]> git.openfabrics.org - ~shefty/rdma-dev.git/blob - drivers/block/cciss.c
6526157edafc151e2761adf740a6404a6c046f26
[~shefty/rdma-dev.git] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <linux/bitmap.h>
45 #include <linux/io.h>
46 #include <asm/uaccess.h>
47
48 #include <linux/dma-mapping.h>
49 #include <linux/blkdev.h>
50 #include <linux/genhd.h>
51 #include <linux/completion.h>
52 #include <scsi/scsi.h>
53 #include <scsi/sg.h>
54 #include <scsi/scsi_ioctl.h>
55 #include <linux/cdrom.h>
56 #include <linux/scatterlist.h>
57 #include <linux/kthread.h>
58
59 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
60 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
61 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62
63 /* Embedded module documentation macros - see modules.h */
64 MODULE_AUTHOR("Hewlett-Packard Company");
65 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
66 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
67 MODULE_VERSION("3.6.26");
68 MODULE_LICENSE("GPL");
69 static int cciss_tape_cmds = 6;
70 module_param(cciss_tape_cmds, int, 0644);
71 MODULE_PARM_DESC(cciss_tape_cmds,
72         "number of commands to allocate for tape devices (default: 6)");
73 static int cciss_simple_mode;
74 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(cciss_simple_mode,
76         "Use 'simple mode' rather than 'performant mode'");
77
78 static DEFINE_MUTEX(cciss_mutex);
79 static struct proc_dir_entry *proc_cciss;
80
81 #include "cciss_cmd.h"
82 #include "cciss.h"
83 #include <linux/cciss_ioctl.h>
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id cciss_pci_device_id[] = {
87         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
88         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
89         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
90         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
91         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
92         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
93         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
94         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
95         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
107         {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
111
112 /*  board_id = Subsystem Device ID & Vendor ID
113  *  product = Marketing Name for the board
114  *  access = Address of the struct of function pointers
115  */
116 static struct board_type products[] = {
117         {0x40700E11, "Smart Array 5300", &SA5_access},
118         {0x40800E11, "Smart Array 5i", &SA5B_access},
119         {0x40820E11, "Smart Array 532", &SA5B_access},
120         {0x40830E11, "Smart Array 5312", &SA5B_access},
121         {0x409A0E11, "Smart Array 641", &SA5_access},
122         {0x409B0E11, "Smart Array 642", &SA5_access},
123         {0x409C0E11, "Smart Array 6400", &SA5_access},
124         {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
125         {0x40910E11, "Smart Array 6i", &SA5_access},
126         {0x3225103C, "Smart Array P600", &SA5_access},
127         {0x3223103C, "Smart Array P800", &SA5_access},
128         {0x3234103C, "Smart Array P400", &SA5_access},
129         {0x3235103C, "Smart Array P400i", &SA5_access},
130         {0x3211103C, "Smart Array E200i", &SA5_access},
131         {0x3212103C, "Smart Array E200", &SA5_access},
132         {0x3213103C, "Smart Array E200i", &SA5_access},
133         {0x3214103C, "Smart Array E200i", &SA5_access},
134         {0x3215103C, "Smart Array E200i", &SA5_access},
135         {0x3237103C, "Smart Array E500", &SA5_access},
136         {0x3223103C, "Smart Array P800", &SA5_access},
137         {0x3234103C, "Smart Array P400", &SA5_access},
138         {0x323D103C, "Smart Array P700m", &SA5_access},
139 };
140
141 /* How long to wait (in milliseconds) for board to go into simple mode */
142 #define MAX_CONFIG_WAIT 30000
143 #define MAX_IOCTL_CONFIG_WAIT 1000
144
145 /*define how many times we will try a command because of bus resets */
146 #define MAX_CMD_RETRIES 3
147
148 #define MAX_CTLR        32
149
150 /* Originally cciss driver only supports 8 major numbers */
151 #define MAX_CTLR_ORIG   8
152
153 static ctlr_info_t *hba[MAX_CTLR];
154
155 static struct task_struct *cciss_scan_thread;
156 static DEFINE_MUTEX(scan_mutex);
157 static LIST_HEAD(scan_q);
158
159 static void do_cciss_request(struct request_queue *q);
160 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
161 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
162 static int cciss_open(struct block_device *bdev, fmode_t mode);
163 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
164 static int cciss_release(struct gendisk *disk, fmode_t mode);
165 static int do_ioctl(struct block_device *bdev, fmode_t mode,
166                     unsigned int cmd, unsigned long arg);
167 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
168                        unsigned int cmd, unsigned long arg);
169 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
170
171 static int cciss_revalidate(struct gendisk *disk);
172 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
173 static int deregister_disk(ctlr_info_t *h, int drv_index,
174                            int clear_all, int via_ioctl);
175
176 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
177                         sector_t *total_size, unsigned int *block_size);
178 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
179                         sector_t *total_size, unsigned int *block_size);
180 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
181                         sector_t total_size,
182                         unsigned int block_size, InquiryData_struct *inq_buff,
183                                    drive_info_struct *drv);
184 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
185 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h);
186 static void start_io(ctlr_info_t *h);
187 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
188                         __u8 page_code, unsigned char scsi3addr[],
189                         int cmd_type);
190 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
191         int attempt_retry);
192 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
193
194 static int add_to_scan_list(struct ctlr_info *h);
195 static int scan_thread(void *data);
196 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
197 static void cciss_hba_release(struct device *dev);
198 static void cciss_device_release(struct device *dev);
199 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
200 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
201 static inline u32 next_command(ctlr_info_t *h);
202 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
203         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
204         u64 *cfg_offset);
205 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
206         unsigned long *memory_bar);
207 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
208 static __devinit int write_driver_ver_to_cfgtable(
209         CfgTable_struct __iomem *cfgtable);
210
211 /* performant mode helper functions */
212 static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
213                                 int *bucket_map);
214 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
215
216 #ifdef CONFIG_PROC_FS
217 static void cciss_procinit(ctlr_info_t *h);
218 #else
219 static void cciss_procinit(ctlr_info_t *h)
220 {
221 }
222 #endif                          /* CONFIG_PROC_FS */
223
224 #ifdef CONFIG_COMPAT
225 static int cciss_compat_ioctl(struct block_device *, fmode_t,
226                               unsigned, unsigned long);
227 #endif
228
229 static const struct block_device_operations cciss_fops = {
230         .owner = THIS_MODULE,
231         .open = cciss_unlocked_open,
232         .release = cciss_release,
233         .ioctl = do_ioctl,
234         .getgeo = cciss_getgeo,
235 #ifdef CONFIG_COMPAT
236         .compat_ioctl = cciss_compat_ioctl,
237 #endif
238         .revalidate_disk = cciss_revalidate,
239 };
240
241 /* set_performant_mode: Modify the tag for cciss performant
242  * set bit 0 for pull model, bits 3-1 for block fetch
243  * register number
244  */
245 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
246 {
247         if (likely(h->transMethod & CFGTBL_Trans_Performant))
248                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
249 }
250
251 /*
252  * Enqueuing and dequeuing functions for cmdlists.
253  */
254 static inline void addQ(struct list_head *list, CommandList_struct *c)
255 {
256         list_add_tail(&c->list, list);
257 }
258
259 static inline void removeQ(CommandList_struct *c)
260 {
261         /*
262          * After kexec/dump some commands might still
263          * be in flight, which the firmware will try
264          * to complete. Resetting the firmware doesn't work
265          * with old fw revisions, so we have to mark
266          * them off as 'stale' to prevent the driver from
267          * falling over.
268          */
269         if (WARN_ON(list_empty(&c->list))) {
270                 c->cmd_type = CMD_MSG_STALE;
271                 return;
272         }
273
274         list_del_init(&c->list);
275 }
276
277 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
278         CommandList_struct *c)
279 {
280         unsigned long flags;
281         set_performant_mode(h, c);
282         spin_lock_irqsave(&h->lock, flags);
283         addQ(&h->reqQ, c);
284         h->Qdepth++;
285         if (h->Qdepth > h->maxQsinceinit)
286                 h->maxQsinceinit = h->Qdepth;
287         start_io(h);
288         spin_unlock_irqrestore(&h->lock, flags);
289 }
290
291 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
292         int nr_cmds)
293 {
294         int i;
295
296         if (!cmd_sg_list)
297                 return;
298         for (i = 0; i < nr_cmds; i++) {
299                 kfree(cmd_sg_list[i]);
300                 cmd_sg_list[i] = NULL;
301         }
302         kfree(cmd_sg_list);
303 }
304
305 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
306         ctlr_info_t *h, int chainsize, int nr_cmds)
307 {
308         int j;
309         SGDescriptor_struct **cmd_sg_list;
310
311         if (chainsize <= 0)
312                 return NULL;
313
314         cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
315         if (!cmd_sg_list)
316                 return NULL;
317
318         /* Build up chain blocks for each command */
319         for (j = 0; j < nr_cmds; j++) {
320                 /* Need a block of chainsized s/g elements. */
321                 cmd_sg_list[j] = kmalloc((chainsize *
322                         sizeof(*cmd_sg_list[j])), GFP_KERNEL);
323                 if (!cmd_sg_list[j]) {
324                         dev_err(&h->pdev->dev, "Cannot get memory "
325                                 "for s/g chains.\n");
326                         goto clean;
327                 }
328         }
329         return cmd_sg_list;
330 clean:
331         cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
332         return NULL;
333 }
334
335 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
336 {
337         SGDescriptor_struct *chain_sg;
338         u64bit temp64;
339
340         if (c->Header.SGTotal <= h->max_cmd_sgentries)
341                 return;
342
343         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
344         temp64.val32.lower = chain_sg->Addr.lower;
345         temp64.val32.upper = chain_sg->Addr.upper;
346         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
347 }
348
349 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
350         SGDescriptor_struct *chain_block, int len)
351 {
352         SGDescriptor_struct *chain_sg;
353         u64bit temp64;
354
355         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
356         chain_sg->Ext = CCISS_SG_CHAIN;
357         chain_sg->Len = len;
358         temp64.val = pci_map_single(h->pdev, chain_block, len,
359                                 PCI_DMA_TODEVICE);
360         chain_sg->Addr.lower = temp64.val32.lower;
361         chain_sg->Addr.upper = temp64.val32.upper;
362 }
363
364 #include "cciss_scsi.c"         /* For SCSI tape support */
365
366 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
367         "UNKNOWN"
368 };
369 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
370
371 #ifdef CONFIG_PROC_FS
372
373 /*
374  * Report information about this controller.
375  */
376 #define ENG_GIG 1000000000
377 #define ENG_GIG_FACTOR (ENG_GIG/512)
378 #define ENGAGE_SCSI     "engage scsi"
379
380 static void cciss_seq_show_header(struct seq_file *seq)
381 {
382         ctlr_info_t *h = seq->private;
383
384         seq_printf(seq, "%s: HP %s Controller\n"
385                 "Board ID: 0x%08lx\n"
386                 "Firmware Version: %c%c%c%c\n"
387                 "IRQ: %d\n"
388                 "Logical drives: %d\n"
389                 "Current Q depth: %d\n"
390                 "Current # commands on controller: %d\n"
391                 "Max Q depth since init: %d\n"
392                 "Max # commands on controller since init: %d\n"
393                 "Max SG entries since init: %d\n",
394                 h->devname,
395                 h->product_name,
396                 (unsigned long)h->board_id,
397                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
398                 h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
399                 h->num_luns,
400                 h->Qdepth, h->commands_outstanding,
401                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
402
403 #ifdef CONFIG_CISS_SCSI_TAPE
404         cciss_seq_tape_report(seq, h);
405 #endif /* CONFIG_CISS_SCSI_TAPE */
406 }
407
408 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
409 {
410         ctlr_info_t *h = seq->private;
411         unsigned long flags;
412
413         /* prevent displaying bogus info during configuration
414          * or deconfiguration of a logical volume
415          */
416         spin_lock_irqsave(&h->lock, flags);
417         if (h->busy_configuring) {
418                 spin_unlock_irqrestore(&h->lock, flags);
419                 return ERR_PTR(-EBUSY);
420         }
421         h->busy_configuring = 1;
422         spin_unlock_irqrestore(&h->lock, flags);
423
424         if (*pos == 0)
425                 cciss_seq_show_header(seq);
426
427         return pos;
428 }
429
430 static int cciss_seq_show(struct seq_file *seq, void *v)
431 {
432         sector_t vol_sz, vol_sz_frac;
433         ctlr_info_t *h = seq->private;
434         unsigned ctlr = h->ctlr;
435         loff_t *pos = v;
436         drive_info_struct *drv = h->drv[*pos];
437
438         if (*pos > h->highest_lun)
439                 return 0;
440
441         if (drv == NULL) /* it's possible for h->drv[] to have holes. */
442                 return 0;
443
444         if (drv->heads == 0)
445                 return 0;
446
447         vol_sz = drv->nr_blocks;
448         vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
449         vol_sz_frac *= 100;
450         sector_div(vol_sz_frac, ENG_GIG_FACTOR);
451
452         if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
453                 drv->raid_level = RAID_UNKNOWN;
454         seq_printf(seq, "cciss/c%dd%d:"
455                         "\t%4u.%02uGB\tRAID %s\n",
456                         ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
457                         raid_label[drv->raid_level]);
458         return 0;
459 }
460
461 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
462 {
463         ctlr_info_t *h = seq->private;
464
465         if (*pos > h->highest_lun)
466                 return NULL;
467         *pos += 1;
468
469         return pos;
470 }
471
472 static void cciss_seq_stop(struct seq_file *seq, void *v)
473 {
474         ctlr_info_t *h = seq->private;
475
476         /* Only reset h->busy_configuring if we succeeded in setting
477          * it during cciss_seq_start. */
478         if (v == ERR_PTR(-EBUSY))
479                 return;
480
481         h->busy_configuring = 0;
482 }
483
484 static const struct seq_operations cciss_seq_ops = {
485         .start = cciss_seq_start,
486         .show  = cciss_seq_show,
487         .next  = cciss_seq_next,
488         .stop  = cciss_seq_stop,
489 };
490
491 static int cciss_seq_open(struct inode *inode, struct file *file)
492 {
493         int ret = seq_open(file, &cciss_seq_ops);
494         struct seq_file *seq = file->private_data;
495
496         if (!ret)
497                 seq->private = PDE(inode)->data;
498
499         return ret;
500 }
501
502 static ssize_t
503 cciss_proc_write(struct file *file, const char __user *buf,
504                  size_t length, loff_t *ppos)
505 {
506         int err;
507         char *buffer;
508
509 #ifndef CONFIG_CISS_SCSI_TAPE
510         return -EINVAL;
511 #endif
512
513         if (!buf || length > PAGE_SIZE - 1)
514                 return -EINVAL;
515
516         buffer = (char *)__get_free_page(GFP_KERNEL);
517         if (!buffer)
518                 return -ENOMEM;
519
520         err = -EFAULT;
521         if (copy_from_user(buffer, buf, length))
522                 goto out;
523         buffer[length] = '\0';
524
525 #ifdef CONFIG_CISS_SCSI_TAPE
526         if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
527                 struct seq_file *seq = file->private_data;
528                 ctlr_info_t *h = seq->private;
529
530                 err = cciss_engage_scsi(h);
531                 if (err == 0)
532                         err = length;
533         } else
534 #endif /* CONFIG_CISS_SCSI_TAPE */
535                 err = -EINVAL;
536         /* might be nice to have "disengage" too, but it's not
537            safely possible. (only 1 module use count, lock issues.) */
538
539 out:
540         free_page((unsigned long)buffer);
541         return err;
542 }
543
544 static const struct file_operations cciss_proc_fops = {
545         .owner   = THIS_MODULE,
546         .open    = cciss_seq_open,
547         .read    = seq_read,
548         .llseek  = seq_lseek,
549         .release = seq_release,
550         .write   = cciss_proc_write,
551 };
552
553 static void __devinit cciss_procinit(ctlr_info_t *h)
554 {
555         struct proc_dir_entry *pde;
556
557         if (proc_cciss == NULL)
558                 proc_cciss = proc_mkdir("driver/cciss", NULL);
559         if (!proc_cciss)
560                 return;
561         pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
562                                         S_IROTH, proc_cciss,
563                                         &cciss_proc_fops, h);
564 }
565 #endif                          /* CONFIG_PROC_FS */
566
567 #define MAX_PRODUCT_NAME_LEN 19
568
569 #define to_hba(n) container_of(n, struct ctlr_info, dev)
570 #define to_drv(n) container_of(n, drive_info_struct, dev)
571
572 /* List of controllers which cannot be hard reset on kexec with reset_devices */
573 static u32 unresettable_controller[] = {
574         0x324a103C, /* Smart Array P712m */
575         0x324b103C, /* SmartArray P711m */
576         0x3223103C, /* Smart Array P800 */
577         0x3234103C, /* Smart Array P400 */
578         0x3235103C, /* Smart Array P400i */
579         0x3211103C, /* Smart Array E200i */
580         0x3212103C, /* Smart Array E200 */
581         0x3213103C, /* Smart Array E200i */
582         0x3214103C, /* Smart Array E200i */
583         0x3215103C, /* Smart Array E200i */
584         0x3237103C, /* Smart Array E500 */
585         0x323D103C, /* Smart Array P700m */
586         0x409C0E11, /* Smart Array 6400 */
587         0x409D0E11, /* Smart Array 6400 EM */
588 };
589
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592         0x409C0E11, /* Smart Array 6400 */
593         0x409D0E11, /* Smart Array 6400 EM */
594 };
595
596 static int ctlr_is_hard_resettable(u32 board_id)
597 {
598         int i;
599
600         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
601                 if (unresettable_controller[i] == board_id)
602                         return 0;
603         return 1;
604 }
605
606 static int ctlr_is_soft_resettable(u32 board_id)
607 {
608         int i;
609
610         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
611                 if (soft_unresettable_controller[i] == board_id)
612                         return 0;
613         return 1;
614 }
615
616 static int ctlr_is_resettable(u32 board_id)
617 {
618         return ctlr_is_hard_resettable(board_id) ||
619                 ctlr_is_soft_resettable(board_id);
620 }
621
622 static ssize_t host_show_resettable(struct device *dev,
623                                     struct device_attribute *attr,
624                                     char *buf)
625 {
626         struct ctlr_info *h = to_hba(dev);
627
628         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
629 }
630 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
631
632 static ssize_t host_store_rescan(struct device *dev,
633                                  struct device_attribute *attr,
634                                  const char *buf, size_t count)
635 {
636         struct ctlr_info *h = to_hba(dev);
637
638         add_to_scan_list(h);
639         wake_up_process(cciss_scan_thread);
640         wait_for_completion_interruptible(&h->scan_wait);
641
642         return count;
643 }
644 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
645
646 static ssize_t host_show_transport_mode(struct device *dev,
647                                  struct device_attribute *attr,
648                                  char *buf)
649 {
650         struct ctlr_info *h = to_hba(dev);
651
652         return snprintf(buf, 20, "%s\n",
653                 h->transMethod & CFGTBL_Trans_Performant ?
654                         "performant" : "simple");
655 }
656 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
657
658 static ssize_t dev_show_unique_id(struct device *dev,
659                                  struct device_attribute *attr,
660                                  char *buf)
661 {
662         drive_info_struct *drv = to_drv(dev);
663         struct ctlr_info *h = to_hba(drv->dev.parent);
664         __u8 sn[16];
665         unsigned long flags;
666         int ret = 0;
667
668         spin_lock_irqsave(&h->lock, flags);
669         if (h->busy_configuring)
670                 ret = -EBUSY;
671         else
672                 memcpy(sn, drv->serial_no, sizeof(sn));
673         spin_unlock_irqrestore(&h->lock, flags);
674
675         if (ret)
676                 return ret;
677         else
678                 return snprintf(buf, 16 * 2 + 2,
679                                 "%02X%02X%02X%02X%02X%02X%02X%02X"
680                                 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
681                                 sn[0], sn[1], sn[2], sn[3],
682                                 sn[4], sn[5], sn[6], sn[7],
683                                 sn[8], sn[9], sn[10], sn[11],
684                                 sn[12], sn[13], sn[14], sn[15]);
685 }
686 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
687
688 static ssize_t dev_show_vendor(struct device *dev,
689                                struct device_attribute *attr,
690                                char *buf)
691 {
692         drive_info_struct *drv = to_drv(dev);
693         struct ctlr_info *h = to_hba(drv->dev.parent);
694         char vendor[VENDOR_LEN + 1];
695         unsigned long flags;
696         int ret = 0;
697
698         spin_lock_irqsave(&h->lock, flags);
699         if (h->busy_configuring)
700                 ret = -EBUSY;
701         else
702                 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
703         spin_unlock_irqrestore(&h->lock, flags);
704
705         if (ret)
706                 return ret;
707         else
708                 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
709 }
710 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
711
712 static ssize_t dev_show_model(struct device *dev,
713                               struct device_attribute *attr,
714                               char *buf)
715 {
716         drive_info_struct *drv = to_drv(dev);
717         struct ctlr_info *h = to_hba(drv->dev.parent);
718         char model[MODEL_LEN + 1];
719         unsigned long flags;
720         int ret = 0;
721
722         spin_lock_irqsave(&h->lock, flags);
723         if (h->busy_configuring)
724                 ret = -EBUSY;
725         else
726                 memcpy(model, drv->model, MODEL_LEN + 1);
727         spin_unlock_irqrestore(&h->lock, flags);
728
729         if (ret)
730                 return ret;
731         else
732                 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
733 }
734 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
735
736 static ssize_t dev_show_rev(struct device *dev,
737                             struct device_attribute *attr,
738                             char *buf)
739 {
740         drive_info_struct *drv = to_drv(dev);
741         struct ctlr_info *h = to_hba(drv->dev.parent);
742         char rev[REV_LEN + 1];
743         unsigned long flags;
744         int ret = 0;
745
746         spin_lock_irqsave(&h->lock, flags);
747         if (h->busy_configuring)
748                 ret = -EBUSY;
749         else
750                 memcpy(rev, drv->rev, REV_LEN + 1);
751         spin_unlock_irqrestore(&h->lock, flags);
752
753         if (ret)
754                 return ret;
755         else
756                 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
757 }
758 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
759
760 static ssize_t cciss_show_lunid(struct device *dev,
761                                 struct device_attribute *attr, char *buf)
762 {
763         drive_info_struct *drv = to_drv(dev);
764         struct ctlr_info *h = to_hba(drv->dev.parent);
765         unsigned long flags;
766         unsigned char lunid[8];
767
768         spin_lock_irqsave(&h->lock, flags);
769         if (h->busy_configuring) {
770                 spin_unlock_irqrestore(&h->lock, flags);
771                 return -EBUSY;
772         }
773         if (!drv->heads) {
774                 spin_unlock_irqrestore(&h->lock, flags);
775                 return -ENOTTY;
776         }
777         memcpy(lunid, drv->LunID, sizeof(lunid));
778         spin_unlock_irqrestore(&h->lock, flags);
779         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
780                 lunid[0], lunid[1], lunid[2], lunid[3],
781                 lunid[4], lunid[5], lunid[6], lunid[7]);
782 }
783 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
784
785 static ssize_t cciss_show_raid_level(struct device *dev,
786                                      struct device_attribute *attr, char *buf)
787 {
788         drive_info_struct *drv = to_drv(dev);
789         struct ctlr_info *h = to_hba(drv->dev.parent);
790         int raid;
791         unsigned long flags;
792
793         spin_lock_irqsave(&h->lock, flags);
794         if (h->busy_configuring) {
795                 spin_unlock_irqrestore(&h->lock, flags);
796                 return -EBUSY;
797         }
798         raid = drv->raid_level;
799         spin_unlock_irqrestore(&h->lock, flags);
800         if (raid < 0 || raid > RAID_UNKNOWN)
801                 raid = RAID_UNKNOWN;
802
803         return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
804                         raid_label[raid]);
805 }
806 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
807
808 static ssize_t cciss_show_usage_count(struct device *dev,
809                                       struct device_attribute *attr, char *buf)
810 {
811         drive_info_struct *drv = to_drv(dev);
812         struct ctlr_info *h = to_hba(drv->dev.parent);
813         unsigned long flags;
814         int count;
815
816         spin_lock_irqsave(&h->lock, flags);
817         if (h->busy_configuring) {
818                 spin_unlock_irqrestore(&h->lock, flags);
819                 return -EBUSY;
820         }
821         count = drv->usage_count;
822         spin_unlock_irqrestore(&h->lock, flags);
823         return snprintf(buf, 20, "%d\n", count);
824 }
825 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
826
827 static struct attribute *cciss_host_attrs[] = {
828         &dev_attr_rescan.attr,
829         &dev_attr_resettable.attr,
830         &dev_attr_transport_mode.attr,
831         NULL
832 };
833
834 static struct attribute_group cciss_host_attr_group = {
835         .attrs = cciss_host_attrs,
836 };
837
838 static const struct attribute_group *cciss_host_attr_groups[] = {
839         &cciss_host_attr_group,
840         NULL
841 };
842
843 static struct device_type cciss_host_type = {
844         .name           = "cciss_host",
845         .groups         = cciss_host_attr_groups,
846         .release        = cciss_hba_release,
847 };
848
849 static struct attribute *cciss_dev_attrs[] = {
850         &dev_attr_unique_id.attr,
851         &dev_attr_model.attr,
852         &dev_attr_vendor.attr,
853         &dev_attr_rev.attr,
854         &dev_attr_lunid.attr,
855         &dev_attr_raid_level.attr,
856         &dev_attr_usage_count.attr,
857         NULL
858 };
859
860 static struct attribute_group cciss_dev_attr_group = {
861         .attrs = cciss_dev_attrs,
862 };
863
864 static const struct attribute_group *cciss_dev_attr_groups[] = {
865         &cciss_dev_attr_group,
866         NULL
867 };
868
869 static struct device_type cciss_dev_type = {
870         .name           = "cciss_device",
871         .groups         = cciss_dev_attr_groups,
872         .release        = cciss_device_release,
873 };
874
875 static struct bus_type cciss_bus_type = {
876         .name           = "cciss",
877 };
878
879 /*
880  * cciss_hba_release is called when the reference count
881  * of h->dev goes to zero.
882  */
883 static void cciss_hba_release(struct device *dev)
884 {
885         /*
886          * nothing to do, but need this to avoid a warning
887          * about not having a release handler from lib/kref.c.
888          */
889 }
890
891 /*
892  * Initialize sysfs entry for each controller.  This sets up and registers
893  * the 'cciss#' directory for each individual controller under
894  * /sys/bus/pci/devices/<dev>/.
895  */
896 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
897 {
898         device_initialize(&h->dev);
899         h->dev.type = &cciss_host_type;
900         h->dev.bus = &cciss_bus_type;
901         dev_set_name(&h->dev, "%s", h->devname);
902         h->dev.parent = &h->pdev->dev;
903
904         return device_add(&h->dev);
905 }
906
907 /*
908  * Remove sysfs entries for an hba.
909  */
910 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
911 {
912         device_del(&h->dev);
913         put_device(&h->dev); /* final put. */
914 }
915
916 /* cciss_device_release is called when the reference count
917  * of h->drv[x]dev goes to zero.
918  */
919 static void cciss_device_release(struct device *dev)
920 {
921         drive_info_struct *drv = to_drv(dev);
922         kfree(drv);
923 }
924
925 /*
926  * Initialize sysfs for each logical drive.  This sets up and registers
927  * the 'c#d#' directory for each individual logical drive under
928  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
929  * /sys/block/cciss!c#d# to this entry.
930  */
931 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
932                                        int drv_index)
933 {
934         struct device *dev;
935
936         if (h->drv[drv_index]->device_initialized)
937                 return 0;
938
939         dev = &h->drv[drv_index]->dev;
940         device_initialize(dev);
941         dev->type = &cciss_dev_type;
942         dev->bus = &cciss_bus_type;
943         dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
944         dev->parent = &h->dev;
945         h->drv[drv_index]->device_initialized = 1;
946         return device_add(dev);
947 }
948
949 /*
950  * Remove sysfs entries for a logical drive.
951  */
952 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
953         int ctlr_exiting)
954 {
955         struct device *dev = &h->drv[drv_index]->dev;
956
957         /* special case for c*d0, we only destroy it on controller exit */
958         if (drv_index == 0 && !ctlr_exiting)
959                 return;
960
961         device_del(dev);
962         put_device(dev); /* the "final" put. */
963         h->drv[drv_index] = NULL;
964 }
965
966 /*
967  * For operations that cannot sleep, a command block is allocated at init,
968  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
969  * which ones are free or in use.
970  */
971 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
972 {
973         CommandList_struct *c;
974         int i;
975         u64bit temp64;
976         dma_addr_t cmd_dma_handle, err_dma_handle;
977
978         do {
979                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
980                 if (i == h->nr_cmds)
981                         return NULL;
982         } while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
983         c = h->cmd_pool + i;
984         memset(c, 0, sizeof(CommandList_struct));
985         cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
986         c->err_info = h->errinfo_pool + i;
987         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
988         err_dma_handle = h->errinfo_pool_dhandle
989             + i * sizeof(ErrorInfo_struct);
990         h->nr_allocs++;
991
992         c->cmdindex = i;
993
994         INIT_LIST_HEAD(&c->list);
995         c->busaddr = (__u32) cmd_dma_handle;
996         temp64.val = (__u64) err_dma_handle;
997         c->ErrDesc.Addr.lower = temp64.val32.lower;
998         c->ErrDesc.Addr.upper = temp64.val32.upper;
999         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1000
1001         c->ctlr = h->ctlr;
1002         return c;
1003 }
1004
1005 /* allocate a command using pci_alloc_consistent, used for ioctls,
1006  * etc., not for the main i/o path.
1007  */
1008 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1009 {
1010         CommandList_struct *c;
1011         u64bit temp64;
1012         dma_addr_t cmd_dma_handle, err_dma_handle;
1013
1014         c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1015                 sizeof(CommandList_struct), &cmd_dma_handle);
1016         if (c == NULL)
1017                 return NULL;
1018         memset(c, 0, sizeof(CommandList_struct));
1019
1020         c->cmdindex = -1;
1021
1022         c->err_info = (ErrorInfo_struct *)
1023             pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1024                     &err_dma_handle);
1025
1026         if (c->err_info == NULL) {
1027                 pci_free_consistent(h->pdev,
1028                         sizeof(CommandList_struct), c, cmd_dma_handle);
1029                 return NULL;
1030         }
1031         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1032
1033         INIT_LIST_HEAD(&c->list);
1034         c->busaddr = (__u32) cmd_dma_handle;
1035         temp64.val = (__u64) err_dma_handle;
1036         c->ErrDesc.Addr.lower = temp64.val32.lower;
1037         c->ErrDesc.Addr.upper = temp64.val32.upper;
1038         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1039
1040         c->ctlr = h->ctlr;
1041         return c;
1042 }
1043
1044 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1045 {
1046         int i;
1047
1048         i = c - h->cmd_pool;
1049         clear_bit(i, h->cmd_pool_bits);
1050         h->nr_frees++;
1051 }
1052
1053 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1054 {
1055         u64bit temp64;
1056
1057         temp64.val32.lower = c->ErrDesc.Addr.lower;
1058         temp64.val32.upper = c->ErrDesc.Addr.upper;
1059         pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1060                             c->err_info, (dma_addr_t) temp64.val);
1061         pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1062                 (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1063 }
1064
1065 static inline ctlr_info_t *get_host(struct gendisk *disk)
1066 {
1067         return disk->queue->queuedata;
1068 }
1069
1070 static inline drive_info_struct *get_drv(struct gendisk *disk)
1071 {
1072         return disk->private_data;
1073 }
1074
1075 /*
1076  * Open.  Make sure the device is really there.
1077  */
1078 static int cciss_open(struct block_device *bdev, fmode_t mode)
1079 {
1080         ctlr_info_t *h = get_host(bdev->bd_disk);
1081         drive_info_struct *drv = get_drv(bdev->bd_disk);
1082
1083         dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1084         if (drv->busy_configuring)
1085                 return -EBUSY;
1086         /*
1087          * Root is allowed to open raw volume zero even if it's not configured
1088          * so array config can still work. Root is also allowed to open any
1089          * volume that has a LUN ID, so it can issue IOCTL to reread the
1090          * disk information.  I don't think I really like this
1091          * but I'm already using way to many device nodes to claim another one
1092          * for "raw controller".
1093          */
1094         if (drv->heads == 0) {
1095                 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1096                         /* if not node 0 make sure it is a partition = 0 */
1097                         if (MINOR(bdev->bd_dev) & 0x0f) {
1098                                 return -ENXIO;
1099                                 /* if it is, make sure we have a LUN ID */
1100                         } else if (memcmp(drv->LunID, CTLR_LUNID,
1101                                 sizeof(drv->LunID))) {
1102                                 return -ENXIO;
1103                         }
1104                 }
1105                 if (!capable(CAP_SYS_ADMIN))
1106                         return -EPERM;
1107         }
1108         drv->usage_count++;
1109         h->usage_count++;
1110         return 0;
1111 }
1112
1113 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1114 {
1115         int ret;
1116
1117         mutex_lock(&cciss_mutex);
1118         ret = cciss_open(bdev, mode);
1119         mutex_unlock(&cciss_mutex);
1120
1121         return ret;
1122 }
1123
1124 /*
1125  * Close.  Sync first.
1126  */
1127 static int cciss_release(struct gendisk *disk, fmode_t mode)
1128 {
1129         ctlr_info_t *h;
1130         drive_info_struct *drv;
1131
1132         mutex_lock(&cciss_mutex);
1133         h = get_host(disk);
1134         drv = get_drv(disk);
1135         dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1136         drv->usage_count--;
1137         h->usage_count--;
1138         mutex_unlock(&cciss_mutex);
1139         return 0;
1140 }
1141
1142 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1143                     unsigned cmd, unsigned long arg)
1144 {
1145         int ret;
1146         mutex_lock(&cciss_mutex);
1147         ret = cciss_ioctl(bdev, mode, cmd, arg);
1148         mutex_unlock(&cciss_mutex);
1149         return ret;
1150 }
1151
1152 #ifdef CONFIG_COMPAT
1153
1154 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1155                                   unsigned cmd, unsigned long arg);
1156 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1157                                       unsigned cmd, unsigned long arg);
1158
1159 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1160                               unsigned cmd, unsigned long arg)
1161 {
1162         switch (cmd) {
1163         case CCISS_GETPCIINFO:
1164         case CCISS_GETINTINFO:
1165         case CCISS_SETINTINFO:
1166         case CCISS_GETNODENAME:
1167         case CCISS_SETNODENAME:
1168         case CCISS_GETHEARTBEAT:
1169         case CCISS_GETBUSTYPES:
1170         case CCISS_GETFIRMVER:
1171         case CCISS_GETDRIVVER:
1172         case CCISS_REVALIDVOLS:
1173         case CCISS_DEREGDISK:
1174         case CCISS_REGNEWDISK:
1175         case CCISS_REGNEWD:
1176         case CCISS_RESCANDISK:
1177         case CCISS_GETLUNINFO:
1178                 return do_ioctl(bdev, mode, cmd, arg);
1179
1180         case CCISS_PASSTHRU32:
1181                 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1182         case CCISS_BIG_PASSTHRU32:
1183                 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1184
1185         default:
1186                 return -ENOIOCTLCMD;
1187         }
1188 }
1189
1190 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1191                                   unsigned cmd, unsigned long arg)
1192 {
1193         IOCTL32_Command_struct __user *arg32 =
1194             (IOCTL32_Command_struct __user *) arg;
1195         IOCTL_Command_struct arg64;
1196         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1197         int err;
1198         u32 cp;
1199
1200         err = 0;
1201         err |=
1202             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1203                            sizeof(arg64.LUN_info));
1204         err |=
1205             copy_from_user(&arg64.Request, &arg32->Request,
1206                            sizeof(arg64.Request));
1207         err |=
1208             copy_from_user(&arg64.error_info, &arg32->error_info,
1209                            sizeof(arg64.error_info));
1210         err |= get_user(arg64.buf_size, &arg32->buf_size);
1211         err |= get_user(cp, &arg32->buf);
1212         arg64.buf = compat_ptr(cp);
1213         err |= copy_to_user(p, &arg64, sizeof(arg64));
1214
1215         if (err)
1216                 return -EFAULT;
1217
1218         err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1219         if (err)
1220                 return err;
1221         err |=
1222             copy_in_user(&arg32->error_info, &p->error_info,
1223                          sizeof(arg32->error_info));
1224         if (err)
1225                 return -EFAULT;
1226         return err;
1227 }
1228
1229 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1230                                       unsigned cmd, unsigned long arg)
1231 {
1232         BIG_IOCTL32_Command_struct __user *arg32 =
1233             (BIG_IOCTL32_Command_struct __user *) arg;
1234         BIG_IOCTL_Command_struct arg64;
1235         BIG_IOCTL_Command_struct __user *p =
1236             compat_alloc_user_space(sizeof(arg64));
1237         int err;
1238         u32 cp;
1239
1240         memset(&arg64, 0, sizeof(arg64));
1241         err = 0;
1242         err |=
1243             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1244                            sizeof(arg64.LUN_info));
1245         err |=
1246             copy_from_user(&arg64.Request, &arg32->Request,
1247                            sizeof(arg64.Request));
1248         err |=
1249             copy_from_user(&arg64.error_info, &arg32->error_info,
1250                            sizeof(arg64.error_info));
1251         err |= get_user(arg64.buf_size, &arg32->buf_size);
1252         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1253         err |= get_user(cp, &arg32->buf);
1254         arg64.buf = compat_ptr(cp);
1255         err |= copy_to_user(p, &arg64, sizeof(arg64));
1256
1257         if (err)
1258                 return -EFAULT;
1259
1260         err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1261         if (err)
1262                 return err;
1263         err |=
1264             copy_in_user(&arg32->error_info, &p->error_info,
1265                          sizeof(arg32->error_info));
1266         if (err)
1267                 return -EFAULT;
1268         return err;
1269 }
1270 #endif
1271
1272 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1273 {
1274         drive_info_struct *drv = get_drv(bdev->bd_disk);
1275
1276         if (!drv->cylinders)
1277                 return -ENXIO;
1278
1279         geo->heads = drv->heads;
1280         geo->sectors = drv->sectors;
1281         geo->cylinders = drv->cylinders;
1282         return 0;
1283 }
1284
1285 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1286 {
1287         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1288                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1289                 (void)check_for_unit_attention(h, c);
1290 }
1291
1292 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1293 {
1294         cciss_pci_info_struct pciinfo;
1295
1296         if (!argp)
1297                 return -EINVAL;
1298         pciinfo.domain = pci_domain_nr(h->pdev->bus);
1299         pciinfo.bus = h->pdev->bus->number;
1300         pciinfo.dev_fn = h->pdev->devfn;
1301         pciinfo.board_id = h->board_id;
1302         if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1303                 return -EFAULT;
1304         return 0;
1305 }
1306
1307 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1308 {
1309         cciss_coalint_struct intinfo;
1310
1311         if (!argp)
1312                 return -EINVAL;
1313         intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1314         intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1315         if (copy_to_user
1316             (argp, &intinfo, sizeof(cciss_coalint_struct)))
1317                 return -EFAULT;
1318         return 0;
1319 }
1320
1321 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1322 {
1323         cciss_coalint_struct intinfo;
1324         unsigned long flags;
1325         int i;
1326
1327         if (!argp)
1328                 return -EINVAL;
1329         if (!capable(CAP_SYS_ADMIN))
1330                 return -EPERM;
1331         if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1332                 return -EFAULT;
1333         if ((intinfo.delay == 0) && (intinfo.count == 0))
1334                 return -EINVAL;
1335         spin_lock_irqsave(&h->lock, flags);
1336         /* Update the field, and then ring the doorbell */
1337         writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1338         writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1339         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1340
1341         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1342                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1343                         break;
1344                 udelay(1000); /* delay and try again */
1345         }
1346         spin_unlock_irqrestore(&h->lock, flags);
1347         if (i >= MAX_IOCTL_CONFIG_WAIT)
1348                 return -EAGAIN;
1349         return 0;
1350 }
1351
1352 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1353 {
1354         NodeName_type NodeName;
1355         int i;
1356
1357         if (!argp)
1358                 return -EINVAL;
1359         for (i = 0; i < 16; i++)
1360                 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1361         if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1362                 return -EFAULT;
1363         return 0;
1364 }
1365
1366 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1367 {
1368         NodeName_type NodeName;
1369         unsigned long flags;
1370         int i;
1371
1372         if (!argp)
1373                 return -EINVAL;
1374         if (!capable(CAP_SYS_ADMIN))
1375                 return -EPERM;
1376         if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1377                 return -EFAULT;
1378         spin_lock_irqsave(&h->lock, flags);
1379         /* Update the field, and then ring the doorbell */
1380         for (i = 0; i < 16; i++)
1381                 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1382         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1383         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1384                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1385                         break;
1386                 udelay(1000); /* delay and try again */
1387         }
1388         spin_unlock_irqrestore(&h->lock, flags);
1389         if (i >= MAX_IOCTL_CONFIG_WAIT)
1390                 return -EAGAIN;
1391         return 0;
1392 }
1393
1394 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1395 {
1396         Heartbeat_type heartbeat;
1397
1398         if (!argp)
1399                 return -EINVAL;
1400         heartbeat = readl(&h->cfgtable->HeartBeat);
1401         if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1402                 return -EFAULT;
1403         return 0;
1404 }
1405
1406 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1407 {
1408         BusTypes_type BusTypes;
1409
1410         if (!argp)
1411                 return -EINVAL;
1412         BusTypes = readl(&h->cfgtable->BusTypes);
1413         if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1414                 return -EFAULT;
1415         return 0;
1416 }
1417
1418 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1419 {
1420         FirmwareVer_type firmware;
1421
1422         if (!argp)
1423                 return -EINVAL;
1424         memcpy(firmware, h->firm_ver, 4);
1425
1426         if (copy_to_user
1427             (argp, firmware, sizeof(FirmwareVer_type)))
1428                 return -EFAULT;
1429         return 0;
1430 }
1431
1432 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1433 {
1434         DriverVer_type DriverVer = DRIVER_VERSION;
1435
1436         if (!argp)
1437                 return -EINVAL;
1438         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1439                 return -EFAULT;
1440         return 0;
1441 }
1442
1443 static int cciss_getluninfo(ctlr_info_t *h,
1444         struct gendisk *disk, void __user *argp)
1445 {
1446         LogvolInfo_struct luninfo;
1447         drive_info_struct *drv = get_drv(disk);
1448
1449         if (!argp)
1450                 return -EINVAL;
1451         memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1452         luninfo.num_opens = drv->usage_count;
1453         luninfo.num_parts = 0;
1454         if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1455                 return -EFAULT;
1456         return 0;
1457 }
1458
1459 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1460 {
1461         IOCTL_Command_struct iocommand;
1462         CommandList_struct *c;
1463         char *buff = NULL;
1464         u64bit temp64;
1465         DECLARE_COMPLETION_ONSTACK(wait);
1466
1467         if (!argp)
1468                 return -EINVAL;
1469
1470         if (!capable(CAP_SYS_RAWIO))
1471                 return -EPERM;
1472
1473         if (copy_from_user
1474             (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1475                 return -EFAULT;
1476         if ((iocommand.buf_size < 1) &&
1477             (iocommand.Request.Type.Direction != XFER_NONE)) {
1478                 return -EINVAL;
1479         }
1480         if (iocommand.buf_size > 0) {
1481                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1482                 if (buff == NULL)
1483                         return -EFAULT;
1484         }
1485         if (iocommand.Request.Type.Direction == XFER_WRITE) {
1486                 /* Copy the data into the buffer we created */
1487                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1488                         kfree(buff);
1489                         return -EFAULT;
1490                 }
1491         } else {
1492                 memset(buff, 0, iocommand.buf_size);
1493         }
1494         c = cmd_special_alloc(h);
1495         if (!c) {
1496                 kfree(buff);
1497                 return -ENOMEM;
1498         }
1499         /* Fill in the command type */
1500         c->cmd_type = CMD_IOCTL_PEND;
1501         /* Fill in Command Header */
1502         c->Header.ReplyQueue = 0;   /* unused in simple mode */
1503         if (iocommand.buf_size > 0) { /* buffer to fill */
1504                 c->Header.SGList = 1;
1505                 c->Header.SGTotal = 1;
1506         } else { /* no buffers to fill */
1507                 c->Header.SGList = 0;
1508                 c->Header.SGTotal = 0;
1509         }
1510         c->Header.LUN = iocommand.LUN_info;
1511         /* use the kernel address the cmd block for tag */
1512         c->Header.Tag.lower = c->busaddr;
1513
1514         /* Fill in Request block */
1515         c->Request = iocommand.Request;
1516
1517         /* Fill in the scatter gather information */
1518         if (iocommand.buf_size > 0) {
1519                 temp64.val = pci_map_single(h->pdev, buff,
1520                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1521                 c->SG[0].Addr.lower = temp64.val32.lower;
1522                 c->SG[0].Addr.upper = temp64.val32.upper;
1523                 c->SG[0].Len = iocommand.buf_size;
1524                 c->SG[0].Ext = 0;  /* we are not chaining */
1525         }
1526         c->waiting = &wait;
1527
1528         enqueue_cmd_and_start_io(h, c);
1529         wait_for_completion(&wait);
1530
1531         /* unlock the buffers from DMA */
1532         temp64.val32.lower = c->SG[0].Addr.lower;
1533         temp64.val32.upper = c->SG[0].Addr.upper;
1534         pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1535                          PCI_DMA_BIDIRECTIONAL);
1536         check_ioctl_unit_attention(h, c);
1537
1538         /* Copy the error information out */
1539         iocommand.error_info = *(c->err_info);
1540         if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1541                 kfree(buff);
1542                 cmd_special_free(h, c);
1543                 return -EFAULT;
1544         }
1545
1546         if (iocommand.Request.Type.Direction == XFER_READ) {
1547                 /* Copy the data out of the buffer we created */
1548                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1549                         kfree(buff);
1550                         cmd_special_free(h, c);
1551                         return -EFAULT;
1552                 }
1553         }
1554         kfree(buff);
1555         cmd_special_free(h, c);
1556         return 0;
1557 }
1558
1559 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1560 {
1561         BIG_IOCTL_Command_struct *ioc;
1562         CommandList_struct *c;
1563         unsigned char **buff = NULL;
1564         int *buff_size = NULL;
1565         u64bit temp64;
1566         BYTE sg_used = 0;
1567         int status = 0;
1568         int i;
1569         DECLARE_COMPLETION_ONSTACK(wait);
1570         __u32 left;
1571         __u32 sz;
1572         BYTE __user *data_ptr;
1573
1574         if (!argp)
1575                 return -EINVAL;
1576         if (!capable(CAP_SYS_RAWIO))
1577                 return -EPERM;
1578         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1579         if (!ioc) {
1580                 status = -ENOMEM;
1581                 goto cleanup1;
1582         }
1583         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1584                 status = -EFAULT;
1585                 goto cleanup1;
1586         }
1587         if ((ioc->buf_size < 1) &&
1588             (ioc->Request.Type.Direction != XFER_NONE)) {
1589                 status = -EINVAL;
1590                 goto cleanup1;
1591         }
1592         /* Check kmalloc limits  using all SGs */
1593         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1594                 status = -EINVAL;
1595                 goto cleanup1;
1596         }
1597         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1598                 status = -EINVAL;
1599                 goto cleanup1;
1600         }
1601         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1602         if (!buff) {
1603                 status = -ENOMEM;
1604                 goto cleanup1;
1605         }
1606         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1607         if (!buff_size) {
1608                 status = -ENOMEM;
1609                 goto cleanup1;
1610         }
1611         left = ioc->buf_size;
1612         data_ptr = ioc->buf;
1613         while (left) {
1614                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1615                 buff_size[sg_used] = sz;
1616                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1617                 if (buff[sg_used] == NULL) {
1618                         status = -ENOMEM;
1619                         goto cleanup1;
1620                 }
1621                 if (ioc->Request.Type.Direction == XFER_WRITE) {
1622                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1623                                 status = -EFAULT;
1624                                 goto cleanup1;
1625                         }
1626                 } else {
1627                         memset(buff[sg_used], 0, sz);
1628                 }
1629                 left -= sz;
1630                 data_ptr += sz;
1631                 sg_used++;
1632         }
1633         c = cmd_special_alloc(h);
1634         if (!c) {
1635                 status = -ENOMEM;
1636                 goto cleanup1;
1637         }
1638         c->cmd_type = CMD_IOCTL_PEND;
1639         c->Header.ReplyQueue = 0;
1640         c->Header.SGList = sg_used;
1641         c->Header.SGTotal = sg_used;
1642         c->Header.LUN = ioc->LUN_info;
1643         c->Header.Tag.lower = c->busaddr;
1644
1645         c->Request = ioc->Request;
1646         for (i = 0; i < sg_used; i++) {
1647                 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1648                                     PCI_DMA_BIDIRECTIONAL);
1649                 c->SG[i].Addr.lower = temp64.val32.lower;
1650                 c->SG[i].Addr.upper = temp64.val32.upper;
1651                 c->SG[i].Len = buff_size[i];
1652                 c->SG[i].Ext = 0;       /* we are not chaining */
1653         }
1654         c->waiting = &wait;
1655         enqueue_cmd_and_start_io(h, c);
1656         wait_for_completion(&wait);
1657         /* unlock the buffers from DMA */
1658         for (i = 0; i < sg_used; i++) {
1659                 temp64.val32.lower = c->SG[i].Addr.lower;
1660                 temp64.val32.upper = c->SG[i].Addr.upper;
1661                 pci_unmap_single(h->pdev,
1662                         (dma_addr_t) temp64.val, buff_size[i],
1663                         PCI_DMA_BIDIRECTIONAL);
1664         }
1665         check_ioctl_unit_attention(h, c);
1666         /* Copy the error information out */
1667         ioc->error_info = *(c->err_info);
1668         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1669                 cmd_special_free(h, c);
1670                 status = -EFAULT;
1671                 goto cleanup1;
1672         }
1673         if (ioc->Request.Type.Direction == XFER_READ) {
1674                 /* Copy the data out of the buffer we created */
1675                 BYTE __user *ptr = ioc->buf;
1676                 for (i = 0; i < sg_used; i++) {
1677                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
1678                                 cmd_special_free(h, c);
1679                                 status = -EFAULT;
1680                                 goto cleanup1;
1681                         }
1682                         ptr += buff_size[i];
1683                 }
1684         }
1685         cmd_special_free(h, c);
1686         status = 0;
1687 cleanup1:
1688         if (buff) {
1689                 for (i = 0; i < sg_used; i++)
1690                         kfree(buff[i]);
1691                 kfree(buff);
1692         }
1693         kfree(buff_size);
1694         kfree(ioc);
1695         return status;
1696 }
1697
1698 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1699         unsigned int cmd, unsigned long arg)
1700 {
1701         struct gendisk *disk = bdev->bd_disk;
1702         ctlr_info_t *h = get_host(disk);
1703         void __user *argp = (void __user *)arg;
1704
1705         dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1706                 cmd, arg);
1707         switch (cmd) {
1708         case CCISS_GETPCIINFO:
1709                 return cciss_getpciinfo(h, argp);
1710         case CCISS_GETINTINFO:
1711                 return cciss_getintinfo(h, argp);
1712         case CCISS_SETINTINFO:
1713                 return cciss_setintinfo(h, argp);
1714         case CCISS_GETNODENAME:
1715                 return cciss_getnodename(h, argp);
1716         case CCISS_SETNODENAME:
1717                 return cciss_setnodename(h, argp);
1718         case CCISS_GETHEARTBEAT:
1719                 return cciss_getheartbeat(h, argp);
1720         case CCISS_GETBUSTYPES:
1721                 return cciss_getbustypes(h, argp);
1722         case CCISS_GETFIRMVER:
1723                 return cciss_getfirmver(h, argp);
1724         case CCISS_GETDRIVVER:
1725                 return cciss_getdrivver(h, argp);
1726         case CCISS_DEREGDISK:
1727         case CCISS_REGNEWD:
1728         case CCISS_REVALIDVOLS:
1729                 return rebuild_lun_table(h, 0, 1);
1730         case CCISS_GETLUNINFO:
1731                 return cciss_getluninfo(h, disk, argp);
1732         case CCISS_PASSTHRU:
1733                 return cciss_passthru(h, argp);
1734         case CCISS_BIG_PASSTHRU:
1735                 return cciss_bigpassthru(h, argp);
1736
1737         /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1738         /* very meaningful for cciss.  SG_IO is the main one people want. */
1739
1740         case SG_GET_VERSION_NUM:
1741         case SG_SET_TIMEOUT:
1742         case SG_GET_TIMEOUT:
1743         case SG_GET_RESERVED_SIZE:
1744         case SG_SET_RESERVED_SIZE:
1745         case SG_EMULATED_HOST:
1746         case SG_IO:
1747         case SCSI_IOCTL_SEND_COMMAND:
1748                 return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1749
1750         /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1751         /* they aren't a good fit for cciss, as CD-ROMs are */
1752         /* not supported, and we don't have any bus/target/lun */
1753         /* which we present to the kernel. */
1754
1755         case CDROM_SEND_PACKET:
1756         case CDROMCLOSETRAY:
1757         case CDROMEJECT:
1758         case SCSI_IOCTL_GET_IDLUN:
1759         case SCSI_IOCTL_GET_BUS_NUMBER:
1760         default:
1761                 return -ENOTTY;
1762         }
1763 }
1764
1765 static void cciss_check_queues(ctlr_info_t *h)
1766 {
1767         int start_queue = h->next_to_run;
1768         int i;
1769
1770         /* check to see if we have maxed out the number of commands that can
1771          * be placed on the queue.  If so then exit.  We do this check here
1772          * in case the interrupt we serviced was from an ioctl and did not
1773          * free any new commands.
1774          */
1775         if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1776                 return;
1777
1778         /* We have room on the queue for more commands.  Now we need to queue
1779          * them up.  We will also keep track of the next queue to run so
1780          * that every queue gets a chance to be started first.
1781          */
1782         for (i = 0; i < h->highest_lun + 1; i++) {
1783                 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1784                 /* make sure the disk has been added and the drive is real
1785                  * because this can be called from the middle of init_one.
1786                  */
1787                 if (!h->drv[curr_queue])
1788                         continue;
1789                 if (!(h->drv[curr_queue]->queue) ||
1790                         !(h->drv[curr_queue]->heads))
1791                         continue;
1792                 blk_start_queue(h->gendisk[curr_queue]->queue);
1793
1794                 /* check to see if we have maxed out the number of commands
1795                  * that can be placed on the queue.
1796                  */
1797                 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1798                         if (curr_queue == start_queue) {
1799                                 h->next_to_run =
1800                                     (start_queue + 1) % (h->highest_lun + 1);
1801                                 break;
1802                         } else {
1803                                 h->next_to_run = curr_queue;
1804                                 break;
1805                         }
1806                 }
1807         }
1808 }
1809
1810 static void cciss_softirq_done(struct request *rq)
1811 {
1812         CommandList_struct *c = rq->completion_data;
1813         ctlr_info_t *h = hba[c->ctlr];
1814         SGDescriptor_struct *curr_sg = c->SG;
1815         u64bit temp64;
1816         unsigned long flags;
1817         int i, ddir;
1818         int sg_index = 0;
1819
1820         if (c->Request.Type.Direction == XFER_READ)
1821                 ddir = PCI_DMA_FROMDEVICE;
1822         else
1823                 ddir = PCI_DMA_TODEVICE;
1824
1825         /* command did not need to be retried */
1826         /* unmap the DMA mapping for all the scatter gather elements */
1827         for (i = 0; i < c->Header.SGList; i++) {
1828                 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1829                         cciss_unmap_sg_chain_block(h, c);
1830                         /* Point to the next block */
1831                         curr_sg = h->cmd_sg_list[c->cmdindex];
1832                         sg_index = 0;
1833                 }
1834                 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1835                 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1836                 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1837                                 ddir);
1838                 ++sg_index;
1839         }
1840
1841         dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1842
1843         /* set the residual count for pc requests */
1844         if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1845                 rq->resid_len = c->err_info->ResidualCnt;
1846
1847         blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1848
1849         spin_lock_irqsave(&h->lock, flags);
1850         cmd_free(h, c);
1851         cciss_check_queues(h);
1852         spin_unlock_irqrestore(&h->lock, flags);
1853 }
1854
1855 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1856         unsigned char scsi3addr[], uint32_t log_unit)
1857 {
1858         memcpy(scsi3addr, h->drv[log_unit]->LunID,
1859                 sizeof(h->drv[log_unit]->LunID));
1860 }
1861
1862 /* This function gets the SCSI vendor, model, and revision of a logical drive
1863  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1864  * they cannot be read.
1865  */
1866 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1867                                    char *vendor, char *model, char *rev)
1868 {
1869         int rc;
1870         InquiryData_struct *inq_buf;
1871         unsigned char scsi3addr[8];
1872
1873         *vendor = '\0';
1874         *model = '\0';
1875         *rev = '\0';
1876
1877         inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1878         if (!inq_buf)
1879                 return;
1880
1881         log_unit_to_scsi3addr(h, scsi3addr, logvol);
1882         rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1883                         scsi3addr, TYPE_CMD);
1884         if (rc == IO_OK) {
1885                 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1886                 vendor[VENDOR_LEN] = '\0';
1887                 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1888                 model[MODEL_LEN] = '\0';
1889                 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1890                 rev[REV_LEN] = '\0';
1891         }
1892
1893         kfree(inq_buf);
1894         return;
1895 }
1896
1897 /* This function gets the serial number of a logical drive via
1898  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1899  * number cannot be had, for whatever reason, 16 bytes of 0xff
1900  * are returned instead.
1901  */
1902 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1903                                 unsigned char *serial_no, int buflen)
1904 {
1905 #define PAGE_83_INQ_BYTES 64
1906         int rc;
1907         unsigned char *buf;
1908         unsigned char scsi3addr[8];
1909
1910         if (buflen > 16)
1911                 buflen = 16;
1912         memset(serial_no, 0xff, buflen);
1913         buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1914         if (!buf)
1915                 return;
1916         memset(serial_no, 0, buflen);
1917         log_unit_to_scsi3addr(h, scsi3addr, logvol);
1918         rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1919                 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1920         if (rc == IO_OK)
1921                 memcpy(serial_no, &buf[8], buflen);
1922         kfree(buf);
1923         return;
1924 }
1925
1926 /*
1927  * cciss_add_disk sets up the block device queue for a logical drive
1928  */
1929 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1930                                 int drv_index)
1931 {
1932         disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1933         if (!disk->queue)
1934                 goto init_queue_failure;
1935         sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1936         disk->major = h->major;
1937         disk->first_minor = drv_index << NWD_SHIFT;
1938         disk->fops = &cciss_fops;
1939         if (cciss_create_ld_sysfs_entry(h, drv_index))
1940                 goto cleanup_queue;
1941         disk->private_data = h->drv[drv_index];
1942         disk->driverfs_dev = &h->drv[drv_index]->dev;
1943
1944         /* Set up queue information */
1945         blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1946
1947         /* This is a hardware imposed limit. */
1948         blk_queue_max_segments(disk->queue, h->maxsgentries);
1949
1950         blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1951
1952         blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1953
1954         disk->queue->queuedata = h;
1955
1956         blk_queue_logical_block_size(disk->queue,
1957                                      h->drv[drv_index]->block_size);
1958
1959         /* Make sure all queue data is written out before */
1960         /* setting h->drv[drv_index]->queue, as setting this */
1961         /* allows the interrupt handler to start the queue */
1962         wmb();
1963         h->drv[drv_index]->queue = disk->queue;
1964         add_disk(disk);
1965         return 0;
1966
1967 cleanup_queue:
1968         blk_cleanup_queue(disk->queue);
1969         disk->queue = NULL;
1970 init_queue_failure:
1971         return -1;
1972 }
1973
1974 /* This function will check the usage_count of the drive to be updated/added.
1975  * If the usage_count is zero and it is a heretofore unknown drive, or,
1976  * the drive's capacity, geometry, or serial number has changed,
1977  * then the drive information will be updated and the disk will be
1978  * re-registered with the kernel.  If these conditions don't hold,
1979  * then it will be left alone for the next reboot.  The exception to this
1980  * is disk 0 which will always be left registered with the kernel since it
1981  * is also the controller node.  Any changes to disk 0 will show up on
1982  * the next reboot.
1983  */
1984 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1985         int first_time, int via_ioctl)
1986 {
1987         struct gendisk *disk;
1988         InquiryData_struct *inq_buff = NULL;
1989         unsigned int block_size;
1990         sector_t total_size;
1991         unsigned long flags = 0;
1992         int ret = 0;
1993         drive_info_struct *drvinfo;
1994
1995         /* Get information about the disk and modify the driver structure */
1996         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1997         drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1998         if (inq_buff == NULL || drvinfo == NULL)
1999                 goto mem_msg;
2000
2001         /* testing to see if 16-byte CDBs are already being used */
2002         if (h->cciss_read == CCISS_READ_16) {
2003                 cciss_read_capacity_16(h, drv_index,
2004                         &total_size, &block_size);
2005
2006         } else {
2007                 cciss_read_capacity(h, drv_index, &total_size, &block_size);
2008                 /* if read_capacity returns all F's this volume is >2TB */
2009                 /* in size so we switch to 16-byte CDB's for all */
2010                 /* read/write ops */
2011                 if (total_size == 0xFFFFFFFFULL) {
2012                         cciss_read_capacity_16(h, drv_index,
2013                         &total_size, &block_size);
2014                         h->cciss_read = CCISS_READ_16;
2015                         h->cciss_write = CCISS_WRITE_16;
2016                 } else {
2017                         h->cciss_read = CCISS_READ_10;
2018                         h->cciss_write = CCISS_WRITE_10;
2019                 }
2020         }
2021
2022         cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2023                                inq_buff, drvinfo);
2024         drvinfo->block_size = block_size;
2025         drvinfo->nr_blocks = total_size + 1;
2026
2027         cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2028                                 drvinfo->model, drvinfo->rev);
2029         cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2030                         sizeof(drvinfo->serial_no));
2031         /* Save the lunid in case we deregister the disk, below. */
2032         memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2033                 sizeof(drvinfo->LunID));
2034
2035         /* Is it the same disk we already know, and nothing's changed? */
2036         if (h->drv[drv_index]->raid_level != -1 &&
2037                 ((memcmp(drvinfo->serial_no,
2038                                 h->drv[drv_index]->serial_no, 16) == 0) &&
2039                 drvinfo->block_size == h->drv[drv_index]->block_size &&
2040                 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2041                 drvinfo->heads == h->drv[drv_index]->heads &&
2042                 drvinfo->sectors == h->drv[drv_index]->sectors &&
2043                 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2044                         /* The disk is unchanged, nothing to update */
2045                         goto freeret;
2046
2047         /* If we get here it's not the same disk, or something's changed,
2048          * so we need to * deregister it, and re-register it, if it's not
2049          * in use.
2050          * If the disk already exists then deregister it before proceeding
2051          * (unless it's the first disk (for the controller node).
2052          */
2053         if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2054                 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2055                 spin_lock_irqsave(&h->lock, flags);
2056                 h->drv[drv_index]->busy_configuring = 1;
2057                 spin_unlock_irqrestore(&h->lock, flags);
2058
2059                 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2060                  * which keeps the interrupt handler from starting
2061                  * the queue.
2062                  */
2063                 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2064         }
2065
2066         /* If the disk is in use return */
2067         if (ret)
2068                 goto freeret;
2069
2070         /* Save the new information from cciss_geometry_inquiry
2071          * and serial number inquiry.  If the disk was deregistered
2072          * above, then h->drv[drv_index] will be NULL.
2073          */
2074         if (h->drv[drv_index] == NULL) {
2075                 drvinfo->device_initialized = 0;
2076                 h->drv[drv_index] = drvinfo;
2077                 drvinfo = NULL; /* so it won't be freed below. */
2078         } else {
2079                 /* special case for cxd0 */
2080                 h->drv[drv_index]->block_size = drvinfo->block_size;
2081                 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2082                 h->drv[drv_index]->heads = drvinfo->heads;
2083                 h->drv[drv_index]->sectors = drvinfo->sectors;
2084                 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2085                 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2086                 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2087                 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2088                         VENDOR_LEN + 1);
2089                 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2090                 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2091         }
2092
2093         ++h->num_luns;
2094         disk = h->gendisk[drv_index];
2095         set_capacity(disk, h->drv[drv_index]->nr_blocks);
2096
2097         /* If it's not disk 0 (drv_index != 0)
2098          * or if it was disk 0, but there was previously
2099          * no actual corresponding configured logical drive
2100          * (raid_leve == -1) then we want to update the
2101          * logical drive's information.
2102          */
2103         if (drv_index || first_time) {
2104                 if (cciss_add_disk(h, disk, drv_index) != 0) {
2105                         cciss_free_gendisk(h, drv_index);
2106                         cciss_free_drive_info(h, drv_index);
2107                         dev_warn(&h->pdev->dev, "could not update disk %d\n",
2108                                 drv_index);
2109                         --h->num_luns;
2110                 }
2111         }
2112
2113 freeret:
2114         kfree(inq_buff);
2115         kfree(drvinfo);
2116         return;
2117 mem_msg:
2118         dev_err(&h->pdev->dev, "out of memory\n");
2119         goto freeret;
2120 }
2121
2122 /* This function will find the first index of the controllers drive array
2123  * that has a null drv pointer and allocate the drive info struct and
2124  * will return that index   This is where new drives will be added.
2125  * If the index to be returned is greater than the highest_lun index for
2126  * the controller then highest_lun is set * to this new index.
2127  * If there are no available indexes or if tha allocation fails, then -1
2128  * is returned.  * "controller_node" is used to know if this is a real
2129  * logical drive, or just the controller node, which determines if this
2130  * counts towards highest_lun.
2131  */
2132 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2133 {
2134         int i;
2135         drive_info_struct *drv;
2136
2137         /* Search for an empty slot for our drive info */
2138         for (i = 0; i < CISS_MAX_LUN; i++) {
2139
2140                 /* if not cxd0 case, and it's occupied, skip it. */
2141                 if (h->drv[i] && i != 0)
2142                         continue;
2143                 /*
2144                  * If it's cxd0 case, and drv is alloc'ed already, and a
2145                  * disk is configured there, skip it.
2146                  */
2147                 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2148                         continue;
2149
2150                 /*
2151                  * We've found an empty slot.  Update highest_lun
2152                  * provided this isn't just the fake cxd0 controller node.
2153                  */
2154                 if (i > h->highest_lun && !controller_node)
2155                         h->highest_lun = i;
2156
2157                 /* If adding a real disk at cxd0, and it's already alloc'ed */
2158                 if (i == 0 && h->drv[i] != NULL)
2159                         return i;
2160
2161                 /*
2162                  * Found an empty slot, not already alloc'ed.  Allocate it.
2163                  * Mark it with raid_level == -1, so we know it's new later on.
2164                  */
2165                 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2166                 if (!drv)
2167                         return -1;
2168                 drv->raid_level = -1; /* so we know it's new */
2169                 h->drv[i] = drv;
2170                 return i;
2171         }
2172         return -1;
2173 }
2174
2175 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2176 {
2177         kfree(h->drv[drv_index]);
2178         h->drv[drv_index] = NULL;
2179 }
2180
2181 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2182 {
2183         put_disk(h->gendisk[drv_index]);
2184         h->gendisk[drv_index] = NULL;
2185 }
2186
2187 /* cciss_add_gendisk finds a free hba[]->drv structure
2188  * and allocates a gendisk if needed, and sets the lunid
2189  * in the drvinfo structure.   It returns the index into
2190  * the ->drv[] array, or -1 if none are free.
2191  * is_controller_node indicates whether highest_lun should
2192  * count this disk, or if it's only being added to provide
2193  * a means to talk to the controller in case no logical
2194  * drives have yet been configured.
2195  */
2196 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2197         int controller_node)
2198 {
2199         int drv_index;
2200
2201         drv_index = cciss_alloc_drive_info(h, controller_node);
2202         if (drv_index == -1)
2203                 return -1;
2204
2205         /*Check if the gendisk needs to be allocated */
2206         if (!h->gendisk[drv_index]) {
2207                 h->gendisk[drv_index] =
2208                         alloc_disk(1 << NWD_SHIFT);
2209                 if (!h->gendisk[drv_index]) {
2210                         dev_err(&h->pdev->dev,
2211                                 "could not allocate a new disk %d\n",
2212                                 drv_index);
2213                         goto err_free_drive_info;
2214                 }
2215         }
2216         memcpy(h->drv[drv_index]->LunID, lunid,
2217                 sizeof(h->drv[drv_index]->LunID));
2218         if (cciss_create_ld_sysfs_entry(h, drv_index))
2219                 goto err_free_disk;
2220         /* Don't need to mark this busy because nobody */
2221         /* else knows about this disk yet to contend */
2222         /* for access to it. */
2223         h->drv[drv_index]->busy_configuring = 0;
2224         wmb();
2225         return drv_index;
2226
2227 err_free_disk:
2228         cciss_free_gendisk(h, drv_index);
2229 err_free_drive_info:
2230         cciss_free_drive_info(h, drv_index);
2231         return -1;
2232 }
2233
2234 /* This is for the special case of a controller which
2235  * has no logical drives.  In this case, we still need
2236  * to register a disk so the controller can be accessed
2237  * by the Array Config Utility.
2238  */
2239 static void cciss_add_controller_node(ctlr_info_t *h)
2240 {
2241         struct gendisk *disk;
2242         int drv_index;
2243
2244         if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2245                 return;
2246
2247         drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2248         if (drv_index == -1)
2249                 goto error;
2250         h->drv[drv_index]->block_size = 512;
2251         h->drv[drv_index]->nr_blocks = 0;
2252         h->drv[drv_index]->heads = 0;
2253         h->drv[drv_index]->sectors = 0;
2254         h->drv[drv_index]->cylinders = 0;
2255         h->drv[drv_index]->raid_level = -1;
2256         memset(h->drv[drv_index]->serial_no, 0, 16);
2257         disk = h->gendisk[drv_index];
2258         if (cciss_add_disk(h, disk, drv_index) == 0)
2259                 return;
2260         cciss_free_gendisk(h, drv_index);
2261         cciss_free_drive_info(h, drv_index);
2262 error:
2263         dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2264         return;
2265 }
2266
2267 /* This function will add and remove logical drives from the Logical
2268  * drive array of the controller and maintain persistency of ordering
2269  * so that mount points are preserved until the next reboot.  This allows
2270  * for the removal of logical drives in the middle of the drive array
2271  * without a re-ordering of those drives.
2272  * INPUT
2273  * h            = The controller to perform the operations on
2274  */
2275 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2276         int via_ioctl)
2277 {
2278         int num_luns;
2279         ReportLunData_struct *ld_buff = NULL;
2280         int return_code;
2281         int listlength = 0;
2282         int i;
2283         int drv_found;
2284         int drv_index = 0;
2285         unsigned char lunid[8] = CTLR_LUNID;
2286         unsigned long flags;
2287
2288         if (!capable(CAP_SYS_RAWIO))
2289                 return -EPERM;
2290
2291         /* Set busy_configuring flag for this operation */
2292         spin_lock_irqsave(&h->lock, flags);
2293         if (h->busy_configuring) {
2294                 spin_unlock_irqrestore(&h->lock, flags);
2295                 return -EBUSY;
2296         }
2297         h->busy_configuring = 1;
2298         spin_unlock_irqrestore(&h->lock, flags);
2299
2300         ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2301         if (ld_buff == NULL)
2302                 goto mem_msg;
2303
2304         return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2305                                       sizeof(ReportLunData_struct),
2306                                       0, CTLR_LUNID, TYPE_CMD);
2307
2308         if (return_code == IO_OK)
2309                 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2310         else {  /* reading number of logical volumes failed */
2311                 dev_warn(&h->pdev->dev,
2312                         "report logical volume command failed\n");
2313                 listlength = 0;
2314                 goto freeret;
2315         }
2316
2317         num_luns = listlength / 8;      /* 8 bytes per entry */
2318         if (num_luns > CISS_MAX_LUN) {
2319                 num_luns = CISS_MAX_LUN;
2320                 dev_warn(&h->pdev->dev, "more luns configured"
2321                        " on controller than can be handled by"
2322                        " this driver.\n");
2323         }
2324
2325         if (num_luns == 0)
2326                 cciss_add_controller_node(h);
2327
2328         /* Compare controller drive array to driver's drive array
2329          * to see if any drives are missing on the controller due
2330          * to action of Array Config Utility (user deletes drive)
2331          * and deregister logical drives which have disappeared.
2332          */
2333         for (i = 0; i <= h->highest_lun; i++) {
2334                 int j;
2335                 drv_found = 0;
2336
2337                 /* skip holes in the array from already deleted drives */
2338                 if (h->drv[i] == NULL)
2339                         continue;
2340
2341                 for (j = 0; j < num_luns; j++) {
2342                         memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2343                         if (memcmp(h->drv[i]->LunID, lunid,
2344                                 sizeof(lunid)) == 0) {
2345                                 drv_found = 1;
2346                                 break;
2347                         }
2348                 }
2349                 if (!drv_found) {
2350                         /* Deregister it from the OS, it's gone. */
2351                         spin_lock_irqsave(&h->lock, flags);
2352                         h->drv[i]->busy_configuring = 1;
2353                         spin_unlock_irqrestore(&h->lock, flags);
2354                         return_code = deregister_disk(h, i, 1, via_ioctl);
2355                         if (h->drv[i] != NULL)
2356                                 h->drv[i]->busy_configuring = 0;
2357                 }
2358         }
2359
2360         /* Compare controller drive array to driver's drive array.
2361          * Check for updates in the drive information and any new drives
2362          * on the controller due to ACU adding logical drives, or changing
2363          * a logical drive's size, etc.  Reregister any new/changed drives
2364          */
2365         for (i = 0; i < num_luns; i++) {
2366                 int j;
2367
2368                 drv_found = 0;
2369
2370                 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2371                 /* Find if the LUN is already in the drive array
2372                  * of the driver.  If so then update its info
2373                  * if not in use.  If it does not exist then find
2374                  * the first free index and add it.
2375                  */
2376                 for (j = 0; j <= h->highest_lun; j++) {
2377                         if (h->drv[j] != NULL &&
2378                                 memcmp(h->drv[j]->LunID, lunid,
2379                                         sizeof(h->drv[j]->LunID)) == 0) {
2380                                 drv_index = j;
2381                                 drv_found = 1;
2382                                 break;
2383                         }
2384                 }
2385
2386                 /* check if the drive was found already in the array */
2387                 if (!drv_found) {
2388                         drv_index = cciss_add_gendisk(h, lunid, 0);
2389                         if (drv_index == -1)
2390                                 goto freeret;
2391                 }
2392                 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2393         }               /* end for */
2394
2395 freeret:
2396         kfree(ld_buff);
2397         h->busy_configuring = 0;
2398         /* We return -1 here to tell the ACU that we have registered/updated
2399          * all of the drives that we can and to keep it from calling us
2400          * additional times.
2401          */
2402         return -1;
2403 mem_msg:
2404         dev_err(&h->pdev->dev, "out of memory\n");
2405         h->busy_configuring = 0;
2406         goto freeret;
2407 }
2408
2409 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2410 {
2411         /* zero out the disk size info */
2412         drive_info->nr_blocks = 0;
2413         drive_info->block_size = 0;
2414         drive_info->heads = 0;
2415         drive_info->sectors = 0;
2416         drive_info->cylinders = 0;
2417         drive_info->raid_level = -1;
2418         memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2419         memset(drive_info->model, 0, sizeof(drive_info->model));
2420         memset(drive_info->rev, 0, sizeof(drive_info->rev));
2421         memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2422         /*
2423          * don't clear the LUNID though, we need to remember which
2424          * one this one is.
2425          */
2426 }
2427
2428 /* This function will deregister the disk and it's queue from the
2429  * kernel.  It must be called with the controller lock held and the
2430  * drv structures busy_configuring flag set.  It's parameters are:
2431  *
2432  * disk = This is the disk to be deregistered
2433  * drv  = This is the drive_info_struct associated with the disk to be
2434  *        deregistered.  It contains information about the disk used
2435  *        by the driver.
2436  * clear_all = This flag determines whether or not the disk information
2437  *             is going to be completely cleared out and the highest_lun
2438  *             reset.  Sometimes we want to clear out information about
2439  *             the disk in preparation for re-adding it.  In this case
2440  *             the highest_lun should be left unchanged and the LunID
2441  *             should not be cleared.
2442  * via_ioctl
2443  *    This indicates whether we've reached this path via ioctl.
2444  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2445  *    If this path is reached via ioctl(), then the max_usage_count will
2446  *    be 1, as the process calling ioctl() has got to have the device open.
2447  *    If we get here via sysfs, then the max usage count will be zero.
2448 */
2449 static int deregister_disk(ctlr_info_t *h, int drv_index,
2450                            int clear_all, int via_ioctl)
2451 {
2452         int i;
2453         struct gendisk *disk;
2454         drive_info_struct *drv;
2455         int recalculate_highest_lun;
2456
2457         if (!capable(CAP_SYS_RAWIO))
2458                 return -EPERM;
2459
2460         drv = h->drv[drv_index];
2461         disk = h->gendisk[drv_index];
2462
2463         /* make sure logical volume is NOT is use */
2464         if (clear_all || (h->gendisk[0] == disk)) {
2465                 if (drv->usage_count > via_ioctl)
2466                         return -EBUSY;
2467         } else if (drv->usage_count > 0)
2468                 return -EBUSY;
2469
2470         recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2471
2472         /* invalidate the devices and deregister the disk.  If it is disk
2473          * zero do not deregister it but just zero out it's values.  This
2474          * allows us to delete disk zero but keep the controller registered.
2475          */
2476         if (h->gendisk[0] != disk) {
2477                 struct request_queue *q = disk->queue;
2478                 if (disk->flags & GENHD_FL_UP) {
2479                         cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2480                         del_gendisk(disk);
2481                 }
2482                 if (q)
2483                         blk_cleanup_queue(q);
2484                 /* If clear_all is set then we are deleting the logical
2485                  * drive, not just refreshing its info.  For drives
2486                  * other than disk 0 we will call put_disk.  We do not
2487                  * do this for disk 0 as we need it to be able to
2488                  * configure the controller.
2489                  */
2490                 if (clear_all){
2491                         /* This isn't pretty, but we need to find the
2492                          * disk in our array and NULL our the pointer.
2493                          * This is so that we will call alloc_disk if
2494                          * this index is used again later.
2495                          */
2496                         for (i=0; i < CISS_MAX_LUN; i++){
2497                                 if (h->gendisk[i] == disk) {
2498                                         h->gendisk[i] = NULL;
2499                                         break;
2500                                 }
2501                         }
2502                         put_disk(disk);
2503                 }
2504         } else {
2505                 set_capacity(disk, 0);
2506                 cciss_clear_drive_info(drv);
2507         }
2508
2509         --h->num_luns;
2510
2511         /* if it was the last disk, find the new hightest lun */
2512         if (clear_all && recalculate_highest_lun) {
2513                 int newhighest = -1;
2514                 for (i = 0; i <= h->highest_lun; i++) {
2515                         /* if the disk has size > 0, it is available */
2516                         if (h->drv[i] && h->drv[i]->heads)
2517                                 newhighest = i;
2518                 }
2519                 h->highest_lun = newhighest;
2520         }
2521         return 0;
2522 }
2523
2524 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2525                 size_t size, __u8 page_code, unsigned char *scsi3addr,
2526                 int cmd_type)
2527 {
2528         u64bit buff_dma_handle;
2529         int status = IO_OK;
2530
2531         c->cmd_type = CMD_IOCTL_PEND;
2532         c->Header.ReplyQueue = 0;
2533         if (buff != NULL) {
2534                 c->Header.SGList = 1;
2535                 c->Header.SGTotal = 1;
2536         } else {
2537                 c->Header.SGList = 0;
2538                 c->Header.SGTotal = 0;
2539         }
2540         c->Header.Tag.lower = c->busaddr;
2541         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2542
2543         c->Request.Type.Type = cmd_type;
2544         if (cmd_type == TYPE_CMD) {
2545                 switch (cmd) {
2546                 case CISS_INQUIRY:
2547                         /* are we trying to read a vital product page */
2548                         if (page_code != 0) {
2549                                 c->Request.CDB[1] = 0x01;
2550                                 c->Request.CDB[2] = page_code;
2551                         }
2552                         c->Request.CDBLen = 6;
2553                         c->Request.Type.Attribute = ATTR_SIMPLE;
2554                         c->Request.Type.Direction = XFER_READ;
2555                         c->Request.Timeout = 0;
2556                         c->Request.CDB[0] = CISS_INQUIRY;
2557                         c->Request.CDB[4] = size & 0xFF;
2558                         break;
2559                 case CISS_REPORT_LOG:
2560                 case CISS_REPORT_PHYS:
2561                         /* Talking to controller so It's a physical command
2562                            mode = 00 target = 0.  Nothing to write.
2563                          */
2564                         c->Request.CDBLen = 12;
2565                         c->Request.Type.Attribute = ATTR_SIMPLE;
2566                         c->Request.Type.Direction = XFER_READ;
2567                         c->Request.Timeout = 0;
2568                         c->Request.CDB[0] = cmd;
2569                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2570                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2571                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2572                         c->Request.CDB[9] = size & 0xFF;
2573                         break;
2574
2575                 case CCISS_READ_CAPACITY:
2576                         c->Request.CDBLen = 10;
2577                         c->Request.Type.Attribute = ATTR_SIMPLE;
2578                         c->Request.Type.Direction = XFER_READ;
2579                         c->Request.Timeout = 0;
2580                         c->Request.CDB[0] = cmd;
2581                         break;
2582                 case CCISS_READ_CAPACITY_16:
2583                         c->Request.CDBLen = 16;
2584                         c->Request.Type.Attribute = ATTR_SIMPLE;
2585                         c->Request.Type.Direction = XFER_READ;
2586                         c->Request.Timeout = 0;
2587                         c->Request.CDB[0] = cmd;
2588                         c->Request.CDB[1] = 0x10;
2589                         c->Request.CDB[10] = (size >> 24) & 0xFF;
2590                         c->Request.CDB[11] = (size >> 16) & 0xFF;
2591                         c->Request.CDB[12] = (size >> 8) & 0xFF;
2592                         c->Request.CDB[13] = size & 0xFF;
2593                         c->Request.Timeout = 0;
2594                         c->Request.CDB[0] = cmd;
2595                         break;
2596                 case CCISS_CACHE_FLUSH:
2597                         c->Request.CDBLen = 12;
2598                         c->Request.Type.Attribute = ATTR_SIMPLE;
2599                         c->Request.Type.Direction = XFER_WRITE;
2600                         c->Request.Timeout = 0;
2601                         c->Request.CDB[0] = BMIC_WRITE;
2602                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2603                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2604                         c->Request.CDB[8] = size & 0xFF;
2605                         break;
2606                 case TEST_UNIT_READY:
2607                         c->Request.CDBLen = 6;
2608                         c->Request.Type.Attribute = ATTR_SIMPLE;
2609                         c->Request.Type.Direction = XFER_NONE;
2610                         c->Request.Timeout = 0;
2611                         break;
2612                 default:
2613                         dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2614                         return IO_ERROR;
2615                 }
2616         } else if (cmd_type == TYPE_MSG) {
2617                 switch (cmd) {
2618                 case CCISS_ABORT_MSG:
2619                         c->Request.CDBLen = 12;
2620                         c->Request.Type.Attribute = ATTR_SIMPLE;
2621                         c->Request.Type.Direction = XFER_WRITE;
2622                         c->Request.Timeout = 0;
2623                         c->Request.CDB[0] = cmd;        /* abort */
2624                         c->Request.CDB[1] = 0;  /* abort a command */
2625                         /* buff contains the tag of the command to abort */
2626                         memcpy(&c->Request.CDB[4], buff, 8);
2627                         break;
2628                 case CCISS_RESET_MSG:
2629                         c->Request.CDBLen = 16;
2630                         c->Request.Type.Attribute = ATTR_SIMPLE;
2631                         c->Request.Type.Direction = XFER_NONE;
2632                         c->Request.Timeout = 0;
2633                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2634                         c->Request.CDB[0] = cmd;        /* reset */
2635                         c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2636                         break;
2637                 case CCISS_NOOP_MSG:
2638                         c->Request.CDBLen = 1;
2639                         c->Request.Type.Attribute = ATTR_SIMPLE;
2640                         c->Request.Type.Direction = XFER_WRITE;
2641                         c->Request.Timeout = 0;
2642                         c->Request.CDB[0] = cmd;
2643                         break;
2644                 default:
2645                         dev_warn(&h->pdev->dev,
2646                                 "unknown message type %d\n", cmd);
2647                         return IO_ERROR;
2648                 }
2649         } else {
2650                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2651                 return IO_ERROR;
2652         }
2653         /* Fill in the scatter gather information */
2654         if (size > 0) {
2655                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2656                                                              buff, size,
2657                                                              PCI_DMA_BIDIRECTIONAL);
2658                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2659                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2660                 c->SG[0].Len = size;
2661                 c->SG[0].Ext = 0;       /* we are not chaining */
2662         }
2663         return status;
2664 }
2665
2666 static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2667         u8 reset_type)
2668 {
2669         CommandList_struct *c;
2670         int return_status;
2671
2672         c = cmd_alloc(h);
2673         if (!c)
2674                 return -ENOMEM;
2675         return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2676                 CTLR_LUNID, TYPE_MSG);
2677         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2678         if (return_status != IO_OK) {
2679                 cmd_special_free(h, c);
2680                 return return_status;
2681         }
2682         c->waiting = NULL;
2683         enqueue_cmd_and_start_io(h, c);
2684         /* Don't wait for completion, the reset won't complete.  Don't free
2685          * the command either.  This is the last command we will send before
2686          * re-initializing everything, so it doesn't matter and won't leak.
2687          */
2688         return 0;
2689 }
2690
2691 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2692 {
2693         switch (c->err_info->ScsiStatus) {
2694         case SAM_STAT_GOOD:
2695                 return IO_OK;
2696         case SAM_STAT_CHECK_CONDITION:
2697                 switch (0xf & c->err_info->SenseInfo[2]) {
2698                 case 0: return IO_OK; /* no sense */
2699                 case 1: return IO_OK; /* recovered error */
2700                 default:
2701                         if (check_for_unit_attention(h, c))
2702                                 return IO_NEEDS_RETRY;
2703                         dev_warn(&h->pdev->dev, "cmd 0x%02x "
2704                                 "check condition, sense key = 0x%02x\n",
2705                                 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2706                 }
2707                 break;
2708         default:
2709                 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2710                         "scsi status = 0x%02x\n",
2711                         c->Request.CDB[0], c->err_info->ScsiStatus);
2712                 break;
2713         }
2714         return IO_ERROR;
2715 }
2716
2717 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2718 {
2719         int return_status = IO_OK;
2720
2721         if (c->err_info->CommandStatus == CMD_SUCCESS)
2722                 return IO_OK;
2723
2724         switch (c->err_info->CommandStatus) {
2725         case CMD_TARGET_STATUS:
2726                 return_status = check_target_status(h, c);
2727                 break;
2728         case CMD_DATA_UNDERRUN:
2729         case CMD_DATA_OVERRUN:
2730                 /* expected for inquiry and report lun commands */
2731                 break;
2732         case CMD_INVALID:
2733                 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2734                        "reported invalid\n", c->Request.CDB[0]);
2735                 return_status = IO_ERROR;
2736                 break;
2737         case CMD_PROTOCOL_ERR:
2738                 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2739                        "protocol error\n", c->Request.CDB[0]);
2740                 return_status = IO_ERROR;
2741                 break;
2742         case CMD_HARDWARE_ERR:
2743                 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2744                        " hardware error\n", c->Request.CDB[0]);
2745                 return_status = IO_ERROR;
2746                 break;
2747         case CMD_CONNECTION_LOST:
2748                 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2749                        "connection lost\n", c->Request.CDB[0]);
2750                 return_status = IO_ERROR;
2751                 break;
2752         case CMD_ABORTED:
2753                 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2754                        "aborted\n", c->Request.CDB[0]);
2755                 return_status = IO_ERROR;
2756                 break;
2757         case CMD_ABORT_FAILED:
2758                 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2759                        "abort failed\n", c->Request.CDB[0]);
2760                 return_status = IO_ERROR;
2761                 break;
2762         case CMD_UNSOLICITED_ABORT:
2763                 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2764                         c->Request.CDB[0]);
2765                 return_status = IO_NEEDS_RETRY;
2766                 break;
2767         case CMD_UNABORTABLE:
2768                 dev_warn(&h->pdev->dev, "cmd unabortable\n");
2769                 return_status = IO_ERROR;
2770                 break;
2771         default:
2772                 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2773                        "unknown status %x\n", c->Request.CDB[0],
2774                        c->err_info->CommandStatus);
2775                 return_status = IO_ERROR;
2776         }
2777         return return_status;
2778 }
2779
2780 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2781         int attempt_retry)
2782 {
2783         DECLARE_COMPLETION_ONSTACK(wait);
2784         u64bit buff_dma_handle;
2785         int return_status = IO_OK;
2786
2787 resend_cmd2:
2788         c->waiting = &wait;
2789         enqueue_cmd_and_start_io(h, c);
2790
2791         wait_for_completion(&wait);
2792
2793         if (c->err_info->CommandStatus == 0 || !attempt_retry)
2794                 goto command_done;
2795
2796         return_status = process_sendcmd_error(h, c);
2797
2798         if (return_status == IO_NEEDS_RETRY &&
2799                 c->retry_count < MAX_CMD_RETRIES) {
2800                 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2801                         c->Request.CDB[0]);
2802                 c->retry_count++;
2803                 /* erase the old error information */
2804                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2805                 return_status = IO_OK;
2806                 INIT_COMPLETION(wait);
2807                 goto resend_cmd2;
2808         }
2809
2810 command_done:
2811         /* unlock the buffers from DMA */
2812         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2813         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2814         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2815                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2816         return return_status;
2817 }
2818
2819 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2820                            __u8 page_code, unsigned char scsi3addr[],
2821                         int cmd_type)
2822 {
2823         CommandList_struct *c;
2824         int return_status;
2825
2826         c = cmd_special_alloc(h);
2827         if (!c)
2828                 return -ENOMEM;
2829         return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2830                 scsi3addr, cmd_type);
2831         if (return_status == IO_OK)
2832                 return_status = sendcmd_withirq_core(h, c, 1);
2833
2834         cmd_special_free(h, c);
2835         return return_status;
2836 }
2837
2838 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2839                                    sector_t total_size,
2840                                    unsigned int block_size,
2841                                    InquiryData_struct *inq_buff,
2842                                    drive_info_struct *drv)
2843 {
2844         int return_code;
2845         unsigned long t;
2846         unsigned char scsi3addr[8];
2847
2848         memset(inq_buff, 0, sizeof(InquiryData_struct));
2849         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2850         return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2851                         sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2852         if (return_code == IO_OK) {
2853                 if (inq_buff->data_byte[8] == 0xFF) {
2854                         dev_warn(&h->pdev->dev,
2855                                "reading geometry failed, volume "
2856                                "does not support reading geometry\n");
2857                         drv->heads = 255;
2858                         drv->sectors = 32;      /* Sectors per track */
2859                         drv->cylinders = total_size + 1;
2860                         drv->raid_level = RAID_UNKNOWN;
2861                 } else {
2862                         drv->heads = inq_buff->data_byte[6];
2863                         drv->sectors = inq_buff->data_byte[7];
2864                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2865                         drv->cylinders += inq_buff->data_byte[5];
2866                         drv->raid_level = inq_buff->data_byte[8];
2867                 }
2868                 drv->block_size = block_size;
2869                 drv->nr_blocks = total_size + 1;
2870                 t = drv->heads * drv->sectors;
2871                 if (t > 1) {
2872                         sector_t real_size = total_size + 1;
2873                         unsigned long rem = sector_div(real_size, t);
2874                         if (rem)
2875                                 real_size++;
2876                         drv->cylinders = real_size;
2877                 }
2878         } else {                /* Get geometry failed */
2879                 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2880         }
2881 }
2882
2883 static void
2884 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2885                     unsigned int *block_size)
2886 {
2887         ReadCapdata_struct *buf;
2888         int return_code;
2889         unsigned char scsi3addr[8];
2890
2891         buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2892         if (!buf) {
2893                 dev_warn(&h->pdev->dev, "out of memory\n");
2894                 return;
2895         }
2896
2897         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2898         return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2899                 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2900         if (return_code == IO_OK) {
2901                 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2902                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2903         } else {                /* read capacity command failed */
2904                 dev_warn(&h->pdev->dev, "read capacity failed\n");
2905                 *total_size = 0;
2906                 *block_size = BLOCK_SIZE;
2907         }
2908         kfree(buf);
2909 }
2910
2911 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2912         sector_t *total_size, unsigned int *block_size)
2913 {
2914         ReadCapdata_struct_16 *buf;
2915         int return_code;
2916         unsigned char scsi3addr[8];
2917
2918         buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2919         if (!buf) {
2920                 dev_warn(&h->pdev->dev, "out of memory\n");
2921                 return;
2922         }
2923
2924         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2925         return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2926                 buf, sizeof(ReadCapdata_struct_16),
2927                         0, scsi3addr, TYPE_CMD);
2928         if (return_code == IO_OK) {
2929                 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2930                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2931         } else {                /* read capacity command failed */
2932                 dev_warn(&h->pdev->dev, "read capacity failed\n");
2933                 *total_size = 0;
2934                 *block_size = BLOCK_SIZE;
2935         }
2936         dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2937                (unsigned long long)*total_size+1, *block_size);
2938         kfree(buf);
2939 }
2940
2941 static int cciss_revalidate(struct gendisk *disk)
2942 {
2943         ctlr_info_t *h = get_host(disk);
2944         drive_info_struct *drv = get_drv(disk);
2945         int logvol;
2946         int FOUND = 0;
2947         unsigned int block_size;
2948         sector_t total_size;
2949         InquiryData_struct *inq_buff = NULL;
2950
2951         for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2952                 if (!h->drv[logvol])
2953                         continue;
2954                 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2955                         sizeof(drv->LunID)) == 0) {
2956                         FOUND = 1;
2957                         break;
2958                 }
2959         }
2960
2961         if (!FOUND)
2962                 return 1;
2963
2964         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2965         if (inq_buff == NULL) {
2966                 dev_warn(&h->pdev->dev, "out of memory\n");
2967                 return 1;
2968         }
2969         if (h->cciss_read == CCISS_READ_10) {
2970                 cciss_read_capacity(h, logvol,
2971                                         &total_size, &block_size);
2972         } else {
2973                 cciss_read_capacity_16(h, logvol,
2974                                         &total_size, &block_size);
2975         }
2976         cciss_geometry_inquiry(h, logvol, total_size, block_size,
2977                                inq_buff, drv);
2978
2979         blk_queue_logical_block_size(drv->queue, drv->block_size);
2980         set_capacity(disk, drv->nr_blocks);
2981
2982         kfree(inq_buff);
2983         return 0;
2984 }
2985
2986 /*
2987  * Map (physical) PCI mem into (virtual) kernel space
2988  */
2989 static void __iomem *remap_pci_mem(ulong base, ulong size)
2990 {
2991         ulong page_base = ((ulong) base) & PAGE_MASK;
2992         ulong page_offs = ((ulong) base) - page_base;
2993         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2994
2995         return page_remapped ? (page_remapped + page_offs) : NULL;
2996 }
2997
2998 /*
2999  * Takes jobs of the Q and sends them to the hardware, then puts it on
3000  * the Q to wait for completion.
3001  */
3002 static void start_io(ctlr_info_t *h)
3003 {
3004         CommandList_struct *c;
3005
3006         while (!list_empty(&h->reqQ)) {
3007                 c = list_entry(h->reqQ.next, CommandList_struct, list);
3008                 /* can't do anything if fifo is full */
3009                 if ((h->access.fifo_full(h))) {
3010                         dev_warn(&h->pdev->dev, "fifo full\n");
3011                         break;
3012                 }
3013
3014                 /* Get the first entry from the Request Q */
3015                 removeQ(c);
3016                 h->Qdepth--;
3017
3018                 /* Tell the controller execute command */
3019                 h->access.submit_command(h, c);
3020
3021                 /* Put job onto the completed Q */
3022                 addQ(&h->cmpQ, c);
3023         }
3024 }
3025
3026 /* Assumes that h->lock is held. */
3027 /* Zeros out the error record and then resends the command back */
3028 /* to the controller */
3029 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3030 {
3031         /* erase the old error information */
3032         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3033
3034         /* add it to software queue and then send it to the controller */
3035         addQ(&h->reqQ, c);
3036         h->Qdepth++;
3037         if (h->Qdepth > h->maxQsinceinit)
3038                 h->maxQsinceinit = h->Qdepth;
3039
3040         start_io(h);
3041 }
3042
3043 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3044         unsigned int msg_byte, unsigned int host_byte,
3045         unsigned int driver_byte)
3046 {
3047         /* inverse of macros in scsi.h */
3048         return (scsi_status_byte & 0xff) |
3049                 ((msg_byte & 0xff) << 8) |
3050                 ((host_byte & 0xff) << 16) |
3051                 ((driver_byte & 0xff) << 24);
3052 }
3053
3054 static inline int evaluate_target_status(ctlr_info_t *h,
3055                         CommandList_struct *cmd, int *retry_cmd)
3056 {
3057         unsigned char sense_key;
3058         unsigned char status_byte, msg_byte, host_byte, driver_byte;
3059         int error_value;
3060
3061         *retry_cmd = 0;
3062         /* If we get in here, it means we got "target status", that is, scsi status */
3063         status_byte = cmd->err_info->ScsiStatus;
3064         driver_byte = DRIVER_OK;
3065         msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3066
3067         if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3068                 host_byte = DID_PASSTHROUGH;
3069         else
3070                 host_byte = DID_OK;
3071
3072         error_value = make_status_bytes(status_byte, msg_byte,
3073                 host_byte, driver_byte);
3074
3075         if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3076                 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3077                         dev_warn(&h->pdev->dev, "cmd %p "
3078                                "has SCSI Status 0x%x\n",
3079                                cmd, cmd->err_info->ScsiStatus);
3080                 return error_value;
3081         }
3082
3083         /* check the sense key */
3084         sense_key = 0xf & cmd->err_info->SenseInfo[2];
3085         /* no status or recovered error */
3086         if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3087             (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3088                 error_value = 0;
3089
3090         if (check_for_unit_attention(h, cmd)) {
3091                 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3092                 return 0;
3093         }
3094
3095         /* Not SG_IO or similar? */
3096         if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3097                 if (error_value != 0)
3098                         dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3099                                " sense key = 0x%x\n", cmd, sense_key);
3100                 return error_value;
3101         }
3102
3103         /* SG_IO or similar, copy sense data back */
3104         if (cmd->rq->sense) {
3105                 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3106                         cmd->rq->sense_len = cmd->err_info->SenseLen;
3107                 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3108                         cmd->rq->sense_len);
3109         } else
3110                 cmd->rq->sense_len = 0;
3111
3112         return error_value;
3113 }
3114
3115 /* checks the status of the job and calls complete buffers to mark all
3116  * buffers for the completed job. Note that this function does not need
3117  * to hold the hba/queue lock.
3118  */
3119 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3120                                     int timeout)
3121 {
3122         int retry_cmd = 0;
3123         struct request *rq = cmd->rq;
3124
3125         rq->errors = 0;
3126
3127         if (timeout)
3128                 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3129
3130         if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
3131                 goto after_error_processing;
3132
3133         switch (cmd->err_info->CommandStatus) {
3134         case CMD_TARGET_STATUS:
3135                 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3136                 break;
3137         case CMD_DATA_UNDERRUN:
3138                 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3139                         dev_warn(&h->pdev->dev, "cmd %p has"
3140                                " completed with data underrun "
3141                                "reported\n", cmd);
3142                         cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3143                 }
3144                 break;
3145         case CMD_DATA_OVERRUN:
3146                 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3147                         dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3148                                " completed with data overrun "
3149                                "reported\n", cmd);
3150                 break;
3151         case CMD_INVALID:
3152                 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3153                        "reported invalid\n", cmd);
3154                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3155                         cmd->err_info->CommandStatus, DRIVER_OK,
3156                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3157                                 DID_PASSTHROUGH : DID_ERROR);
3158                 break;
3159         case CMD_PROTOCOL_ERR:
3160                 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3161                        "protocol error\n", cmd);
3162                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3163                         cmd->err_info->CommandStatus, DRIVER_OK,
3164                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3165                                 DID_PASSTHROUGH : DID_ERROR);
3166                 break;
3167         case CMD_HARDWARE_ERR:
3168                 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3169                        " hardware error\n", cmd);
3170                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3171                         cmd->err_info->CommandStatus, DRIVER_OK,
3172                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3173                                 DID_PASSTHROUGH : DID_ERROR);
3174                 break;
3175         case CMD_CONNECTION_LOST:
3176                 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3177                        "connection lost\n", cmd);
3178                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3179                         cmd->err_info->CommandStatus, DRIVER_OK,
3180                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3181                                 DID_PASSTHROUGH : DID_ERROR);
3182                 break;
3183         case CMD_ABORTED:
3184                 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3185                        "aborted\n", cmd);
3186                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3187                         cmd->err_info->CommandStatus, DRIVER_OK,
3188                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3189                                 DID_PASSTHROUGH : DID_ABORT);
3190                 break;
3191         case CMD_ABORT_FAILED:
3192                 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3193                        "abort failed\n", cmd);
3194                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3195                         cmd->err_info->CommandStatus, DRIVER_OK,
3196                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3197                                 DID_PASSTHROUGH : DID_ERROR);
3198                 break;
3199         case CMD_UNSOLICITED_ABORT:
3200                 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3201                        "abort %p\n", h->ctlr, cmd);
3202                 if (cmd->retry_count < MAX_CMD_RETRIES) {
3203                         retry_cmd = 1;
3204                         dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3205                         cmd->retry_count++;
3206                 } else
3207                         dev_warn(&h->pdev->dev,
3208                                 "%p retried too many times\n", cmd);
3209                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3210                         cmd->err_info->CommandStatus, DRIVER_OK,
3211                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3212                                 DID_PASSTHROUGH : DID_ABORT);
3213                 break;
3214         case CMD_TIMEOUT:
3215                 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3216                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3217                         cmd->err_info->CommandStatus, DRIVER_OK,
3218                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3219                                 DID_PASSTHROUGH : DID_ERROR);
3220                 break;
3221         case CMD_UNABORTABLE:
3222                 dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3223                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3224                         cmd->err_info->CommandStatus, DRIVER_OK,
3225                         cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3226                                 DID_PASSTHROUGH : DID_ERROR);
3227                 break;
3228         default:
3229                 dev_warn(&h->pdev->dev, "cmd %p returned "
3230                        "unknown status %x\n", cmd,
3231                        cmd->err_info->CommandStatus);
3232                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3233                         cmd->err_info->CommandStatus, DRIVER_OK,
3234                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3235                                 DID_PASSTHROUGH : DID_ERROR);
3236         }
3237
3238 after_error_processing:
3239
3240         /* We need to return this command */
3241         if (retry_cmd) {
3242                 resend_cciss_cmd(h, cmd);
3243                 return;
3244         }
3245         cmd->rq->completion_data = cmd;
3246         blk_complete_request(cmd->rq);
3247 }
3248
3249 static inline u32 cciss_tag_contains_index(u32 tag)
3250 {
3251 #define DIRECT_LOOKUP_BIT 0x10
3252         return tag & DIRECT_LOOKUP_BIT;
3253 }
3254
3255 static inline u32 cciss_tag_to_index(u32 tag)
3256 {
3257 #define DIRECT_LOOKUP_SHIFT 5
3258         return tag >> DIRECT_LOOKUP_SHIFT;
3259 }
3260
3261 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3262 {
3263 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3264 #define CCISS_SIMPLE_ERROR_BITS 0x03
3265         if (likely(h->transMethod & CFGTBL_Trans_Performant))
3266                 return tag & ~CCISS_PERF_ERROR_BITS;
3267         return tag & ~CCISS_SIMPLE_ERROR_BITS;
3268 }
3269
3270 static inline void cciss_mark_tag_indexed(u32 *tag)
3271 {
3272         *tag |= DIRECT_LOOKUP_BIT;
3273 }
3274
3275 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3276 {
3277         *tag |= (index << DIRECT_LOOKUP_SHIFT);
3278 }
3279
3280 /*
3281  * Get a request and submit it to the controller.
3282  */
3283 static void do_cciss_request(struct request_queue *q)
3284 {
3285         ctlr_info_t *h = q->queuedata;
3286         CommandList_struct *c;
3287         sector_t start_blk;
3288         int seg;
3289         struct request *creq;
3290         u64bit temp64;
3291         struct scatterlist *tmp_sg;
3292         SGDescriptor_struct *curr_sg;
3293         drive_info_struct *drv;
3294         int i, dir;
3295         int sg_index = 0;
3296         int chained = 0;
3297
3298       queue:
3299         creq = blk_peek_request(q);
3300         if (!creq)
3301                 goto startio;
3302
3303         BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3304
3305         c = cmd_alloc(h);
3306         if (!c)
3307                 goto full;
3308
3309         blk_start_request(creq);
3310
3311         tmp_sg = h->scatter_list[c->cmdindex];
3312         spin_unlock_irq(q->queue_lock);
3313
3314         c->cmd_type = CMD_RWREQ;
3315         c->rq = creq;
3316
3317         /* fill in the request */
3318         drv = creq->rq_disk->private_data;
3319         c->Header.ReplyQueue = 0;       /* unused in simple mode */
3320         /* got command from pool, so use the command block index instead */
3321         /* for direct lookups. */
3322         /* The first 2 bits are reserved for controller error reporting. */
3323         cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3324         cciss_mark_tag_indexed(&c->Header.Tag.lower);
3325         memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3326         c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3327         c->Request.Type.Type = TYPE_CMD;        /* It is a command. */
3328         c->Request.Type.Attribute = ATTR_SIMPLE;
3329         c->Request.Type.Direction =
3330             (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3331         c->Request.Timeout = 0; /* Don't time out */
3332         c->Request.CDB[0] =
3333             (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3334         start_blk = blk_rq_pos(creq);
3335         dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3336                (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3337         sg_init_table(tmp_sg, h->maxsgentries);
3338         seg = blk_rq_map_sg(q, creq, tmp_sg);
3339
3340         /* get the DMA records for the setup */
3341         if (c->Request.Type.Direction == XFER_READ)
3342                 dir = PCI_DMA_FROMDEVICE;
3343         else
3344                 dir = PCI_DMA_TODEVICE;
3345
3346         curr_sg = c->SG;
3347         sg_index = 0;
3348         chained = 0;
3349
3350         for (i = 0; i < seg; i++) {
3351                 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3352                         !chained && ((seg - i) > 1)) {
3353                         /* Point to next chain block. */
3354                         curr_sg = h->cmd_sg_list[c->cmdindex];
3355                         sg_index = 0;
3356                         chained = 1;
3357                 }
3358                 curr_sg[sg_index].Len = tmp_sg[i].length;
3359                 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3360                                                 tmp_sg[i].offset,
3361                                                 tmp_sg[i].length, dir);
3362                 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3363                 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3364                 curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3365                 ++sg_index;
3366         }
3367         if (chained)
3368                 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3369                         (seg - (h->max_cmd_sgentries - 1)) *
3370                                 sizeof(SGDescriptor_struct));
3371
3372         /* track how many SG entries we are using */
3373         if (seg > h->maxSG)
3374                 h->maxSG = seg;
3375
3376         dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3377                         "chained[%d]\n",
3378                         blk_rq_sectors(creq), seg, chained);
3379
3380         c->Header.SGTotal = seg + chained;
3381         if (seg <= h->max_cmd_sgentries)
3382                 c->Header.SGList = c->Header.SGTotal;
3383         else
3384                 c->Header.SGList = h->max_cmd_sgentries;
3385         set_performant_mode(h, c);
3386
3387         if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3388                 if(h->cciss_read == CCISS_READ_10) {
3389                         c->Request.CDB[1] = 0;
3390                         c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3391                         c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3392                         c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3393                         c->Request.CDB[5] = start_blk & 0xff;
3394                         c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3395                         c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3396                         c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3397                         c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3398                 } else {
3399                         u32 upper32 = upper_32_bits(start_blk);
3400
3401                         c->Request.CDBLen = 16;
3402                         c->Request.CDB[1]= 0;
3403                         c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3404                         c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3405                         c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3406                         c->Request.CDB[5]= upper32 & 0xff;
3407                         c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3408                         c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3409                         c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3410                         c->Request.CDB[9]= start_blk & 0xff;
3411                         c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3412                         c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3413                         c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3414                         c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3415                         c->Request.CDB[14] = c->Request.CDB[15] = 0;
3416                 }
3417         } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3418                 c->Request.CDBLen = creq->cmd_len;
3419                 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3420         } else {
3421                 dev_warn(&h->pdev->dev, "bad request type %d\n",
3422                         creq->cmd_type);
3423                 BUG();
3424         }
3425
3426         spin_lock_irq(q->queue_lock);
3427
3428         addQ(&h->reqQ, c);
3429         h->Qdepth++;
3430         if (h->Qdepth > h->maxQsinceinit)
3431                 h->maxQsinceinit = h->Qdepth;
3432
3433         goto queue;
3434 full:
3435         blk_stop_queue(q);
3436 startio:
3437         /* We will already have the driver lock here so not need
3438          * to lock it.
3439          */
3440         start_io(h);
3441 }
3442
3443 static inline unsigned long get_next_completion(ctlr_info_t *h)
3444 {
3445         return h->access.command_completed(h);
3446 }
3447
3448 static inline int interrupt_pending(ctlr_info_t *h)
3449 {
3450         return h->access.intr_pending(h);
3451 }
3452
3453 static inline long interrupt_not_for_us(ctlr_info_t *h)
3454 {
3455         return ((h->access.intr_pending(h) == 0) ||
3456                 (h->interrupts_enabled == 0));
3457 }
3458
3459 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3460                         u32 raw_tag)
3461 {
3462         if (unlikely(tag_index >= h->nr_cmds)) {
3463                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3464                 return 1;
3465         }
3466         return 0;
3467 }
3468
3469 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3470                                 u32 raw_tag)
3471 {
3472         removeQ(c);
3473         if (likely(c->cmd_type == CMD_RWREQ))
3474                 complete_command(h, c, 0);
3475         else if (c->cmd_type == CMD_IOCTL_PEND)
3476                 complete(c->waiting);
3477 #ifdef CONFIG_CISS_SCSI_TAPE
3478         else if (c->cmd_type == CMD_SCSI)
3479                 complete_scsi_command(c, 0, raw_tag);
3480 #endif
3481 }
3482
3483 static inline u32 next_command(ctlr_info_t *h)
3484 {
3485         u32 a;
3486
3487         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3488                 return h->access.command_completed(h);
3489
3490         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3491                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3492                 (h->reply_pool_head)++;
3493                 h->commands_outstanding--;
3494         } else {
3495                 a = FIFO_EMPTY;
3496         }
3497         /* Check for wraparound */
3498         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3499                 h->reply_pool_head = h->reply_pool;
3500                 h->reply_pool_wraparound ^= 1;
3501         }
3502         return a;
3503 }
3504
3505 /* process completion of an indexed ("direct lookup") command */
3506 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3507 {
3508         u32 tag_index;
3509         CommandList_struct *c;
3510
3511         tag_index = cciss_tag_to_index(raw_tag);
3512         if (bad_tag(h, tag_index, raw_tag))
3513                 return next_command(h);
3514         c = h->cmd_pool + tag_index;
3515         finish_cmd(h, c, raw_tag);
3516         return next_command(h);
3517 }
3518
3519 /* process completion of a non-indexed command */
3520 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3521 {
3522         CommandList_struct *c = NULL;
3523         __u32 busaddr_masked, tag_masked;
3524
3525         tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3526         list_for_each_entry(c, &h->cmpQ, list) {
3527                 busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3528                 if (busaddr_masked == tag_masked) {
3529                         finish_cmd(h, c, raw_tag);
3530                         return next_command(h);
3531                 }
3532         }
3533         bad_tag(h, h->nr_cmds + 1, raw_tag);
3534         return next_command(h);
3535 }
3536
3537 /* Some controllers, like p400, will give us one interrupt
3538  * after a soft reset, even if we turned interrupts off.
3539  * Only need to check for this in the cciss_xxx_discard_completions
3540  * functions.
3541  */
3542 static int ignore_bogus_interrupt(ctlr_info_t *h)
3543 {
3544         if (likely(!reset_devices))
3545                 return 0;
3546
3547         if (likely(h->interrupts_enabled))
3548                 return 0;
3549
3550         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3551                 "(known firmware bug.)  Ignoring.\n");
3552
3553         return 1;
3554 }
3555
3556 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3557 {
3558         ctlr_info_t *h = dev_id;
3559         unsigned long flags;
3560         u32 raw_tag;
3561
3562         if (ignore_bogus_interrupt(h))
3563                 return IRQ_NONE;
3564
3565         if (interrupt_not_for_us(h))
3566                 return IRQ_NONE;
3567         spin_lock_irqsave(&h->lock, flags);
3568         while (interrupt_pending(h)) {
3569                 raw_tag = get_next_completion(h);
3570                 while (raw_tag != FIFO_EMPTY)
3571                         raw_tag = next_command(h);
3572         }
3573         spin_unlock_irqrestore(&h->lock, flags);
3574         return IRQ_HANDLED;
3575 }
3576
3577 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3578 {
3579         ctlr_info_t *h = dev_id;
3580         unsigned long flags;
3581         u32 raw_tag;
3582
3583         if (ignore_bogus_interrupt(h))
3584                 return IRQ_NONE;
3585
3586         spin_lock_irqsave(&h->lock, flags);
3587         raw_tag = get_next_completion(h);
3588         while (raw_tag != FIFO_EMPTY)
3589                 raw_tag = next_command(h);
3590         spin_unlock_irqrestore(&h->lock, flags);
3591         return IRQ_HANDLED;
3592 }
3593
3594 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3595 {
3596         ctlr_info_t *h = dev_id;
3597         unsigned long flags;
3598         u32 raw_tag;
3599
3600         if (interrupt_not_for_us(h))
3601                 return IRQ_NONE;
3602         spin_lock_irqsave(&h->lock, flags);
3603         while (interrupt_pending(h)) {
3604                 raw_tag = get_next_completion(h);
3605                 while (raw_tag != FIFO_EMPTY) {
3606                         if (cciss_tag_contains_index(raw_tag))
3607                                 raw_tag = process_indexed_cmd(h, raw_tag);
3608                         else
3609                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3610                 }
3611         }
3612         spin_unlock_irqrestore(&h->lock, flags);
3613         return IRQ_HANDLED;
3614 }
3615
3616 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3617  * check the interrupt pending register because it is not set.
3618  */
3619 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3620 {
3621         ctlr_info_t *h = dev_id;
3622         unsigned long flags;
3623         u32 raw_tag;
3624
3625         spin_lock_irqsave(&h->lock, flags);
3626         raw_tag = get_next_completion(h);
3627         while (raw_tag != FIFO_EMPTY) {
3628                 if (cciss_tag_contains_index(raw_tag))
3629                         raw_tag = process_indexed_cmd(h, raw_tag);
3630                 else
3631                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3632         }
3633         spin_unlock_irqrestore(&h->lock, flags);
3634         return IRQ_HANDLED;
3635 }
3636
3637 /**
3638  * add_to_scan_list() - add controller to rescan queue
3639  * @h:                Pointer to the controller.
3640  *
3641  * Adds the controller to the rescan queue if not already on the queue.
3642  *
3643  * returns 1 if added to the queue, 0 if skipped (could be on the
3644  * queue already, or the controller could be initializing or shutting
3645  * down).
3646  **/
3647 static int add_to_scan_list(struct ctlr_info *h)
3648 {
3649         struct ctlr_info *test_h;
3650         int found = 0;
3651         int ret = 0;
3652
3653         if (h->busy_initializing)
3654                 return 0;
3655
3656         if (!mutex_trylock(&h->busy_shutting_down))
3657                 return 0;
3658
3659         mutex_lock(&scan_mutex);
3660         list_for_each_entry(test_h, &scan_q, scan_list) {
3661                 if (test_h == h) {
3662                         found = 1;
3663                         break;
3664                 }
3665         }
3666         if (!found && !h->busy_scanning) {
3667                 INIT_COMPLETION(h->scan_wait);
3668                 list_add_tail(&h->scan_list, &scan_q);
3669                 ret = 1;
3670         }
3671         mutex_unlock(&scan_mutex);
3672         mutex_unlock(&h->busy_shutting_down);
3673
3674         return ret;
3675 }
3676
3677 /**
3678  * remove_from_scan_list() - remove controller from rescan queue
3679  * @h:                     Pointer to the controller.
3680  *
3681  * Removes the controller from the rescan queue if present. Blocks if
3682  * the controller is currently conducting a rescan.  The controller
3683  * can be in one of three states:
3684  * 1. Doesn't need a scan
3685  * 2. On the scan list, but not scanning yet (we remove it)
3686  * 3. Busy scanning (and not on the list). In this case we want to wait for
3687  *    the scan to complete to make sure the scanning thread for this
3688  *    controller is completely idle.
3689  **/
3690 static void remove_from_scan_list(struct ctlr_info *h)
3691 {
3692         struct ctlr_info *test_h, *tmp_h;
3693
3694         mutex_lock(&scan_mutex);
3695         list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3696                 if (test_h == h) { /* state 2. */
3697                         list_del(&h->scan_list);
3698                         complete_all(&h->scan_wait);
3699                         mutex_unlock(&scan_mutex);
3700                         return;
3701                 }
3702         }
3703         if (h->busy_scanning) { /* state 3. */
3704                 mutex_unlock(&scan_mutex);
3705                 wait_for_completion(&h->scan_wait);
3706         } else { /* state 1, nothing to do. */
3707                 mutex_unlock(&scan_mutex);
3708         }
3709 }
3710
3711 /**
3712  * scan_thread() - kernel thread used to rescan controllers
3713  * @data:        Ignored.
3714  *
3715  * A kernel thread used scan for drive topology changes on
3716  * controllers. The thread processes only one controller at a time
3717  * using a queue.  Controllers are added to the queue using
3718  * add_to_scan_list() and removed from the queue either after done
3719  * processing or using remove_from_scan_list().
3720  *
3721  * returns 0.
3722  **/
3723 static int scan_thread(void *data)
3724 {
3725         struct ctlr_info *h;
3726
3727         while (1) {
3728                 set_current_state(TASK_INTERRUPTIBLE);
3729                 schedule();
3730                 if (kthread_should_stop())
3731                         break;
3732
3733                 while (1) {
3734                         mutex_lock(&scan_mutex);
3735                         if (list_empty(&scan_q)) {
3736                                 mutex_unlock(&scan_mutex);
3737                                 break;
3738                         }
3739
3740                         h = list_entry(scan_q.next,
3741                                        struct ctlr_info,
3742                                        scan_list);
3743                         list_del(&h->scan_list);
3744                         h->busy_scanning = 1;
3745                         mutex_unlock(&scan_mutex);
3746
3747                         rebuild_lun_table(h, 0, 0);
3748                         complete_all(&h->scan_wait);
3749                         mutex_lock(&scan_mutex);
3750                         h->busy_scanning = 0;
3751                         mutex_unlock(&scan_mutex);
3752                 }
3753         }
3754
3755         return 0;
3756 }
3757
3758 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3759 {
3760         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3761                 return 0;
3762
3763         switch (c->err_info->SenseInfo[12]) {
3764         case STATE_CHANGED:
3765                 dev_warn(&h->pdev->dev, "a state change "
3766                         "detected, command retried\n");
3767                 return 1;
3768         break;
3769         case LUN_FAILED:
3770                 dev_warn(&h->pdev->dev, "LUN failure "
3771                         "detected, action required\n");
3772                 return 1;
3773         break;
3774         case REPORT_LUNS_CHANGED:
3775                 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3776         /*
3777          * Here, we could call add_to_scan_list and wake up the scan thread,
3778          * except that it's quite likely that we will get more than one
3779          * REPORT_LUNS_CHANGED condition in quick succession, which means
3780          * that those which occur after the first one will likely happen
3781          * *during* the scan_thread's rescan.  And the rescan code is not
3782          * robust enough to restart in the middle, undoing what it has already
3783          * done, and it's not clear that it's even possible to do this, since
3784          * part of what it does is notify the block layer, which starts
3785          * doing it's own i/o to read partition tables and so on, and the
3786          * driver doesn't have visibility to know what might need undoing.
3787          * In any event, if possible, it is horribly complicated to get right
3788          * so we just don't do it for now.
3789          *
3790          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3791          */
3792                 return 1;
3793         break;
3794         case POWER_OR_RESET:
3795                 dev_warn(&h->pdev->dev,
3796                         "a power on or device reset detected\n");
3797                 return 1;
3798         break;
3799         case UNIT_ATTENTION_CLEARED:
3800                 dev_warn(&h->pdev->dev,
3801                         "unit attention cleared by another initiator\n");
3802                 return 1;
3803         break;
3804         default:
3805                 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3806                 return 1;
3807         }
3808 }
3809
3810 /*
3811  *  We cannot read the structure directly, for portability we must use
3812  *   the io functions.
3813  *   This is for debug only.
3814  */
3815 static void print_cfg_table(ctlr_info_t *h)
3816 {
3817         int i;
3818         char temp_name[17];
3819         CfgTable_struct *tb = h->cfgtable;
3820
3821         dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3822         dev_dbg(&h->pdev->dev, "------------------------------------\n");
3823         for (i = 0; i < 4; i++)
3824                 temp_name[i] = readb(&(tb->Signature[i]));
3825         temp_name[4] = '\0';
3826         dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3827         dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3828                 readl(&(tb->SpecValence)));
3829         dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3830                readl(&(tb->TransportSupport)));
3831         dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3832                readl(&(tb->TransportActive)));
3833         dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3834                readl(&(tb->HostWrite.TransportRequest)));
3835         dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3836                readl(&(tb->HostWrite.CoalIntDelay)));
3837         dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3838                readl(&(tb->HostWrite.CoalIntCount)));
3839         dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3840                readl(&(tb->CmdsOutMax)));
3841         dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3842                 readl(&(tb->BusTypes)));
3843         for (i = 0; i < 16; i++)
3844                 temp_name[i] = readb(&(tb->ServerName[i]));
3845         temp_name[16] = '\0';
3846         dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3847         dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3848                 readl(&(tb->HeartBeat)));
3849 }
3850
3851 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3852 {
3853         int i, offset, mem_type, bar_type;
3854         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3855                 return 0;
3856         offset = 0;
3857         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3858                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3859                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3860                         offset += 4;
3861                 else {
3862                         mem_type = pci_resource_flags(pdev, i) &
3863                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3864                         switch (mem_type) {
3865                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3866                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3867                                 offset += 4;    /* 32 bit */
3868                                 break;
3869