2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/jiffies.h>
39 #include <linux/hdreg.h>
40 #include <linux/spinlock.h>
41 #include <linux/compat.h>
42 #include <linux/mutex.h>
43 #include <asm/uaccess.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/blkdev.h>
48 #include <linux/genhd.h>
49 #include <linux/completion.h>
50 #include <scsi/scsi.h>
52 #include <scsi/scsi_ioctl.h>
53 #include <linux/cdrom.h>
54 #include <linux/scatterlist.h>
55 #include <linux/kthread.h>
57 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
58 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
59 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61 /* Embedded module documentation macros - see modules.h */
62 MODULE_AUTHOR("Hewlett-Packard Company");
63 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
64 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
65 MODULE_VERSION("3.6.26");
66 MODULE_LICENSE("GPL");
68 static DEFINE_MUTEX(cciss_mutex);
69 static struct proc_dir_entry *proc_cciss;
71 #include "cciss_cmd.h"
73 #include <linux/cciss_ioctl.h>
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id[] = {
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
100 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
102 /* board_id = Subsystem Device ID & Vendor ID
103 * product = Marketing Name for the board
104 * access = Address of the struct of function pointers
106 static struct board_type products[] = {
107 {0x40700E11, "Smart Array 5300", &SA5_access},
108 {0x40800E11, "Smart Array 5i", &SA5B_access},
109 {0x40820E11, "Smart Array 532", &SA5B_access},
110 {0x40830E11, "Smart Array 5312", &SA5B_access},
111 {0x409A0E11, "Smart Array 641", &SA5_access},
112 {0x409B0E11, "Smart Array 642", &SA5_access},
113 {0x409C0E11, "Smart Array 6400", &SA5_access},
114 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
115 {0x40910E11, "Smart Array 6i", &SA5_access},
116 {0x3225103C, "Smart Array P600", &SA5_access},
117 {0x3223103C, "Smart Array P800", &SA5_access},
118 {0x3234103C, "Smart Array P400", &SA5_access},
119 {0x3235103C, "Smart Array P400i", &SA5_access},
120 {0x3211103C, "Smart Array E200i", &SA5_access},
121 {0x3212103C, "Smart Array E200", &SA5_access},
122 {0x3213103C, "Smart Array E200i", &SA5_access},
123 {0x3214103C, "Smart Array E200i", &SA5_access},
124 {0x3215103C, "Smart Array E200i", &SA5_access},
125 {0x3237103C, "Smart Array E500", &SA5_access},
126 {0x3223103C, "Smart Array P800", &SA5_access},
127 {0x3234103C, "Smart Array P400", &SA5_access},
128 {0x323D103C, "Smart Array P700m", &SA5_access},
131 /* How long to wait (in milliseconds) for board to go into simple mode */
132 #define MAX_CONFIG_WAIT 30000
133 #define MAX_IOCTL_CONFIG_WAIT 1000
135 /*define how many times we will try a command because of bus resets */
136 #define MAX_CMD_RETRIES 3
140 /* Originally cciss driver only supports 8 major numbers */
141 #define MAX_CTLR_ORIG 8
143 static ctlr_info_t *hba[MAX_CTLR];
145 static struct task_struct *cciss_scan_thread;
146 static DEFINE_MUTEX(scan_mutex);
147 static LIST_HEAD(scan_q);
149 static void do_cciss_request(struct request_queue *q);
150 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
151 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
152 static int cciss_open(struct block_device *bdev, fmode_t mode);
153 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
154 static int cciss_release(struct gendisk *disk, fmode_t mode);
155 static int do_ioctl(struct block_device *bdev, fmode_t mode,
156 unsigned int cmd, unsigned long arg);
157 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
158 unsigned int cmd, unsigned long arg);
159 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
161 static int cciss_revalidate(struct gendisk *disk);
162 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
163 static int deregister_disk(ctlr_info_t *h, int drv_index,
164 int clear_all, int via_ioctl);
166 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
167 sector_t *total_size, unsigned int *block_size);
168 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
169 sector_t *total_size, unsigned int *block_size);
170 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
172 unsigned int block_size, InquiryData_struct *inq_buff,
173 drive_info_struct *drv);
174 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
175 static void start_io(ctlr_info_t *h);
176 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
177 __u8 page_code, unsigned char scsi3addr[],
179 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
181 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
183 static int add_to_scan_list(struct ctlr_info *h);
184 static int scan_thread(void *data);
185 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
186 static void cciss_hba_release(struct device *dev);
187 static void cciss_device_release(struct device *dev);
188 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
189 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
190 static inline u32 next_command(ctlr_info_t *h);
191 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
192 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
194 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
195 unsigned long *memory_bar);
198 /* performant mode helper functions */
199 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
201 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
203 #ifdef CONFIG_PROC_FS
204 static void cciss_procinit(ctlr_info_t *h);
206 static void cciss_procinit(ctlr_info_t *h)
209 #endif /* CONFIG_PROC_FS */
212 static int cciss_compat_ioctl(struct block_device *, fmode_t,
213 unsigned, unsigned long);
216 static const struct block_device_operations cciss_fops = {
217 .owner = THIS_MODULE,
218 .open = cciss_unlocked_open,
219 .release = cciss_release,
221 .getgeo = cciss_getgeo,
223 .compat_ioctl = cciss_compat_ioctl,
225 .revalidate_disk = cciss_revalidate,
228 /* set_performant_mode: Modify the tag for cciss performant
229 * set bit 0 for pull model, bits 3-1 for block fetch
232 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
234 if (likely(h->transMethod == CFGTBL_Trans_Performant))
235 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
239 * Enqueuing and dequeuing functions for cmdlists.
241 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
243 hlist_add_head(&c->list, list);
246 static inline void removeQ(CommandList_struct *c)
249 * After kexec/dump some commands might still
250 * be in flight, which the firmware will try
251 * to complete. Resetting the firmware doesn't work
252 * with old fw revisions, so we have to mark
253 * them off as 'stale' to prevent the driver from
256 if (WARN_ON(hlist_unhashed(&c->list))) {
257 c->cmd_type = CMD_MSG_STALE;
261 hlist_del_init(&c->list);
264 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
265 CommandList_struct *c)
268 set_performant_mode(h, c);
269 spin_lock_irqsave(&h->lock, flags);
272 if (h->Qdepth > h->maxQsinceinit)
273 h->maxQsinceinit = h->Qdepth;
275 spin_unlock_irqrestore(&h->lock, flags);
278 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
285 for (i = 0; i < nr_cmds; i++) {
286 kfree(cmd_sg_list[i]);
287 cmd_sg_list[i] = NULL;
292 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
293 ctlr_info_t *h, int chainsize, int nr_cmds)
296 SGDescriptor_struct **cmd_sg_list;
301 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
305 /* Build up chain blocks for each command */
306 for (j = 0; j < nr_cmds; j++) {
307 /* Need a block of chainsized s/g elements. */
308 cmd_sg_list[j] = kmalloc((chainsize *
309 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
310 if (!cmd_sg_list[j]) {
311 dev_err(&h->pdev->dev, "Cannot get memory "
312 "for s/g chains.\n");
318 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
322 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
324 SGDescriptor_struct *chain_sg;
327 if (c->Header.SGTotal <= h->max_cmd_sgentries)
330 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
331 temp64.val32.lower = chain_sg->Addr.lower;
332 temp64.val32.upper = chain_sg->Addr.upper;
333 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
336 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
337 SGDescriptor_struct *chain_block, int len)
339 SGDescriptor_struct *chain_sg;
342 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
343 chain_sg->Ext = CCISS_SG_CHAIN;
345 temp64.val = pci_map_single(h->pdev, chain_block, len,
347 chain_sg->Addr.lower = temp64.val32.lower;
348 chain_sg->Addr.upper = temp64.val32.upper;
351 #include "cciss_scsi.c" /* For SCSI tape support */
353 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
356 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
358 #ifdef CONFIG_PROC_FS
361 * Report information about this controller.
363 #define ENG_GIG 1000000000
364 #define ENG_GIG_FACTOR (ENG_GIG/512)
365 #define ENGAGE_SCSI "engage scsi"
367 static void cciss_seq_show_header(struct seq_file *seq)
369 ctlr_info_t *h = seq->private;
371 seq_printf(seq, "%s: HP %s Controller\n"
372 "Board ID: 0x%08lx\n"
373 "Firmware Version: %c%c%c%c\n"
375 "Logical drives: %d\n"
376 "Current Q depth: %d\n"
377 "Current # commands on controller: %d\n"
378 "Max Q depth since init: %d\n"
379 "Max # commands on controller since init: %d\n"
380 "Max SG entries since init: %d\n",
383 (unsigned long)h->board_id,
384 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
385 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
387 h->Qdepth, h->commands_outstanding,
388 h->maxQsinceinit, h->max_outstanding, h->maxSG);
390 #ifdef CONFIG_CISS_SCSI_TAPE
391 cciss_seq_tape_report(seq, h);
392 #endif /* CONFIG_CISS_SCSI_TAPE */
395 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
397 ctlr_info_t *h = seq->private;
400 /* prevent displaying bogus info during configuration
401 * or deconfiguration of a logical volume
403 spin_lock_irqsave(&h->lock, flags);
404 if (h->busy_configuring) {
405 spin_unlock_irqrestore(&h->lock, flags);
406 return ERR_PTR(-EBUSY);
408 h->busy_configuring = 1;
409 spin_unlock_irqrestore(&h->lock, flags);
412 cciss_seq_show_header(seq);
417 static int cciss_seq_show(struct seq_file *seq, void *v)
419 sector_t vol_sz, vol_sz_frac;
420 ctlr_info_t *h = seq->private;
421 unsigned ctlr = h->ctlr;
423 drive_info_struct *drv = h->drv[*pos];
425 if (*pos > h->highest_lun)
428 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
434 vol_sz = drv->nr_blocks;
435 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
437 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
439 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
440 drv->raid_level = RAID_UNKNOWN;
441 seq_printf(seq, "cciss/c%dd%d:"
442 "\t%4u.%02uGB\tRAID %s\n",
443 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
444 raid_label[drv->raid_level]);
448 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
450 ctlr_info_t *h = seq->private;
452 if (*pos > h->highest_lun)
459 static void cciss_seq_stop(struct seq_file *seq, void *v)
461 ctlr_info_t *h = seq->private;
463 /* Only reset h->busy_configuring if we succeeded in setting
464 * it during cciss_seq_start. */
465 if (v == ERR_PTR(-EBUSY))
468 h->busy_configuring = 0;
471 static const struct seq_operations cciss_seq_ops = {
472 .start = cciss_seq_start,
473 .show = cciss_seq_show,
474 .next = cciss_seq_next,
475 .stop = cciss_seq_stop,
478 static int cciss_seq_open(struct inode *inode, struct file *file)
480 int ret = seq_open(file, &cciss_seq_ops);
481 struct seq_file *seq = file->private_data;
484 seq->private = PDE(inode)->data;
490 cciss_proc_write(struct file *file, const char __user *buf,
491 size_t length, loff_t *ppos)
496 #ifndef CONFIG_CISS_SCSI_TAPE
500 if (!buf || length > PAGE_SIZE - 1)
503 buffer = (char *)__get_free_page(GFP_KERNEL);
508 if (copy_from_user(buffer, buf, length))
510 buffer[length] = '\0';
512 #ifdef CONFIG_CISS_SCSI_TAPE
513 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
514 struct seq_file *seq = file->private_data;
515 ctlr_info_t *h = seq->private;
517 err = cciss_engage_scsi(h);
521 #endif /* CONFIG_CISS_SCSI_TAPE */
523 /* might be nice to have "disengage" too, but it's not
524 safely possible. (only 1 module use count, lock issues.) */
527 free_page((unsigned long)buffer);
531 static const struct file_operations cciss_proc_fops = {
532 .owner = THIS_MODULE,
533 .open = cciss_seq_open,
536 .release = seq_release,
537 .write = cciss_proc_write,
540 static void __devinit cciss_procinit(ctlr_info_t *h)
542 struct proc_dir_entry *pde;
544 if (proc_cciss == NULL)
545 proc_cciss = proc_mkdir("driver/cciss", NULL);
548 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
550 &cciss_proc_fops, h);
552 #endif /* CONFIG_PROC_FS */
554 #define MAX_PRODUCT_NAME_LEN 19
556 #define to_hba(n) container_of(n, struct ctlr_info, dev)
557 #define to_drv(n) container_of(n, drive_info_struct, dev)
559 static ssize_t host_store_rescan(struct device *dev,
560 struct device_attribute *attr,
561 const char *buf, size_t count)
563 struct ctlr_info *h = to_hba(dev);
566 wake_up_process(cciss_scan_thread);
567 wait_for_completion_interruptible(&h->scan_wait);
571 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
573 static ssize_t dev_show_unique_id(struct device *dev,
574 struct device_attribute *attr,
577 drive_info_struct *drv = to_drv(dev);
578 struct ctlr_info *h = to_hba(drv->dev.parent);
583 spin_lock_irqsave(&h->lock, flags);
584 if (h->busy_configuring)
587 memcpy(sn, drv->serial_no, sizeof(sn));
588 spin_unlock_irqrestore(&h->lock, flags);
593 return snprintf(buf, 16 * 2 + 2,
594 "%02X%02X%02X%02X%02X%02X%02X%02X"
595 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
596 sn[0], sn[1], sn[2], sn[3],
597 sn[4], sn[5], sn[6], sn[7],
598 sn[8], sn[9], sn[10], sn[11],
599 sn[12], sn[13], sn[14], sn[15]);
601 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
603 static ssize_t dev_show_vendor(struct device *dev,
604 struct device_attribute *attr,
607 drive_info_struct *drv = to_drv(dev);
608 struct ctlr_info *h = to_hba(drv->dev.parent);
609 char vendor[VENDOR_LEN + 1];
613 spin_lock_irqsave(&h->lock, flags);
614 if (h->busy_configuring)
617 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
618 spin_unlock_irqrestore(&h->lock, flags);
623 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
625 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
627 static ssize_t dev_show_model(struct device *dev,
628 struct device_attribute *attr,
631 drive_info_struct *drv = to_drv(dev);
632 struct ctlr_info *h = to_hba(drv->dev.parent);
633 char model[MODEL_LEN + 1];
637 spin_lock_irqsave(&h->lock, flags);
638 if (h->busy_configuring)
641 memcpy(model, drv->model, MODEL_LEN + 1);
642 spin_unlock_irqrestore(&h->lock, flags);
647 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
649 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
651 static ssize_t dev_show_rev(struct device *dev,
652 struct device_attribute *attr,
655 drive_info_struct *drv = to_drv(dev);
656 struct ctlr_info *h = to_hba(drv->dev.parent);
657 char rev[REV_LEN + 1];
661 spin_lock_irqsave(&h->lock, flags);
662 if (h->busy_configuring)
665 memcpy(rev, drv->rev, REV_LEN + 1);
666 spin_unlock_irqrestore(&h->lock, flags);
671 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
673 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
675 static ssize_t cciss_show_lunid(struct device *dev,
676 struct device_attribute *attr, char *buf)
678 drive_info_struct *drv = to_drv(dev);
679 struct ctlr_info *h = to_hba(drv->dev.parent);
681 unsigned char lunid[8];
683 spin_lock_irqsave(&h->lock, flags);
684 if (h->busy_configuring) {
685 spin_unlock_irqrestore(&h->lock, flags);
689 spin_unlock_irqrestore(&h->lock, flags);
692 memcpy(lunid, drv->LunID, sizeof(lunid));
693 spin_unlock_irqrestore(&h->lock, flags);
694 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
695 lunid[0], lunid[1], lunid[2], lunid[3],
696 lunid[4], lunid[5], lunid[6], lunid[7]);
698 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
700 static ssize_t cciss_show_raid_level(struct device *dev,
701 struct device_attribute *attr, char *buf)
703 drive_info_struct *drv = to_drv(dev);
704 struct ctlr_info *h = to_hba(drv->dev.parent);
708 spin_lock_irqsave(&h->lock, flags);
709 if (h->busy_configuring) {
710 spin_unlock_irqrestore(&h->lock, flags);
713 raid = drv->raid_level;
714 spin_unlock_irqrestore(&h->lock, flags);
715 if (raid < 0 || raid > RAID_UNKNOWN)
718 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
721 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
723 static ssize_t cciss_show_usage_count(struct device *dev,
724 struct device_attribute *attr, char *buf)
726 drive_info_struct *drv = to_drv(dev);
727 struct ctlr_info *h = to_hba(drv->dev.parent);
731 spin_lock_irqsave(&h->lock, flags);
732 if (h->busy_configuring) {
733 spin_unlock_irqrestore(&h->lock, flags);
736 count = drv->usage_count;
737 spin_unlock_irqrestore(&h->lock, flags);
738 return snprintf(buf, 20, "%d\n", count);
740 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
742 static struct attribute *cciss_host_attrs[] = {
743 &dev_attr_rescan.attr,
747 static struct attribute_group cciss_host_attr_group = {
748 .attrs = cciss_host_attrs,
751 static const struct attribute_group *cciss_host_attr_groups[] = {
752 &cciss_host_attr_group,
756 static struct device_type cciss_host_type = {
757 .name = "cciss_host",
758 .groups = cciss_host_attr_groups,
759 .release = cciss_hba_release,
762 static struct attribute *cciss_dev_attrs[] = {
763 &dev_attr_unique_id.attr,
764 &dev_attr_model.attr,
765 &dev_attr_vendor.attr,
767 &dev_attr_lunid.attr,
768 &dev_attr_raid_level.attr,
769 &dev_attr_usage_count.attr,
773 static struct attribute_group cciss_dev_attr_group = {
774 .attrs = cciss_dev_attrs,
777 static const struct attribute_group *cciss_dev_attr_groups[] = {
778 &cciss_dev_attr_group,
782 static struct device_type cciss_dev_type = {
783 .name = "cciss_device",
784 .groups = cciss_dev_attr_groups,
785 .release = cciss_device_release,
788 static struct bus_type cciss_bus_type = {
793 * cciss_hba_release is called when the reference count
794 * of h->dev goes to zero.
796 static void cciss_hba_release(struct device *dev)
799 * nothing to do, but need this to avoid a warning
800 * about not having a release handler from lib/kref.c.
805 * Initialize sysfs entry for each controller. This sets up and registers
806 * the 'cciss#' directory for each individual controller under
807 * /sys/bus/pci/devices/<dev>/.
809 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
811 device_initialize(&h->dev);
812 h->dev.type = &cciss_host_type;
813 h->dev.bus = &cciss_bus_type;
814 dev_set_name(&h->dev, "%s", h->devname);
815 h->dev.parent = &h->pdev->dev;
817 return device_add(&h->dev);
821 * Remove sysfs entries for an hba.
823 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
826 put_device(&h->dev); /* final put. */
829 /* cciss_device_release is called when the reference count
830 * of h->drv[x]dev goes to zero.
832 static void cciss_device_release(struct device *dev)
834 drive_info_struct *drv = to_drv(dev);
839 * Initialize sysfs for each logical drive. This sets up and registers
840 * the 'c#d#' directory for each individual logical drive under
841 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
842 * /sys/block/cciss!c#d# to this entry.
844 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
849 if (h->drv[drv_index]->device_initialized)
852 dev = &h->drv[drv_index]->dev;
853 device_initialize(dev);
854 dev->type = &cciss_dev_type;
855 dev->bus = &cciss_bus_type;
856 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
857 dev->parent = &h->dev;
858 h->drv[drv_index]->device_initialized = 1;
859 return device_add(dev);
863 * Remove sysfs entries for a logical drive.
865 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
868 struct device *dev = &h->drv[drv_index]->dev;
870 /* special case for c*d0, we only destroy it on controller exit */
871 if (drv_index == 0 && !ctlr_exiting)
875 put_device(dev); /* the "final" put. */
876 h->drv[drv_index] = NULL;
880 * For operations that cannot sleep, a command block is allocated at init,
881 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
882 * which ones are free or in use.
884 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
886 CommandList_struct *c;
889 dma_addr_t cmd_dma_handle, err_dma_handle;
892 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
895 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
896 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
898 memset(c, 0, sizeof(CommandList_struct));
899 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
900 c->err_info = h->errinfo_pool + i;
901 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
902 err_dma_handle = h->errinfo_pool_dhandle
903 + i * sizeof(ErrorInfo_struct);
908 INIT_HLIST_NODE(&c->list);
909 c->busaddr = (__u32) cmd_dma_handle;
910 temp64.val = (__u64) err_dma_handle;
911 c->ErrDesc.Addr.lower = temp64.val32.lower;
912 c->ErrDesc.Addr.upper = temp64.val32.upper;
913 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
919 /* allocate a command using pci_alloc_consistent, used for ioctls,
920 * etc., not for the main i/o path.
922 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
924 CommandList_struct *c;
926 dma_addr_t cmd_dma_handle, err_dma_handle;
928 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
929 sizeof(CommandList_struct), &cmd_dma_handle);
932 memset(c, 0, sizeof(CommandList_struct));
936 c->err_info = (ErrorInfo_struct *)
937 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
940 if (c->err_info == NULL) {
941 pci_free_consistent(h->pdev,
942 sizeof(CommandList_struct), c, cmd_dma_handle);
945 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
947 INIT_HLIST_NODE(&c->list);
948 c->busaddr = (__u32) cmd_dma_handle;
949 temp64.val = (__u64) err_dma_handle;
950 c->ErrDesc.Addr.lower = temp64.val32.lower;
951 c->ErrDesc.Addr.upper = temp64.val32.upper;
952 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
958 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
963 clear_bit(i & (BITS_PER_LONG - 1),
964 h->cmd_pool_bits + (i / BITS_PER_LONG));
968 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
972 temp64.val32.lower = c->ErrDesc.Addr.lower;
973 temp64.val32.upper = c->ErrDesc.Addr.upper;
974 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
975 c->err_info, (dma_addr_t) temp64.val);
976 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
977 c, (dma_addr_t) c->busaddr);
980 static inline ctlr_info_t *get_host(struct gendisk *disk)
982 return disk->queue->queuedata;
985 static inline drive_info_struct *get_drv(struct gendisk *disk)
987 return disk->private_data;
991 * Open. Make sure the device is really there.
993 static int cciss_open(struct block_device *bdev, fmode_t mode)
995 ctlr_info_t *h = get_host(bdev->bd_disk);
996 drive_info_struct *drv = get_drv(bdev->bd_disk);
998 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
999 if (drv->busy_configuring)
1002 * Root is allowed to open raw volume zero even if it's not configured
1003 * so array config can still work. Root is also allowed to open any
1004 * volume that has a LUN ID, so it can issue IOCTL to reread the
1005 * disk information. I don't think I really like this
1006 * but I'm already using way to many device nodes to claim another one
1007 * for "raw controller".
1009 if (drv->heads == 0) {
1010 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1011 /* if not node 0 make sure it is a partition = 0 */
1012 if (MINOR(bdev->bd_dev) & 0x0f) {
1014 /* if it is, make sure we have a LUN ID */
1015 } else if (memcmp(drv->LunID, CTLR_LUNID,
1016 sizeof(drv->LunID))) {
1020 if (!capable(CAP_SYS_ADMIN))
1028 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1032 mutex_lock(&cciss_mutex);
1033 ret = cciss_open(bdev, mode);
1034 mutex_unlock(&cciss_mutex);
1040 * Close. Sync first.
1042 static int cciss_release(struct gendisk *disk, fmode_t mode)
1045 drive_info_struct *drv;
1047 mutex_lock(&cciss_mutex);
1049 drv = get_drv(disk);
1050 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1053 mutex_unlock(&cciss_mutex);
1057 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1058 unsigned cmd, unsigned long arg)
1061 mutex_lock(&cciss_mutex);
1062 ret = cciss_ioctl(bdev, mode, cmd, arg);
1063 mutex_unlock(&cciss_mutex);
1067 #ifdef CONFIG_COMPAT
1069 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1070 unsigned cmd, unsigned long arg);
1071 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1072 unsigned cmd, unsigned long arg);
1074 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1075 unsigned cmd, unsigned long arg)
1078 case CCISS_GETPCIINFO:
1079 case CCISS_GETINTINFO:
1080 case CCISS_SETINTINFO:
1081 case CCISS_GETNODENAME:
1082 case CCISS_SETNODENAME:
1083 case CCISS_GETHEARTBEAT:
1084 case CCISS_GETBUSTYPES:
1085 case CCISS_GETFIRMVER:
1086 case CCISS_GETDRIVVER:
1087 case CCISS_REVALIDVOLS:
1088 case CCISS_DEREGDISK:
1089 case CCISS_REGNEWDISK:
1091 case CCISS_RESCANDISK:
1092 case CCISS_GETLUNINFO:
1093 return do_ioctl(bdev, mode, cmd, arg);
1095 case CCISS_PASSTHRU32:
1096 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1097 case CCISS_BIG_PASSTHRU32:
1098 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1101 return -ENOIOCTLCMD;
1105 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1106 unsigned cmd, unsigned long arg)
1108 IOCTL32_Command_struct __user *arg32 =
1109 (IOCTL32_Command_struct __user *) arg;
1110 IOCTL_Command_struct arg64;
1111 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1117 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1118 sizeof(arg64.LUN_info));
1120 copy_from_user(&arg64.Request, &arg32->Request,
1121 sizeof(arg64.Request));
1123 copy_from_user(&arg64.error_info, &arg32->error_info,
1124 sizeof(arg64.error_info));
1125 err |= get_user(arg64.buf_size, &arg32->buf_size);
1126 err |= get_user(cp, &arg32->buf);
1127 arg64.buf = compat_ptr(cp);
1128 err |= copy_to_user(p, &arg64, sizeof(arg64));
1133 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1137 copy_in_user(&arg32->error_info, &p->error_info,
1138 sizeof(arg32->error_info));
1144 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1145 unsigned cmd, unsigned long arg)
1147 BIG_IOCTL32_Command_struct __user *arg32 =
1148 (BIG_IOCTL32_Command_struct __user *) arg;
1149 BIG_IOCTL_Command_struct arg64;
1150 BIG_IOCTL_Command_struct __user *p =
1151 compat_alloc_user_space(sizeof(arg64));
1155 memset(&arg64, 0, sizeof(arg64));
1158 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1159 sizeof(arg64.LUN_info));
1161 copy_from_user(&arg64.Request, &arg32->Request,
1162 sizeof(arg64.Request));
1164 copy_from_user(&arg64.error_info, &arg32->error_info,
1165 sizeof(arg64.error_info));
1166 err |= get_user(arg64.buf_size, &arg32->buf_size);
1167 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1168 err |= get_user(cp, &arg32->buf);
1169 arg64.buf = compat_ptr(cp);
1170 err |= copy_to_user(p, &arg64, sizeof(arg64));
1175 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1179 copy_in_user(&arg32->error_info, &p->error_info,
1180 sizeof(arg32->error_info));
1187 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1189 drive_info_struct *drv = get_drv(bdev->bd_disk);
1191 if (!drv->cylinders)
1194 geo->heads = drv->heads;
1195 geo->sectors = drv->sectors;
1196 geo->cylinders = drv->cylinders;
1200 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1202 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1203 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1204 (void)check_for_unit_attention(h, c);
1207 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1209 cciss_pci_info_struct pciinfo;
1213 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1214 pciinfo.bus = h->pdev->bus->number;
1215 pciinfo.dev_fn = h->pdev->devfn;
1216 pciinfo.board_id = h->board_id;
1217 if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1222 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1224 cciss_coalint_struct intinfo;
1228 intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1229 intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1231 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1236 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1238 cciss_coalint_struct intinfo;
1239 unsigned long flags;
1244 if (!capable(CAP_SYS_ADMIN))
1246 if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1248 if ((intinfo.delay == 0) && (intinfo.count == 0))
1250 spin_lock_irqsave(&h->lock, flags);
1251 /* Update the field, and then ring the doorbell */
1252 writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1253 writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1254 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1256 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1257 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1259 udelay(1000); /* delay and try again */
1261 spin_unlock_irqrestore(&h->lock, flags);
1262 if (i >= MAX_IOCTL_CONFIG_WAIT)
1267 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1269 NodeName_type NodeName;
1274 for (i = 0; i < 16; i++)
1275 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1276 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1281 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1283 NodeName_type NodeName;
1284 unsigned long flags;
1289 if (!capable(CAP_SYS_ADMIN))
1291 if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1293 spin_lock_irqsave(&h->lock, flags);
1294 /* Update the field, and then ring the doorbell */
1295 for (i = 0; i < 16; i++)
1296 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1297 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1298 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1299 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1301 udelay(1000); /* delay and try again */
1303 spin_unlock_irqrestore(&h->lock, flags);
1304 if (i >= MAX_IOCTL_CONFIG_WAIT)
1309 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1311 Heartbeat_type heartbeat;
1315 heartbeat = readl(&h->cfgtable->HeartBeat);
1316 if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1321 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1323 BusTypes_type BusTypes;
1327 BusTypes = readl(&h->cfgtable->BusTypes);
1328 if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1333 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1335 FirmwareVer_type firmware;
1339 memcpy(firmware, h->firm_ver, 4);
1342 (argp, firmware, sizeof(FirmwareVer_type)))
1347 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1349 DriverVer_type DriverVer = DRIVER_VERSION;
1353 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1358 static int cciss_getluninfo(ctlr_info_t *h,
1359 struct gendisk *disk, void __user *argp)
1361 LogvolInfo_struct luninfo;
1362 drive_info_struct *drv = get_drv(disk);
1366 memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1367 luninfo.num_opens = drv->usage_count;
1368 luninfo.num_parts = 0;
1369 if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1374 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1376 IOCTL_Command_struct iocommand;
1377 CommandList_struct *c;
1380 DECLARE_COMPLETION_ONSTACK(wait);
1385 if (!capable(CAP_SYS_RAWIO))
1389 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1391 if ((iocommand.buf_size < 1) &&
1392 (iocommand.Request.Type.Direction != XFER_NONE)) {
1395 if (iocommand.buf_size > 0) {
1396 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1400 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1401 /* Copy the data into the buffer we created */
1402 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1407 memset(buff, 0, iocommand.buf_size);
1409 c = cmd_special_alloc(h);
1414 /* Fill in the command type */
1415 c->cmd_type = CMD_IOCTL_PEND;
1416 /* Fill in Command Header */
1417 c->Header.ReplyQueue = 0; /* unused in simple mode */
1418 if (iocommand.buf_size > 0) { /* buffer to fill */
1419 c->Header.SGList = 1;
1420 c->Header.SGTotal = 1;
1421 } else { /* no buffers to fill */
1422 c->Header.SGList = 0;
1423 c->Header.SGTotal = 0;
1425 c->Header.LUN = iocommand.LUN_info;
1426 /* use the kernel address the cmd block for tag */
1427 c->Header.Tag.lower = c->busaddr;
1429 /* Fill in Request block */
1430 c->Request = iocommand.Request;
1432 /* Fill in the scatter gather information */
1433 if (iocommand.buf_size > 0) {
1434 temp64.val = pci_map_single(h->pdev, buff,
1435 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1436 c->SG[0].Addr.lower = temp64.val32.lower;
1437 c->SG[0].Addr.upper = temp64.val32.upper;
1438 c->SG[0].Len = iocommand.buf_size;
1439 c->SG[0].Ext = 0; /* we are not chaining */
1443 enqueue_cmd_and_start_io(h, c);
1444 wait_for_completion(&wait);
1446 /* unlock the buffers from DMA */
1447 temp64.val32.lower = c->SG[0].Addr.lower;
1448 temp64.val32.upper = c->SG[0].Addr.upper;
1449 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1450 PCI_DMA_BIDIRECTIONAL);
1451 check_ioctl_unit_attention(h, c);
1453 /* Copy the error information out */
1454 iocommand.error_info = *(c->err_info);
1455 if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1457 cmd_special_free(h, c);
1461 if (iocommand.Request.Type.Direction == XFER_READ) {
1462 /* Copy the data out of the buffer we created */
1463 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1465 cmd_special_free(h, c);
1470 cmd_special_free(h, c);
1474 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1476 BIG_IOCTL_Command_struct *ioc;
1477 CommandList_struct *c;
1478 unsigned char **buff = NULL;
1479 int *buff_size = NULL;
1484 DECLARE_COMPLETION_ONSTACK(wait);
1487 BYTE __user *data_ptr;
1491 if (!capable(CAP_SYS_RAWIO))
1493 ioc = (BIG_IOCTL_Command_struct *)
1494 kmalloc(sizeof(*ioc), GFP_KERNEL);
1499 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1503 if ((ioc->buf_size < 1) &&
1504 (ioc->Request.Type.Direction != XFER_NONE)) {
1508 /* Check kmalloc limits using all SGs */
1509 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1513 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1517 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1522 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1527 left = ioc->buf_size;
1528 data_ptr = ioc->buf;
1530 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1531 buff_size[sg_used] = sz;
1532 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1533 if (buff[sg_used] == NULL) {
1537 if (ioc->Request.Type.Direction == XFER_WRITE) {
1538 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1543 memset(buff[sg_used], 0, sz);
1549 c = cmd_special_alloc(h);
1554 c->cmd_type = CMD_IOCTL_PEND;
1555 c->Header.ReplyQueue = 0;
1556 c->Header.SGList = sg_used;
1557 c->Header.SGTotal = sg_used;
1558 c->Header.LUN = ioc->LUN_info;
1559 c->Header.Tag.lower = c->busaddr;
1561 c->Request = ioc->Request;
1562 for (i = 0; i < sg_used; i++) {
1563 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1564 PCI_DMA_BIDIRECTIONAL);
1565 c->SG[i].Addr.lower = temp64.val32.lower;
1566 c->SG[i].Addr.upper = temp64.val32.upper;
1567 c->SG[i].Len = buff_size[i];
1568 c->SG[i].Ext = 0; /* we are not chaining */
1571 enqueue_cmd_and_start_io(h, c);
1572 wait_for_completion(&wait);
1573 /* unlock the buffers from DMA */
1574 for (i = 0; i < sg_used; i++) {
1575 temp64.val32.lower = c->SG[i].Addr.lower;
1576 temp64.val32.upper = c->SG[i].Addr.upper;
1577 pci_unmap_single(h->pdev,
1578 (dma_addr_t) temp64.val, buff_size[i],
1579 PCI_DMA_BIDIRECTIONAL);
1581 check_ioctl_unit_attention(h, c);
1582 /* Copy the error information out */
1583 ioc->error_info = *(c->err_info);
1584 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1585 cmd_special_free(h, c);
1589 if (ioc->Request.Type.Direction == XFER_READ) {
1590 /* Copy the data out of the buffer we created */
1591 BYTE __user *ptr = ioc->buf;
1592 for (i = 0; i < sg_used; i++) {
1593 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1594 cmd_special_free(h, c);
1598 ptr += buff_size[i];
1601 cmd_special_free(h, c);
1605 for (i = 0; i < sg_used; i++)
1614 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1615 unsigned int cmd, unsigned long arg)
1617 struct gendisk *disk = bdev->bd_disk;
1618 ctlr_info_t *h = get_host(disk);
1619 void __user *argp = (void __user *)arg;
1621 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1624 case CCISS_GETPCIINFO:
1625 return cciss_getpciinfo(h, argp);
1626 case CCISS_GETINTINFO:
1627 return cciss_getintinfo(h, argp);
1628 case CCISS_SETINTINFO:
1629 return cciss_setintinfo(h, argp);
1630 case CCISS_GETNODENAME:
1631 return cciss_getnodename(h, argp);
1632 case CCISS_SETNODENAME:
1633 return cciss_setnodename(h, argp);
1634 case CCISS_GETHEARTBEAT:
1635 return cciss_getheartbeat(h, argp);
1636 case CCISS_GETBUSTYPES:
1637 return cciss_getbustypes(h, argp);
1638 case CCISS_GETFIRMVER:
1639 return cciss_getfirmver(h, argp);
1640 case CCISS_GETDRIVVER:
1641 return cciss_getdrivver(h, argp);
1642 case CCISS_DEREGDISK:
1644 case CCISS_REVALIDVOLS:
1645 return rebuild_lun_table(h, 0, 1);
1646 case CCISS_GETLUNINFO:
1647 return cciss_getluninfo(h, disk, argp);
1648 case CCISS_PASSTHRU:
1649 return cciss_passthru(h, argp);
1650 case CCISS_BIG_PASSTHRU:
1651 return cciss_bigpassthru(h, argp);
1653 /* scsi_cmd_ioctl handles these, below, though some are not */
1654 /* very meaningful for cciss. SG_IO is the main one people want. */
1656 case SG_GET_VERSION_NUM:
1657 case SG_SET_TIMEOUT:
1658 case SG_GET_TIMEOUT:
1659 case SG_GET_RESERVED_SIZE:
1660 case SG_SET_RESERVED_SIZE:
1661 case SG_EMULATED_HOST:
1663 case SCSI_IOCTL_SEND_COMMAND:
1664 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1666 /* scsi_cmd_ioctl would normally handle these, below, but */
1667 /* they aren't a good fit for cciss, as CD-ROMs are */
1668 /* not supported, and we don't have any bus/target/lun */
1669 /* which we present to the kernel. */
1671 case CDROM_SEND_PACKET:
1672 case CDROMCLOSETRAY:
1674 case SCSI_IOCTL_GET_IDLUN:
1675 case SCSI_IOCTL_GET_BUS_NUMBER:
1681 static void cciss_check_queues(ctlr_info_t *h)
1683 int start_queue = h->next_to_run;
1686 /* check to see if we have maxed out the number of commands that can
1687 * be placed on the queue. If so then exit. We do this check here
1688 * in case the interrupt we serviced was from an ioctl and did not
1689 * free any new commands.
1691 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1694 /* We have room on the queue for more commands. Now we need to queue
1695 * them up. We will also keep track of the next queue to run so
1696 * that every queue gets a chance to be started first.
1698 for (i = 0; i < h->highest_lun + 1; i++) {
1699 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1700 /* make sure the disk has been added and the drive is real
1701 * because this can be called from the middle of init_one.
1703 if (!h->drv[curr_queue])
1705 if (!(h->drv[curr_queue]->queue) ||
1706 !(h->drv[curr_queue]->heads))
1708 blk_start_queue(h->gendisk[curr_queue]->queue);
1710 /* check to see if we have maxed out the number of commands
1711 * that can be placed on the queue.
1713 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1714 if (curr_queue == start_queue) {
1716 (start_queue + 1) % (h->highest_lun + 1);
1719 h->next_to_run = curr_queue;
1726 static void cciss_softirq_done(struct request *rq)
1728 CommandList_struct *c = rq->completion_data;
1729 ctlr_info_t *h = hba[c->ctlr];
1730 SGDescriptor_struct *curr_sg = c->SG;
1732 unsigned long flags;
1736 if (c->Request.Type.Direction == XFER_READ)
1737 ddir = PCI_DMA_FROMDEVICE;
1739 ddir = PCI_DMA_TODEVICE;
1741 /* command did not need to be retried */
1742 /* unmap the DMA mapping for all the scatter gather elements */
1743 for (i = 0; i < c->Header.SGList; i++) {
1744 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1745 cciss_unmap_sg_chain_block(h, c);
1746 /* Point to the next block */
1747 curr_sg = h->cmd_sg_list[c->cmdindex];
1750 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1751 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1752 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1757 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1759 /* set the residual count for pc requests */
1760 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1761 rq->resid_len = c->err_info->ResidualCnt;
1763 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1765 spin_lock_irqsave(&h->lock, flags);
1767 cciss_check_queues(h);
1768 spin_unlock_irqrestore(&h->lock, flags);
1771 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1772 unsigned char scsi3addr[], uint32_t log_unit)
1774 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1775 sizeof(h->drv[log_unit]->LunID));
1778 /* This function gets the SCSI vendor, model, and revision of a logical drive
1779 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1780 * they cannot be read.
1782 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1783 char *vendor, char *model, char *rev)
1786 InquiryData_struct *inq_buf;
1787 unsigned char scsi3addr[8];
1793 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1797 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1798 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1799 scsi3addr, TYPE_CMD);
1801 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1802 vendor[VENDOR_LEN] = '\0';
1803 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1804 model[MODEL_LEN] = '\0';
1805 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1806 rev[REV_LEN] = '\0';
1813 /* This function gets the serial number of a logical drive via
1814 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1815 * number cannot be had, for whatever reason, 16 bytes of 0xff
1816 * are returned instead.
1818 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1819 unsigned char *serial_no, int buflen)
1821 #define PAGE_83_INQ_BYTES 64
1824 unsigned char scsi3addr[8];
1828 memset(serial_no, 0xff, buflen);
1829 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1832 memset(serial_no, 0, buflen);
1833 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1834 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1835 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1837 memcpy(serial_no, &buf[8], buflen);
1843 * cciss_add_disk sets up the block device queue for a logical drive
1845 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1848 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1850 goto init_queue_failure;
1851 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1852 disk->major = h->major;
1853 disk->first_minor = drv_index << NWD_SHIFT;
1854 disk->fops = &cciss_fops;
1855 if (cciss_create_ld_sysfs_entry(h, drv_index))
1857 disk->private_data = h->drv[drv_index];
1858 disk->driverfs_dev = &h->drv[drv_index]->dev;
1860 /* Set up queue information */
1861 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1863 /* This is a hardware imposed limit. */
1864 blk_queue_max_segments(disk->queue, h->maxsgentries);
1866 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1868 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1870 disk->queue->queuedata = h;
1872 blk_queue_logical_block_size(disk->queue,
1873 h->drv[drv_index]->block_size);
1875 /* Make sure all queue data is written out before */
1876 /* setting h->drv[drv_index]->queue, as setting this */
1877 /* allows the interrupt handler to start the queue */
1879 h->drv[drv_index]->queue = disk->queue;
1884 blk_cleanup_queue(disk->queue);
1890 /* This function will check the usage_count of the drive to be updated/added.
1891 * If the usage_count is zero and it is a heretofore unknown drive, or,
1892 * the drive's capacity, geometry, or serial number has changed,
1893 * then the drive information will be updated and the disk will be
1894 * re-registered with the kernel. If these conditions don't hold,
1895 * then it will be left alone for the next reboot. The exception to this
1896 * is disk 0 which will always be left registered with the kernel since it
1897 * is also the controller node. Any changes to disk 0 will show up on
1900 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1901 int first_time, int via_ioctl)
1903 struct gendisk *disk;
1904 InquiryData_struct *inq_buff = NULL;
1905 unsigned int block_size;
1906 sector_t total_size;
1907 unsigned long flags = 0;
1909 drive_info_struct *drvinfo;
1911 /* Get information about the disk and modify the driver structure */
1912 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1913 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1914 if (inq_buff == NULL || drvinfo == NULL)
1917 /* testing to see if 16-byte CDBs are already being used */
1918 if (h->cciss_read == CCISS_READ_16) {
1919 cciss_read_capacity_16(h, drv_index,
1920 &total_size, &block_size);
1923 cciss_read_capacity(h, drv_index, &total_size, &block_size);
1924 /* if read_capacity returns all F's this volume is >2TB */
1925 /* in size so we switch to 16-byte CDB's for all */
1926 /* read/write ops */
1927 if (total_size == 0xFFFFFFFFULL) {
1928 cciss_read_capacity_16(h, drv_index,
1929 &total_size, &block_size);
1930 h->cciss_read = CCISS_READ_16;
1931 h->cciss_write = CCISS_WRITE_16;
1933 h->cciss_read = CCISS_READ_10;
1934 h->cciss_write = CCISS_WRITE_10;
1938 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
1940 drvinfo->block_size = block_size;
1941 drvinfo->nr_blocks = total_size + 1;
1943 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
1944 drvinfo->model, drvinfo->rev);
1945 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
1946 sizeof(drvinfo->serial_no));
1947 /* Save the lunid in case we deregister the disk, below. */
1948 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1949 sizeof(drvinfo->LunID));
1951 /* Is it the same disk we already know, and nothing's changed? */
1952 if (h->drv[drv_index]->raid_level != -1 &&
1953 ((memcmp(drvinfo->serial_no,
1954 h->drv[drv_index]->serial_no, 16) == 0) &&
1955 drvinfo->block_size == h->drv[drv_index]->block_size &&
1956 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1957 drvinfo->heads == h->drv[drv_index]->heads &&
1958 drvinfo->sectors == h->drv[drv_index]->sectors &&
1959 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1960 /* The disk is unchanged, nothing to update */
1963 /* If we get here it's not the same disk, or something's changed,
1964 * so we need to * deregister it, and re-register it, if it's not
1966 * If the disk already exists then deregister it before proceeding
1967 * (unless it's the first disk (for the controller node).
1969 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1970 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
1971 spin_lock_irqsave(&h->lock, flags);
1972 h->drv[drv_index]->busy_configuring = 1;
1973 spin_unlock_irqrestore(&h->lock, flags);
1975 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1976 * which keeps the interrupt handler from starting
1979 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1982 /* If the disk is in use return */
1986 /* Save the new information from cciss_geometry_inquiry
1987 * and serial number inquiry. If the disk was deregistered
1988 * above, then h->drv[drv_index] will be NULL.
1990 if (h->drv[drv_index] == NULL) {
1991 drvinfo->device_initialized = 0;
1992 h->drv[drv_index] = drvinfo;
1993 drvinfo = NULL; /* so it won't be freed below. */
1995 /* special case for cxd0 */
1996 h->drv[drv_index]->block_size = drvinfo->block_size;
1997 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1998 h->drv[drv_index]->heads = drvinfo->heads;
1999 h->drv[drv_index]->sectors = drvinfo->sectors;
2000 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2001 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2002 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2003 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2005 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2006 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2010 disk = h->gendisk[drv_index];
2011 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2013 /* If it's not disk 0 (drv_index != 0)
2014 * or if it was disk 0, but there was previously
2015 * no actual corresponding configured logical drive
2016 * (raid_leve == -1) then we want to update the
2017 * logical drive's information.
2019 if (drv_index || first_time) {
2020 if (cciss_add_disk(h, disk, drv_index) != 0) {
2021 cciss_free_gendisk(h, drv_index);
2022 cciss_free_drive_info(h, drv_index);
2023 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2034 dev_err(&h->pdev->dev, "out of memory\n");
2038 /* This function will find the first index of the controllers drive array
2039 * that has a null drv pointer and allocate the drive info struct and
2040 * will return that index This is where new drives will be added.
2041 * If the index to be returned is greater than the highest_lun index for
2042 * the controller then highest_lun is set * to this new index.
2043 * If there are no available indexes or if tha allocation fails, then -1
2044 * is returned. * "controller_node" is used to know if this is a real
2045 * logical drive, or just the controller node, which determines if this
2046 * counts towards highest_lun.
2048 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2051 drive_info_struct *drv;
2053 /* Search for an empty slot for our drive info */
2054 for (i = 0; i < CISS_MAX_LUN; i++) {
2056 /* if not cxd0 case, and it's occupied, skip it. */
2057 if (h->drv[i] && i != 0)
2060 * If it's cxd0 case, and drv is alloc'ed already, and a
2061 * disk is configured there, skip it.
2063 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2067 * We've found an empty slot. Update highest_lun
2068 * provided this isn't just the fake cxd0 controller node.
2070 if (i > h->highest_lun && !controller_node)
2073 /* If adding a real disk at cxd0, and it's already alloc'ed */
2074 if (i == 0 && h->drv[i] != NULL)
2078 * Found an empty slot, not already alloc'ed. Allocate it.
2079 * Mark it with raid_level == -1, so we know it's new later on.
2081 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2084 drv->raid_level = -1; /* so we know it's new */
2091 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2093 kfree(h->drv[drv_index]);
2094 h->drv[drv_index] = NULL;
2097 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2099 put_disk(h->gendisk[drv_index]);
2100 h->gendisk[drv_index] = NULL;
2103 /* cciss_add_gendisk finds a free hba[]->drv structure
2104 * and allocates a gendisk if needed, and sets the lunid
2105 * in the drvinfo structure. It returns the index into
2106 * the ->drv[] array, or -1 if none are free.
2107 * is_controller_node indicates whether highest_lun should
2108 * count this disk, or if it's only being added to provide
2109 * a means to talk to the controller in case no logical
2110 * drives have yet been configured.
2112 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2113 int controller_node)
2117 drv_index = cciss_alloc_drive_info(h, controller_node);
2118 if (drv_index == -1)
2121 /*Check if the gendisk needs to be allocated */
2122 if (!h->gendisk[drv_index]) {
2123 h->gendisk[drv_index] =
2124 alloc_disk(1 << NWD_SHIFT);
2125 if (!h->gendisk[drv_index]) {
2126 dev_err(&h->pdev->dev,
2127 "could not allocate a new disk %d\n",
2129 goto err_free_drive_info;
2132 memcpy(h->drv[drv_index]->LunID, lunid,
2133 sizeof(h->drv[drv_index]->LunID));
2134 if (cciss_create_ld_sysfs_entry(h, drv_index))
2136 /* Don't need to mark this busy because nobody */
2137 /* else knows about this disk yet to contend */
2138 /* for access to it. */
2139 h->drv[drv_index]->busy_configuring = 0;
2144 cciss_free_gendisk(h, drv_index);
2145 err_free_drive_info:
2146 cciss_free_drive_info(h, drv_index);
2150 /* This is for the special case of a controller which
2151 * has no logical drives. In this case, we still need
2152 * to register a disk so the controller can be accessed
2153 * by the Array Config Utility.
2155 static void cciss_add_controller_node(ctlr_info_t *h)
2157 struct gendisk *disk;
2160 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2163 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2164 if (drv_index == -1)
2166 h->drv[drv_index]->block_size = 512;
2167 h->drv[drv_index]->nr_blocks = 0;
2168 h->drv[drv_index]->heads = 0;
2169 h->drv[drv_index]->sectors = 0;
2170 h->drv[drv_index]->cylinders = 0;
2171 h->drv[drv_index]->raid_level = -1;
2172 memset(h->drv[drv_index]->serial_no, 0, 16);
2173 disk = h->gendisk[drv_index];
2174 if (cciss_add_disk(h, disk, drv_index) == 0)
2176 cciss_free_gendisk(h, drv_index);
2177 cciss_free_drive_info(h, drv_index);
2179 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2183 /* This function will add and remove logical drives from the Logical
2184 * drive array of the controller and maintain persistency of ordering
2185 * so that mount points are preserved until the next reboot. This allows
2186 * for the removal of logical drives in the middle of the drive array
2187 * without a re-ordering of those drives.
2189 * h = The controller to perform the operations on
2191 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2195 ReportLunData_struct *ld_buff = NULL;
2201 unsigned char lunid[8] = CTLR_LUNID;
2202 unsigned long flags;
2204 if (!capable(CAP_SYS_RAWIO))
2207 /* Set busy_configuring flag for this operation */
2208 spin_lock_irqsave(&h->lock, flags);
2209 if (h->busy_configuring) {
2210 spin_unlock_irqrestore(&h->lock, flags);
2213 h->busy_configuring = 1;
2214 spin_unlock_irqrestore(&h->lock, flags);
2216 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2217 if (ld_buff == NULL)
2220 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2221 sizeof(ReportLunData_struct),
2222 0, CTLR_LUNID, TYPE_CMD);
2224 if (return_code == IO_OK)
2225 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2226 else { /* reading number of logical volumes failed */
2227 dev_warn(&h->pdev->dev,
2228 "report logical volume command failed\n");
2233 num_luns = listlength / 8; /* 8 bytes per entry */
2234 if (num_luns > CISS_MAX_LUN) {
2235 num_luns = CISS_MAX_LUN;
2236 dev_warn(&h->pdev->dev, "more luns configured"
2237 " on controller than can be handled by"
2242 cciss_add_controller_node(h);
2244 /* Compare controller drive array to driver's drive array
2245 * to see if any drives are missing on the controller due
2246 * to action of Array Config Utility (user deletes drive)
2247 * and deregister logical drives which have disappeared.
2249 for (i = 0; i <= h->highest_lun; i++) {
2253 /* skip holes in the array from already deleted drives */
2254 if (h->drv[i] == NULL)
2257 for (j = 0; j < num_luns; j++) {
2258 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2259 if (memcmp(h->drv[i]->LunID, lunid,
2260 sizeof(lunid)) == 0) {
2266 /* Deregister it from the OS, it's gone. */
2267 spin_lock_irqsave(&h->lock, flags);
2268 h->drv[i]->busy_configuring = 1;
2269 spin_unlock_irqrestore(&h->lock, flags);
2270 return_code = deregister_disk(h, i, 1, via_ioctl);
2271 if (h->drv[i] != NULL)
2272 h->drv[i]->busy_configuring = 0;
2276 /* Compare controller drive array to driver's drive array.
2277 * Check for updates in the drive information and any new drives
2278 * on the controller due to ACU adding logical drives, or changing
2279 * a logical drive's size, etc. Reregister any new/changed drives
2281 for (i = 0; i < num_luns; i++) {
2286 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2287 /* Find if the LUN is already in the drive array
2288 * of the driver. If so then update its info
2289 * if not in use. If it does not exist then find
2290 * the first free index and add it.
2292 for (j = 0; j <= h->highest_lun; j++) {
2293 if (h->drv[j] != NULL &&
2294 memcmp(h->drv[j]->LunID, lunid,
2295 sizeof(h->drv[j]->LunID)) == 0) {
2302 /* check if the drive was found already in the array */
2304 drv_index = cciss_add_gendisk(h, lunid, 0);
2305 if (drv_index == -1)
2308 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2313 h->busy_configuring = 0;
2314 /* We return -1 here to tell the ACU that we have registered/updated
2315 * all of the drives that we can and to keep it from calling us
2320 dev_err(&h->pdev->dev, "out of memory\n");
2321 h->busy_configuring = 0;
2325 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2327 /* zero out the disk size info */
2328 drive_info->nr_blocks = 0;
2329 drive_info->block_size = 0;
2330 drive_info->heads = 0;
2331 drive_info->sectors = 0;
2332 drive_info->cylinders = 0;
2333 drive_info->raid_level = -1;
2334 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2335 memset(drive_info->model, 0, sizeof(drive_info->model));
2336 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2337 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2339 * don't clear the LUNID though, we need to remember which
2344 /* This function will deregister the disk and it's queue from the
2345 * kernel. It must be called with the controller lock held and the
2346 * drv structures busy_configuring flag set. It's parameters are:
2348 * disk = This is the disk to be deregistered
2349 * drv = This is the drive_info_struct associated with the disk to be
2350 * deregistered. It contains information about the disk used
2352 * clear_all = This flag determines whether or not the disk information
2353 * is going to be completely cleared out and the highest_lun
2354 * reset. Sometimes we want to clear out information about
2355 * the disk in preparation for re-adding it. In this case
2356 * the highest_lun should be left unchanged and the LunID
2357 * should not be cleared.
2359 * This indicates whether we've reached this path via ioctl.
2360 * This affects the maximum usage count allowed for c0d0 to be messed with.
2361 * If this path is reached via ioctl(), then the max_usage_count will
2362 * be 1, as the process calling ioctl() has got to have the device open.
2363 * If we get here via sysfs, then the max usage count will be zero.
2365 static int deregister_disk(ctlr_info_t *h, int drv_index,
2366 int clear_all, int via_ioctl)
2369 struct gendisk *disk;
2370 drive_info_struct *drv;
2371 int recalculate_highest_lun;
2373 if (!capable(CAP_SYS_RAWIO))
2376 drv = h->drv[drv_index];
2377 disk = h->gendisk[drv_index];
2379 /* make sure logical volume is NOT is use */
2380 if (clear_all || (h->gendisk[0] == disk)) {
2381 if (drv->usage_count > via_ioctl)
2383 } else if (drv->usage_count > 0)
2386 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2388 /* invalidate the devices and deregister the disk. If it is disk
2389 * zero do not deregister it but just zero out it's values. This
2390 * allows us to delete disk zero but keep the controller registered.
2392 if (h->gendisk[0] != disk) {
2393 struct request_queue *q = disk->queue;
2394 if (disk->flags & GENHD_FL_UP) {
2395 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2399 blk_cleanup_queue(q);
2400 /* If clear_all is set then we are deleting the logical
2401 * drive, not just refreshing its info. For drives
2402 * other than disk 0 we will call put_disk. We do not
2403 * do this for disk 0 as we need it to be able to
2404 * configure the controller.
2407 /* This isn't pretty, but we need to find the
2408 * disk in our array and NULL our the pointer.
2409 * This is so that we will call alloc_disk if
2410 * this index is used again later.
2412 for (i=0; i < CISS_MAX_LUN; i++){
2413 if (h->gendisk[i] == disk) {
2414 h->gendisk[i] = NULL;
2421 set_capacity(disk, 0);
2422 cciss_clear_drive_info(drv);
2427 /* if it was the last disk, find the new hightest lun */
2428 if (clear_all && recalculate_highest_lun) {
2429 int newhighest = -1;
2430 for (i = 0; i <= h->highest_lun; i++) {
2431 /* if the disk has size > 0, it is available */
2432 if (h->drv[i] && h->drv[i]->heads)
2435 h->highest_lun = newhighest;
2440 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2441 size_t size, __u8 page_code, unsigned char *scsi3addr,
2444 u64bit buff_dma_handle;
2447 c->cmd_type = CMD_IOCTL_PEND;
2448 c->Header.ReplyQueue = 0;
2450 c->Header.SGList = 1;
2451 c->Header.SGTotal = 1;
2453 c->Header.SGList = 0;
2454 c->Header.SGTotal = 0;
2456 c->Header.Tag.lower = c->busaddr;
2457 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2459 c->Request.Type.Type = cmd_type;
2460 if (cmd_type == TYPE_CMD) {
2463 /* are we trying to read a vital product page */
2464 if (page_code != 0) {
2465 c->Request.CDB[1] = 0x01;
2466 c->Request.CDB[2] = page_code;
2468 c->Request.CDBLen = 6;
2469 c->Request.Type.Attribute = ATTR_SIMPLE;
2470 c->Request.Type.Direction = XFER_READ;
2471 c->Request.Timeout = 0;
2472 c->Request.CDB[0] = CISS_INQUIRY;
2473 c->Request.CDB[4] = size & 0xFF;
2475 case CISS_REPORT_LOG:
2476 case CISS_REPORT_PHYS:
2477 /* Talking to controller so It's a physical command
2478 mode = 00 target = 0. Nothing to write.
2480 c->Request.CDBLen = 12;
2481 c->Request.Type.Attribute = ATTR_SIMPLE;
2482 c->Request.Type.Direction = XFER_READ;
2483 c->Request.Timeout = 0;
2484 c->Request.CDB[0] = cmd;
2485 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2486 c->Request.CDB[7] = (size >> 16) & 0xFF;
2487 c->Request.CDB[8] = (size >> 8) & 0xFF;
2488 c->Request.CDB[9] = size & 0xFF;
2491 case CCISS_READ_CAPACITY:
2492 c->Request.CDBLen = 10;
2493 c->Request.Type.Attribute = ATTR_SIMPLE;
2494 c->Request.Type.Direction = XFER_READ;
2495 c->Request.Timeout = 0;
2496 c->Request.CDB[0] = cmd;
2498 case CCISS_READ_CAPACITY_16:
2499 c->Request.CDBLen = 16;
2500 c->Request.Type.Attribute = ATTR_SIMPLE;
2501 c->Request.Type.Direction = XFER_READ;
2502 c->Request.Timeout = 0;
2503 c->Request.CDB[0] = cmd;
2504 c->Request.CDB[1] = 0x10;
2505 c->Request.CDB[10] = (size >> 24) & 0xFF;
2506 c->Request.CDB[11] = (size >> 16) & 0xFF;
2507 c->Request.CDB[12] = (size >> 8) & 0xFF;
2508 c->Request.CDB[13] = size & 0xFF;
2509 c->Request.Timeout = 0;
2510 c->Request.CDB[0] = cmd;
2512 case CCISS_CACHE_FLUSH:
2513 c->Request.CDBLen = 12;
2514 c->Request.Type.Attribute = ATTR_SIMPLE;
2515 c->Request.Type.Direction = XFER_WRITE;
2516 c->Request.Timeout = 0;
2517 c->Request.CDB[0] = BMIC_WRITE;
2518 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2520 case TEST_UNIT_READY:
2521 c->Request.CDBLen = 6;
2522 c->Request.Type.Attribute = ATTR_SIMPLE;
2523 c->Request.Type.Direction = XFER_NONE;
2524 c->Request.Timeout = 0;
2527 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2530 } else if (cmd_type == TYPE_MSG) {
2532 case 0: /* ABORT message */
2533 c->Request.CDBLen = 12;
2534 c->Request.Type.Attribute = ATTR_SIMPLE;
2535 c->Request.Type.Direction = XFER_WRITE;
2536 c->Request.Timeout = 0;
2537 c->Request.CDB[0] = cmd; /* abort */
2538 c->Request.CDB[1] = 0; /* abort a command */
2539 /* buff contains the tag of the command to abort */
2540 memcpy(&c->Request.CDB[4], buff, 8);
2542 case 1: /* RESET message */
2543 c->Request.CDBLen = 16;
2544 c->Request.Type.Attribute = ATTR_SIMPLE;
2545 c->Request.Type.Direction = XFER_NONE;
2546 c->Request.Timeout = 0;
2547 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2548 c->Request.CDB[0] = cmd; /* reset */
2549 c->Request.CDB[1] = 0x03; /* reset a target */
2551 case 3: /* No-Op message */
2552 c->Request.CDBLen = 1;
2553 c->Request.Type.Attribute = ATTR_SIMPLE;
2554 c->Request.Type.Direction = XFER_WRITE;
2555 c->Request.Timeout = 0;
2556 c->Request.CDB[0] = cmd;
2559 dev_warn(&h->pdev->dev,
2560 "unknown message type %d\n", cmd);
2564 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2567 /* Fill in the scatter gather information */
2569 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2571 PCI_DMA_BIDIRECTIONAL);
2572 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2573 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2574 c->SG[0].Len = size;
2575 c->SG[0].Ext = 0; /* we are not chaining */
2580 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2582 switch (c->err_info->ScsiStatus) {
2585 case SAM_STAT_CHECK_CONDITION:
2586 switch (0xf & c->err_info->SenseInfo[2]) {
2587 case 0: return IO_OK; /* no sense */
2588 case 1: return IO_OK; /* recovered error */
2590 if (check_for_unit_attention(h, c))
2591 return IO_NEEDS_RETRY;
2592 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2593 "check condition, sense key = 0x%02x\n",
2594 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2598 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2599 "scsi status = 0x%02x\n",
2600 c->Request.CDB[0], c->err_info->ScsiStatus);
2606 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2608 int return_status = IO_OK;
2610 if (c->err_info->CommandStatus == CMD_SUCCESS)
2613 switch (c->err_info->CommandStatus) {
2614 case CMD_TARGET_STATUS:
2615 return_status = check_target_status(h, c);
2617 case CMD_DATA_UNDERRUN:
2618 case CMD_DATA_OVERRUN:
2619 /* expected for inquiry and report lun commands */
2622 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2623 "reported invalid\n", c->Request.CDB[0]);
2624 return_status = IO_ERROR;
2626 case CMD_PROTOCOL_ERR:
2627 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2628 "protocol error\n", c->Request.CDB[0]);
2629 return_status = IO_ERROR;
2631 case CMD_HARDWARE_ERR:
2632 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2633 " hardware error\n", c->Request.CDB[0]);
2634 return_status = IO_ERROR;
2636 case CMD_CONNECTION_LOST:
2637 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2638 "connection lost\n", c->Request.CDB[0]);
2639 return_status = IO_ERROR;
2642 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2643 "aborted\n", c->Request.CDB[0]);
2644 return_status = IO_ERROR;
2646 case CMD_ABORT_FAILED:
2647 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2648 "abort failed\n", c->Request.CDB[0]);
2649 return_status = IO_ERROR;
2651 case CMD_UNSOLICITED_ABORT:
2652 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2654 return_status = IO_NEEDS_RETRY;
2657 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2658 "unknown status %x\n", c->Request.CDB[0],
2659 c->err_info->CommandStatus);
2660 return_status = IO_ERROR;
2662 return return_status;
2665 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2668 DECLARE_COMPLETION_ONSTACK(wait);
2669 u64bit buff_dma_handle;
2670 int return_status = IO_OK;
2674 enqueue_cmd_and_start_io(h, c);
2676 wait_for_completion(&wait);
2678 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2681 return_status = process_sendcmd_error(h, c);
2683 if (return_status == IO_NEEDS_RETRY &&
2684 c->retry_count < MAX_CMD_RETRIES) {
2685 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2688 /* erase the old error information */
2689 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2690 return_status = IO_OK;
2691 INIT_COMPLETION(wait);
2696 /* unlock the buffers from DMA */
2697 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2698 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2699 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2700 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2701 return return_status;
2704 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2705 __u8 page_code, unsigned char scsi3addr[],
2708 CommandList_struct *c;
2711 c = cmd_special_alloc(h);
2714 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2715 scsi3addr, cmd_type);
2716 if (return_status == IO_OK)
2717 return_status = sendcmd_withirq_core(h, c, 1);
2719 cmd_special_free(h, c);
2720 return return_status;
2723 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2724 sector_t total_size,
2725 unsigned int block_size,
2726 InquiryData_struct *inq_buff,
2727 drive_info_struct *drv)
2731 unsigned char scsi3addr[8];
2733 memset(inq_buff, 0, sizeof(InquiryData_struct));
2734 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2735 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2736 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2737 if (return_code == IO_OK) {
2738 if (inq_buff->data_byte[8] == 0xFF) {
2739 dev_warn(&h->pdev->dev,
2740 "reading geometry failed, volume "
2741 "does not support reading geometry\n");
2743 drv->sectors = 32; /* Sectors per track */
2744 drv->cylinders = total_size + 1;
2745 drv->raid_level = RAID_UNKNOWN;
2747 drv->heads = inq_buff->data_byte[6];
2748 drv->sectors = inq_buff->data_byte[7];
2749 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2750 drv->cylinders += inq_buff->data_byte[5];
2751 drv->raid_level = inq_buff->data_byte[8];
2753 drv->block_size = block_size;
2754 drv->nr_blocks = total_size + 1;
2755 t = drv->heads * drv->sectors;
2757 sector_t real_size = total_size + 1;
2758 unsigned long rem = sector_div(real_size, t);
2761 drv->cylinders = real_size;
2763 } else { /* Get geometry failed */
2764 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2769 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2770 unsigned int *block_size)
2772 ReadCapdata_struct *buf;
2774 unsigned char scsi3addr[8];
2776 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2778 dev_warn(&h->pdev->dev, "out of memory\n");
2782 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2783 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2784 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2785 if (return_code == IO_OK) {
2786 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2787 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2788 } else { /* read capacity command failed */
2789 dev_warn(&h->pdev->dev, "read capacity failed\n");
2791 *block_size = BLOCK_SIZE;
2796 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2797 sector_t *total_size, unsigned int *block_size)
2799 ReadCapdata_struct_16 *buf;
2801 unsigned char scsi3addr[8];
2803 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2805 dev_warn(&h->pdev->dev, "out of memory\n");
2809 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2810 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2811 buf, sizeof(ReadCapdata_struct_16),
2812 0, scsi3addr, TYPE_CMD);
2813 if (return_code == IO_OK) {
2814 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2815 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2816 } else { /* read capacity command failed */
2817 dev_warn(&h->pdev->dev, "read capacity failed\n");
2819 *block_size = BLOCK_SIZE;
2821 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2822 (unsigned long long)*total_size+1, *block_size);
2826 static int cciss_revalidate(struct gendisk *disk)
2828 ctlr_info_t *h = get_host(disk);
2829 drive_info_struct *drv = get_drv(disk);
2832 unsigned int block_size;
2833 sector_t total_size;
2834 InquiryData_struct *inq_buff = NULL;
2836 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2837 if (!h->drv[logvol])
2839 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2840 sizeof(drv->LunID)) == 0) {
2849 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2850 if (inq_buff == NULL) {
2851 dev_warn(&h->pdev->dev, "out of memory\n");
2854 if (h->cciss_read == CCISS_READ_10) {
2855 cciss_read_capacity(h, logvol,
2856 &total_size, &block_size);
2858 cciss_read_capacity_16(h, logvol,
2859 &total_size, &block_size);
2861 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2864 blk_queue_logical_block_size(drv->queue, drv->block_size);
2865 set_capacity(disk, drv->nr_blocks);
2872 * Map (physical) PCI mem into (virtual) kernel space
2874 static void __iomem *remap_pci_mem(ulong base, ulong size)
2876 ulong page_base = ((ulong) base) & PAGE_MASK;
2877 ulong page_offs = ((ulong) base) - page_base;
2878 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2880 return page_remapped ? (page_remapped + page_offs) : NULL;
2884 * Takes jobs of the Q and sends them to the hardware, then puts it on
2885 * the Q to wait for completion.
2887 static void start_io(ctlr_info_t *h)
2889 CommandList_struct *c;
2891 while (!hlist_empty(&h->reqQ)) {
2892 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2893 /* can't do anything if fifo is full */
2894 if ((h->access.fifo_full(h))) {
2895 dev_warn(&h->pdev->dev, "fifo full\n");
2899 /* Get the first entry from the Request Q */
2903 /* Tell the controller execute command */
2904 h->access.submit_command(h, c);
2906 /* Put job onto the completed Q */
2911 /* Assumes that h->lock is held. */
2912 /* Zeros out the error record and then resends the command back */
2913 /* to the controller */
2914 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2916 /* erase the old error information */
2917 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2919 /* add it to software queue and then send it to the controller */
2922 if (h->Qdepth > h->maxQsinceinit)
2923 h->maxQsinceinit = h->Qdepth;
2928 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2929 unsigned int msg_byte, unsigned int host_byte,
2930 unsigned int driver_byte)
2932 /* inverse of macros in scsi.h */
2933 return (scsi_status_byte & 0xff) |
2934 ((msg_byte & 0xff) << 8) |
2935 ((host_byte & 0xff) << 16) |
2936 ((driver_byte & 0xff) << 24);
2939 static inline int evaluate_target_status(ctlr_info_t *h,
2940 CommandList_struct *cmd, int *retry_cmd)
2942 unsigned char sense_key;
2943 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2947 /* If we get in here, it means we got "target status", that is, scsi status */
2948 status_byte = cmd->err_info->ScsiStatus;
2949 driver_byte = DRIVER_OK;
2950 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2952 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
2953 host_byte = DID_PASSTHROUGH;
2957 error_value = make_status_bytes(status_byte, msg_byte,
2958 host_byte, driver_byte);
2960 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2961 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
2962 dev_warn(&h->pdev->dev, "cmd %p "
2963 "has SCSI Status 0x%x\n",
2964 cmd, cmd->err_info->ScsiStatus);
2968 /* check the sense key */
2969 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2970 /* no status or recovered error */
2971 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
2972 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
2975 if (check_for_unit_attention(h, cmd)) {
2976 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
2980 /* Not SG_IO or similar? */
2981 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
2982 if (error_value != 0)
2983 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
2984 " sense key = 0x%x\n", cmd, sense_key);
2988 /* SG_IO or similar, copy sense data back */
2989 if (cmd->rq->sense) {
2990 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2991 cmd->rq->sense_len = cmd->err_info->SenseLen;
2992 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2993 cmd->rq->sense_len);
2995 cmd->rq->sense_len = 0;
3000 /* checks the status of the job and calls complete buffers to mark all
3001 * buffers for the completed job. Note that this function does not need
3002 * to hold the hba/queue lock.
3004 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3008 struct request *rq = cmd->rq;
3013 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3015 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3016 goto after_error_processing;
3018 switch (cmd->err_info->CommandStatus) {
3019 case CMD_TARGET_STATUS:
3020 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3022 case CMD_DATA_UNDERRUN:
3023 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3024 dev_warn(&h->pdev->dev, "cmd %p has"
3025 " completed with data underrun "
3027 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3030 case CMD_DATA_OVERRUN:
3031 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3032 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3033 " completed with data overrun "
3037 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3038 "reported invalid\n", cmd);
3039 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3040 cmd->err_info->CommandStatus, DRIVER_OK,
3041 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3042 DID_PASSTHROUGH : DID_ERROR);
3044 case CMD_PROTOCOL_ERR:
3045 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3046 "protocol error\n", cmd);
3047 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3048 cmd->err_info->CommandStatus, DRIVER_OK,
3049 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3050 DID_PASSTHROUGH : DID_ERROR);
3052 case CMD_HARDWARE_ERR:
3053 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3054 " hardware error\n", cmd);
3055 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3056 cmd->err_info->CommandStatus, DRIVER_OK,
3057 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3058 DID_PASSTHROUGH : DID_ERROR);
3060 case CMD_CONNECTION_LOST:
3061 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3062 "connection lost\n", cmd);
3063 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3064 cmd->err_info->CommandStatus, DRIVER_OK,
3065 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3066 DID_PASSTHROUGH : DID_ERROR);
3069 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3071 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3072 cmd->err_info->CommandStatus, DRIVER_OK,
3073 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3074 DID_PASSTHROUGH : DID_ABORT);
3076 case CMD_ABORT_FAILED:
3077 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3078 "abort failed\n", cmd);
3079 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3080 cmd->err_info->CommandStatus, DRIVER_OK,
3081 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3082 DID_PASSTHROUGH : DID_ERROR);
3084 case CMD_UNSOLICITED_ABORT:
3085 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3086 "abort %p\n", h->ctlr, cmd);
3087 if (cmd->retry_count < MAX_CMD_RETRIES) {
3089 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3092 dev_warn(&h->pdev->dev,
3093 "%p retried too many times\n", cmd);
3094 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3095 cmd->err_info->CommandStatus, DRIVER_OK,
3096 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3097 DID_PASSTHROUGH : DID_ABORT);
3100 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3101 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3102 cmd->err_info->CommandStatus, DRIVER_OK,
3103 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3104 DID_PASSTHROUGH : DID_ERROR);
3107 dev_warn(&h->pdev->dev, "cmd %p returned "
3108 "unknown status %x\n", cmd,
3109 cmd->err_info->CommandStatus);
3110 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3111 cmd->err_info->CommandStatus, DRIVER_OK,
3112 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3113 DID_PASSTHROUGH : DID_ERROR);
3116 after_error_processing:
3118 /* We need to return this command */
3120 resend_cciss_cmd(h, cmd);
3123 cmd->rq->completion_data = cmd;
3124 blk_complete_request(cmd->rq);
3127 static inline u32 cciss_tag_contains_index(u32 tag)
3129 #define DIRECT_LOOKUP_BIT 0x10
3130 return tag & DIRECT_LOOKUP_BIT;
3133 static inline u32 cciss_tag_to_index(u32 tag)
3135 #define DIRECT_LOOKUP_SHIFT 5
3136 return tag >> DIRECT_LOOKUP_SHIFT;
3139 static inline u32 cciss_tag_discard_error_bits(u32 tag)
3141 #define CCISS_ERROR_BITS 0x03
3142 return tag & ~CCISS_ERROR_BITS;
3145 static inline void cciss_mark_tag_indexed(u32 *tag)
3147 *tag |= DIRECT_LOOKUP_BIT;
3150 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3152 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3156 * Get a request and submit it to the controller.
3158 static void do_cciss_request(struct request_queue *q)
3160 ctlr_info_t *h = q->queuedata;
3161 CommandList_struct *c;
3164 struct request *creq;
3166 struct scatterlist *tmp_sg;
3167 SGDescriptor_struct *curr_sg;
3168 drive_info_struct *drv;
3173 /* We call start_io here in case there is a command waiting on the
3174 * queue that has not been sent.
3176 if (blk_queue_plugged(q))
3180 creq = blk_peek_request(q);
3184 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3190 blk_start_request(creq);
3192 tmp_sg = h->scatter_list[c->cmdindex];
3193 spin_unlock_irq(q->queue_lock);
3195 c->cmd_type = CMD_RWREQ;
3198 /* fill in the request */
3199 drv = creq->rq_disk->private_data;
3200 c->Header.ReplyQueue = 0; /* unused in simple mode */
3201 /* got command from pool, so use the command block index instead */
3202 /* for direct lookups. */
3203 /* The first 2 bits are reserved for controller error reporting. */
3204 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3205 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3206 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3207 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3208 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3209 c->Request.Type.Attribute = ATTR_SIMPLE;
3210 c->Request.Type.Direction =
3211 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3212 c->Request.Timeout = 0; /* Don't time out */
3214 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3215 start_blk = blk_rq_pos(creq);
3216 dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3217 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3218 sg_init_table(tmp_sg, h->maxsgentries);
3219 seg = blk_rq_map_sg(q, creq, tmp_sg);
3221 /* get the DMA records for the setup */
3222 if (c->Request.Type.Direction == XFER_READ)
3223 dir = PCI_DMA_FROMDEVICE;
3225 dir = PCI_DMA_TODEVICE;
3231 for (i = 0; i < seg; i++) {
3232 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3233 !chained && ((seg - i) > 1)) {
3234 /* Point to next chain block. */
3235 curr_sg = h->cmd_sg_list[c->cmdindex];
3239 curr_sg[sg_index].Len = tmp_sg[i].length;
3240 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3242 tmp_sg[i].length, dir);
3243 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3244 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3245 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3249 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3250 (seg - (h->max_cmd_sgentries - 1)) *
3251 sizeof(SGDescriptor_struct));
3253 /* track how many SG entries we are using */
3257 dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3259 blk_rq_sectors(creq), seg, chained);
3261 c->Header.SGTotal = seg + chained;
3262 if (seg <= h->max_cmd_sgentries)
3263 c->Header.SGList = c->Header.SGTotal;
3265 c->Header.SGList = h->max_cmd_sgentries;
3266 set_performant_mode(h, c);
3268 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3269 if(h->cciss_read == CCISS_READ_10) {
3270 c->Request.CDB[1] = 0;
3271 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3272 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3273 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3274 c->Request.CDB[5] = start_blk & 0xff;
3275 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3276 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3277 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3278 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3280 u32 upper32 = upper_32_bits(start_blk);
3282 c->Request.CDBLen = 16;
3283 c->Request.CDB[1]= 0;
3284 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3285 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3286 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3287 c->Request.CDB[5]= upper32 & 0xff;
3288 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3289 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3290 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3291 c->Request.CDB[9]= start_blk & 0xff;
3292 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3293 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3294 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3295 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3296 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3298 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3299 c->Request.CDBLen = creq->cmd_len;
3300 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3302 dev_warn(&h->pdev->dev, "bad request type %d\n",
3307 spin_lock_irq(q->queue_lock);
3311 if (h->Qdepth > h->maxQsinceinit)
3312 h->maxQsinceinit = h->Qdepth;