2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
51 #define CREATE_TRACE_POINTS
54 #include <asm/debugreg.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
69 #define emul_to_vcpu(ctxt) \
70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 * - enable syscall per default because its emulated by KVM
74 * - enable LME and LMA per default on 64 bit KVM
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32 kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
104 #define KVM_NR_SHARED_MSRS 16
106 struct kvm_shared_msrs_global {
108 u32 msrs[KVM_NR_SHARED_MSRS];
111 struct kvm_shared_msrs {
112 struct user_return_notifier urn;
114 struct kvm_shared_msr_values {
117 } values[KVM_NR_SHARED_MSRS];
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124 { "pf_fixed", VCPU_STAT(pf_fixed) },
125 { "pf_guest", VCPU_STAT(pf_guest) },
126 { "tlb_flush", VCPU_STAT(tlb_flush) },
127 { "invlpg", VCPU_STAT(invlpg) },
128 { "exits", VCPU_STAT(exits) },
129 { "io_exits", VCPU_STAT(io_exits) },
130 { "mmio_exits", VCPU_STAT(mmio_exits) },
131 { "signal_exits", VCPU_STAT(signal_exits) },
132 { "irq_window", VCPU_STAT(irq_window_exits) },
133 { "nmi_window", VCPU_STAT(nmi_window_exits) },
134 { "halt_exits", VCPU_STAT(halt_exits) },
135 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136 { "hypercalls", VCPU_STAT(hypercalls) },
137 { "request_irq", VCPU_STAT(request_irq_exits) },
138 { "irq_exits", VCPU_STAT(irq_exits) },
139 { "host_state_reload", VCPU_STAT(host_state_reload) },
140 { "efer_reload", VCPU_STAT(efer_reload) },
141 { "fpu_reload", VCPU_STAT(fpu_reload) },
142 { "insn_emulation", VCPU_STAT(insn_emulation) },
143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144 { "irq_injections", VCPU_STAT(irq_injections) },
145 { "nmi_injections", VCPU_STAT(nmi_injections) },
146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150 { "mmu_flooded", VM_STAT(mmu_flooded) },
151 { "mmu_recycled", VM_STAT(mmu_recycled) },
152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153 { "mmu_unsync", VM_STAT(mmu_unsync) },
154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155 { "largepages", VM_STAT(lpages) },
159 u64 __read_mostly host_xcr0;
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167 vcpu->arch.apf.gfns[i] = ~0;
170 static void kvm_on_user_return(struct user_return_notifier *urn)
173 struct kvm_shared_msrs *locals
174 = container_of(urn, struct kvm_shared_msrs, urn);
175 struct kvm_shared_msr_values *values;
177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178 values = &locals->values[slot];
179 if (values->host != values->curr) {
180 wrmsrl(shared_msrs_global.msrs[slot], values->host);
181 values->curr = values->host;
184 locals->registered = false;
185 user_return_notifier_unregister(urn);
188 static void shared_msr_update(unsigned slot, u32 msr)
190 struct kvm_shared_msrs *smsr;
193 smsr = &__get_cpu_var(shared_msrs);
194 /* only read, and nobody should modify it at this time,
195 * so don't need lock */
196 if (slot >= shared_msrs_global.nr) {
197 printk(KERN_ERR "kvm: invalid MSR slot!");
200 rdmsrl_safe(msr, &value);
201 smsr->values[slot].host = value;
202 smsr->values[slot].curr = value;
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
207 if (slot >= shared_msrs_global.nr)
208 shared_msrs_global.nr = slot + 1;
209 shared_msrs_global.msrs[slot] = msr;
210 /* we need ensured the shared_msr_global have been updated */
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
215 static void kvm_shared_msr_cpu_online(void)
219 for (i = 0; i < shared_msrs_global.nr; ++i)
220 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
227 if (((value ^ smsr->values[slot].curr) & mask) == 0)
229 smsr->values[slot].curr = value;
230 wrmsrl(shared_msrs_global.msrs[slot], value);
231 if (!smsr->registered) {
232 smsr->urn.on_user_return = kvm_on_user_return;
233 user_return_notifier_register(&smsr->urn);
234 smsr->registered = true;
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
239 static void drop_user_return_notifiers(void *ignore)
241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
243 if (smsr->registered)
244 kvm_on_user_return(&smsr->urn);
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
249 if (irqchip_in_kernel(vcpu->kvm))
250 return vcpu->arch.apic_base;
252 return vcpu->arch.apic_base;
254 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 /* TODO: reserve bits check */
259 if (irqchip_in_kernel(vcpu->kvm))
260 kvm_lapic_set_base(vcpu, data);
262 vcpu->arch.apic_base = data;
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
266 #define EXCPT_BENIGN 0
267 #define EXCPT_CONTRIBUTORY 1
270 static int exception_class(int vector)
280 return EXCPT_CONTRIBUTORY;
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 unsigned nr, bool has_error, u32 error_code,
294 kvm_make_request(KVM_REQ_EVENT, vcpu);
296 if (!vcpu->arch.exception.pending) {
298 vcpu->arch.exception.pending = true;
299 vcpu->arch.exception.has_error_code = has_error;
300 vcpu->arch.exception.nr = nr;
301 vcpu->arch.exception.error_code = error_code;
302 vcpu->arch.exception.reinject = reinject;
306 /* to check exception */
307 prev_nr = vcpu->arch.exception.nr;
308 if (prev_nr == DF_VECTOR) {
309 /* triple fault -> shutdown */
310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
313 class1 = exception_class(prev_nr);
314 class2 = exception_class(nr);
315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 /* generate double fault per SDM Table 5-5 */
318 vcpu->arch.exception.pending = true;
319 vcpu->arch.exception.has_error_code = true;
320 vcpu->arch.exception.nr = DF_VECTOR;
321 vcpu->arch.exception.error_code = 0;
323 /* replace previous exception with a new one in a hope
324 that instruction re-execution will regenerate lost
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 kvm_multiple_exception(vcpu, nr, false, 0, false);
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
337 kvm_multiple_exception(vcpu, nr, false, 0, true);
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
344 kvm_inject_gp(vcpu, 0);
346 kvm_x86_ops->skip_emulated_instruction(vcpu);
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
352 ++vcpu->stat.pf_guest;
353 vcpu->arch.cr2 = fault->address;
354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
363 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
368 atomic_inc(&vcpu->arch.nmi_queued);
369 kvm_make_request(KVM_REQ_NMI, vcpu);
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 kvm_multiple_exception(vcpu, nr, true, error_code, false);
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
381 kvm_multiple_exception(vcpu, nr, true, error_code, true);
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
387 * a #GP and return false.
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
399 * This function will be used to read from the physical memory of the currently
400 * running guest. The difference to kvm_read_guest_page is that this function
401 * can read from guest physical or from the guest's guest physical memory.
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 gfn_t ngfn, void *data, int offset, int len,
410 ngpa = gfn_to_gpa(ngfn);
411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 if (real_gfn == UNMAPPED_GVA)
415 real_gfn = gpa_to_gfn(real_gfn);
417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 void *data, int offset, int len, u32 access)
424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 data, offset, len, access);
429 * Load the pae pdptrs. Return true is they are all valid.
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 offset * sizeof(u64), sizeof(pdpte),
441 PFERR_USER_MASK|PFERR_WRITE_MASK);
446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 if (is_present_gpte(pdpte[i]) &&
448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 __set_bit(VCPU_EXREG_PDPTR,
457 (unsigned long *)&vcpu->arch.regs_avail);
458 __set_bit(VCPU_EXREG_PDPTR,
459 (unsigned long *)&vcpu->arch.regs_dirty);
464 EXPORT_SYMBOL_GPL(load_pdptrs);
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474 if (is_long_mode(vcpu) || !is_pae(vcpu))
477 if (!test_bit(VCPU_EXREG_PDPTR,
478 (unsigned long *)&vcpu->arch.regs_avail))
481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 PFERR_USER_MASK | PFERR_WRITE_MASK);
487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
495 unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 X86_CR0_CD | X86_CR0_NW;
502 if (cr0 & 0xffffffff00000000UL)
506 cr0 &= ~CR0_RESERVED_BITS;
508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
516 if ((vcpu->arch.efer & EFER_LME)) {
521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
531 kvm_x86_ops->set_cr0(vcpu, cr0);
533 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
534 kvm_clear_async_pf_completion_queue(vcpu);
535 kvm_async_pf_hash_reset(vcpu);
538 if ((cr0 ^ old_cr0) & update_bits)
539 kvm_mmu_reset_context(vcpu);
542 EXPORT_SYMBOL_GPL(kvm_set_cr0);
544 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
546 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
548 EXPORT_SYMBOL_GPL(kvm_lmsw);
550 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
555 if (index != XCR_XFEATURE_ENABLED_MASK)
558 if (kvm_x86_ops->get_cpl(vcpu) != 0)
560 if (!(xcr0 & XSTATE_FP))
562 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
564 if (xcr0 & ~host_xcr0)
566 vcpu->arch.xcr0 = xcr0;
567 vcpu->guest_xcr0_loaded = 0;
571 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
573 if (__kvm_set_xcr(vcpu, index, xcr)) {
574 kvm_inject_gp(vcpu, 0);
579 EXPORT_SYMBOL_GPL(kvm_set_xcr);
581 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
583 unsigned long old_cr4 = kvm_read_cr4(vcpu);
584 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
585 X86_CR4_PAE | X86_CR4_SMEP;
586 if (cr4 & CR4_RESERVED_BITS)
589 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
592 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
595 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
598 if (is_long_mode(vcpu)) {
599 if (!(cr4 & X86_CR4_PAE))
601 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
602 && ((cr4 ^ old_cr4) & pdptr_bits)
603 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 if (kvm_x86_ops->set_cr4(vcpu, cr4))
610 if ((cr4 ^ old_cr4) & pdptr_bits)
611 kvm_mmu_reset_context(vcpu);
613 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
614 kvm_update_cpuid(vcpu);
618 EXPORT_SYMBOL_GPL(kvm_set_cr4);
620 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
622 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
623 kvm_mmu_sync_roots(vcpu);
624 kvm_mmu_flush_tlb(vcpu);
628 if (is_long_mode(vcpu)) {
629 if (cr3 & CR3_L_MODE_RESERVED_BITS)
633 if (cr3 & CR3_PAE_RESERVED_BITS)
635 if (is_paging(vcpu) &&
636 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
640 * We don't check reserved bits in nonpae mode, because
641 * this isn't enforced, and VMware depends on this.
646 * Does the new cr3 value map to physical memory? (Note, we
647 * catch an invalid cr3 even in real-mode, because it would
648 * cause trouble later on when we turn on paging anyway.)
650 * A real CPU would silently accept an invalid cr3 and would
651 * attempt to use it - with largely undefined (and often hard
652 * to debug) behavior on the guest side.
654 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
656 vcpu->arch.cr3 = cr3;
657 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
658 vcpu->arch.mmu.new_cr3(vcpu);
661 EXPORT_SYMBOL_GPL(kvm_set_cr3);
663 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
665 if (cr8 & CR8_RESERVED_BITS)
667 if (irqchip_in_kernel(vcpu->kvm))
668 kvm_lapic_set_tpr(vcpu, cr8);
670 vcpu->arch.cr8 = cr8;
673 EXPORT_SYMBOL_GPL(kvm_set_cr8);
675 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
677 if (irqchip_in_kernel(vcpu->kvm))
678 return kvm_lapic_get_cr8(vcpu);
680 return vcpu->arch.cr8;
682 EXPORT_SYMBOL_GPL(kvm_get_cr8);
684 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
688 vcpu->arch.db[dr] = val;
689 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
690 vcpu->arch.eff_db[dr] = val;
693 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
697 if (val & 0xffffffff00000000ULL)
699 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
702 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
706 if (val & 0xffffffff00000000ULL)
708 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
709 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
710 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
711 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
719 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
723 res = __kvm_set_dr(vcpu, dr, val);
725 kvm_queue_exception(vcpu, UD_VECTOR);
727 kvm_inject_gp(vcpu, 0);
731 EXPORT_SYMBOL_GPL(kvm_set_dr);
733 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
737 *val = vcpu->arch.db[dr];
740 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
744 *val = vcpu->arch.dr6;
747 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
751 *val = vcpu->arch.dr7;
758 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
760 if (_kvm_get_dr(vcpu, dr, val)) {
761 kvm_queue_exception(vcpu, UD_VECTOR);
766 EXPORT_SYMBOL_GPL(kvm_get_dr);
768 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
770 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
774 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
777 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
778 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
781 EXPORT_SYMBOL_GPL(kvm_rdpmc);
784 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
785 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
787 * This list is modified at module load time to reflect the
788 * capabilities of the host cpu. This capabilities test skips MSRs that are
789 * kvm-specific. Those are put in the beginning of the list.
792 #define KVM_SAVE_MSRS_BEGIN 9
793 static u32 msrs_to_save[] = {
794 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
795 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
796 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
797 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
798 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
801 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
803 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
806 static unsigned num_msrs_to_save;
808 static u32 emulated_msrs[] = {
809 MSR_IA32_TSCDEADLINE,
810 MSR_IA32_MISC_ENABLE,
815 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
817 u64 old_efer = vcpu->arch.efer;
819 if (efer & efer_reserved_bits)
823 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
826 if (efer & EFER_FFXSR) {
827 struct kvm_cpuid_entry2 *feat;
829 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
830 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
834 if (efer & EFER_SVME) {
835 struct kvm_cpuid_entry2 *feat;
837 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
838 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
843 efer |= vcpu->arch.efer & EFER_LMA;
845 kvm_x86_ops->set_efer(vcpu, efer);
847 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
849 /* Update reserved bits */
850 if ((efer ^ old_efer) & EFER_NX)
851 kvm_mmu_reset_context(vcpu);
856 void kvm_enable_efer_bits(u64 mask)
858 efer_reserved_bits &= ~mask;
860 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
864 * Writes msr value into into the appropriate "register".
865 * Returns 0 on success, non-0 otherwise.
866 * Assumes vcpu_load() was already called.
868 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
870 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
874 * Adapt set_msr() to msr_io()'s calling convention
876 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
878 return kvm_set_msr(vcpu, index, *data);
881 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
885 struct pvclock_wall_clock wc;
886 struct timespec boot;
891 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
896 ++version; /* first time write, random junk */
900 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
903 * The guest calculates current wall clock time by adding
904 * system time (updated by kvm_guest_time_update below) to the
905 * wall clock specified here. guest system time equals host
906 * system time for us, thus we must fill in host boot time here.
910 wc.sec = boot.tv_sec;
911 wc.nsec = boot.tv_nsec;
912 wc.version = version;
914 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
917 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
920 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
922 uint32_t quotient, remainder;
924 /* Don't try to replace with do_div(), this one calculates
925 * "(dividend << 32) / divisor" */
927 : "=a" (quotient), "=d" (remainder)
928 : "0" (0), "1" (dividend), "r" (divisor) );
932 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
933 s8 *pshift, u32 *pmultiplier)
940 tps64 = base_khz * 1000LL;
941 scaled64 = scaled_khz * 1000LL;
942 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
947 tps32 = (uint32_t)tps64;
948 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
949 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
957 *pmultiplier = div_frac(scaled64, tps32);
959 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
960 __func__, base_khz, scaled_khz, shift, *pmultiplier);
963 static inline u64 get_kernel_ns(void)
967 WARN_ON(preemptible());
969 monotonic_to_bootbased(&ts);
970 return timespec_to_ns(&ts);
973 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
974 unsigned long max_tsc_khz;
976 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
978 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
979 vcpu->arch.virtual_tsc_shift);
982 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
984 u64 v = (u64)khz * (1000000 + ppm);
989 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
991 u32 thresh_lo, thresh_hi;
994 /* Compute a scale to convert nanoseconds in TSC cycles */
995 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
996 &vcpu->arch.virtual_tsc_shift,
997 &vcpu->arch.virtual_tsc_mult);
998 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1001 * Compute the variation in TSC rate which is acceptable
1002 * within the range of tolerance and decide if the
1003 * rate being applied is within that bounds of the hardware
1004 * rate. If so, no scaling or compensation need be done.
1006 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1007 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1008 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1009 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1012 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1015 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1017 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1018 vcpu->arch.virtual_tsc_mult,
1019 vcpu->arch.virtual_tsc_shift);
1020 tsc += vcpu->arch.this_tsc_write;
1024 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1026 struct kvm *kvm = vcpu->kvm;
1027 u64 offset, ns, elapsed;
1028 unsigned long flags;
1031 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1032 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1033 ns = get_kernel_ns();
1034 elapsed = ns - kvm->arch.last_tsc_nsec;
1036 /* n.b - signed multiplication and division required */
1037 usdiff = data - kvm->arch.last_tsc_write;
1038 #ifdef CONFIG_X86_64
1039 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1041 /* do_div() only does unsigned */
1042 asm("idivl %2; xor %%edx, %%edx"
1044 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1046 do_div(elapsed, 1000);
1052 * Special case: TSC write with a small delta (1 second) of virtual
1053 * cycle time against real time is interpreted as an attempt to
1054 * synchronize the CPU.
1056 * For a reliable TSC, we can match TSC offsets, and for an unstable
1057 * TSC, we add elapsed time in this computation. We could let the
1058 * compensation code attempt to catch up if we fall behind, but
1059 * it's better to try to match offsets from the beginning.
1061 if (usdiff < USEC_PER_SEC &&
1062 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1063 if (!check_tsc_unstable()) {
1064 offset = kvm->arch.cur_tsc_offset;
1065 pr_debug("kvm: matched tsc offset for %llu\n", data);
1067 u64 delta = nsec_to_cycles(vcpu, elapsed);
1069 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1070 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1074 * We split periods of matched TSC writes into generations.
1075 * For each generation, we track the original measured
1076 * nanosecond time, offset, and write, so if TSCs are in
1077 * sync, we can match exact offset, and if not, we can match
1078 * exact software computaion in compute_guest_tsc()
1080 * These values are tracked in kvm->arch.cur_xxx variables.
1082 kvm->arch.cur_tsc_generation++;
1083 kvm->arch.cur_tsc_nsec = ns;
1084 kvm->arch.cur_tsc_write = data;
1085 kvm->arch.cur_tsc_offset = offset;
1086 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1087 kvm->arch.cur_tsc_generation, data);
1091 * We also track th most recent recorded KHZ, write and time to
1092 * allow the matching interval to be extended at each write.
1094 kvm->arch.last_tsc_nsec = ns;
1095 kvm->arch.last_tsc_write = data;
1096 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1098 /* Reset of TSC must disable overshoot protection below */
1099 vcpu->arch.hv_clock.tsc_timestamp = 0;
1100 vcpu->arch.last_guest_tsc = data;
1102 /* Keep track of which generation this VCPU has synchronized to */
1103 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1104 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1105 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1107 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1108 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1111 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1113 static int kvm_guest_time_update(struct kvm_vcpu *v)
1115 unsigned long flags;
1116 struct kvm_vcpu_arch *vcpu = &v->arch;
1118 unsigned long this_tsc_khz;
1119 s64 kernel_ns, max_kernel_ns;
1122 /* Keep irq disabled to prevent changes to the clock */
1123 local_irq_save(flags);
1124 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1125 kernel_ns = get_kernel_ns();
1126 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1127 if (unlikely(this_tsc_khz == 0)) {
1128 local_irq_restore(flags);
1129 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1134 * We may have to catch up the TSC to match elapsed wall clock
1135 * time for two reasons, even if kvmclock is used.
1136 * 1) CPU could have been running below the maximum TSC rate
1137 * 2) Broken TSC compensation resets the base at each VCPU
1138 * entry to avoid unknown leaps of TSC even when running
1139 * again on the same CPU. This may cause apparent elapsed
1140 * time to disappear, and the guest to stand still or run
1143 if (vcpu->tsc_catchup) {
1144 u64 tsc = compute_guest_tsc(v, kernel_ns);
1145 if (tsc > tsc_timestamp) {
1146 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1147 tsc_timestamp = tsc;
1151 local_irq_restore(flags);
1153 if (!vcpu->time_page)
1157 * Time as measured by the TSC may go backwards when resetting the base
1158 * tsc_timestamp. The reason for this is that the TSC resolution is
1159 * higher than the resolution of the other clock scales. Thus, many
1160 * possible measurments of the TSC correspond to one measurement of any
1161 * other clock, and so a spread of values is possible. This is not a
1162 * problem for the computation of the nanosecond clock; with TSC rates
1163 * around 1GHZ, there can only be a few cycles which correspond to one
1164 * nanosecond value, and any path through this code will inevitably
1165 * take longer than that. However, with the kernel_ns value itself,
1166 * the precision may be much lower, down to HZ granularity. If the
1167 * first sampling of TSC against kernel_ns ends in the low part of the
1168 * range, and the second in the high end of the range, we can get:
1170 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1172 * As the sampling errors potentially range in the thousands of cycles,
1173 * it is possible such a time value has already been observed by the
1174 * guest. To protect against this, we must compute the system time as
1175 * observed by the guest and ensure the new system time is greater.
1178 if (vcpu->hv_clock.tsc_timestamp) {
1179 max_kernel_ns = vcpu->last_guest_tsc -
1180 vcpu->hv_clock.tsc_timestamp;
1181 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1182 vcpu->hv_clock.tsc_to_system_mul,
1183 vcpu->hv_clock.tsc_shift);
1184 max_kernel_ns += vcpu->last_kernel_ns;
1187 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1188 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1189 &vcpu->hv_clock.tsc_shift,
1190 &vcpu->hv_clock.tsc_to_system_mul);
1191 vcpu->hw_tsc_khz = this_tsc_khz;
1194 if (max_kernel_ns > kernel_ns)
1195 kernel_ns = max_kernel_ns;
1197 /* With all the info we got, fill in the values */
1198 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1199 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1200 vcpu->last_kernel_ns = kernel_ns;
1201 vcpu->last_guest_tsc = tsc_timestamp;
1202 vcpu->hv_clock.flags = 0;
1205 * The interface expects us to write an even number signaling that the
1206 * update is finished. Since the guest won't see the intermediate
1207 * state, we just increase by 2 at the end.
1209 vcpu->hv_clock.version += 2;
1211 shared_kaddr = kmap_atomic(vcpu->time_page);
1213 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1214 sizeof(vcpu->hv_clock));
1216 kunmap_atomic(shared_kaddr);
1218 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1222 static bool msr_mtrr_valid(unsigned msr)
1225 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1226 case MSR_MTRRfix64K_00000:
1227 case MSR_MTRRfix16K_80000:
1228 case MSR_MTRRfix16K_A0000:
1229 case MSR_MTRRfix4K_C0000:
1230 case MSR_MTRRfix4K_C8000:
1231 case MSR_MTRRfix4K_D0000:
1232 case MSR_MTRRfix4K_D8000:
1233 case MSR_MTRRfix4K_E0000:
1234 case MSR_MTRRfix4K_E8000:
1235 case MSR_MTRRfix4K_F0000:
1236 case MSR_MTRRfix4K_F8000:
1237 case MSR_MTRRdefType:
1238 case MSR_IA32_CR_PAT:
1246 static bool valid_pat_type(unsigned t)
1248 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1251 static bool valid_mtrr_type(unsigned t)
1253 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1256 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1260 if (!msr_mtrr_valid(msr))
1263 if (msr == MSR_IA32_CR_PAT) {
1264 for (i = 0; i < 8; i++)
1265 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1268 } else if (msr == MSR_MTRRdefType) {
1271 return valid_mtrr_type(data & 0xff);
1272 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1273 for (i = 0; i < 8 ; i++)
1274 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1279 /* variable MTRRs */
1280 return valid_mtrr_type(data & 0xff);
1283 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1285 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1287 if (!mtrr_valid(vcpu, msr, data))
1290 if (msr == MSR_MTRRdefType) {
1291 vcpu->arch.mtrr_state.def_type = data;
1292 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1293 } else if (msr == MSR_MTRRfix64K_00000)
1295 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1296 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1297 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1298 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1299 else if (msr == MSR_IA32_CR_PAT)
1300 vcpu->arch.pat = data;
1301 else { /* Variable MTRRs */
1302 int idx, is_mtrr_mask;
1305 idx = (msr - 0x200) / 2;
1306 is_mtrr_mask = msr - 0x200 - 2 * idx;
1309 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1312 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1316 kvm_mmu_reset_context(vcpu);
1320 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1322 u64 mcg_cap = vcpu->arch.mcg_cap;
1323 unsigned bank_num = mcg_cap & 0xff;
1326 case MSR_IA32_MCG_STATUS:
1327 vcpu->arch.mcg_status = data;
1329 case MSR_IA32_MCG_CTL:
1330 if (!(mcg_cap & MCG_CTL_P))
1332 if (data != 0 && data != ~(u64)0)
1334 vcpu->arch.mcg_ctl = data;
1337 if (msr >= MSR_IA32_MC0_CTL &&
1338 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1339 u32 offset = msr - MSR_IA32_MC0_CTL;
1340 /* only 0 or all 1s can be written to IA32_MCi_CTL
1341 * some Linux kernels though clear bit 10 in bank 4 to
1342 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1343 * this to avoid an uncatched #GP in the guest
1345 if ((offset & 0x3) == 0 &&
1346 data != 0 && (data | (1 << 10)) != ~(u64)0)
1348 vcpu->arch.mce_banks[offset] = data;
1356 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1358 struct kvm *kvm = vcpu->kvm;
1359 int lm = is_long_mode(vcpu);
1360 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1361 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1362 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1363 : kvm->arch.xen_hvm_config.blob_size_32;
1364 u32 page_num = data & ~PAGE_MASK;
1365 u64 page_addr = data & PAGE_MASK;
1370 if (page_num >= blob_size)
1373 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1378 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1387 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1389 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1392 static bool kvm_hv_msr_partition_wide(u32 msr)
1396 case HV_X64_MSR_GUEST_OS_ID:
1397 case HV_X64_MSR_HYPERCALL:
1405 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1407 struct kvm *kvm = vcpu->kvm;
1410 case HV_X64_MSR_GUEST_OS_ID:
1411 kvm->arch.hv_guest_os_id = data;
1412 /* setting guest os id to zero disables hypercall page */
1413 if (!kvm->arch.hv_guest_os_id)
1414 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1416 case HV_X64_MSR_HYPERCALL: {
1421 /* if guest os id is not set hypercall should remain disabled */
1422 if (!kvm->arch.hv_guest_os_id)
1424 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1425 kvm->arch.hv_hypercall = data;
1428 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1429 addr = gfn_to_hva(kvm, gfn);
1430 if (kvm_is_error_hva(addr))
1432 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1433 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1434 if (__copy_to_user((void __user *)addr, instructions, 4))
1436 kvm->arch.hv_hypercall = data;
1440 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1441 "data 0x%llx\n", msr, data);
1447 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1450 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1453 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1454 vcpu->arch.hv_vapic = data;
1457 addr = gfn_to_hva(vcpu->kvm, data >>
1458 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1459 if (kvm_is_error_hva(addr))
1461 if (__clear_user((void __user *)addr, PAGE_SIZE))
1463 vcpu->arch.hv_vapic = data;
1466 case HV_X64_MSR_EOI:
1467 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1468 case HV_X64_MSR_ICR:
1469 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1470 case HV_X64_MSR_TPR:
1471 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1473 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1474 "data 0x%llx\n", msr, data);
1481 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1483 gpa_t gpa = data & ~0x3f;
1485 /* Bits 2:5 are resrved, Should be zero */
1489 vcpu->arch.apf.msr_val = data;
1491 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1492 kvm_clear_async_pf_completion_queue(vcpu);
1493 kvm_async_pf_hash_reset(vcpu);
1497 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1500 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1501 kvm_async_pf_wakeup_all(vcpu);
1505 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1507 if (vcpu->arch.time_page) {
1508 kvm_release_page_dirty(vcpu->arch.time_page);
1509 vcpu->arch.time_page = NULL;
1513 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1517 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1520 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1521 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1522 vcpu->arch.st.accum_steal = delta;
1525 static void record_steal_time(struct kvm_vcpu *vcpu)
1527 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1530 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1531 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1534 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1535 vcpu->arch.st.steal.version += 2;
1536 vcpu->arch.st.accum_steal = 0;
1538 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1539 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1542 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1548 return set_efer(vcpu, data);
1550 data &= ~(u64)0x40; /* ignore flush filter disable */
1551 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1552 data &= ~(u64)0x8; /* ignore TLB cache disable */
1554 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1559 case MSR_FAM10H_MMIO_CONF_BASE:
1561 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1566 case MSR_AMD64_NB_CFG:
1568 case MSR_IA32_DEBUGCTLMSR:
1570 /* We support the non-activated case already */
1572 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1573 /* Values other than LBR and BTF are vendor-specific,
1574 thus reserved and should throw a #GP */
1577 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1580 case MSR_IA32_UCODE_REV:
1581 case MSR_IA32_UCODE_WRITE:
1582 case MSR_VM_HSAVE_PA:
1583 case MSR_AMD64_PATCH_LOADER:
1585 case 0x200 ... 0x2ff:
1586 return set_msr_mtrr(vcpu, msr, data);
1587 case MSR_IA32_APICBASE:
1588 kvm_set_apic_base(vcpu, data);
1590 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1591 return kvm_x2apic_msr_write(vcpu, msr, data);
1592 case MSR_IA32_TSCDEADLINE:
1593 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1595 case MSR_IA32_MISC_ENABLE:
1596 vcpu->arch.ia32_misc_enable_msr = data;
1598 case MSR_KVM_WALL_CLOCK_NEW:
1599 case MSR_KVM_WALL_CLOCK:
1600 vcpu->kvm->arch.wall_clock = data;
1601 kvm_write_wall_clock(vcpu->kvm, data);
1603 case MSR_KVM_SYSTEM_TIME_NEW:
1604 case MSR_KVM_SYSTEM_TIME: {
1605 kvmclock_reset(vcpu);
1607 vcpu->arch.time = data;
1608 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1610 /* we verify if the enable bit is set... */
1614 /* ...but clean it before doing the actual write */
1615 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1617 vcpu->arch.time_page =
1618 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1620 if (is_error_page(vcpu->arch.time_page)) {
1621 kvm_release_page_clean(vcpu->arch.time_page);
1622 vcpu->arch.time_page = NULL;
1626 case MSR_KVM_ASYNC_PF_EN:
1627 if (kvm_pv_enable_async_pf(vcpu, data))
1630 case MSR_KVM_STEAL_TIME:
1632 if (unlikely(!sched_info_on()))
1635 if (data & KVM_STEAL_RESERVED_MASK)
1638 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1639 data & KVM_STEAL_VALID_BITS))
1642 vcpu->arch.st.msr_val = data;
1644 if (!(data & KVM_MSR_ENABLED))
1647 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1650 accumulate_steal_time(vcpu);
1653 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1657 case MSR_IA32_MCG_CTL:
1658 case MSR_IA32_MCG_STATUS:
1659 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1660 return set_msr_mce(vcpu, msr, data);
1662 /* Performance counters are not protected by a CPUID bit,
1663 * so we should check all of them in the generic path for the sake of
1664 * cross vendor migration.
1665 * Writing a zero into the event select MSRs disables them,
1666 * which we perfectly emulate ;-). Any other value should be at least
1667 * reported, some guests depend on them.
1669 case MSR_K7_EVNTSEL0:
1670 case MSR_K7_EVNTSEL1:
1671 case MSR_K7_EVNTSEL2:
1672 case MSR_K7_EVNTSEL3:
1674 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1675 "0x%x data 0x%llx\n", msr, data);
1677 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1678 * so we ignore writes to make it happy.
1680 case MSR_K7_PERFCTR0:
1681 case MSR_K7_PERFCTR1:
1682 case MSR_K7_PERFCTR2:
1683 case MSR_K7_PERFCTR3:
1684 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1685 "0x%x data 0x%llx\n", msr, data);
1687 case MSR_P6_PERFCTR0:
1688 case MSR_P6_PERFCTR1:
1690 case MSR_P6_EVNTSEL0:
1691 case MSR_P6_EVNTSEL1:
1692 if (kvm_pmu_msr(vcpu, msr))
1693 return kvm_pmu_set_msr(vcpu, msr, data);
1695 if (pr || data != 0)
1696 pr_unimpl(vcpu, "disabled perfctr wrmsr: "
1697 "0x%x data 0x%llx\n", msr, data);
1699 case MSR_K7_CLK_CTL:
1701 * Ignore all writes to this no longer documented MSR.
1702 * Writes are only relevant for old K7 processors,
1703 * all pre-dating SVM, but a recommended workaround from
1704 * AMD for these chips. It is possible to speicify the
1705 * affected processor models on the command line, hence
1706 * the need to ignore the workaround.
1709 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1710 if (kvm_hv_msr_partition_wide(msr)) {
1712 mutex_lock(&vcpu->kvm->lock);
1713 r = set_msr_hyperv_pw(vcpu, msr, data);
1714 mutex_unlock(&vcpu->kvm->lock);
1717 return set_msr_hyperv(vcpu, msr, data);
1719 case MSR_IA32_BBL_CR_CTL3:
1720 /* Drop writes to this legacy MSR -- see rdmsr
1721 * counterpart for further detail.
1723 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1725 case MSR_AMD64_OSVW_ID_LENGTH:
1726 if (!guest_cpuid_has_osvw(vcpu))
1728 vcpu->arch.osvw.length = data;
1730 case MSR_AMD64_OSVW_STATUS:
1731 if (!guest_cpuid_has_osvw(vcpu))
1733 vcpu->arch.osvw.status = data;
1736 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1737 return xen_hvm_config(vcpu, data);
1738 if (kvm_pmu_msr(vcpu, msr))
1739 return kvm_pmu_set_msr(vcpu, msr, data);
1741 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1745 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1752 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1756 * Reads an msr value (of 'msr_index') into 'pdata'.
1757 * Returns 0 on success, non-0 otherwise.
1758 * Assumes vcpu_load() was already called.
1760 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1762 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1765 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1767 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1769 if (!msr_mtrr_valid(msr))
1772 if (msr == MSR_MTRRdefType)
1773 *pdata = vcpu->arch.mtrr_state.def_type +
1774 (vcpu->arch.mtrr_state.enabled << 10);
1775 else if (msr == MSR_MTRRfix64K_00000)
1777 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1778 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1779 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1780 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1781 else if (msr == MSR_IA32_CR_PAT)
1782 *pdata = vcpu->arch.pat;
1783 else { /* Variable MTRRs */
1784 int idx, is_mtrr_mask;
1787 idx = (msr - 0x200) / 2;
1788 is_mtrr_mask = msr - 0x200 - 2 * idx;
1791 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1794 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1801 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1804 u64 mcg_cap = vcpu->arch.mcg_cap;
1805 unsigned bank_num = mcg_cap & 0xff;
1808 case MSR_IA32_P5_MC_ADDR:
1809 case MSR_IA32_P5_MC_TYPE:
1812 case MSR_IA32_MCG_CAP:
1813 data = vcpu->arch.mcg_cap;
1815 case MSR_IA32_MCG_CTL:
1816 if (!(mcg_cap & MCG_CTL_P))
1818 data = vcpu->arch.mcg_ctl;
1820 case MSR_IA32_MCG_STATUS:
1821 data = vcpu->arch.mcg_status;
1824 if (msr >= MSR_IA32_MC0_CTL &&
1825 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1826 u32 offset = msr - MSR_IA32_MC0_CTL;
1827 data = vcpu->arch.mce_banks[offset];
1836 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1839 struct kvm *kvm = vcpu->kvm;
1842 case HV_X64_MSR_GUEST_OS_ID:
1843 data = kvm->arch.hv_guest_os_id;
1845 case HV_X64_MSR_HYPERCALL:
1846 data = kvm->arch.hv_hypercall;
1849 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1857 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1862 case HV_X64_MSR_VP_INDEX: {
1865 kvm_for_each_vcpu(r, v, vcpu->kvm)
1870 case HV_X64_MSR_EOI:
1871 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1872 case HV_X64_MSR_ICR:
1873 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1874 case HV_X64_MSR_TPR:
1875 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1876 case HV_X64_MSR_APIC_ASSIST_PAGE:
1877 data = vcpu->arch.hv_vapic;
1880 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1887 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1892 case MSR_IA32_PLATFORM_ID:
1893 case MSR_IA32_EBL_CR_POWERON:
1894 case MSR_IA32_DEBUGCTLMSR:
1895 case MSR_IA32_LASTBRANCHFROMIP:
1896 case MSR_IA32_LASTBRANCHTOIP:
1897 case MSR_IA32_LASTINTFROMIP:
1898 case MSR_IA32_LASTINTTOIP:
1901 case MSR_VM_HSAVE_PA:
1902 case MSR_K7_EVNTSEL0:
1903 case MSR_K7_PERFCTR0:
1904 case MSR_K8_INT_PENDING_MSG:
1905 case MSR_AMD64_NB_CFG:
1906 case MSR_FAM10H_MMIO_CONF_BASE:
1909 case MSR_P6_PERFCTR0:
1910 case MSR_P6_PERFCTR1:
1911 case MSR_P6_EVNTSEL0:
1912 case MSR_P6_EVNTSEL1:
1913 if (kvm_pmu_msr(vcpu, msr))
1914 return kvm_pmu_get_msr(vcpu, msr, pdata);
1917 case MSR_IA32_UCODE_REV:
1918 data = 0x100000000ULL;
1921 data = 0x500 | KVM_NR_VAR_MTRR;
1923 case 0x200 ... 0x2ff:
1924 return get_msr_mtrr(vcpu, msr, pdata);
1925 case 0xcd: /* fsb frequency */
1929 * MSR_EBC_FREQUENCY_ID
1930 * Conservative value valid for even the basic CPU models.
1931 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1932 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1933 * and 266MHz for model 3, or 4. Set Core Clock
1934 * Frequency to System Bus Frequency Ratio to 1 (bits
1935 * 31:24) even though these are only valid for CPU
1936 * models > 2, however guests may end up dividing or
1937 * multiplying by zero otherwise.
1939 case MSR_EBC_FREQUENCY_ID:
1942 case MSR_IA32_APICBASE:
1943 data = kvm_get_apic_base(vcpu);
1945 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1946 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1948 case MSR_IA32_TSCDEADLINE:
1949 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1951 case MSR_IA32_MISC_ENABLE:
1952 data = vcpu->arch.ia32_misc_enable_msr;
1954 case MSR_IA32_PERF_STATUS:
1955 /* TSC increment by tick */
1957 /* CPU multiplier */
1958 data |= (((uint64_t)4ULL) << 40);
1961 data = vcpu->arch.efer;
1963 case MSR_KVM_WALL_CLOCK:
1964 case MSR_KVM_WALL_CLOCK_NEW:
1965 data = vcpu->kvm->arch.wall_clock;
1967 case MSR_KVM_SYSTEM_TIME:
1968 case MSR_KVM_SYSTEM_TIME_NEW:
1969 data = vcpu->arch.time;
1971 case MSR_KVM_ASYNC_PF_EN:
1972 data = vcpu->arch.apf.msr_val;
1974 case MSR_KVM_STEAL_TIME:
1975 data = vcpu->arch.st.msr_val;
1977 case MSR_IA32_P5_MC_ADDR:
1978 case MSR_IA32_P5_MC_TYPE:
1979 case MSR_IA32_MCG_CAP:
1980 case MSR_IA32_MCG_CTL:
1981 case MSR_IA32_MCG_STATUS:
1982 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1983 return get_msr_mce(vcpu, msr, pdata);
1984 case MSR_K7_CLK_CTL:
1986 * Provide expected ramp-up count for K7. All other
1987 * are set to zero, indicating minimum divisors for
1990 * This prevents guest kernels on AMD host with CPU
1991 * type 6, model 8 and higher from exploding due to
1992 * the rdmsr failing.
1996 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1997 if (kvm_hv_msr_partition_wide(msr)) {
1999 mutex_lock(&vcpu->kvm->lock);
2000 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2001 mutex_unlock(&vcpu->kvm->lock);
2004 return get_msr_hyperv(vcpu, msr, pdata);
2006 case MSR_IA32_BBL_CR_CTL3:
2007 /* This legacy MSR exists but isn't fully documented in current
2008 * silicon. It is however accessed by winxp in very narrow
2009 * scenarios where it sets bit #19, itself documented as
2010 * a "reserved" bit. Best effort attempt to source coherent
2011 * read data here should the balance of the register be
2012 * interpreted by the guest:
2014 * L2 cache control register 3: 64GB range, 256KB size,
2015 * enabled, latency 0x1, configured
2019 case MSR_AMD64_OSVW_ID_LENGTH:
2020 if (!guest_cpuid_has_osvw(vcpu))
2022 data = vcpu->arch.osvw.length;
2024 case MSR_AMD64_OSVW_STATUS:
2025 if (!guest_cpuid_has_osvw(vcpu))
2027 data = vcpu->arch.osvw.status;
2030 if (kvm_pmu_msr(vcpu, msr))
2031 return kvm_pmu_get_msr(vcpu, msr, pdata);
2033 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2036 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2044 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2047 * Read or write a bunch of msrs. All parameters are kernel addresses.
2049 * @return number of msrs set successfully.
2051 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2052 struct kvm_msr_entry *entries,
2053 int (*do_msr)(struct kvm_vcpu *vcpu,
2054 unsigned index, u64 *data))
2058 idx = srcu_read_lock(&vcpu->kvm->srcu);
2059 for (i = 0; i < msrs->nmsrs; ++i)
2060 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2062 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2068 * Read or write a bunch of msrs. Parameters are user addresses.
2070 * @return number of msrs set successfully.
2072 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2073 int (*do_msr)(struct kvm_vcpu *vcpu,
2074 unsigned index, u64 *data),
2077 struct kvm_msrs msrs;
2078 struct kvm_msr_entry *entries;
2083 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2087 if (msrs.nmsrs >= MAX_IO_MSRS)
2090 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2091 entries = memdup_user(user_msrs->entries, size);
2092 if (IS_ERR(entries)) {
2093 r = PTR_ERR(entries);
2097 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2102 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2113 int kvm_dev_ioctl_check_extension(long ext)
2118 case KVM_CAP_IRQCHIP:
2120 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2121 case KVM_CAP_SET_TSS_ADDR:
2122 case KVM_CAP_EXT_CPUID:
2123 case KVM_CAP_CLOCKSOURCE:
2125 case KVM_CAP_NOP_IO_DELAY:
2126 case KVM_CAP_MP_STATE:
2127 case KVM_CAP_SYNC_MMU:
2128 case KVM_CAP_USER_NMI:
2129 case KVM_CAP_REINJECT_CONTROL:
2130 case KVM_CAP_IRQ_INJECT_STATUS:
2131 case KVM_CAP_ASSIGN_DEV_IRQ:
2133 case KVM_CAP_IOEVENTFD:
2135 case KVM_CAP_PIT_STATE2:
2136 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2137 case KVM_CAP_XEN_HVM:
2138 case KVM_CAP_ADJUST_CLOCK:
2139 case KVM_CAP_VCPU_EVENTS:
2140 case KVM_CAP_HYPERV:
2141 case KVM_CAP_HYPERV_VAPIC:
2142 case KVM_CAP_HYPERV_SPIN:
2143 case KVM_CAP_PCI_SEGMENT:
2144 case KVM_CAP_DEBUGREGS:
2145 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2147 case KVM_CAP_ASYNC_PF:
2148 case KVM_CAP_GET_TSC_KHZ:
2149 case KVM_CAP_PCI_2_3:
2152 case KVM_CAP_COALESCED_MMIO:
2153 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2156 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2158 case KVM_CAP_NR_VCPUS:
2159 r = KVM_SOFT_MAX_VCPUS;
2161 case KVM_CAP_MAX_VCPUS:
2164 case KVM_CAP_NR_MEMSLOTS:
2165 r = KVM_MEMORY_SLOTS;
2167 case KVM_CAP_PV_MMU: /* obsolete */
2171 r = iommu_present(&pci_bus_type);
2174 r = KVM_MAX_MCE_BANKS;
2179 case KVM_CAP_TSC_CONTROL:
2180 r = kvm_has_tsc_control;
2182 case KVM_CAP_TSC_DEADLINE_TIMER:
2183 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2193 long kvm_arch_dev_ioctl(struct file *filp,
2194 unsigned int ioctl, unsigned long arg)
2196 void __user *argp = (void __user *)arg;
2200 case KVM_GET_MSR_INDEX_LIST: {
2201 struct kvm_msr_list __user *user_msr_list = argp;
2202 struct kvm_msr_list msr_list;
2206 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2209 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2210 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2213 if (n < msr_list.nmsrs)
2216 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2217 num_msrs_to_save * sizeof(u32)))
2219 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2221 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2226 case KVM_GET_SUPPORTED_CPUID: {
2227 struct kvm_cpuid2 __user *cpuid_arg = argp;
2228 struct kvm_cpuid2 cpuid;
2231 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2233 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2234 cpuid_arg->entries);
2239 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2244 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2247 mce_cap = KVM_MCE_CAP_SUPPORTED;
2249 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2261 static void wbinvd_ipi(void *garbage)
2266 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2268 return vcpu->kvm->arch.iommu_domain &&
2269 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2272 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2274 /* Address WBINVD may be executed by guest */
2275 if (need_emulate_wbinvd(vcpu)) {
2276 if (kvm_x86_ops->has_wbinvd_exit())
2277 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2278 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2279 smp_call_function_single(vcpu->cpu,
2280 wbinvd_ipi, NULL, 1);
2283 kvm_x86_ops->vcpu_load(vcpu, cpu);
2285 /* Apply any externally detected TSC adjustments (due to suspend) */
2286 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2287 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2288 vcpu->arch.tsc_offset_adjustment = 0;
2289 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2292 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2293 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2294 native_read_tsc() - vcpu->arch.last_host_tsc;
2296 mark_tsc_unstable("KVM discovered backwards TSC");
2297 if (check_tsc_unstable()) {
2298 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2299 vcpu->arch.last_guest_tsc);
2300 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2301 vcpu->arch.tsc_catchup = 1;
2303 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2304 if (vcpu->cpu != cpu)
2305 kvm_migrate_timers(vcpu);
2309 accumulate_steal_time(vcpu);
2310 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2313 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2315 kvm_x86_ops->vcpu_put(vcpu);
2316 kvm_put_guest_fpu(vcpu);
2317 vcpu->arch.last_host_tsc = native_read_tsc();
2320 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2321 struct kvm_lapic_state *s)
2323 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2328 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2329 struct kvm_lapic_state *s)
2331 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2332 kvm_apic_post_state_restore(vcpu);
2333 update_cr8_intercept(vcpu);
2338 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2339 struct kvm_interrupt *irq)
2341 if (irq->irq < 0 || irq->irq >= 256)
2343 if (irqchip_in_kernel(vcpu->kvm))
2346 kvm_queue_interrupt(vcpu, irq->irq, false);
2347 kvm_make_request(KVM_REQ_EVENT, vcpu);
2352 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2354 kvm_inject_nmi(vcpu);
2359 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2360 struct kvm_tpr_access_ctl *tac)
2364 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2368 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2372 unsigned bank_num = mcg_cap & 0xff, bank;
2375 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2377 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2380 vcpu->arch.mcg_cap = mcg_cap;
2381 /* Init IA32_MCG_CTL to all 1s */
2382 if (mcg_cap & MCG_CTL_P)
2383 vcpu->arch.mcg_ctl = ~(u64)0;
2384 /* Init IA32_MCi_CTL to all 1s */
2385 for (bank = 0; bank < bank_num; bank++)
2386 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2391 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2392 struct kvm_x86_mce *mce)
2394 u64 mcg_cap = vcpu->arch.mcg_cap;
2395 unsigned bank_num = mcg_cap & 0xff;
2396 u64 *banks = vcpu->arch.mce_banks;
2398 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2401 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2402 * reporting is disabled
2404 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2405 vcpu->arch.mcg_ctl != ~(u64)0)
2407 banks += 4 * mce->bank;
2409 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2410 * reporting is disabled for the bank
2412 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2414 if (mce->status & MCI_STATUS_UC) {
2415 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2416 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2417 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2420 if (banks[1] & MCI_STATUS_VAL)
2421 mce->status |= MCI_STATUS_OVER;
2422 banks[2] = mce->addr;
2423 banks[3] = mce->misc;
2424 vcpu->arch.mcg_status = mce->mcg_status;
2425 banks[1] = mce->status;
2426 kvm_queue_exception(vcpu, MC_VECTOR);
2427 } else if (!(banks[1] & MCI_STATUS_VAL)
2428 || !(banks[1] & MCI_STATUS_UC)) {
2429 if (banks[1] & MCI_STATUS_VAL)
2430 mce->status |= MCI_STATUS_OVER;
2431 banks[2] = mce->addr;
2432 banks[3] = mce->misc;
2433 banks[1] = mce->status;
2435 banks[1] |= MCI_STATUS_OVER;
2439 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2440 struct kvm_vcpu_events *events)
2443 events->exception.injected =
2444 vcpu->arch.exception.pending &&
2445 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2446 events->exception.nr = vcpu->arch.exception.nr;
2447 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2448 events->exception.pad = 0;
2449 events->exception.error_code = vcpu->arch.exception.error_code;
2451 events->interrupt.injected =
2452 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2453 events->interrupt.nr = vcpu->arch.interrupt.nr;
2454 events->interrupt.soft = 0;
2455 events->interrupt.shadow =
2456 kvm_x86_ops->get_interrupt_shadow(vcpu,
2457 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2459 events->nmi.injected = vcpu->arch.nmi_injected;
2460 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2461 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2462 events->nmi.pad = 0;
2464 events->sipi_vector = vcpu->arch.sipi_vector;
2466 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2467 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2468 | KVM_VCPUEVENT_VALID_SHADOW);
2469 memset(&events->reserved, 0, sizeof(events->reserved));
2472 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2473 struct kvm_vcpu_events *events)
2475 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2476 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2477 | KVM_VCPUEVENT_VALID_SHADOW))
2481 vcpu->arch.exception.pending = events->exception.injected;
2482 vcpu->arch.exception.nr = events->exception.nr;
2483 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2484 vcpu->arch.exception.error_code = events->exception.error_code;
2486 vcpu->arch.interrupt.pending = events->interrupt.injected;
2487 vcpu->arch.interrupt.nr = events->interrupt.nr;
2488 vcpu->arch.interrupt.soft = events->interrupt.soft;
2489 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2490 kvm_x86_ops->set_interrupt_shadow(vcpu,
2491 events->interrupt.shadow);
2493 vcpu->arch.nmi_injected = events->nmi.injected;
2494 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2495 vcpu->arch.nmi_pending = events->nmi.pending;
2496 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2498 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2499 vcpu->arch.sipi_vector = events->sipi_vector;
2501 kvm_make_request(KVM_REQ_EVENT, vcpu);
2506 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2507 struct kvm_debugregs *dbgregs)
2509 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2510 dbgregs->dr6 = vcpu->arch.dr6;
2511 dbgregs->dr7 = vcpu->arch.dr7;
2513 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2516 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2517 struct kvm_debugregs *dbgregs)
2522 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2523 vcpu->arch.dr6 = dbgregs->dr6;
2524 vcpu->arch.dr7 = dbgregs->dr7;
2529 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2530 struct kvm_xsave *guest_xsave)
2533 memcpy(guest_xsave->region,
2534 &vcpu->arch.guest_fpu.state->xsave,
2537 memcpy(guest_xsave->region,
2538 &vcpu->arch.guest_fpu.state->fxsave,
2539 sizeof(struct i387_fxsave_struct));
2540 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2545 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2546 struct kvm_xsave *guest_xsave)
2549 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2552 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2553 guest_xsave->region, xstate_size);
2555 if (xstate_bv & ~XSTATE_FPSSE)
2557 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2558 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2563 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2564 struct kvm_xcrs *guest_xcrs)
2566 if (!cpu_has_xsave) {
2567 guest_xcrs->nr_xcrs = 0;
2571 guest_xcrs->nr_xcrs = 1;
2572 guest_xcrs->flags = 0;
2573 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2574 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2577 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2578 struct kvm_xcrs *guest_xcrs)
2585 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2588 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2589 /* Only support XCR0 currently */
2590 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2591 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2592 guest_xcrs->xcrs[0].value);
2600 long kvm_arch_vcpu_ioctl(struct file *filp,
2601 unsigned int ioctl, unsigned long arg)
2603 struct kvm_vcpu *vcpu = filp->private_data;
2604 void __user *argp = (void __user *)arg;
2607 struct kvm_lapic_state *lapic;
2608 struct kvm_xsave *xsave;
2609 struct kvm_xcrs *xcrs;
2615 case KVM_GET_LAPIC: {
2617 if (!vcpu->arch.apic)
2619 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2624 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2628 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2633 case KVM_SET_LAPIC: {
2635 if (!vcpu->arch.apic)
2637 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2638 if (IS_ERR(u.lapic)) {
2639 r = PTR_ERR(u.lapic);
2643 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2649 case KVM_INTERRUPT: {
2650 struct kvm_interrupt irq;
2653 if (copy_from_user(&irq, argp, sizeof irq))
2655 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2662 r = kvm_vcpu_ioctl_nmi(vcpu);
2668 case KVM_SET_CPUID: {
2669 struct kvm_cpuid __user *cpuid_arg = argp;
2670 struct kvm_cpuid cpuid;
2673 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2675 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2680 case KVM_SET_CPUID2: {
2681 struct kvm_cpuid2 __user *cpuid_arg = argp;
2682 struct kvm_cpuid2 cpuid;
2685 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2687 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2688 cpuid_arg->entries);
2693 case KVM_GET_CPUID2: {
2694 struct kvm_cpuid2 __user *cpuid_arg = argp;
2695 struct kvm_cpuid2 cpuid;
2698 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2700 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2701 cpuid_arg->entries);
2705 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2711 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2714 r = msr_io(vcpu, argp, do_set_msr, 0);
2716 case KVM_TPR_ACCESS_REPORTING: {
2717 struct kvm_tpr_access_ctl tac;
2720 if (copy_from_user(&tac, argp, sizeof tac))
2722 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2726 if (copy_to_user(argp, &tac, sizeof tac))
2731 case KVM_SET_VAPIC_ADDR: {
2732 struct kvm_vapic_addr va;
2735 if (!irqchip_in_kernel(vcpu->kvm))
2738 if (copy_from_user(&va, argp, sizeof va))
2741 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2744 case KVM_X86_SETUP_MCE: {
2748 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2750 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2753 case KVM_X86_SET_MCE: {
2754 struct kvm_x86_mce mce;
2757 if (copy_from_user(&mce, argp, sizeof mce))
2759 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2762 case KVM_GET_VCPU_EVENTS: {
2763 struct kvm_vcpu_events events;
2765 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2768 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2773 case KVM_SET_VCPU_EVENTS: {
2774 struct kvm_vcpu_events events;
2777 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2780 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2783 case KVM_GET_DEBUGREGS: {
2784 struct kvm_debugregs dbgregs;
2786 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2789 if (copy_to_user(argp, &dbgregs,
2790 sizeof(struct kvm_debugregs)))
2795 case KVM_SET_DEBUGREGS: {
2796 struct kvm_debugregs dbgregs;
2799 if (copy_from_user(&dbgregs, argp,
2800 sizeof(struct kvm_debugregs)))
2803 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2806 case KVM_GET_XSAVE: {
2807 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2812 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2815 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2820 case KVM_SET_XSAVE: {
2821 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2822 if (IS_ERR(u.xsave)) {
2823 r = PTR_ERR(u.xsave);
2827 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2830 case KVM_GET_XCRS: {
2831 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2836 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2839 if (copy_to_user(argp, u.xcrs,
2840 sizeof(struct kvm_xcrs)))
2845 case KVM_SET_XCRS: {
2846 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2847 if (IS_ERR(u.xcrs)) {
2848 r = PTR_ERR(u.xcrs);
2852 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2855 case KVM_SET_TSC_KHZ: {
2859 user_tsc_khz = (u32)arg;
2861 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2864 if (user_tsc_khz == 0)
2865 user_tsc_khz = tsc_khz;
2867 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2872 case KVM_GET_TSC_KHZ: {
2873 r = vcpu->arch.virtual_tsc_khz;
2884 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2886 return VM_FAULT_SIGBUS;
2889 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2893 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2895 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2899 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2902 kvm->arch.ept_identity_map_addr = ident_addr;
2906 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2907 u32 kvm_nr_mmu_pages)
2909 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2912 mutex_lock(&kvm->slots_lock);
2913 spin_lock(&kvm->mmu_lock);
2915 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2916 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2918 spin_unlock(&kvm->mmu_lock);
2919 mutex_unlock(&kvm->slots_lock);
2923 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2925 return kvm->arch.n_max_mmu_pages;
2928 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2933 switch (chip->chip_id) {
2934 case KVM_IRQCHIP_PIC_MASTER:
2935 memcpy(&chip->chip.pic,
2936 &pic_irqchip(kvm)->pics[0],
2937 sizeof(struct kvm_pic_state));
2939 case KVM_IRQCHIP_PIC_SLAVE:
2940 memcpy(&chip->chip.pic,
2941 &pic_irqchip(kvm)->pics[1],
2942 sizeof(struct kvm_pic_state));
2944 case KVM_IRQCHIP_IOAPIC:
2945 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2954 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2959 switch (chip->chip_id) {
2960 case KVM_IRQCHIP_PIC_MASTER:
2961 spin_lock(&pic_irqchip(kvm)->lock);
2962 memcpy(&pic_irqchip(kvm)->pics[0],
2964 sizeof(struct kvm_pic_state));
2965 spin_unlock(&pic_irqchip(kvm)->lock);
2967 case KVM_IRQCHIP_PIC_SLAVE:
2968 spin_lock(&pic_irqchip(kvm)->lock);
2969 memcpy(&pic_irqchip(kvm)->pics[1],
2971 sizeof(struct kvm_pic_state));
2972 spin_unlock(&pic_irqchip(kvm)->lock);
2974 case KVM_IRQCHIP_IOAPIC:
2975 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2981 kvm_pic_update_irq(pic_irqchip(kvm));
2985 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2989 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2990 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2991 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2995 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2999 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3000 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3001 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3002 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3006 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3010 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3011 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3012 sizeof(ps->channels));
3013 ps->flags = kvm->arch.vpit->pit_state.flags;
3014 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3015 memset(&ps->reserved, 0, sizeof(ps->reserved));
3019 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3021 int r = 0, start = 0;
3022 u32 prev_legacy, cur_legacy;
3023 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3024 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3025 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3026 if (!prev_legacy && cur_legacy)
3028 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3029 sizeof(kvm->arch.vpit->pit_state.channels));
3030 kvm->arch.vpit->pit_state.flags = ps->flags;
3031 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3032 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3036 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3037 struct kvm_reinject_control *control)
3039 if (!kvm->arch.vpit)
3041 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3042 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3043 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3048 * write_protect_slot - write protect a slot for dirty logging
3049 * @kvm: the kvm instance
3050 * @memslot: the slot we protect
3051 * @dirty_bitmap: the bitmap indicating which pages are dirty
3052 * @nr_dirty_pages: the number of dirty pages
3054 * We have two ways to find all sptes to protect:
3055 * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
3056 * checks ones that have a spte mapping a page in the slot.
3057 * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
3059 * Generally speaking, if there are not so many dirty pages compared to the
3060 * number of shadow pages, we should use the latter.
3062 * Note that letting others write into a page marked dirty in the old bitmap
3063 * by using the remaining tlb entry is not a problem. That page will become
3064 * write protected again when we flush the tlb and then be reported dirty to
3065 * the user space by copying the old bitmap.
3067 static void write_protect_slot(struct kvm *kvm,
3068 struct kvm_memory_slot *memslot,
3069 unsigned long *dirty_bitmap,
3070 unsigned long nr_dirty_pages)
3072 spin_lock(&kvm->mmu_lock);
3074 /* Not many dirty pages compared to # of shadow pages. */
3075 if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
3076 unsigned long gfn_offset;
3078 for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
3079 unsigned long gfn = memslot->base_gfn + gfn_offset;
3081 kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
3083 kvm_flush_remote_tlbs(kvm);
3085 kvm_mmu_slot_remove_write_access(kvm, memslot->id);
3087 spin_unlock(&kvm->mmu_lock);
3091 * Get (and clear) the dirty memory log for a memory slot.
3093 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3094 struct kvm_dirty_log *log)
3097 struct kvm_memory_slot *memslot;
3098 unsigned long n, nr_dirty_pages;
3100 mutex_lock(&kvm->slots_lock);
3103 if (log->slot >= KVM_MEMORY_SLOTS)
3106 memslot = id_to_memslot(kvm->memslots, log->slot);
3108 if (!memslot->dirty_bitmap)
3111 n = kvm_dirty_bitmap_bytes(memslot);
3112 nr_dirty_pages = memslot->nr_dirty_pages;
3114 /* If nothing is dirty, don't bother messing with page tables. */
3115 if (nr_dirty_pages) {
3116 struct kvm_memslots *slots, *old_slots;
3117 unsigned long *dirty_bitmap, *dirty_bitmap_head;
3119 dirty_bitmap = memslot->dirty_bitmap;
3120 dirty_bitmap_head = memslot->dirty_bitmap_head;
3121 if (dirty_bitmap == dirty_bitmap_head)
3122 dirty_bitmap_head += n / sizeof(long);
3123 memset(dirty_bitmap_head, 0, n);
3126 slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3130 memslot = id_to_memslot(slots, log->slot);
3131 memslot->nr_dirty_pages = 0;
3132 memslot->dirty_bitmap = dirty_bitmap_head;
3133 update_memslots(slots, NULL);
3135 old_slots = kvm->memslots;
3136 rcu_assign_pointer(kvm->memslots, slots);
3137 synchronize_srcu_expedited(&kvm->srcu);
3140 write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3143 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3147 if (clear_user(log->dirty_bitmap, n))
3153 mutex_unlock(&kvm->slots_lock);
3157 long kvm_arch_vm_ioctl(struct file *filp,
3158 unsigned int ioctl, unsigned long arg)
3160 struct kvm *kvm = filp->private_data;
3161 void __user *argp = (void __user *)arg;
3164 * This union makes it completely explicit to gcc-3.x
3165 * that these two variables' stack usage should be
3166 * combined, not added together.
3169 struct kvm_pit_state ps;
3170 struct kvm_pit_state2 ps2;
3171 struct kvm_pit_config pit_config;
3175 case KVM_SET_TSS_ADDR:
3176 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3180 case KVM_SET_IDENTITY_MAP_ADDR: {
3184 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3186 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3191 case KVM_SET_NR_MMU_PAGES:
3192 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3196 case KVM_GET_NR_MMU_PAGES:
3197 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3199 case KVM_CREATE_IRQCHIP: {
3200 struct kvm_pic *vpic;
3202 mutex_lock(&kvm->lock);
3205 goto create_irqchip_unlock;
3207 if (atomic_read(&kvm->online_vcpus))
3208 goto create_irqchip_unlock;
3210 vpic = kvm_create_pic(kvm);
3212 r = kvm_ioapic_init(kvm);
3214 mutex_lock(&kvm->slots_lock);
3215 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3217 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3219 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3221 mutex_unlock(&kvm->slots_lock);
3223 goto create_irqchip_unlock;
3226 goto create_irqchip_unlock;
3228 kvm->arch.vpic = vpic;
3230 r = kvm_setup_default_irq_routing(kvm);
3232 mutex_lock(&kvm->slots_lock);
3233 mutex_lock(&kvm->irq_lock);
3234 kvm_ioapic_destroy(kvm);
3235 kvm_destroy_pic(kvm);
3236 mutex_unlock(&kvm->irq_lock);
3237 mutex_unlock(&kvm->slots_lock);
3239 create_irqchip_unlock:
3240 mutex_unlock(&kvm->lock);
3243 case KVM_CREATE_PIT:
3244 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3246 case KVM_CREATE_PIT2:
3248 if (copy_from_user(&u.pit_config, argp,
3249 sizeof(struct kvm_pit_config)))
3252 mutex_lock(&kvm->slots_lock);
3255 goto create_pit_unlock;
3257 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3261 mutex_unlock(&kvm->slots_lock);
3263 case KVM_IRQ_LINE_STATUS:
3264 case KVM_IRQ_LINE: {
3265 struct kvm_irq_level irq_event;
3268 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3271 if (irqchip_in_kernel(kvm)) {
3273 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3274 irq_event.irq, irq_event.level);
3275 if (ioctl == KVM_IRQ_LINE_STATUS) {
3277 irq_event.status = status;
3278 if (copy_to_user(argp, &irq_event,
3286 case KVM_GET_IRQCHIP: {
3287 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3288 struct kvm_irqchip *chip;
3290 chip = memdup_user(argp, sizeof(*chip));
3297 if (!irqchip_in_kernel(kvm))
3298 goto get_irqchip_out;
3299 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3301 goto get_irqchip_out;
3303 if (copy_to_user(argp, chip, sizeof *chip))
3304 goto get_irqchip_out;
3312 case KVM_SET_IRQCHIP: {
3313 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3314 struct kvm_irqchip *chip;
3316 chip = memdup_user(argp, sizeof(*chip));
3323 if (!irqchip_in_kernel(kvm))
3324 goto set_irqchip_out;
3325 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3327 goto set_irqchip_out;
3337 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3340 if (!kvm->arch.vpit)
3342 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3346 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3353 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3356 if (!kvm->arch.vpit)
3358 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3364 case KVM_GET_PIT2: {
3366 if (!kvm->arch.vpit)
3368 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3372 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3377 case KVM_SET_PIT2: {