]> git.openfabrics.org - ~shefty/rdma-dev.git/blob - arch/x86/mm/init_64.c
7c48ad4faca312c2f3e80b2971bb29b774994522
[~shefty/rdma-dev.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32 #include <linux/gfp.h>
33
34 #include <asm/processor.h>
35 #include <asm/bios_ebda.h>
36 #include <asm/system.h>
37 #include <asm/uaccess.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/dma.h>
41 #include <asm/fixmap.h>
42 #include <asm/e820.h>
43 #include <asm/apic.h>
44 #include <asm/tlb.h>
45 #include <asm/mmu_context.h>
46 #include <asm/proto.h>
47 #include <asm/smp.h>
48 #include <asm/sections.h>
49 #include <asm/kdebug.h>
50 #include <asm/numa.h>
51 #include <asm/cacheflush.h>
52 #include <asm/init.h>
53 #include <linux/bootmem.h>
54
55 static unsigned long dma_reserve __initdata;
56
57 static int __init parse_direct_gbpages_off(char *arg)
58 {
59         direct_gbpages = 0;
60         return 0;
61 }
62 early_param("nogbpages", parse_direct_gbpages_off);
63
64 static int __init parse_direct_gbpages_on(char *arg)
65 {
66         direct_gbpages = 1;
67         return 0;
68 }
69 early_param("gbpages", parse_direct_gbpages_on);
70
71 /*
72  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
73  * physical space so we can cache the place of the first one and move
74  * around without checking the pgd every time.
75  */
76
77 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
78 EXPORT_SYMBOL_GPL(__supported_pte_mask);
79
80 int force_personality32;
81
82 /*
83  * noexec32=on|off
84  * Control non executable heap for 32bit processes.
85  * To control the stack too use noexec=off
86  *
87  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
88  * off  PROT_READ implies PROT_EXEC
89  */
90 static int __init nonx32_setup(char *str)
91 {
92         if (!strcmp(str, "on"))
93                 force_personality32 &= ~READ_IMPLIES_EXEC;
94         else if (!strcmp(str, "off"))
95                 force_personality32 |= READ_IMPLIES_EXEC;
96         return 1;
97 }
98 __setup("noexec32=", nonx32_setup);
99
100 /*
101  * NOTE: This function is marked __ref because it calls __init function
102  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
103  */
104 static __ref void *spp_getpage(void)
105 {
106         void *ptr;
107
108         if (after_bootmem)
109                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
110         else
111                 ptr = alloc_bootmem_pages(PAGE_SIZE);
112
113         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
114                 panic("set_pte_phys: cannot allocate page data %s\n",
115                         after_bootmem ? "after bootmem" : "");
116         }
117
118         pr_debug("spp_getpage %p\n", ptr);
119
120         return ptr;
121 }
122
123 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
124 {
125         if (pgd_none(*pgd)) {
126                 pud_t *pud = (pud_t *)spp_getpage();
127                 pgd_populate(&init_mm, pgd, pud);
128                 if (pud != pud_offset(pgd, 0))
129                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
130                                pud, pud_offset(pgd, 0));
131         }
132         return pud_offset(pgd, vaddr);
133 }
134
135 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
136 {
137         if (pud_none(*pud)) {
138                 pmd_t *pmd = (pmd_t *) spp_getpage();
139                 pud_populate(&init_mm, pud, pmd);
140                 if (pmd != pmd_offset(pud, 0))
141                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
142                                pmd, pmd_offset(pud, 0));
143         }
144         return pmd_offset(pud, vaddr);
145 }
146
147 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
148 {
149         if (pmd_none(*pmd)) {
150                 pte_t *pte = (pte_t *) spp_getpage();
151                 pmd_populate_kernel(&init_mm, pmd, pte);
152                 if (pte != pte_offset_kernel(pmd, 0))
153                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
154         }
155         return pte_offset_kernel(pmd, vaddr);
156 }
157
158 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
159 {
160         pud_t *pud;
161         pmd_t *pmd;
162         pte_t *pte;
163
164         pud = pud_page + pud_index(vaddr);
165         pmd = fill_pmd(pud, vaddr);
166         pte = fill_pte(pmd, vaddr);
167
168         set_pte(pte, new_pte);
169
170         /*
171          * It's enough to flush this one mapping.
172          * (PGE mappings get flushed as well)
173          */
174         __flush_tlb_one(vaddr);
175 }
176
177 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
178 {
179         pgd_t *pgd;
180         pud_t *pud_page;
181
182         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
183
184         pgd = pgd_offset_k(vaddr);
185         if (pgd_none(*pgd)) {
186                 printk(KERN_ERR
187                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
188                 return;
189         }
190         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
191         set_pte_vaddr_pud(pud_page, vaddr, pteval);
192 }
193
194 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
195 {
196         pgd_t *pgd;
197         pud_t *pud;
198
199         pgd = pgd_offset_k(vaddr);
200         pud = fill_pud(pgd, vaddr);
201         return fill_pmd(pud, vaddr);
202 }
203
204 pte_t * __init populate_extra_pte(unsigned long vaddr)
205 {
206         pmd_t *pmd;
207
208         pmd = populate_extra_pmd(vaddr);
209         return fill_pte(pmd, vaddr);
210 }
211
212 /*
213  * Create large page table mappings for a range of physical addresses.
214  */
215 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
216                                                 pgprot_t prot)
217 {
218         pgd_t *pgd;
219         pud_t *pud;
220         pmd_t *pmd;
221
222         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
223         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
224                 pgd = pgd_offset_k((unsigned long)__va(phys));
225                 if (pgd_none(*pgd)) {
226                         pud = (pud_t *) spp_getpage();
227                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
228                                                 _PAGE_USER));
229                 }
230                 pud = pud_offset(pgd, (unsigned long)__va(phys));
231                 if (pud_none(*pud)) {
232                         pmd = (pmd_t *) spp_getpage();
233                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
234                                                 _PAGE_USER));
235                 }
236                 pmd = pmd_offset(pud, phys);
237                 BUG_ON(!pmd_none(*pmd));
238                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
239         }
240 }
241
242 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
243 {
244         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
245 }
246
247 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
248 {
249         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
250 }
251
252 /*
253  * The head.S code sets up the kernel high mapping:
254  *
255  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
256  *
257  * phys_addr holds the negative offset to the kernel, which is added
258  * to the compile time generated pmds. This results in invalid pmds up
259  * to the point where we hit the physaddr 0 mapping.
260  *
261  * We limit the mappings to the region from _text to _end.  _end is
262  * rounded up to the 2MB boundary. This catches the invalid pmds as
263  * well, as they are located before _text:
264  */
265 void __init cleanup_highmap(void)
266 {
267         unsigned long vaddr = __START_KERNEL_map;
268         unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
269         pmd_t *pmd = level2_kernel_pgt;
270         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
271
272         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
273                 if (pmd_none(*pmd))
274                         continue;
275                 if (vaddr < (unsigned long) _text || vaddr > end)
276                         set_pmd(pmd, __pmd(0));
277         }
278 }
279
280 static __ref void *alloc_low_page(unsigned long *phys)
281 {
282         unsigned long pfn = e820_table_end++;
283         void *adr;
284
285         if (after_bootmem) {
286                 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
287                 *phys = __pa(adr);
288
289                 return adr;
290         }
291
292         if (pfn >= e820_table_top)
293                 panic("alloc_low_page: ran out of memory");
294
295         adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
296         clear_page(adr);
297         *phys  = pfn * PAGE_SIZE;
298         return adr;
299 }
300
301 static __ref void unmap_low_page(void *adr)
302 {
303         if (after_bootmem)
304                 return;
305
306         early_iounmap(adr, PAGE_SIZE);
307 }
308
309 static unsigned long __meminit
310 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
311               pgprot_t prot)
312 {
313         unsigned pages = 0;
314         unsigned long last_map_addr = end;
315         int i;
316
317         pte_t *pte = pte_page + pte_index(addr);
318
319         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
320
321                 if (addr >= end) {
322                         if (!after_bootmem) {
323                                 for(; i < PTRS_PER_PTE; i++, pte++)
324                                         set_pte(pte, __pte(0));
325                         }
326                         break;
327                 }
328
329                 /*
330                  * We will re-use the existing mapping.
331                  * Xen for example has some special requirements, like mapping
332                  * pagetable pages as RO. So assume someone who pre-setup
333                  * these mappings are more intelligent.
334                  */
335                 if (pte_val(*pte)) {
336                         pages++;
337                         continue;
338                 }
339
340                 if (0)
341                         printk("   pte=%p addr=%lx pte=%016lx\n",
342                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
343                 pages++;
344                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
345                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
346         }
347
348         update_page_count(PG_LEVEL_4K, pages);
349
350         return last_map_addr;
351 }
352
353 static unsigned long __meminit
354 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
355                 pgprot_t prot)
356 {
357         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
358
359         return phys_pte_init(pte, address, end, prot);
360 }
361
362 static unsigned long __meminit
363 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
364               unsigned long page_size_mask, pgprot_t prot)
365 {
366         unsigned long pages = 0;
367         unsigned long last_map_addr = end;
368
369         int i = pmd_index(address);
370
371         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
372                 unsigned long pte_phys;
373                 pmd_t *pmd = pmd_page + pmd_index(address);
374                 pte_t *pte;
375                 pgprot_t new_prot = prot;
376
377                 if (address >= end) {
378                         if (!after_bootmem) {
379                                 for (; i < PTRS_PER_PMD; i++, pmd++)
380                                         set_pmd(pmd, __pmd(0));
381                         }
382                         break;
383                 }
384
385                 if (pmd_val(*pmd)) {
386                         if (!pmd_large(*pmd)) {
387                                 spin_lock(&init_mm.page_table_lock);
388                                 last_map_addr = phys_pte_update(pmd, address,
389                                                                 end, prot);
390                                 spin_unlock(&init_mm.page_table_lock);
391                                 continue;
392                         }
393                         /*
394                          * If we are ok with PG_LEVEL_2M mapping, then we will
395                          * use the existing mapping,
396                          *
397                          * Otherwise, we will split the large page mapping but
398                          * use the same existing protection bits except for
399                          * large page, so that we don't violate Intel's TLB
400                          * Application note (317080) which says, while changing
401                          * the page sizes, new and old translations should
402                          * not differ with respect to page frame and
403                          * attributes.
404                          */
405                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
406                                 pages++;
407                                 continue;
408                         }
409                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
410                 }
411
412                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
413                         pages++;
414                         spin_lock(&init_mm.page_table_lock);
415                         set_pte((pte_t *)pmd,
416                                 pfn_pte(address >> PAGE_SHIFT,
417                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
418                         spin_unlock(&init_mm.page_table_lock);
419                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
420                         continue;
421                 }
422
423                 pte = alloc_low_page(&pte_phys);
424                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
425                 unmap_low_page(pte);
426
427                 spin_lock(&init_mm.page_table_lock);
428                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
429                 spin_unlock(&init_mm.page_table_lock);
430         }
431         update_page_count(PG_LEVEL_2M, pages);
432         return last_map_addr;
433 }
434
435 static unsigned long __meminit
436 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
437                 unsigned long page_size_mask, pgprot_t prot)
438 {
439         pmd_t *pmd = pmd_offset(pud, 0);
440         unsigned long last_map_addr;
441
442         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
443         __flush_tlb_all();
444         return last_map_addr;
445 }
446
447 static unsigned long __meminit
448 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
449                          unsigned long page_size_mask)
450 {
451         unsigned long pages = 0;
452         unsigned long last_map_addr = end;
453         int i = pud_index(addr);
454
455         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
456                 unsigned long pmd_phys;
457                 pud_t *pud = pud_page + pud_index(addr);
458                 pmd_t *pmd;
459                 pgprot_t prot = PAGE_KERNEL;
460
461                 if (addr >= end)
462                         break;
463
464                 if (!after_bootmem &&
465                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
466                         set_pud(pud, __pud(0));
467                         continue;
468                 }
469
470                 if (pud_val(*pud)) {
471                         if (!pud_large(*pud)) {
472                                 last_map_addr = phys_pmd_update(pud, addr, end,
473                                                          page_size_mask, prot);
474                                 continue;
475                         }
476                         /*
477                          * If we are ok with PG_LEVEL_1G mapping, then we will
478                          * use the existing mapping.
479                          *
480                          * Otherwise, we will split the gbpage mapping but use
481                          * the same existing protection  bits except for large
482                          * page, so that we don't violate Intel's TLB
483                          * Application note (317080) which says, while changing
484                          * the page sizes, new and old translations should
485                          * not differ with respect to page frame and
486                          * attributes.
487                          */
488                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
489                                 pages++;
490                                 continue;
491                         }
492                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
493                 }
494
495                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
496                         pages++;
497                         spin_lock(&init_mm.page_table_lock);
498                         set_pte((pte_t *)pud,
499                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
500                         spin_unlock(&init_mm.page_table_lock);
501                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
502                         continue;
503                 }
504
505                 pmd = alloc_low_page(&pmd_phys);
506                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
507                                               prot);
508                 unmap_low_page(pmd);
509
510                 spin_lock(&init_mm.page_table_lock);
511                 pud_populate(&init_mm, pud, __va(pmd_phys));
512                 spin_unlock(&init_mm.page_table_lock);
513         }
514         __flush_tlb_all();
515
516         update_page_count(PG_LEVEL_1G, pages);
517
518         return last_map_addr;
519 }
520
521 static unsigned long __meminit
522 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
523                  unsigned long page_size_mask)
524 {
525         pud_t *pud;
526
527         pud = (pud_t *)pgd_page_vaddr(*pgd);
528
529         return phys_pud_init(pud, addr, end, page_size_mask);
530 }
531
532 unsigned long __meminit
533 kernel_physical_mapping_init(unsigned long start,
534                              unsigned long end,
535                              unsigned long page_size_mask)
536 {
537
538         unsigned long next, last_map_addr = end;
539
540         start = (unsigned long)__va(start);
541         end = (unsigned long)__va(end);
542
543         for (; start < end; start = next) {
544                 pgd_t *pgd = pgd_offset_k(start);
545                 unsigned long pud_phys;
546                 pud_t *pud;
547
548                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
549                 if (next > end)
550                         next = end;
551
552                 if (pgd_val(*pgd)) {
553                         last_map_addr = phys_pud_update(pgd, __pa(start),
554                                                  __pa(end), page_size_mask);
555                         continue;
556                 }
557
558                 pud = alloc_low_page(&pud_phys);
559                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
560                                                  page_size_mask);
561                 unmap_low_page(pud);
562
563                 spin_lock(&init_mm.page_table_lock);
564                 pgd_populate(&init_mm, pgd, __va(pud_phys));
565                 spin_unlock(&init_mm.page_table_lock);
566         }
567         __flush_tlb_all();
568
569         return last_map_addr;
570 }
571
572 #ifndef CONFIG_NUMA
573 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
574                                 int acpi, int k8)
575 {
576 #ifndef CONFIG_NO_BOOTMEM
577         unsigned long bootmap_size, bootmap;
578
579         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
580         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
581                                  PAGE_SIZE);
582         if (bootmap == -1L)
583                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
584         reserve_early(bootmap, bootmap + bootmap_size, "BOOTMAP");
585         /* don't touch min_low_pfn */
586         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
587                                          0, end_pfn);
588         e820_register_active_regions(0, start_pfn, end_pfn);
589         free_bootmem_with_active_regions(0, end_pfn);
590 #else
591         e820_register_active_regions(0, start_pfn, end_pfn);
592 #endif
593 }
594 #endif
595
596 void __init paging_init(void)
597 {
598         unsigned long max_zone_pfns[MAX_NR_ZONES];
599
600         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
601         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
602         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
603         max_zone_pfns[ZONE_NORMAL] = max_pfn;
604
605         sparse_memory_present_with_active_regions(MAX_NUMNODES);
606         sparse_init();
607
608         /*
609          * clear the default setting with node 0
610          * note: don't use nodes_clear here, that is really clearing when
611          *       numa support is not compiled in, and later node_set_state
612          *       will not set it back.
613          */
614         node_clear_state(0, N_NORMAL_MEMORY);
615
616         free_area_init_nodes(max_zone_pfns);
617 }
618
619 /*
620  * Memory hotplug specific functions
621  */
622 #ifdef CONFIG_MEMORY_HOTPLUG
623 /*
624  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
625  * updating.
626  */
627 static void  update_end_of_memory_vars(u64 start, u64 size)
628 {
629         unsigned long end_pfn = PFN_UP(start + size);
630
631         if (end_pfn > max_pfn) {
632                 max_pfn = end_pfn;
633                 max_low_pfn = end_pfn;
634                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
635         }
636 }
637
638 /*
639  * Memory is added always to NORMAL zone. This means you will never get
640  * additional DMA/DMA32 memory.
641  */
642 int arch_add_memory(int nid, u64 start, u64 size)
643 {
644         struct pglist_data *pgdat = NODE_DATA(nid);
645         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
646         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
647         unsigned long nr_pages = size >> PAGE_SHIFT;
648         int ret;
649
650         last_mapped_pfn = init_memory_mapping(start, start + size);
651         if (last_mapped_pfn > max_pfn_mapped)
652                 max_pfn_mapped = last_mapped_pfn;
653
654         ret = __add_pages(nid, zone, start_pfn, nr_pages);
655         WARN_ON_ONCE(ret);
656
657         /* update max_pfn, max_low_pfn and high_memory */
658         update_end_of_memory_vars(start, size);
659
660         return ret;
661 }
662 EXPORT_SYMBOL_GPL(arch_add_memory);
663
664 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
665 int memory_add_physaddr_to_nid(u64 start)
666 {
667         return 0;
668 }
669 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
670 #endif
671
672 #endif /* CONFIG_MEMORY_HOTPLUG */
673
674 static struct kcore_list kcore_vsyscall;
675
676 void __init mem_init(void)
677 {
678         long codesize, reservedpages, datasize, initsize;
679         unsigned long absent_pages;
680
681         pci_iommu_alloc();
682
683         /* clear_bss() already clear the empty_zero_page */
684
685         reservedpages = 0;
686
687         /* this will put all low memory onto the freelists */
688 #ifdef CONFIG_NUMA
689         totalram_pages = numa_free_all_bootmem();
690 #else
691         totalram_pages = free_all_bootmem();
692 #endif
693
694         absent_pages = absent_pages_in_range(0, max_pfn);
695         reservedpages = max_pfn - totalram_pages - absent_pages;
696         after_bootmem = 1;
697
698         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
699         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
700         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
701
702         /* Register memory areas for /proc/kcore */
703         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
704                          VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
705
706         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
707                          "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
708                 nr_free_pages() << (PAGE_SHIFT-10),
709                 max_pfn << (PAGE_SHIFT-10),
710                 codesize >> 10,
711                 absent_pages << (PAGE_SHIFT-10),
712                 reservedpages << (PAGE_SHIFT-10),
713                 datasize >> 10,
714                 initsize >> 10);
715 }
716
717 #ifdef CONFIG_DEBUG_RODATA
718 const int rodata_test_data = 0xC3;
719 EXPORT_SYMBOL_GPL(rodata_test_data);
720
721 int kernel_set_to_readonly;
722
723 void set_kernel_text_rw(void)
724 {
725         unsigned long start = PFN_ALIGN(_text);
726         unsigned long end = PFN_ALIGN(__stop___ex_table);
727
728         if (!kernel_set_to_readonly)
729                 return;
730
731         pr_debug("Set kernel text: %lx - %lx for read write\n",
732                  start, end);
733
734         /*
735          * Make the kernel identity mapping for text RW. Kernel text
736          * mapping will always be RO. Refer to the comment in
737          * static_protections() in pageattr.c
738          */
739         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
740 }
741
742 void set_kernel_text_ro(void)
743 {
744         unsigned long start = PFN_ALIGN(_text);
745         unsigned long end = PFN_ALIGN(__stop___ex_table);
746
747         if (!kernel_set_to_readonly)
748                 return;
749
750         pr_debug("Set kernel text: %lx - %lx for read only\n",
751                  start, end);
752
753         /*
754          * Set the kernel identity mapping for text RO.
755          */
756         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
757 }
758
759 void mark_rodata_ro(void)
760 {
761         unsigned long start = PFN_ALIGN(_text);
762         unsigned long rodata_start =
763                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
764         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
765         unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
766         unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
767         unsigned long data_start = (unsigned long) &_sdata;
768
769         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
770                (end - start) >> 10);
771         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
772
773         kernel_set_to_readonly = 1;
774
775         /*
776          * The rodata section (but not the kernel text!) should also be
777          * not-executable.
778          */
779         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
780
781         rodata_test();
782
783 #ifdef CONFIG_CPA_DEBUG
784         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
785         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
786
787         printk(KERN_INFO "Testing CPA: again\n");
788         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
789 #endif
790
791         free_init_pages("unused kernel memory",
792                         (unsigned long) page_address(virt_to_page(text_end)),
793                         (unsigned long)
794                                  page_address(virt_to_page(rodata_start)));
795         free_init_pages("unused kernel memory",
796                         (unsigned long) page_address(virt_to_page(rodata_end)),
797                         (unsigned long) page_address(virt_to_page(data_start)));
798 }
799
800 #endif
801
802 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
803                                    int flags)
804 {
805 #ifdef CONFIG_NUMA
806         int nid, next_nid;
807         int ret;
808 #endif
809         unsigned long pfn = phys >> PAGE_SHIFT;
810
811         if (pfn >= max_pfn) {
812                 /*
813                  * This can happen with kdump kernels when accessing
814                  * firmware tables:
815                  */
816                 if (pfn < max_pfn_mapped)
817                         return -EFAULT;
818
819                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
820                                 phys, len);
821                 return -EFAULT;
822         }
823
824         /* Should check here against the e820 map to avoid double free */
825 #ifdef CONFIG_NUMA
826         nid = phys_to_nid(phys);
827         next_nid = phys_to_nid(phys + len - 1);
828         if (nid == next_nid)
829                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
830         else
831                 ret = reserve_bootmem(phys, len, flags);
832
833         if (ret != 0)
834                 return ret;
835
836 #else
837         reserve_bootmem(phys, len, flags);
838 #endif
839
840         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
841                 dma_reserve += len / PAGE_SIZE;
842                 set_dma_reserve(dma_reserve);
843         }
844
845         return 0;
846 }
847
848 int kern_addr_valid(unsigned long addr)
849 {
850         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
851         pgd_t *pgd;
852         pud_t *pud;
853         pmd_t *pmd;
854         pte_t *pte;
855
856         if (above != 0 && above != -1UL)
857                 return 0;
858
859         pgd = pgd_offset_k(addr);
860         if (pgd_none(*pgd))
861                 return 0;
862
863         pud = pud_offset(pgd, addr);
864         if (pud_none(*pud))
865                 return 0;
866
867         pmd = pmd_offset(pud, addr);
868         if (pmd_none(*pmd))
869                 return 0;
870
871         if (pmd_large(*pmd))
872                 return pfn_valid(pmd_pfn(*pmd));
873
874         pte = pte_offset_kernel(pmd, addr);
875         if (pte_none(*pte))
876                 return 0;
877
878         return pfn_valid(pte_pfn(*pte));
879 }
880
881 /*
882  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
883  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
884  * not need special handling anymore:
885  */
886 static struct vm_area_struct gate_vma = {
887         .vm_start       = VSYSCALL_START,
888         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
889         .vm_page_prot   = PAGE_READONLY_EXEC,
890         .vm_flags       = VM_READ | VM_EXEC
891 };
892
893 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
894 {
895 #ifdef CONFIG_IA32_EMULATION
896         if (test_tsk_thread_flag(tsk, TIF_IA32))
897                 return NULL;
898 #endif
899         return &gate_vma;
900 }
901
902 int in_gate_area(struct task_struct *task, unsigned long addr)
903 {
904         struct vm_area_struct *vma = get_gate_vma(task);
905
906         if (!vma)
907                 return 0;
908
909         return (addr >= vma->vm_start) && (addr < vma->vm_end);
910 }
911
912 /*
913  * Use this when you have no reliable task/vma, typically from interrupt
914  * context. It is less reliable than using the task's vma and may give
915  * false positives:
916  */
917 int in_gate_area_no_task(unsigned long addr)
918 {
919         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
920 }
921
922 const char *arch_vma_name(struct vm_area_struct *vma)
923 {
924         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
925                 return "[vdso]";
926         if (vma == &gate_vma)
927                 return "[vsyscall]";
928         return NULL;
929 }
930
931 #ifdef CONFIG_SPARSEMEM_VMEMMAP
932 /*
933  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
934  */
935 static long __meminitdata addr_start, addr_end;
936 static void __meminitdata *p_start, *p_end;
937 static int __meminitdata node_start;
938
939 int __meminit
940 vmemmap_populate(struct page *start_page, unsigned long size, int node)
941 {
942         unsigned long addr = (unsigned long)start_page;
943         unsigned long end = (unsigned long)(start_page + size);
944         unsigned long next;
945         pgd_t *pgd;
946         pud_t *pud;
947         pmd_t *pmd;
948
949         for (; addr < end; addr = next) {
950                 void *p = NULL;
951
952                 pgd = vmemmap_pgd_populate(addr, node);
953                 if (!pgd)
954                         return -ENOMEM;
955
956                 pud = vmemmap_pud_populate(pgd, addr, node);
957                 if (!pud)
958                         return -ENOMEM;
959
960                 if (!cpu_has_pse) {
961                         next = (addr + PAGE_SIZE) & PAGE_MASK;
962                         pmd = vmemmap_pmd_populate(pud, addr, node);
963
964                         if (!pmd)
965                                 return -ENOMEM;
966
967                         p = vmemmap_pte_populate(pmd, addr, node);
968
969                         if (!p)
970                                 return -ENOMEM;
971
972                         addr_end = addr + PAGE_SIZE;
973                         p_end = p + PAGE_SIZE;
974                 } else {
975                         next = pmd_addr_end(addr, end);
976
977                         pmd = pmd_offset(pud, addr);
978                         if (pmd_none(*pmd)) {
979                                 pte_t entry;
980
981                                 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
982                                 if (!p)
983                                         return -ENOMEM;
984
985                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
986                                                 PAGE_KERNEL_LARGE);
987                                 set_pmd(pmd, __pmd(pte_val(entry)));
988
989                                 /* check to see if we have contiguous blocks */
990                                 if (p_end != p || node_start != node) {
991                                         if (p_start)
992                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
993                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
994                                         addr_start = addr;
995                                         node_start = node;
996                                         p_start = p;
997                                 }
998
999                                 addr_end = addr + PMD_SIZE;
1000                                 p_end = p + PMD_SIZE;
1001                         } else
1002                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1003                 }
1004
1005         }
1006         return 0;
1007 }
1008
1009 void __meminit vmemmap_populate_print_last(void)
1010 {
1011         if (p_start) {
1012                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1013                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1014                 p_start = NULL;
1015                 p_end = NULL;
1016                 node_start = 0;
1017         }
1018 }
1019 #endif