->fpu_active)
1181 eb &= ~(1u << NM_VECTOR);
1183 /* When we are running a nested L2 guest and L1 specified for it a
1184 * certain exception bitmap, we must trap the same exceptions and pass
1185 * them to L1. When running L2, we will only handle the exceptions
1186 * specified above if L1 did not want them.
1188 if (is_guest_mode(vcpu))
1189 eb |= get_vmcs12(vcpu)->exception_bitmap;
1191 vmcs_write32(EXCEPTION_BITMAP, eb);
1194 static void clear_atomic_switch_msr_special(unsigned long entry,
1197 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1198 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1201 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1204 struct msr_autoload *m = &vmx->msr_autoload;
1208 if (cpu_has_load_ia32_efer) {
1209 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1210 VM_EXIT_LOAD_IA32_EFER);
1214 case MSR_CORE_PERF_GLOBAL_CTRL:
1215 if (cpu_has_load_perf_global_ctrl) {
1216 clear_atomic_switch_msr_special(
1217 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1218 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1224 for (i = 0; i < m->nr; ++i)
1225 if (m->guest[i].index == msr)
1231 m->guest[i] = m->guest[m->nr];
1232 m->host[i] = m->host[m->nr];
1233 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1234 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1237 static void add_atomic_switch_msr_special(unsigned long entry,
1238 unsigned long exit, unsigned long guest_val_vmcs,
1239 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1241 vmcs_write64(guest_val_vmcs, guest_val);
1242 vmcs_write64(host_val_vmcs, host_val);
1243 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1244 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1247 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1248 u64 guest_val, u64 host_val)
1251 struct msr_autoload *m = &vmx->msr_autoload;
1255 if (cpu_has_load_ia32_efer) {
1256 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1257 VM_EXIT_LOAD_IA32_EFER,
1260 guest_val, host_val);
1264 case MSR_CORE_PERF_GLOBAL_CTRL:
1265 if (cpu_has_load_perf_global_ctrl) {
1266 add_atomic_switch_msr_special(
1267 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1268 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1269 GUEST_IA32_PERF_GLOBAL_CTRL,
1270 HOST_IA32_PERF_GLOBAL_CTRL,
1271 guest_val, host_val);
1277 for (i = 0; i < m->nr; ++i)
1278 if (m->guest[i].index == msr)
1281 if (i == NR_AUTOLOAD_MSRS) {
1282 printk_once(KERN_WARNING"Not enough mst switch entries. "
1283 "Can't add msr %x\n", msr);
1285 } else if (i == m->nr) {
1287 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1288 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1291 m->guest[i].index = msr;
1292 m->guest[i].value = guest_val;
1293 m->host[i].index = msr;
1294 m->host[i].value = host_val;
1297 static void reload_tss(void)
1300 * VT restores TR but not its size. Useless.
1302 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1303 struct desc_struct *descs;
1305 descs = (void *)gdt->address;
1306 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1310 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1315 guest_efer = vmx->vcpu.arch.efer;
1318 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1321 ignore_bits = EFER_NX | EFER_SCE;
1322 #ifdef CONFIG_X86_64
1323 ignore_bits |= EFER_LMA | EFER_LME;
1324 /* SCE is meaningful only in long mode on Intel */
1325 if (guest_efer & EFER_LMA)
1326 ignore_bits &= ~(u64)EFER_SCE;
1328 guest_efer &= ~ignore_bits;
1329 guest_efer |= host_efer & ignore_bits;
1330 vmx->guest_msrs[efer_offset].data = guest_efer;
1331 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1333 clear_atomic_switch_msr(vmx, MSR_EFER);
1334 /* On ept, can't emulate nx, and must switch nx atomically */
1335 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1336 guest_efer = vmx->vcpu.arch.efer;
1337 if (!(guest_efer & EFER_LMA))
1338 guest_efer &= ~EFER_LME;
1339 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1346 static unsigned long segment_base(u16 selector)
1348 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1349 struct desc_struct *d;
1350 unsigned long table_base;
1353 if (!(selector & ~3))
1356 table_base = gdt->address;
1358 if (selector & 4) { /* from ldt */
1359 u16 ldt_selector = kvm_read_ldt();
1361 if (!(ldt_selector & ~3))
1364 table_base = segment_base(ldt_selector);
1366 d = (struct desc_struct *)(table_base + (selector & ~7));
1367 v = get_desc_base(d);
1368 #ifdef CONFIG_X86_64
1369 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1370 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1375 static inline unsigned long kvm_read_tr_base(void)
1378 asm("str %0" : "=g"(tr));
1379 return segment_base(tr);
1382 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1384 struct vcpu_vmx *vmx = to_vmx(vcpu);
1387 if (vmx->host_state.loaded)
1390 vmx->host_state.loaded = 1;
1392 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1393 * allow segment selectors with cpl > 0 or ti == 1.
1395 vmx->host_state.ldt_sel = kvm_read_ldt();
1396 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1397 savesegment(fs, vmx->host_state.fs_sel);
1398 if (!(vmx->host_state.fs_sel & 7)) {
1399 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1400 vmx->host_state.fs_reload_needed = 0;
1402 vmcs_write16(HOST_FS_SELECTOR, 0);
1403 vmx->host_state.fs_reload_needed = 1;
1405 savesegment(gs, vmx->host_state.gs_sel);
1406 if (!(vmx->host_state.gs_sel & 7))
1407 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1409 vmcs_write16(HOST_GS_SELECTOR, 0);
1410 vmx->host_state.gs_ldt_reload_needed = 1;
1413 #ifdef CONFIG_X86_64
1414 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1415 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1417 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1418 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1421 #ifdef CONFIG_X86_64
1422 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1423 if (is_long_mode(&vmx->vcpu))
1424 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1426 for (i = 0; i < vmx->save_nmsrs; ++i)
1427 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1428 vmx->guest_msrs[i].data,
1429 vmx->guest_msrs[i].mask);
1432 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1434 if (!vmx->host_state.loaded)
1437 ++vmx->vcpu.stat.host_state_reload;
1438 vmx->host_state.loaded = 0;
1439 #ifdef CONFIG_X86_64
1440 if (is_long_mode(&vmx->vcpu))
1441 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1443 if (vmx->host_state.gs_ldt_reload_needed) {
1444 kvm_load_ldt(vmx->host_state.ldt_sel);
1445 #ifdef CONFIG_X86_64
1446 load_gs_index(vmx->host_state.gs_sel);
1448 loadsegment(gs, vmx->host_state.gs_sel);
1451 if (vmx->host_state.fs_reload_needed)
1452 loadsegment(fs, vmx->host_state.fs_sel);
1454 #ifdef CONFIG_X86_64
1455 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1457 if (__thread_has_fpu(current))
1459 load_gdt(&__get_cpu_var(host_gdt));
1462 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1465 __vmx_load_host_state(vmx);
1470 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1471 * vcpu mutex is already taken.
1473 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1475 struct vcpu_vmx *vmx = to_vmx(vcpu);
1476 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1479 kvm_cpu_vmxon(phys_addr);
1480 else if (vmx->loaded_vmcs->cpu != cpu)
1481 loaded_vmcs_clear(vmx->loaded_vmcs);
1483 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1484 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1485 vmcs_load(vmx->loaded_vmcs->vmcs);
1488 if (vmx->loaded_vmcs->cpu != cpu) {
1489 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1490 unsigned long sysenter_esp;
1492 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1493 local_irq_disable();
1494 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1495 &per_cpu(loaded_vmcss_on_cpu, cpu));
1499 * Linux uses per-cpu TSS and GDT, so set these when switching
1502 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1503 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1505 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1506 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1507 vmx->loaded_vmcs->cpu = cpu;
1511 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1513 __vmx_load_host_state(to_vmx(vcpu));
1514 if (!vmm_exclusive) {
1515 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1521 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1525 if (vcpu->fpu_active)
1527 vcpu->fpu_active = 1;
1528 cr0 = vmcs_readl(GUEST_CR0);
1529 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1530 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1531 vmcs_writel(GUEST_CR0, cr0);
1532 update_exception_bitmap(vcpu);
1533 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1534 if (is_guest_mode(vcpu))
1535 vcpu->arch.cr0_guest_owned_bits &=
1536 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1537 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1540 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1543 * Return the cr0 value that a nested guest would read. This is a combination
1544 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1545 * its hypervisor (cr0_read_shadow).
1547 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1549 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1550 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1552 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1554 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1555 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1558 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1560 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1561 * set this *before* calling this function.
1563 vmx_decache_cr0_guest_bits(vcpu);
1564 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1565 update_exception_bitmap(vcpu);
1566 vcpu->arch.cr0_guest_owned_bits = 0;
1567 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1568 if (is_guest_mode(vcpu)) {
1570 * L1's specified read shadow might not contain the TS bit,
1571 * so now that we turned on shadowing of this bit, we need to
1572 * set this bit of the shadow. Like in nested_vmx_run we need
1573 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1574 * up-to-date here because we just decached cr0.TS (and we'll
1575 * only update vmcs12->guest_cr0 on nested exit).
1577 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1578 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1579 (vcpu->arch.cr0 & X86_CR0_TS);
1580 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1582 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1585 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1587 unsigned long rflags, save_rflags;
1589 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1590 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1591 rflags = vmcs_readl(GUEST_RFLAGS);
1592 if (to_vmx(vcpu)->rmode.vm86_active) {
1593 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1594 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1595 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1597 to_vmx(vcpu)->rflags = rflags;
1599 return to_vmx(vcpu)->rflags;
1602 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1604 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1605 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1606 to_vmx(vcpu)->rflags = rflags;
1607 if (to_vmx(vcpu)->rmode.vm86_active) {
1608 to_vmx(vcpu)->rmode.save_rflags = rflags;
1609 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1611 vmcs_writel(GUEST_RFLAGS, rflags);
1614 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1616 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1619 if (interruptibility & GUEST_INTR_STATE_STI)
1620 ret |= KVM_X86_SHADOW_INT_STI;
1621 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1622 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1627 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1629 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1630 u32 interruptibility = interruptibility_old;
1632 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1634 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1635 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1636 else if (mask & KVM_X86_SHADOW_INT_STI)
1637 interruptibility |= GUEST_INTR_STATE_STI;
1639 if ((interruptibility != interruptibility_old))
1640 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1643 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1647 rip = kvm_rip_read(vcpu);
1648 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1649 kvm_rip_write(vcpu, rip);
1651 /* skipping an emulated instruction also counts */
1652 vmx_set_interrupt_shadow(vcpu, 0);
1656 * KVM wants to inject page-faults which it got to the guest. This function
1657 * checks whether in a nested guest, we need to inject them to L1 or L2.
1658 * This function assumes it is called with the exit reason in vmcs02 being
1659 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1662 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1664 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1666 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1667 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1670 nested_vmx_vmexit(vcpu);
1674 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1675 bool has_error_code, u32 error_code,
1678 struct vcpu_vmx *vmx = to_vmx(vcpu);
1679 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1681 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1682 nested_pf_handled(vcpu))
1685 if (has_error_code) {
1686 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1687 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1690 if (vmx->rmode.vm86_active) {
1692 if (kvm_exception_is_soft(nr))
1693 inc_eip = vcpu->arch.event_exit_inst_len;
1694 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1695 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1699 if (kvm_exception_is_soft(nr)) {
1700 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1701 vmx->vcpu.arch.event_exit_inst_len);
1702 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1704 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1706 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1709 static bool vmx_rdtscp_supported(void)
1711 return cpu_has_vmx_rdtscp();
1715 * Swap MSR entry in host/guest MSR entry array.
1717 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1719 struct shared_msr_entry tmp;
1721 tmp = vmx->guest_msrs[to];
1722 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1723 vmx->guest_msrs[from] = tmp;
1727 * Set up the vmcs to automatically save and restore system
1728 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1729 * mode, as fiddling with msrs is very expensive.
1731 static void setup_msrs(struct vcpu_vmx *vmx)
1733 int save_nmsrs, index;
1734 unsigned long *msr_bitmap;
1737 #ifdef CONFIG_X86_64
1738 if (is_long_mode(&vmx->vcpu)) {
1739 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1741 move_msr_up(vmx, index, save_nmsrs++);
1742 index = __find_msr_index(vmx, MSR_LSTAR);
1744 move_msr_up(vmx, index, save_nmsrs++);
1745 index = __find_msr_index(vmx, MSR_CSTAR);
1747 move_msr_up(vmx, index, save_nmsrs++);
1748 index = __find_msr_index(vmx, MSR_TSC_AUX);
1749 if (index >= 0 && vmx->rdtscp_enabled)
1750 move_msr_up(vmx, index, save_nmsrs++);
1752 * MSR_STAR is only needed on long mode guests, and only
1753 * if efer.sce is enabled.
1755 index = __find_msr_index(vmx, MSR_STAR);
1756 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1757 move_msr_up(vmx, index, save_nmsrs++);
1760 index = __find_msr_index(vmx, MSR_EFER);
1761 if (index >= 0 && update_transition_efer(vmx, index))
1762 move_msr_up(vmx, index, save_nmsrs++);
1764 vmx->save_nmsrs = save_nmsrs;
1766 if (cpu_has_vmx_msr_bitmap()) {
1767 if (is_long_mode(&vmx->vcpu))
1768 msr_bitmap = vmx_msr_bitmap_longmode;
1770 msr_bitmap = vmx_msr_bitmap_legacy;
1772 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1777 * reads and returns guest's timestamp counter "register"
1778 * guest_tsc = host_tsc + tsc_offset -- 21.3
1780 static u64 guest_read_tsc(void)
1782 u64 host_tsc, tsc_offset;
1785 tsc_offset = vmcs_read64(TSC_OFFSET);
1786 return host_tsc + tsc_offset;
1790 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1791 * counter, even if a nested guest (L2) is currently running.
1793 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1795 u64 host_tsc, tsc_offset;
1798 tsc_offset = is_guest_mode(vcpu) ?
1799 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1800 vmcs_read64(TSC_OFFSET);
1801 return host_tsc + tsc_offset;
1805 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1806 * software catchup for faster rates on slower CPUs.
1808 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1813 if (user_tsc_khz > tsc_khz) {
1814 vcpu->arch.tsc_catchup = 1;
1815 vcpu->arch.tsc_always_catchup = 1;
1817 WARN(1, "user requested TSC rate below hardware speed\n");
1821 * writes 'offset' into guest's timestamp counter offset register
1823 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1825 if (is_guest_mode(vcpu)) {
1827 * We're here if L1 chose not to trap WRMSR to TSC. According
1828 * to the spec, this should set L1's TSC; The offset that L1
1829 * set for L2 remains unchanged, and still needs to be added
1830 * to the newly set TSC to get L2's TSC.
1832 struct vmcs12 *vmcs12;
1833 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1834 /* recalculate vmcs02.TSC_OFFSET: */
1835 vmcs12 = get_vmcs12(vcpu);
1836 vmcs_write64(TSC_OFFSET, offset +
1837 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1838 vmcs12->tsc_offset : 0));
1840 vmcs_write64(TSC_OFFSET, offset);
1844 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1846 u64 offset = vmcs_read64(TSC_OFFSET);
1847 vmcs_write64(TSC_OFFSET, offset + adjustment);
1848 if (is_guest_mode(vcpu)) {
1849 /* Even when running L2, the adjustment needs to apply to L1 */
1850 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1854 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1856 return target_tsc - native_read_tsc();
1859 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1861 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1862 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1866 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1867 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1868 * all guests if the "nested" module option is off, and can also be disabled
1869 * for a single guest by disabling its VMX cpuid bit.
1871 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1873 return nested && guest_cpuid_has_vmx(vcpu);
1877 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1878 * returned for the various VMX controls MSRs when nested VMX is enabled.
1879 * The same values should also be used to verify that vmcs12 control fields are
1880 * valid during nested entry from L1 to L2.
1881 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1882 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1883 * bit in the high half is on if the corresponding bit in the control field
1884 * may be on. See also vmx_control_verify().
1885 * TODO: allow these variables to be modified (downgraded) by module options
1888 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1889 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1890 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1891 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1892 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1893 static __init void nested_vmx_setup_ctls_msrs(void)
1896 * Note that as a general rule, the high half of the MSRs (bits in
1897 * the control fields which may be 1) should be initialized by the
1898 * intersection of the underlying hardware's MSR (i.e., features which
1899 * can be supported) and the list of features we want to expose -
1900 * because they are known to be properly supported in our code.
1901 * Also, usually, the low half of the MSRs (bits which must be 1) can
1902 * be set to 0, meaning that L1 may turn off any of these bits. The
1903 * reason is that if one of these bits is necessary, it will appear
1904 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1905 * fields of vmcs01 and vmcs02, will turn these bits off - and
1906 * nested_vmx_exit_handled() will not pass related exits to L1.
1907 * These rules have exceptions below.
1910 /* pin-based controls */
1912 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1913 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1915 nested_vmx_pinbased_ctls_low = 0x16 ;
1916 nested_vmx_pinbased_ctls_high = 0x16 |
1917 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1918 PIN_BASED_VIRTUAL_NMIS;
1921 nested_vmx_exit_ctls_low = 0;
1922 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1923 #ifdef CONFIG_X86_64
1924 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1926 nested_vmx_exit_ctls_high = 0;
1929 /* entry controls */
1930 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1931 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1932 nested_vmx_entry_ctls_low = 0;
1933 nested_vmx_entry_ctls_high &=
1934 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1936 /* cpu-based controls */
1937 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1938 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1939 nested_vmx_procbased_ctls_low = 0;
1940 nested_vmx_procbased_ctls_high &=
1941 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1942 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1943 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1944 CPU_BASED_CR3_STORE_EXITING |
1945 #ifdef CONFIG_X86_64
1946 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1948 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1949 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1950 CPU_BASED_RDPMC_EXITING |
1951 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1953 * We can allow some features even when not supported by the
1954 * hardware. For example, L1 can specify an MSR bitmap - and we
1955 * can use it to avoid exits to L1 - even when L0 runs L2
1956 * without MSR bitmaps.
1958 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1960 /* secondary cpu-based controls */
1961 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1962 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1963 nested_vmx_secondary_ctls_low = 0;
1964 nested_vmx_secondary_ctls_high &=
1965 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1968 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1971 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1973 return ((control & high) | low) == control;
1976 static inline u64 vmx_control_msr(u32 low, u32 high)
1978 return low | ((u64)high << 32);
1982 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1983 * also let it use VMX-specific MSRs.
1984 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1985 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1986 * like all other MSRs).
1988 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1990 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1991 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1993 * According to the spec, processors which do not support VMX
1994 * should throw a #GP(0) when VMX capability MSRs are read.
1996 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2000 switch (msr_index) {
2001 case MSR_IA32_FEATURE_CONTROL:
2004 case MSR_IA32_VMX_BASIC:
2006 * This MSR reports some information about VMX support. We
2007 * should return information about the VMX we emulate for the
2008 * guest, and the VMCS structure we give it - not about the
2009 * VMX support of the underlying hardware.
2011 *pdata = VMCS12_REVISION |
2012 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2013 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2015 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2016 case MSR_IA32_VMX_PINBASED_CTLS:
2017 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2018 nested_vmx_pinbased_ctls_high);
2020 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2021 case MSR_IA32_VMX_PROCBASED_CTLS:
2022 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2023 nested_vmx_procbased_ctls_high);
2025 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2026 case MSR_IA32_VMX_EXIT_CTLS:
2027 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2028 nested_vmx_exit_ctls_high);
2030 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2031 case MSR_IA32_VMX_ENTRY_CTLS:
2032 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2033 nested_vmx_entry_ctls_high);
2035 case MSR_IA32_VMX_MISC:
2039 * These MSRs specify bits which the guest must keep fixed (on or off)
2040 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2041 * We picked the standard core2 setting.
2043 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2044 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2045 case MSR_IA32_VMX_CR0_FIXED0:
2046 *pdata = VMXON_CR0_ALWAYSON;
2048 case MSR_IA32_VMX_CR0_FIXED1:
2051 case MSR_IA32_VMX_CR4_FIXED0:
2052 *pdata = VMXON_CR4_ALWAYSON;
2054 case MSR_IA32_VMX_CR4_FIXED1:
2057 case MSR_IA32_VMX_VMCS_ENUM:
2060 case MSR_IA32_VMX_PROCBASED_CTLS2:
2061 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2062 nested_vmx_secondary_ctls_high);
2064 case MSR_IA32_VMX_EPT_VPID_CAP:
2065 /* Currently, no nested ept or nested vpid */
2075 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2077 if (!nested_vmx_allowed(vcpu))
2080 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2081 /* TODO: the right thing. */
2084 * No need to treat VMX capability MSRs specially: If we don't handle
2085 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2091 * Reads an msr value (of 'msr_index') into 'pdata'.
2092 * Returns 0 on success, non-0 otherwise.
2093 * Assumes vcpu_load() was already called.
2095 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2098 struct shared_msr_entry *msr;
2101 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2105 switch (msr_index) {
2106 #ifdef CONFIG_X86_64
2108 data = vmcs_readl(GUEST_FS_BASE);
2111 data = vmcs_readl(GUEST_GS_BASE);
2113 case MSR_KERNEL_GS_BASE:
2114 vmx_load_host_state(to_vmx(vcpu));
2115 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2119 return kvm_get_msr_common(vcpu, msr_index, pdata);
2121 data = guest_read_tsc();
2123 case MSR_IA32_SYSENTER_CS:
2124 data = vmcs_read32(GUEST_SYSENTER_CS);
2126 case MSR_IA32_SYSENTER_EIP:
2127 data = vmcs_readl(GUEST_SYSENTER_EIP);
2129 case MSR_IA32_SYSENTER_ESP:
2130 data = vmcs_readl(GUEST_SYSENTER_ESP);
2133 if (!to_vmx(vcpu)->rdtscp_enabled)
2135 /* Otherwise falls through */
2137 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2139 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2144 return kvm_get_msr_common(vcpu, msr_index, pdata);
2152 * Writes msr value into into the appropriate "register".
2153 * Returns 0 on success, non-0 otherwise.
2154 * Assumes vcpu_load() was already called.
2156 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2158 struct vcpu_vmx *vmx = to_vmx(vcpu);
2159 struct shared_msr_entry *msr;
2162 switch (msr_index) {
2164 ret = kvm_set_msr_common(vcpu, msr_index, data);
2166 #ifdef CONFIG_X86_64
2168 vmx_segment_cache_clear(vmx);
2169 vmcs_writel(GUEST_FS_BASE, data);
2172 vmx_segment_cache_clear(vmx);
2173 vmcs_writel(GUEST_GS_BASE, data);
2175 case MSR_KERNEL_GS_BASE:
2176 vmx_load_host_state(vmx);
2177 vmx->msr_guest_kernel_gs_base = data;
2180 case MSR_IA32_SYSENTER_CS:
2181 vmcs_write32(GUEST_SYSENTER_CS, data);
2183 case MSR_IA32_SYSENTER_EIP:
2184 vmcs_writel(GUEST_SYSENTER_EIP, data);
2186 case MSR_IA32_SYSENTER_ESP:
2187 vmcs_writel(GUEST_SYSENTER_ESP, data);
2190 kvm_write_tsc(vcpu, data);
2192 case MSR_IA32_CR_PAT:
2193 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2194 vmcs_write64(GUEST_IA32_PAT, data);
2195 vcpu->arch.pat = data;
2198 ret = kvm_set_msr_common(vcpu, msr_index, data);
2201 if (!vmx->rdtscp_enabled)
2203 /* Check reserved bit, higher 32 bits should be zero */
2204 if ((data >> 32) != 0)
2206 /* Otherwise falls through */
2208 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2210 msr = find_msr_entry(vmx, msr_index);
2213 if (msr - vmx->guest_msrs < vmx->save_nmsrs)
2214 kvm_set_shared_msr(msr->index, msr->data,
2218 ret = kvm_set_msr_common(vcpu, msr_index, data);
2224 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2226 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2229 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2232 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2234 case VCPU_EXREG_PDPTR:
2236 ept_save_pdptrs(vcpu);
2243 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2245 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2246 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2248 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2250 update_exception_bitmap(vcpu);
2253 static __init int cpu_has_kvm_support(void)
2255 return cpu_has_vmx();
2258 static __init int vmx_disabled_by_bios(void)
2262 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2263 if (msr & FEATURE_CONTROL_LOCKED) {
2264 /* launched w/ TXT and VMX disabled */
2265 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2268 /* launched w/o TXT and VMX only enabled w/ TXT */
2269 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2270 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2271 && !tboot_enabled()) {
2272 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2273 "activate TXT before enabling KVM\n");
2276 /* launched w/o TXT and VMX disabled */
2277 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2278 && !tboot_enabled())
2285 static void kvm_cpu_vmxon(u64 addr)
2287 asm volatile (ASM_VMX_VMXON_RAX
2288 : : "a"(&addr), "m"(addr)
2292 static int hardware_enable(void *garbage)
2294 int cpu = raw_smp_processor_id();
2295 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2298 if (read_cr4() & X86_CR4_VMXE)
2301 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2302 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2304 test_bits = FEATURE_CONTROL_LOCKED;
2305 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2306 if (tboot_enabled())
2307 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2309 if ((old & test_bits) != test_bits) {
2310 /* enable and lock */
2311 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2313 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2315 if (vmm_exclusive) {
2316 kvm_cpu_vmxon(phys_addr);
2320 store_gdt(&__get_cpu_var(host_gdt));
2325 static void vmclear_local_loaded_vmcss(void)
2327 int cpu = raw_smp_processor_id();
2328 struct loaded_vmcs *v, *n;
2330 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2331 loaded_vmcss_on_cpu_link)
2332 __loaded_vmcs_clear(v);
2336 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2339 static void kvm_cpu_vmxoff(void)
2341 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2344 static void hardware_disable(void *garbage)
2346 if (vmm_exclusive) {
2347 vmclear_local_loaded_vmcss();
2350 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2353 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2354 u32 msr, u32 *result)
2356 u32 vmx_msr_low, vmx_msr_high;
2357 u32 ctl = ctl_min | ctl_opt;
2359 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2361 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2362 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2364 /* Ensure minimum (required) set of control bits are supported. */
2372 static __init bool allow_1_setting(u32 msr, u32 ctl)
2374 u32 vmx_msr_low, vmx_msr_high;
2376 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2377 return vmx_msr_high & ctl;
2380 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2382 u32 vmx_msr_low, vmx_msr_high;
2383 u32 min, opt, min2, opt2;
2384 u32 _pin_based_exec_control = 0;
2385 u32 _cpu_based_exec_control = 0;
2386 u32 _cpu_based_2nd_exec_control = 0;
2387 u32 _vmexit_control = 0;
2388 u32 _vmentry_control = 0;
2390 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2391 opt = PIN_BASED_VIRTUAL_NMIS;
2392 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2393 &_pin_based_exec_control) < 0)
2396 min = CPU_BASED_HLT_EXITING |
2397 #ifdef CONFIG_X86_64
2398 CPU_BASED_CR8_LOAD_EXITING |
2399 CPU_BASED_CR8_STORE_EXITING |
2401 CPU_BASED_CR3_LOAD_EXITING |
2402 CPU_BASED_CR3_STORE_EXITING |
2403 CPU_BASED_USE_IO_BITMAPS |
2404 CPU_BASED_MOV_DR_EXITING |
2405 CPU_BASED_USE_TSC_OFFSETING |
2406 CPU_BASED_MWAIT_EXITING |
2407 CPU_BASED_MONITOR_EXITING |
2408 CPU_BASED_INVLPG_EXITING |
2409 CPU_BASED_RDPMC_EXITING;
2411 opt = CPU_BASED_TPR_SHADOW |
2412 CPU_BASED_USE_MSR_BITMAPS |
2413 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2414 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2415 &_cpu_based_exec_control) < 0)
2417 #ifdef CONFIG_X86_64
2418 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2419 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2420 ~CPU_BASED_CR8_STORE_EXITING;
2422 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2424 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2425 SECONDARY_EXEC_WBINVD_EXITING |
2426 SECONDARY_EXEC_ENABLE_VPID |
2427 SECONDARY_EXEC_ENABLE_EPT |
2428 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2429 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2430 SECONDARY_EXEC_RDTSCP;
2431 if (adjust_vmx_controls(min2, opt2,
2432 MSR_IA32_VMX_PROCBASED_CTLS2,
2433 &_cpu_based_2nd_exec_control) < 0)
2436 #ifndef CONFIG_X86_64
2437 if (!(_cpu_based_2nd_exec_control &
2438 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2439 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2441 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2442 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2444 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2445 CPU_BASED_CR3_STORE_EXITING |
2446 CPU_BASED_INVLPG_EXITING);
2447 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2448 vmx_capability.ept, vmx_capability.vpid);
2452 #ifdef CONFIG_X86_64
2453 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2455 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2456 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2457 &_vmexit_control) < 0)
2461 opt = VM_ENTRY_LOAD_IA32_PAT;
2462 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2463 &_vmentry_control) < 0)
2466 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2468 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2469 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2472 #ifdef CONFIG_X86_64
2473 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2474 if (vmx_msr_high & (1u<<16))
2478 /* Require Write-Back (WB) memory type for VMCS accesses. */
2479 if (((vmx_msr_high >> 18) & 15) != 6)
2482 vmcs_conf->size = vmx_msr_high & 0x1fff;
2483 vmcs_conf->order = get_order(vmcs_config.size);
2484 vmcs_conf->revision_id = vmx_msr_low;
2486 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2487 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2488 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2489 vmcs_conf->vmexit_ctrl = _vmexit_control;
2490 vmcs_conf->vmentry_ctrl = _vmentry_control;
2492 cpu_has_load_ia32_efer =
2493 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2494 VM_ENTRY_LOAD_IA32_EFER)
2495 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2496 VM_EXIT_LOAD_IA32_EFER);
2498 cpu_has_load_perf_global_ctrl =
2499 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2500 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2501 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2502 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2505 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2506 * but due to arrata below it can't be used. Workaround is to use
2507 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2509 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2514 * BC86,AAY89,BD102 (model 44)
2518 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2519 switch (boot_cpu_data.x86_model) {
2525 cpu_has_load_perf_global_ctrl = false;
2526 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2527 "does not work properly. Using workaround\n");
2537 static struct vmcs *alloc_vmcs_cpu(int cpu)
2539 int node = cpu_to_node(cpu);
2543 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2546 vmcs = page_address(pages);
2547 memset(vmcs, 0, vmcs_config.size);
2548 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2552 static struct vmcs *alloc_vmcs(void)
2554 return alloc_vmcs_cpu(raw_smp_processor_id());
2557 static void free_vmcs(struct vmcs *vmcs)
2559 free_pages((unsigned long)vmcs, vmcs_config.order);
2563 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2565 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2567 if (!loaded_vmcs->vmcs)
2569 loaded_vmcs_clear(loaded_vmcs);
2570 free_vmcs(loaded_vmcs->vmcs);
2571 loaded_vmcs->vmcs = NULL;
2574 static void free_kvm_area(void)
2578 for_each_possible_cpu(cpu) {
2579 free_vmcs(per_cpu(vmxarea, cpu));
2580 per_cpu(vmxarea, cpu) = NULL;
2584 static __init int alloc_kvm_area(void)
2588 for_each_possible_cpu(cpu) {
2591 vmcs = alloc_vmcs_cpu(cpu);
2597 per_cpu(vmxarea, cpu) = vmcs;
2602 static __init int hardware_setup(void)
2604 if (setup_vmcs_config(&vmcs_config) < 0)
2607 if (boot_cpu_has(X86_FEATURE_NX))
2608 kvm_enable_efer_bits(EFER_NX);
2610 if (!cpu_has_vmx_vpid())
2613 if (!cpu_has_vmx_ept() ||
2614 !cpu_has_vmx_ept_4levels()) {
2616 enable_unrestricted_guest = 0;
2619 if (!cpu_has_vmx_unrestricted_guest())
2620 enable_unrestricted_guest = 0;
2622 if (!cpu_has_vmx_flexpriority())
2623 flexpriority_enabled = 0;
2625 if (!cpu_has_vmx_tpr_shadow())
2626 kvm_x86_ops->update_cr8_intercept = NULL;
2628 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2629 kvm_disable_largepages();
2631 if (!cpu_has_vmx_ple())
2635 nested_vmx_setup_ctls_msrs();
2637 return alloc_kvm_area();
2640 static __exit void hardware_unsetup(void)
2645 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2647 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2649 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2650 vmcs_write16(sf->selector, save->selector);
2651 vmcs_writel(sf->base, save->base);
2652 vmcs_write32(sf->limit, save->limit);
2653 vmcs_write32(sf->ar_bytes, save->ar);
2655 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2657 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2661 static void enter_pmode(struct kvm_vcpu *vcpu)
2663 unsigned long flags;
2664 struct vcpu_vmx *vmx = to_vmx(vcpu);
2666 vmx->emulation_required = 1;
2667 vmx->rmode.vm86_active = 0;
2669 vmx_segment_cache_clear(vmx);
2671 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2672 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2673 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2674 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2676 flags = vmcs_readl(GUEST_RFLAGS);
2677 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2678 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2679 vmcs_writel(GUEST_RFLAGS, flags);
2681 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2682 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2684 update_exception_bitmap(vcpu);
2686 if (emulate_invalid_guest_state)
2689 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2690 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2691 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2692 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2694 vmx_segment_cache_clear(vmx);
2696 vmcs_write16(GUEST_SS_SELECTOR, 0);
2697 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2699 vmcs_write16(GUEST_CS_SELECTOR,
2700 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2701 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2704 static gva_t rmode_tss_base(struct kvm *kvm)
2706 if (!kvm->arch.tss_addr) {
2707 struct kvm_memslots *slots;
2708 struct kvm_memory_slot *slot;
2711 slots = kvm_memslots(kvm);
2712 slot = id_to_memslot(slots, 0);
2713 base_gfn = slot->base_gfn + slot->npages - 3;
2715 return base_gfn << PAGE_SHIFT;
2717 return kvm->arch.tss_addr;
2720 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2722 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2724 save->selector = vmcs_read16(sf->selector);
2725 save->base = vmcs_readl(sf->base);
2726 save->limit = vmcs_read32(sf->limit);
2727 save->ar = vmcs_read32(sf->ar_bytes);
2728 vmcs_write16(sf->selector, save->base >> 4);
2729 vmcs_write32(sf->base, save->base & 0xffff0);
2730 vmcs_write32(sf->limit, 0xffff);
2731 vmcs_write32(sf->ar_bytes, 0xf3);
2732 if (save->base & 0xf)
2733 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2734 " aligned when entering protected mode (seg=%d)",
2738 static void enter_rmode(struct kvm_vcpu *vcpu)
2740 unsigned long flags;
2741 struct vcpu_vmx *vmx = to_vmx(vcpu);
2743 if (enable_unrestricted_guest)
2746 vmx->emulation_required = 1;
2747 vmx->rmode.vm86_active = 1;
2750 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2751 * vcpu. Call it here with phys address pointing 16M below 4G.
2753 if (!vcpu->kvm->arch.tss_addr) {
2754 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2755 "called before entering vcpu\n");
2756 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2757 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2758 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2761 vmx_segment_cache_clear(vmx);
2763 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2764 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2765 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2767 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2768 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2770 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2771 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2773 flags = vmcs_readl(GUEST_RFLAGS);
2774 vmx->rmode.save_rflags = flags;
2776 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2778 vmcs_writel(GUEST_RFLAGS, flags);
2779 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2780 update_exception_bitmap(vcpu);
2782 if (emulate_invalid_guest_state)
2783 goto continue_rmode;
2785 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2786 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2787 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2789 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2790 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2791 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2792 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2793 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2795 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2796 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2797 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2798 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2801 kvm_mmu_reset_context(vcpu);
2804 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2806 struct vcpu_vmx *vmx = to_vmx(vcpu);
2807 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2813 * Force kernel_gs_base reloading before EFER changes, as control
2814 * of this msr depends on is_long_mode().
2816 vmx_load_host_state(to_vmx(vcpu));
2817 vcpu->arch.efer = efer;
2818 if (efer & EFER_LMA) {
2819 vmcs_write32(VM_ENTRY_CONTROLS,
2820 vmcs_read32(VM_ENTRY_CONTROLS) |
2821 VM_ENTRY_IA32E_MODE);
2824 vmcs_write32(VM_ENTRY_CONTROLS,
2825 vmcs_read32(VM_ENTRY_CONTROLS) &
2826 ~VM_ENTRY_IA32E_MODE);
2828 msr->data = efer & ~EFER_LME;
2833 #ifdef CONFIG_X86_64
2835 static void enter_lmode(struct kvm_vcpu *vcpu)
2839 vmx_segment_cache_clear(to_vmx(vcpu));
2841 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2842 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2843 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2845 vmcs_write32(GUEST_TR_AR_BYTES,
2846 (guest_tr_ar & ~AR_TYPE_MASK)
2847 | AR_TYPE_BUSY_64_TSS);
2849 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2852 static void exit_lmode(struct kvm_vcpu *vcpu)
2854 vmcs_write32(VM_ENTRY_CONTROLS,
2855 vmcs_read32(VM_ENTRY_CONTROLS)
2856 & ~VM_ENTRY_IA32E_MODE);
2857 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2862 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2864 vpid_sync_context(to_vmx(vcpu));
2866 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2868 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2872 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2874 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2876 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2877 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2880 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2882 if (enable_ept && is_paging(vcpu))
2883 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2884 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2887 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2889 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2891 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2892 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2895 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2897 if (!test_bit(VCPU_EXREG_PDPTR,
2898 (unsigned long *)&vcpu->arch.regs_dirty))
2901 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2902 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2903 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2904 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2905 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2909 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2911 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2912 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2913 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2914 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2915 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2918 __set_bit(VCPU_EXREG_PDPTR,
2919 (unsigned long *)&vcpu->arch.regs_avail);
2920 __set_bit(VCPU_EXREG_PDPTR,
2921 (unsigned long *)&vcpu->arch.regs_dirty);
2924 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2926 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2928 struct kvm_vcpu *vcpu)
2930 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2931 vmx_decache_cr3(vcpu);
2932 if (!(cr0 & X86_CR0_PG)) {
2933 /* From paging/starting to nonpaging */
2934 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2935 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2936 (CPU_BASED_CR3_LOAD_EXITING |
2937 CPU_BASED_CR3_STORE_EXITING));
2938 vcpu->arch.cr0 = cr0;
2939 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2940 } else if (!is_paging(vcpu)) {
2941 /* From nonpaging to paging */
2942 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2943 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2944 ~(CPU_BASED_CR3_LOAD_EXITING |
2945 CPU_BASED_CR3_STORE_EXITING));
2946 vcpu->arch.cr0 = cr0;
2947 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2950 if (!(cr0 & X86_CR0_WP))
2951 *hw_cr0 &= ~X86_CR0_WP;
2954 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2956 struct vcpu_vmx *vmx = to_vmx(vcpu);
2957 unsigned long hw_cr0;
2959 if (enable_unrestricted_guest)
2960 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2961 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2963 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2965 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2968 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2971 #ifdef CONFIG_X86_64
2972 if (vcpu->arch.efer & EFER_LME) {
2973 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2975 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2981 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2983 if (!vcpu->fpu_active)
2984 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2986 vmcs_writel(CR0_READ_SHADOW, cr0);
2987 vmcs_writel(GUEST_CR0, hw_cr0);
2988 vcpu->arch.cr0 = cr0;
2989 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2992 static u64 construct_eptp(unsigned long root_hpa)
2996 /* TODO write the value reading from MSR */
2997 eptp = VMX_EPT_DEFAULT_MT |
2998 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2999 eptp |= (root_hpa & PAGE_MASK);
3004 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3006 unsigned long guest_cr3;
3011 eptp = construct_eptp(cr3);
3012 vmcs_write64(EPT_POINTER, eptp);
3013 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3014 vcpu->kvm->arch.ept_identity_map_addr;
3015 ept_load_pdptrs(vcpu);
3018 vmx_flush_tlb(vcpu);
3019 vmcs_writel(GUEST_CR3, guest_cr3);
3022 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3024 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3025 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3027 if (cr4 & X86_CR4_VMXE) {
3029 * To use VMXON (and later other VMX instructions), a guest
3030 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3031 * So basically the check on whether to allow nested VMX
3034 if (!nested_vmx_allowed(vcpu))
3036 } else if (to_vmx(vcpu)->nested.vmxon)
3039 vcpu->arch.cr4 = cr4;
3041 if (!is_paging(vcpu)) {
3042 hw_cr4 &= ~X86_CR4_PAE;
3043 hw_cr4 |= X86_CR4_PSE;
3044 } else if (!(cr4 & X86_CR4_PAE)) {
3045 hw_cr4 &= ~X86_CR4_PAE;
3049 vmcs_writel(CR4_READ_SHADOW, cr4);
3050 vmcs_writel(GUEST_CR4, hw_cr4);
3054 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3055 struct kvm_segment *var, int seg)
3057 struct vcpu_vmx *vmx = to_vmx(vcpu);
3058 struct kvm_save_segment *save;
3061 if (vmx->rmode.vm86_active
3062 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3063 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3064 || seg == VCPU_SREG_GS)
3065 && !emulate_invalid_guest_state) {
3067 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3068 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3069 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3070 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3071 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3074 var->selector = save->selector;
3075 var->base = save->base;
3076 var->limit = save->limit;
3078 if (seg == VCPU_SREG_TR
3079 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3080 goto use_saved_rmode_seg;
3082 var->base = vmx_read_guest_seg_base(vmx, seg);
3083 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3084 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3085 ar = vmx_read_guest_seg_ar(vmx, seg);
3086 use_saved_rmode_seg:
3087 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3089 var->type = ar & 15;
3090 var->s = (ar >> 4) & 1;
3091 var->dpl = (ar >> 5) & 3;
3092 var->present = (ar >> 7) & 1;
3093 var->avl = (ar >> 12) & 1;
3094 var->l = (ar >> 13) & 1;
3095 var->db = (ar >> 14) & 1;
3096 var->g = (ar >> 15) & 1;
3097 var->unusable = (ar >> 16) & 1;
3100 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3102 struct kvm_segment s;
3104 if (to_vmx(vcpu)->rmode.vm86_active) {
3105 vmx_get_segment(vcpu, &s, seg);
3108 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3111 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3113 if (!is_protmode(vcpu))
3116 if (!is_long_mode(vcpu)
3117 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3120 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3123 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3125 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3126 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3127 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3129 return to_vmx(vcpu)->cpl;
3133 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3140 ar = var->type & 15;
3141 ar |= (var->s & 1) << 4;
3142 ar |= (var->dpl & 3) << 5;
3143 ar |= (var->present & 1) << 7;
3144 ar |= (var->avl & 1) << 12;
3145 ar |= (var->l & 1) << 13;
3146 ar |= (var->db & 1) << 14;
3147 ar |= (var->g & 1) << 15;
3149 if (ar == 0) /* a 0 value means unusable */
3150 ar = AR_UNUSABLE_MASK;
3155 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3156 struct kvm_segment *var, int seg)
3158 struct vcpu_vmx *vmx = to_vmx(vcpu);
3159 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3162 vmx_segment_cache_clear(vmx);
3164 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3165 vmcs_write16(sf->selector, var->selector);
3166 vmx->rmode.tr.selector = var->selector;
3167 vmx->rmode.tr.base = var->base;
3168 vmx->rmode.tr.limit = var->limit;
3169 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3172 vmcs_writel(sf->base, var->base);
3173 vmcs_write32(sf->limit, var->limit);
3174 vmcs_write16(sf->selector, var->selector);
3175 if (vmx->rmode.vm86_active && var->s) {
3177 * Hack real-mode segments into vm86 compatibility.
3179 if (var->base == 0xffff0000 && var->selector == 0xf000)
3180 vmcs_writel(sf->base, 0xf0000);
3183 ar = vmx_segment_access_rights(var);
3186 * Fix the "Accessed" bit in AR field of segment registers for older
3188 * IA32 arch specifies that at the time of processor reset the
3189 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3190 * is setting it to 0 in the usedland code. This causes invalid guest
3191 * state vmexit when "unrestricted guest" mode is turned on.
3192 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3193 * tree. Newer qemu binaries with that qemu fix would not need this
3196 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3197 ar |= 0x1; /* Accessed */
3199 vmcs_write32(sf->ar_bytes, ar);
3200 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3203 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3205 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3207 *db = (ar >> 14) & 1;
3208 *l = (ar >> 13) & 1;
3211 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3213 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3214 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3217 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3219 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3220 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3223 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3225 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3226 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3229 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3231 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3232 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3235 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3237 struct kvm_segment var;
3240 vmx_get_segment(vcpu, &var, seg);
3241 ar = vmx_segment_access_rights(&var);
3243 if (var.base != (var.selector << 4))
3245 if (var.limit != 0xffff)
3253 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3255 struct kvm_segment cs;
3256 unsigned int cs_rpl;
3258 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3259 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3263 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3267 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3268 if (cs.dpl > cs_rpl)
3271 if (cs.dpl != cs_rpl)
3277 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3281 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3283 struct kvm_segment ss;
3284 unsigned int ss_rpl;
3286 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3287 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3291 if (ss.type != 3 && ss.type != 7)
3295 if (ss.dpl != ss_rpl) /* DPL != RPL */
3303 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3305 struct kvm_segment var;
3308 vmx_get_segment(vcpu, &var, seg);
3309 rpl = var.selector & SELECTOR_RPL_MASK;
3317 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3318 if (var.dpl < rpl) /* DPL < RPL */
3322 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3328 static bool tr_valid(struct kvm_vcpu *vcpu)
3330 struct kvm_segment tr;
3332 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3336 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3338 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3346 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3348 struct kvm_segment ldtr;
3350 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3354 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3364 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3366 struct kvm_segment cs, ss;
3368 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3369 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3371 return ((cs.selector & SELECTOR_RPL_MASK) ==
3372 (ss.selector & SELECTOR_RPL_MASK));
3376 * Check if guest state is valid. Returns true if valid, false if
3378 * We assume that registers are always usable
3380 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3382 /* real mode guest state checks */
3383 if (!is_protmode(vcpu)) {
3384 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3386 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3388 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3390 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3392 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3394 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3397 /* protected mode guest state checks */
3398 if (!cs_ss_rpl_check(vcpu))
3400 if (!code_segment_valid(vcpu))
3402 if (!stack_segment_valid(vcpu))
3404 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3406 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3408 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3410 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3412 if (!tr_valid(vcpu))
3414 if (!ldtr_valid(vcpu))
3418 * - Add checks on RIP
3419 * - Add checks on RFLAGS
3425 static int init_rmode_tss(struct kvm *kvm)
3429 int r, idx, ret = 0;
3431 idx = srcu_read_lock(&kvm->srcu);
3432 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3433 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3436 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3437 r = kvm_write_guest_page(kvm, fn++, &data,
3438 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3441 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3444 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3448 r = kvm_write_guest_page(kvm, fn, &data,
3449 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3456 srcu_read_unlock(&kvm->srcu, idx);
3460 static int init_rmode_identity_map(struct kvm *kvm)
3463 pfn_t identity_map_pfn;
3468 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3469 printk(KERN_ERR "EPT: identity-mapping pagetable "
3470 "haven't been allocated!\n");
3473 if (likely(kvm->arch.ept_identity_pagetable_done))
3476 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3477 idx = srcu_read_lock(&kvm->srcu);
3478 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3481 /* Set up identity-mapping pagetable for EPT in real mode */
3482 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3483 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3484 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3485 r = kvm_write_guest_page(kvm, identity_map_pfn,
3486 &tmp, i * sizeof(tmp), sizeof(tmp));
3490 kvm->arch.ept_identity_pagetable_done = true;
3493 srcu_read_unlock(&kvm->srcu, idx);
3497 static void seg_setup(int seg)
3499 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3502 vmcs_write16(sf->selector, 0);
3503 vmcs_writel(sf->base, 0);
3504 vmcs_write32(sf->limit, 0xffff);
3505 if (enable_unrestricted_guest) {
3507 if (seg == VCPU_SREG_CS)
3508 ar |= 0x08; /* code segment */