x86, efi: Set runtime_version to the EFI spec revision
[~shefty/rdma-dev.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/memblock.h>
38 #include <linux/spinlock.h>
39 #include <linux/uaccess.h>
40 #include <linux/time.h>
41 #include <linux/io.h>
42 #include <linux/reboot.h>
43 #include <linux/bcd.h>
44
45 #include <asm/setup.h>
46 #include <asm/efi.h>
47 #include <asm/time.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlbflush.h>
50 #include <asm/x86_init.h>
51
52 #define EFI_DEBUG       1
53
54 int efi_enabled;
55 EXPORT_SYMBOL(efi_enabled);
56
57 struct efi __read_mostly efi = {
58         .mps        = EFI_INVALID_TABLE_ADDR,
59         .acpi       = EFI_INVALID_TABLE_ADDR,
60         .acpi20     = EFI_INVALID_TABLE_ADDR,
61         .smbios     = EFI_INVALID_TABLE_ADDR,
62         .sal_systab = EFI_INVALID_TABLE_ADDR,
63         .boot_info  = EFI_INVALID_TABLE_ADDR,
64         .hcdp       = EFI_INVALID_TABLE_ADDR,
65         .uga        = EFI_INVALID_TABLE_ADDR,
66         .uv_systab  = EFI_INVALID_TABLE_ADDR,
67 };
68 EXPORT_SYMBOL(efi);
69
70 struct efi_memory_map memmap;
71
72 bool efi_64bit;
73
74 static struct efi efi_phys __initdata;
75 static efi_system_table_t efi_systab __initdata;
76
77 static inline bool efi_is_native(void)
78 {
79         return IS_ENABLED(CONFIG_X86_64) == efi_64bit;
80 }
81
82 static int __init setup_noefi(char *arg)
83 {
84         efi_enabled = 0;
85         return 0;
86 }
87 early_param("noefi", setup_noefi);
88
89 int add_efi_memmap;
90 EXPORT_SYMBOL(add_efi_memmap);
91
92 static int __init setup_add_efi_memmap(char *arg)
93 {
94         add_efi_memmap = 1;
95         return 0;
96 }
97 early_param("add_efi_memmap", setup_add_efi_memmap);
98
99
100 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
101 {
102         unsigned long flags;
103         efi_status_t status;
104
105         spin_lock_irqsave(&rtc_lock, flags);
106         status = efi_call_virt2(get_time, tm, tc);
107         spin_unlock_irqrestore(&rtc_lock, flags);
108         return status;
109 }
110
111 static efi_status_t virt_efi_set_time(efi_time_t *tm)
112 {
113         unsigned long flags;
114         efi_status_t status;
115
116         spin_lock_irqsave(&rtc_lock, flags);
117         status = efi_call_virt1(set_time, tm);
118         spin_unlock_irqrestore(&rtc_lock, flags);
119         return status;
120 }
121
122 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
123                                              efi_bool_t *pending,
124                                              efi_time_t *tm)
125 {
126         unsigned long flags;
127         efi_status_t status;
128
129         spin_lock_irqsave(&rtc_lock, flags);
130         status = efi_call_virt3(get_wakeup_time,
131                                 enabled, pending, tm);
132         spin_unlock_irqrestore(&rtc_lock, flags);
133         return status;
134 }
135
136 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
137 {
138         unsigned long flags;
139         efi_status_t status;
140
141         spin_lock_irqsave(&rtc_lock, flags);
142         status = efi_call_virt2(set_wakeup_time,
143                                 enabled, tm);
144         spin_unlock_irqrestore(&rtc_lock, flags);
145         return status;
146 }
147
148 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
149                                           efi_guid_t *vendor,
150                                           u32 *attr,
151                                           unsigned long *data_size,
152                                           void *data)
153 {
154         return efi_call_virt5(get_variable,
155                               name, vendor, attr,
156                               data_size, data);
157 }
158
159 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
160                                                efi_char16_t *name,
161                                                efi_guid_t *vendor)
162 {
163         return efi_call_virt3(get_next_variable,
164                               name_size, name, vendor);
165 }
166
167 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
168                                           efi_guid_t *vendor,
169                                           u32 attr,
170                                           unsigned long data_size,
171                                           void *data)
172 {
173         return efi_call_virt5(set_variable,
174                               name, vendor, attr,
175                               data_size, data);
176 }
177
178 static efi_status_t virt_efi_query_variable_info(u32 attr,
179                                                  u64 *storage_space,
180                                                  u64 *remaining_space,
181                                                  u64 *max_variable_size)
182 {
183         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
184                 return EFI_UNSUPPORTED;
185
186         return efi_call_virt4(query_variable_info, attr, storage_space,
187                               remaining_space, max_variable_size);
188 }
189
190 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
191 {
192         return efi_call_virt1(get_next_high_mono_count, count);
193 }
194
195 static void virt_efi_reset_system(int reset_type,
196                                   efi_status_t status,
197                                   unsigned long data_size,
198                                   efi_char16_t *data)
199 {
200         efi_call_virt4(reset_system, reset_type, status,
201                        data_size, data);
202 }
203
204 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
205                                             unsigned long count,
206                                             unsigned long sg_list)
207 {
208         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
209                 return EFI_UNSUPPORTED;
210
211         return efi_call_virt3(update_capsule, capsules, count, sg_list);
212 }
213
214 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
215                                                 unsigned long count,
216                                                 u64 *max_size,
217                                                 int *reset_type)
218 {
219         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
220                 return EFI_UNSUPPORTED;
221
222         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
223                               reset_type);
224 }
225
226 static efi_status_t __init phys_efi_set_virtual_address_map(
227         unsigned long memory_map_size,
228         unsigned long descriptor_size,
229         u32 descriptor_version,
230         efi_memory_desc_t *virtual_map)
231 {
232         efi_status_t status;
233
234         efi_call_phys_prelog();
235         status = efi_call_phys4(efi_phys.set_virtual_address_map,
236                                 memory_map_size, descriptor_size,
237                                 descriptor_version, virtual_map);
238         efi_call_phys_epilog();
239         return status;
240 }
241
242 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
243                                              efi_time_cap_t *tc)
244 {
245         unsigned long flags;
246         efi_status_t status;
247
248         spin_lock_irqsave(&rtc_lock, flags);
249         efi_call_phys_prelog();
250         status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
251                                 virt_to_phys(tc));
252         efi_call_phys_epilog();
253         spin_unlock_irqrestore(&rtc_lock, flags);
254         return status;
255 }
256
257 int efi_set_rtc_mmss(unsigned long nowtime)
258 {
259         int real_seconds, real_minutes;
260         efi_status_t    status;
261         efi_time_t      eft;
262         efi_time_cap_t  cap;
263
264         status = efi.get_time(&eft, &cap);
265         if (status != EFI_SUCCESS) {
266                 pr_err("Oops: efitime: can't read time!\n");
267                 return -1;
268         }
269
270         real_seconds = nowtime % 60;
271         real_minutes = nowtime / 60;
272         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
273                 real_minutes += 30;
274         real_minutes %= 60;
275         eft.minute = real_minutes;
276         eft.second = real_seconds;
277
278         status = efi.set_time(&eft);
279         if (status != EFI_SUCCESS) {
280                 pr_err("Oops: efitime: can't write time!\n");
281                 return -1;
282         }
283         return 0;
284 }
285
286 unsigned long efi_get_time(void)
287 {
288         efi_status_t status;
289         efi_time_t eft;
290         efi_time_cap_t cap;
291
292         status = efi.get_time(&eft, &cap);
293         if (status != EFI_SUCCESS)
294                 pr_err("Oops: efitime: can't read time!\n");
295
296         return mktime(eft.year, eft.month, eft.day, eft.hour,
297                       eft.minute, eft.second);
298 }
299
300 /*
301  * Tell the kernel about the EFI memory map.  This might include
302  * more than the max 128 entries that can fit in the e820 legacy
303  * (zeropage) memory map.
304  */
305
306 static void __init do_add_efi_memmap(void)
307 {
308         void *p;
309
310         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
311                 efi_memory_desc_t *md = p;
312                 unsigned long long start = md->phys_addr;
313                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
314                 int e820_type;
315
316                 switch (md->type) {
317                 case EFI_LOADER_CODE:
318                 case EFI_LOADER_DATA:
319                 case EFI_BOOT_SERVICES_CODE:
320                 case EFI_BOOT_SERVICES_DATA:
321                 case EFI_CONVENTIONAL_MEMORY:
322                         if (md->attribute & EFI_MEMORY_WB)
323                                 e820_type = E820_RAM;
324                         else
325                                 e820_type = E820_RESERVED;
326                         break;
327                 case EFI_ACPI_RECLAIM_MEMORY:
328                         e820_type = E820_ACPI;
329                         break;
330                 case EFI_ACPI_MEMORY_NVS:
331                         e820_type = E820_NVS;
332                         break;
333                 case EFI_UNUSABLE_MEMORY:
334                         e820_type = E820_UNUSABLE;
335                         break;
336                 default:
337                         /*
338                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
339                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
340                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
341                          */
342                         e820_type = E820_RESERVED;
343                         break;
344                 }
345                 e820_add_region(start, size, e820_type);
346         }
347         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
348 }
349
350 int __init efi_memblock_x86_reserve_range(void)
351 {
352         unsigned long pmap;
353
354 #ifdef CONFIG_X86_32
355         /* Can't handle data above 4GB at this time */
356         if (boot_params.efi_info.efi_memmap_hi) {
357                 pr_err("Memory map is above 4GB, disabling EFI.\n");
358                 return -EINVAL;
359         }
360         pmap = boot_params.efi_info.efi_memmap;
361 #else
362         pmap = (boot_params.efi_info.efi_memmap |
363                 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
364 #endif
365         memmap.phys_map = (void *)pmap;
366         memmap.nr_map = boot_params.efi_info.efi_memmap_size /
367                 boot_params.efi_info.efi_memdesc_size;
368         memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
369         memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
370         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
371
372         return 0;
373 }
374
375 #if EFI_DEBUG
376 static void __init print_efi_memmap(void)
377 {
378         efi_memory_desc_t *md;
379         void *p;
380         int i;
381
382         for (p = memmap.map, i = 0;
383              p < memmap.map_end;
384              p += memmap.desc_size, i++) {
385                 md = p;
386                 pr_info("mem%02u: type=%u, attr=0x%llx, "
387                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
388                         i, md->type, md->attribute, md->phys_addr,
389                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
390                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
391         }
392 }
393 #endif  /*  EFI_DEBUG  */
394
395 void __init efi_reserve_boot_services(void)
396 {
397         void *p;
398
399         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
400                 efi_memory_desc_t *md = p;
401                 u64 start = md->phys_addr;
402                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
403
404                 if (md->type != EFI_BOOT_SERVICES_CODE &&
405                     md->type != EFI_BOOT_SERVICES_DATA)
406                         continue;
407                 /* Only reserve where possible:
408                  * - Not within any already allocated areas
409                  * - Not over any memory area (really needed, if above?)
410                  * - Not within any part of the kernel
411                  * - Not the bios reserved area
412                 */
413                 if ((start+size >= virt_to_phys(_text)
414                                 && start <= virt_to_phys(_end)) ||
415                         !e820_all_mapped(start, start+size, E820_RAM) ||
416                         memblock_is_region_reserved(start, size)) {
417                         /* Could not reserve, skip it */
418                         md->num_pages = 0;
419                         memblock_dbg("Could not reserve boot range "
420                                         "[0x%010llx-0x%010llx]\n",
421                                                 start, start+size-1);
422                 } else
423                         memblock_reserve(start, size);
424         }
425 }
426
427 void __init efi_unmap_memmap(void)
428 {
429         if (memmap.map) {
430                 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
431                 memmap.map = NULL;
432         }
433 }
434
435 void __init efi_free_boot_services(void)
436 {
437         void *p;
438
439         if (!efi_is_native())
440                 return;
441
442         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
443                 efi_memory_desc_t *md = p;
444                 unsigned long long start = md->phys_addr;
445                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
446
447                 if (md->type != EFI_BOOT_SERVICES_CODE &&
448                     md->type != EFI_BOOT_SERVICES_DATA)
449                         continue;
450
451                 /* Could not reserve boot area */
452                 if (!size)
453                         continue;
454
455                 free_bootmem_late(start, size);
456         }
457
458         efi_unmap_memmap();
459 }
460
461 static int __init efi_systab_init(void *phys)
462 {
463         if (efi_64bit) {
464                 efi_system_table_64_t *systab64;
465                 u64 tmp = 0;
466
467                 systab64 = early_ioremap((unsigned long)phys,
468                                          sizeof(*systab64));
469                 if (systab64 == NULL) {
470                         pr_err("Couldn't map the system table!\n");
471                         return -ENOMEM;
472                 }
473
474                 efi_systab.hdr = systab64->hdr;
475                 efi_systab.fw_vendor = systab64->fw_vendor;
476                 tmp |= systab64->fw_vendor;
477                 efi_systab.fw_revision = systab64->fw_revision;
478                 efi_systab.con_in_handle = systab64->con_in_handle;
479                 tmp |= systab64->con_in_handle;
480                 efi_systab.con_in = systab64->con_in;
481                 tmp |= systab64->con_in;
482                 efi_systab.con_out_handle = systab64->con_out_handle;
483                 tmp |= systab64->con_out_handle;
484                 efi_systab.con_out = systab64->con_out;
485                 tmp |= systab64->con_out;
486                 efi_systab.stderr_handle = systab64->stderr_handle;
487                 tmp |= systab64->stderr_handle;
488                 efi_systab.stderr = systab64->stderr;
489                 tmp |= systab64->stderr;
490                 efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
491                 tmp |= systab64->runtime;
492                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
493                 tmp |= systab64->boottime;
494                 efi_systab.nr_tables = systab64->nr_tables;
495                 efi_systab.tables = systab64->tables;
496                 tmp |= systab64->tables;
497
498                 early_iounmap(systab64, sizeof(*systab64));
499 #ifdef CONFIG_X86_32
500                 if (tmp >> 32) {
501                         pr_err("EFI data located above 4GB, disabling EFI.\n");
502                         return -EINVAL;
503                 }
504 #endif
505         } else {
506                 efi_system_table_32_t *systab32;
507
508                 systab32 = early_ioremap((unsigned long)phys,
509                                          sizeof(*systab32));
510                 if (systab32 == NULL) {
511                         pr_err("Couldn't map the system table!\n");
512                         return -ENOMEM;
513                 }
514
515                 efi_systab.hdr = systab32->hdr;
516                 efi_systab.fw_vendor = systab32->fw_vendor;
517                 efi_systab.fw_revision = systab32->fw_revision;
518                 efi_systab.con_in_handle = systab32->con_in_handle;
519                 efi_systab.con_in = systab32->con_in;
520                 efi_systab.con_out_handle = systab32->con_out_handle;
521                 efi_systab.con_out = systab32->con_out;
522                 efi_systab.stderr_handle = systab32->stderr_handle;
523                 efi_systab.stderr = systab32->stderr;
524                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
525                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
526                 efi_systab.nr_tables = systab32->nr_tables;
527                 efi_systab.tables = systab32->tables;
528
529                 early_iounmap(systab32, sizeof(*systab32));
530         }
531
532         efi.systab = &efi_systab;
533
534         /*
535          * Verify the EFI Table
536          */
537         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
538                 pr_err("System table signature incorrect!\n");
539                 return -EINVAL;
540         }
541         if ((efi.systab->hdr.revision >> 16) == 0)
542                 pr_err("Warning: System table version "
543                        "%d.%02d, expected 1.00 or greater!\n",
544                        efi.systab->hdr.revision >> 16,
545                        efi.systab->hdr.revision & 0xffff);
546
547         return 0;
548 }
549
550 static int __init efi_config_init(u64 tables, int nr_tables)
551 {
552         void *config_tables, *tablep;
553         int i, sz;
554
555         if (efi_64bit)
556                 sz = sizeof(efi_config_table_64_t);
557         else
558                 sz = sizeof(efi_config_table_32_t);
559
560         /*
561          * Let's see what config tables the firmware passed to us.
562          */
563         config_tables = early_ioremap(tables, nr_tables * sz);
564         if (config_tables == NULL) {
565                 pr_err("Could not map Configuration table!\n");
566                 return -ENOMEM;
567         }
568
569         tablep = config_tables;
570         pr_info("");
571         for (i = 0; i < efi.systab->nr_tables; i++) {
572                 efi_guid_t guid;
573                 unsigned long table;
574
575                 if (efi_64bit) {
576                         u64 table64;
577                         guid = ((efi_config_table_64_t *)tablep)->guid;
578                         table64 = ((efi_config_table_64_t *)tablep)->table;
579                         table = table64;
580 #ifdef CONFIG_X86_32
581                         if (table64 >> 32) {
582                                 pr_cont("\n");
583                                 pr_err("Table located above 4GB, disabling EFI.\n");
584                                 early_iounmap(config_tables,
585                                               efi.systab->nr_tables * sz);
586                                 return -EINVAL;
587                         }
588 #endif
589                 } else {
590                         guid = ((efi_config_table_32_t *)tablep)->guid;
591                         table = ((efi_config_table_32_t *)tablep)->table;
592                 }
593                 if (!efi_guidcmp(guid, MPS_TABLE_GUID)) {
594                         efi.mps = table;
595                         pr_cont(" MPS=0x%lx ", table);
596                 } else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) {
597                         efi.acpi20 = table;
598                         pr_cont(" ACPI 2.0=0x%lx ", table);
599                 } else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) {
600                         efi.acpi = table;
601                         pr_cont(" ACPI=0x%lx ", table);
602                 } else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) {
603                         efi.smbios = table;
604                         pr_cont(" SMBIOS=0x%lx ", table);
605 #ifdef CONFIG_X86_UV
606                 } else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) {
607                         efi.uv_systab = table;
608                         pr_cont(" UVsystab=0x%lx ", table);
609 #endif
610                 } else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) {
611                         efi.hcdp = table;
612                         pr_cont(" HCDP=0x%lx ", table);
613                 } else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) {
614                         efi.uga = table;
615                         pr_cont(" UGA=0x%lx ", table);
616                 }
617                 tablep += sz;
618         }
619         pr_cont("\n");
620         early_iounmap(config_tables, efi.systab->nr_tables * sz);
621         return 0;
622 }
623
624 static int __init efi_runtime_init(void)
625 {
626         efi_runtime_services_t *runtime;
627
628         /*
629          * Check out the runtime services table. We need to map
630          * the runtime services table so that we can grab the physical
631          * address of several of the EFI runtime functions, needed to
632          * set the firmware into virtual mode.
633          */
634         runtime = early_ioremap((unsigned long)efi.systab->runtime,
635                                 sizeof(efi_runtime_services_t));
636         if (!runtime) {
637                 pr_err("Could not map the runtime service table!\n");
638                 return -ENOMEM;
639         }
640         /*
641          * We will only need *early* access to the following
642          * two EFI runtime services before set_virtual_address_map
643          * is invoked.
644          */
645         efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
646         efi_phys.set_virtual_address_map =
647                 (efi_set_virtual_address_map_t *)
648                 runtime->set_virtual_address_map;
649         /*
650          * Make efi_get_time can be called before entering
651          * virtual mode.
652          */
653         efi.get_time = phys_efi_get_time;
654         early_iounmap(runtime, sizeof(efi_runtime_services_t));
655
656         return 0;
657 }
658
659 static int __init efi_memmap_init(void)
660 {
661         /* Map the EFI memory map */
662         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
663                                    memmap.nr_map * memmap.desc_size);
664         if (memmap.map == NULL) {
665                 pr_err("Could not map the memory map!\n");
666                 return -ENOMEM;
667         }
668         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
669
670         if (add_efi_memmap)
671                 do_add_efi_memmap();
672
673         return 0;
674 }
675
676 void __init efi_init(void)
677 {
678         efi_char16_t *c16;
679         char vendor[100] = "unknown";
680         int i = 0;
681         void *tmp;
682
683 #ifdef CONFIG_X86_32
684         if (boot_params.efi_info.efi_systab_hi ||
685             boot_params.efi_info.efi_memmap_hi) {
686                 pr_info("Table located above 4GB, disabling EFI.\n");
687                 efi_enabled = 0;
688                 return;
689         }
690         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
691 #else
692         efi_phys.systab = (efi_system_table_t *)
693                           (boot_params.efi_info.efi_systab |
694                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
695 #endif
696
697         if (efi_systab_init(efi_phys.systab)) {
698                 efi_enabled = 0;
699                 return;
700         }
701
702         /*
703          * Show what we know for posterity
704          */
705         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
706         if (c16) {
707                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
708                         vendor[i] = *c16++;
709                 vendor[i] = '\0';
710         } else
711                 pr_err("Could not map the firmware vendor!\n");
712         early_iounmap(tmp, 2);
713
714         pr_info("EFI v%u.%.02u by %s\n",
715                 efi.systab->hdr.revision >> 16,
716                 efi.systab->hdr.revision & 0xffff, vendor);
717
718         if (efi_config_init(efi.systab->tables, efi.systab->nr_tables)) {
719                 efi_enabled = 0;
720                 return;
721         }
722
723         /*
724          * Note: We currently don't support runtime services on an EFI
725          * that doesn't match the kernel 32/64-bit mode.
726          */
727
728         if (!efi_is_native())
729                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
730         else if (efi_runtime_init()) {
731                 efi_enabled = 0;
732                 return;
733         }
734
735         if (efi_memmap_init()) {
736                 efi_enabled = 0;
737                 return;
738         }
739 #ifdef CONFIG_X86_32
740         if (efi_is_native()) {
741                 x86_platform.get_wallclock = efi_get_time;
742                 x86_platform.set_wallclock = efi_set_rtc_mmss;
743         }
744 #endif
745
746 #if EFI_DEBUG
747         print_efi_memmap();
748 #endif
749 }
750
751 void __init efi_late_init(void)
752 {
753         efi_bgrt_init();
754 }
755
756 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
757 {
758         u64 addr, npages;
759
760         addr = md->virt_addr;
761         npages = md->num_pages;
762
763         memrange_efi_to_native(&addr, &npages);
764
765         if (executable)
766                 set_memory_x(addr, npages);
767         else
768                 set_memory_nx(addr, npages);
769 }
770
771 static void __init runtime_code_page_mkexec(void)
772 {
773         efi_memory_desc_t *md;
774         void *p;
775
776         /* Make EFI runtime service code area executable */
777         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
778                 md = p;
779
780                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
781                         continue;
782
783                 efi_set_executable(md, true);
784         }
785 }
786
787 /*
788  * We can't ioremap data in EFI boot services RAM, because we've already mapped
789  * it as RAM.  So, look it up in the existing EFI memory map instead.  Only
790  * callable after efi_enter_virtual_mode and before efi_free_boot_services.
791  */
792 void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
793 {
794         void *p;
795         if (WARN_ON(!memmap.map))
796                 return NULL;
797         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
798                 efi_memory_desc_t *md = p;
799                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
800                 u64 end = md->phys_addr + size;
801                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
802                     md->type != EFI_BOOT_SERVICES_CODE &&
803                     md->type != EFI_BOOT_SERVICES_DATA)
804                         continue;
805                 if (!md->virt_addr)
806                         continue;
807                 if (phys_addr >= md->phys_addr && phys_addr < end) {
808                         phys_addr += md->virt_addr - md->phys_addr;
809                         return (__force void __iomem *)(unsigned long)phys_addr;
810                 }
811         }
812         return NULL;
813 }
814
815 void efi_memory_uc(u64 addr, unsigned long size)
816 {
817         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
818         u64 npages;
819
820         npages = round_up(size, page_shift) / page_shift;
821         memrange_efi_to_native(&addr, &npages);
822         set_memory_uc(addr, npages);
823 }
824
825 /*
826  * This function will switch the EFI runtime services to virtual mode.
827  * Essentially, look through the EFI memmap and map every region that
828  * has the runtime attribute bit set in its memory descriptor and update
829  * that memory descriptor with the virtual address obtained from ioremap().
830  * This enables the runtime services to be called without having to
831  * thunk back into physical mode for every invocation.
832  */
833 void __init efi_enter_virtual_mode(void)
834 {
835         efi_memory_desc_t *md, *prev_md = NULL;
836         efi_status_t status;
837         unsigned long size;
838         u64 end, systab, end_pfn;
839         void *p, *va, *new_memmap = NULL;
840         int count = 0;
841
842         efi.systab = NULL;
843
844         /*
845          * We don't do virtual mode, since we don't do runtime services, on
846          * non-native EFI
847          */
848
849         if (!efi_is_native()) {
850                 efi_unmap_memmap();
851                 return;
852         }
853
854         /* Merge contiguous regions of the same type and attribute */
855         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
856                 u64 prev_size;
857                 md = p;
858
859                 if (!prev_md) {
860                         prev_md = md;
861                         continue;
862                 }
863
864                 if (prev_md->type != md->type ||
865                     prev_md->attribute != md->attribute) {
866                         prev_md = md;
867                         continue;
868                 }
869
870                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
871
872                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
873                         prev_md->num_pages += md->num_pages;
874                         md->type = EFI_RESERVED_TYPE;
875                         md->attribute = 0;
876                         continue;
877                 }
878                 prev_md = md;
879         }
880
881         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
882                 md = p;
883                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
884                     md->type != EFI_BOOT_SERVICES_CODE &&
885                     md->type != EFI_BOOT_SERVICES_DATA)
886                         continue;
887
888                 size = md->num_pages << EFI_PAGE_SHIFT;
889                 end = md->phys_addr + size;
890
891                 end_pfn = PFN_UP(end);
892                 if (end_pfn <= max_low_pfn_mapped
893                     || (end_pfn > (1UL << (32 - PAGE_SHIFT))
894                         && end_pfn <= max_pfn_mapped)) {
895                         va = __va(md->phys_addr);
896
897                         if (!(md->attribute & EFI_MEMORY_WB))
898                                 efi_memory_uc((u64)(unsigned long)va, size);
899                 } else
900                         va = efi_ioremap(md->phys_addr, size,
901                                          md->type, md->attribute);
902
903                 md->virt_addr = (u64) (unsigned long) va;
904
905                 if (!va) {
906                         pr_err("ioremap of 0x%llX failed!\n",
907                                (unsigned long long)md->phys_addr);
908                         continue;
909                 }
910
911                 systab = (u64) (unsigned long) efi_phys.systab;
912                 if (md->phys_addr <= systab && systab < end) {
913                         systab += md->virt_addr - md->phys_addr;
914                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
915                 }
916                 new_memmap = krealloc(new_memmap,
917                                       (count + 1) * memmap.desc_size,
918                                       GFP_KERNEL);
919                 memcpy(new_memmap + (count * memmap.desc_size), md,
920                        memmap.desc_size);
921                 count++;
922         }
923
924         BUG_ON(!efi.systab);
925
926         status = phys_efi_set_virtual_address_map(
927                 memmap.desc_size * count,
928                 memmap.desc_size,
929                 memmap.desc_version,
930                 (efi_memory_desc_t *)__pa(new_memmap));
931
932         if (status != EFI_SUCCESS) {
933                 pr_alert("Unable to switch EFI into virtual mode "
934                          "(status=%lx)!\n", status);
935                 panic("EFI call to SetVirtualAddressMap() failed!");
936         }
937
938         /*
939          * Now that EFI is in virtual mode, update the function
940          * pointers in the runtime service table to the new virtual addresses.
941          *
942          * Call EFI services through wrapper functions.
943          */
944         efi.runtime_version = efi_systab.hdr.revision;
945         efi.get_time = virt_efi_get_time;
946         efi.set_time = virt_efi_set_time;
947         efi.get_wakeup_time = virt_efi_get_wakeup_time;
948         efi.set_wakeup_time = virt_efi_set_wakeup_time;
949         efi.get_variable = virt_efi_get_variable;
950         efi.get_next_variable = virt_efi_get_next_variable;
951         efi.set_variable = virt_efi_set_variable;
952         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
953         efi.reset_system = virt_efi_reset_system;
954         efi.set_virtual_address_map = NULL;
955         efi.query_variable_info = virt_efi_query_variable_info;
956         efi.update_capsule = virt_efi_update_capsule;
957         efi.query_capsule_caps = virt_efi_query_capsule_caps;
958         if (__supported_pte_mask & _PAGE_NX)
959                 runtime_code_page_mkexec();
960
961         kfree(new_memmap);
962 }
963
964 /*
965  * Convenience functions to obtain memory types and attributes
966  */
967 u32 efi_mem_type(unsigned long phys_addr)
968 {
969         efi_memory_desc_t *md;
970         void *p;
971
972         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
973                 md = p;
974                 if ((md->phys_addr <= phys_addr) &&
975                     (phys_addr < (md->phys_addr +
976                                   (md->num_pages << EFI_PAGE_SHIFT))))
977                         return md->type;
978         }
979         return 0;
980 }
981
982 u64 efi_mem_attributes(unsigned long phys_addr)
983 {
984         efi_memory_desc_t *md;
985         void *p;
986
987         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
988                 md = p;
989                 if ((md->phys_addr <= phys_addr) &&
990                     (phys_addr < (md->phys_addr +
991                                   (md->num_pages << EFI_PAGE_SHIFT))))
992                         return md->attribute;
993         }
994         return 0;
995 }