2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
69 static int cciss_allow_hpsa;
70 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
71 MODULE_PARM_DESC(cciss_allow_hpsa,
72 "Prevent cciss driver from accessing hardware known to be "
73 " supported by the hpsa driver");
75 #include "cciss_cmd.h"
77 #include <linux/cciss_ioctl.h>
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id[] = {
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254},
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
122 static struct board_type products[] = {
123 {0x40700E11, "Smart Array 5300", &SA5_access},
124 {0x40800E11, "Smart Array 5i", &SA5B_access},
125 {0x40820E11, "Smart Array 532", &SA5B_access},
126 {0x40830E11, "Smart Array 5312", &SA5B_access},
127 {0x409A0E11, "Smart Array 641", &SA5_access},
128 {0x409B0E11, "Smart Array 642", &SA5_access},
129 {0x409C0E11, "Smart Array 6400", &SA5_access},
130 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131 {0x40910E11, "Smart Array 6i", &SA5_access},
132 {0x3225103C, "Smart Array P600", &SA5_access},
133 {0x3235103C, "Smart Array P400i", &SA5_access},
134 {0x3211103C, "Smart Array E200i", &SA5_access},
135 {0x3212103C, "Smart Array E200", &SA5_access},
136 {0x3213103C, "Smart Array E200i", &SA5_access},
137 {0x3214103C, "Smart Array E200i", &SA5_access},
138 {0x3215103C, "Smart Array E200i", &SA5_access},
139 {0x3237103C, "Smart Array E500", &SA5_access},
140 /* controllers below this line are also supported by the hpsa driver. */
141 #define HPSA_BOUNDARY 0x3223103C
142 {0x3223103C, "Smart Array P800", &SA5_access},
143 {0x3234103C, "Smart Array P400", &SA5_access},
144 {0x323D103C, "Smart Array P700m", &SA5_access},
145 {0x3241103C, "Smart Array P212", &SA5_access},
146 {0x3243103C, "Smart Array P410", &SA5_access},
147 {0x3245103C, "Smart Array P410i", &SA5_access},
148 {0x3247103C, "Smart Array P411", &SA5_access},
149 {0x3249103C, "Smart Array P812", &SA5_access},
150 {0x324A103C, "Smart Array P712m", &SA5_access},
151 {0x324B103C, "Smart Array P711m", &SA5_access},
152 {0x3250103C, "Smart Array", &SA5_access},
153 {0x3251103C, "Smart Array", &SA5_access},
154 {0x3252103C, "Smart Array", &SA5_access},
155 {0x3253103C, "Smart Array", &SA5_access},
156 {0x3254103C, "Smart Array", &SA5_access},
159 /* How long to wait (in milliseconds) for board to go into simple mode */
160 #define MAX_CONFIG_WAIT 30000
161 #define MAX_IOCTL_CONFIG_WAIT 1000
163 /*define how many times we will try a command because of bus resets */
164 #define MAX_CMD_RETRIES 3
168 /* Originally cciss driver only supports 8 major numbers */
169 #define MAX_CTLR_ORIG 8
171 static ctlr_info_t *hba[MAX_CTLR];
173 static struct task_struct *cciss_scan_thread;
174 static DEFINE_MUTEX(scan_mutex);
175 static LIST_HEAD(scan_q);
177 static void do_cciss_request(struct request_queue *q);
178 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
179 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
180 static int cciss_open(struct block_device *bdev, fmode_t mode);
181 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
182 static int cciss_release(struct gendisk *disk, fmode_t mode);
183 static int do_ioctl(struct block_device *bdev, fmode_t mode,
184 unsigned int cmd, unsigned long arg);
185 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
186 unsigned int cmd, unsigned long arg);
187 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
189 static int cciss_revalidate(struct gendisk *disk);
190 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
191 static int deregister_disk(ctlr_info_t *h, int drv_index,
192 int clear_all, int via_ioctl);
194 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
195 sector_t *total_size, unsigned int *block_size);
196 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
197 sector_t *total_size, unsigned int *block_size);
198 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
200 unsigned int block_size, InquiryData_struct *inq_buff,
201 drive_info_struct *drv);
202 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
203 static void start_io(ctlr_info_t *h);
204 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
205 __u8 page_code, unsigned char scsi3addr[],
207 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
209 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
211 static int add_to_scan_list(struct ctlr_info *h);
212 static int scan_thread(void *data);
213 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
214 static void cciss_hba_release(struct device *dev);
215 static void cciss_device_release(struct device *dev);
216 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
217 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
218 static inline u32 next_command(ctlr_info_t *h);
219 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
220 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
222 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
223 unsigned long *memory_bar);
226 /* performant mode helper functions */
227 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
229 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
231 #ifdef CONFIG_PROC_FS
232 static void cciss_procinit(ctlr_info_t *h);
234 static void cciss_procinit(ctlr_info_t *h)
237 #endif /* CONFIG_PROC_FS */
240 static int cciss_compat_ioctl(struct block_device *, fmode_t,
241 unsigned, unsigned long);
244 static const struct block_device_operations cciss_fops = {
245 .owner = THIS_MODULE,
246 .open = cciss_unlocked_open,
247 .release = cciss_release,
249 .getgeo = cciss_getgeo,
251 .compat_ioctl = cciss_compat_ioctl,
253 .revalidate_disk = cciss_revalidate,
256 /* set_performant_mode: Modify the tag for cciss performant
257 * set bit 0 for pull model, bits 3-1 for block fetch
260 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
262 if (likely(h->transMethod == CFGTBL_Trans_Performant))
263 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
267 * Enqueuing and dequeuing functions for cmdlists.
269 static inline void addQ(struct list_head *list, CommandList_struct *c)
271 list_add_tail(&c->list, list);
274 static inline void removeQ(CommandList_struct *c)
277 * After kexec/dump some commands might still
278 * be in flight, which the firmware will try
279 * to complete. Resetting the firmware doesn't work
280 * with old fw revisions, so we have to mark
281 * them off as 'stale' to prevent the driver from
284 if (WARN_ON(list_empty(&c->list))) {
285 c->cmd_type = CMD_MSG_STALE;
289 list_del_init(&c->list);
292 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
293 CommandList_struct *c)
296 set_performant_mode(h, c);
297 spin_lock_irqsave(&h->lock, flags);
300 if (h->Qdepth > h->maxQsinceinit)
301 h->maxQsinceinit = h->Qdepth;
303 spin_unlock_irqrestore(&h->lock, flags);
306 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
313 for (i = 0; i < nr_cmds; i++) {
314 kfree(cmd_sg_list[i]);
315 cmd_sg_list[i] = NULL;
320 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
321 ctlr_info_t *h, int chainsize, int nr_cmds)
324 SGDescriptor_struct **cmd_sg_list;
329 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
333 /* Build up chain blocks for each command */
334 for (j = 0; j < nr_cmds; j++) {
335 /* Need a block of chainsized s/g elements. */
336 cmd_sg_list[j] = kmalloc((chainsize *
337 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
338 if (!cmd_sg_list[j]) {
339 dev_err(&h->pdev->dev, "Cannot get memory "
340 "for s/g chains.\n");
346 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
350 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
352 SGDescriptor_struct *chain_sg;
355 if (c->Header.SGTotal <= h->max_cmd_sgentries)
358 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
359 temp64.val32.lower = chain_sg->Addr.lower;
360 temp64.val32.upper = chain_sg->Addr.upper;
361 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
364 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
365 SGDescriptor_struct *chain_block, int len)
367 SGDescriptor_struct *chain_sg;
370 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
371 chain_sg->Ext = CCISS_SG_CHAIN;
373 temp64.val = pci_map_single(h->pdev, chain_block, len,
375 chain_sg->Addr.lower = temp64.val32.lower;
376 chain_sg->Addr.upper = temp64.val32.upper;
379 #include "cciss_scsi.c" /* For SCSI tape support */
381 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
384 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
386 #ifdef CONFIG_PROC_FS
389 * Report information about this controller.
391 #define ENG_GIG 1000000000
392 #define ENG_GIG_FACTOR (ENG_GIG/512)
393 #define ENGAGE_SCSI "engage scsi"
395 static struct proc_dir_entry *proc_cciss;
397 static void cciss_seq_show_header(struct seq_file *seq)
399 ctlr_info_t *h = seq->private;
401 seq_printf(seq, "%s: HP %s Controller\n"
402 "Board ID: 0x%08lx\n"
403 "Firmware Version: %c%c%c%c\n"
405 "Logical drives: %d\n"
406 "Current Q depth: %d\n"
407 "Current # commands on controller: %d\n"
408 "Max Q depth since init: %d\n"
409 "Max # commands on controller since init: %d\n"
410 "Max SG entries since init: %d\n",
413 (unsigned long)h->board_id,
414 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
415 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
417 h->Qdepth, h->commands_outstanding,
418 h->maxQsinceinit, h->max_outstanding, h->maxSG);
420 #ifdef CONFIG_CISS_SCSI_TAPE
421 cciss_seq_tape_report(seq, h);
422 #endif /* CONFIG_CISS_SCSI_TAPE */
425 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
427 ctlr_info_t *h = seq->private;
430 /* prevent displaying bogus info during configuration
431 * or deconfiguration of a logical volume
433 spin_lock_irqsave(&h->lock, flags);
434 if (h->busy_configuring) {
435 spin_unlock_irqrestore(&h->lock, flags);
436 return ERR_PTR(-EBUSY);
438 h->busy_configuring = 1;
439 spin_unlock_irqrestore(&h->lock, flags);
442 cciss_seq_show_header(seq);
447 static int cciss_seq_show(struct seq_file *seq, void *v)
449 sector_t vol_sz, vol_sz_frac;
450 ctlr_info_t *h = seq->private;
451 unsigned ctlr = h->ctlr;
453 drive_info_struct *drv = h->drv[*pos];
455 if (*pos > h->highest_lun)
458 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
464 vol_sz = drv->nr_blocks;
465 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
467 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
469 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
470 drv->raid_level = RAID_UNKNOWN;
471 seq_printf(seq, "cciss/c%dd%d:"
472 "\t%4u.%02uGB\tRAID %s\n",
473 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
474 raid_label[drv->raid_level]);
478 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
480 ctlr_info_t *h = seq->private;
482 if (*pos > h->highest_lun)
489 static void cciss_seq_stop(struct seq_file *seq, void *v)
491 ctlr_info_t *h = seq->private;
493 /* Only reset h->busy_configuring if we succeeded in setting
494 * it during cciss_seq_start. */
495 if (v == ERR_PTR(-EBUSY))
498 h->busy_configuring = 0;
501 static const struct seq_operations cciss_seq_ops = {
502 .start = cciss_seq_start,
503 .show = cciss_seq_show,
504 .next = cciss_seq_next,
505 .stop = cciss_seq_stop,
508 static int cciss_seq_open(struct inode *inode, struct file *file)
510 int ret = seq_open(file, &cciss_seq_ops);
511 struct seq_file *seq = file->private_data;
514 seq->private = PDE(inode)->data;
520 cciss_proc_write(struct file *file, const char __user *buf,
521 size_t length, loff_t *ppos)
526 #ifndef CONFIG_CISS_SCSI_TAPE
530 if (!buf || length > PAGE_SIZE - 1)
533 buffer = (char *)__get_free_page(GFP_KERNEL);
538 if (copy_from_user(buffer, buf, length))
540 buffer[length] = '\0';
542 #ifdef CONFIG_CISS_SCSI_TAPE
543 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
544 struct seq_file *seq = file->private_data;
545 ctlr_info_t *h = seq->private;
547 err = cciss_engage_scsi(h);
551 #endif /* CONFIG_CISS_SCSI_TAPE */
553 /* might be nice to have "disengage" too, but it's not
554 safely possible. (only 1 module use count, lock issues.) */
557 free_page((unsigned long)buffer);
561 static const struct file_operations cciss_proc_fops = {
562 .owner = THIS_MODULE,
563 .open = cciss_seq_open,
566 .release = seq_release,
567 .write = cciss_proc_write,
570 static void __devinit cciss_procinit(ctlr_info_t *h)
572 struct proc_dir_entry *pde;
574 if (proc_cciss == NULL)
575 proc_cciss = proc_mkdir("driver/cciss", NULL);
578 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
580 &cciss_proc_fops, h);
582 #endif /* CONFIG_PROC_FS */
584 #define MAX_PRODUCT_NAME_LEN 19
586 #define to_hba(n) container_of(n, struct ctlr_info, dev)
587 #define to_drv(n) container_of(n, drive_info_struct, dev)
589 static ssize_t host_store_rescan(struct device *dev,
590 struct device_attribute *attr,
591 const char *buf, size_t count)
593 struct ctlr_info *h = to_hba(dev);
596 wake_up_process(cciss_scan_thread);
597 wait_for_completion_interruptible(&h->scan_wait);
601 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
603 static ssize_t dev_show_unique_id(struct device *dev,
604 struct device_attribute *attr,
607 drive_info_struct *drv = to_drv(dev);
608 struct ctlr_info *h = to_hba(drv->dev.parent);
613 spin_lock_irqsave(&h->lock, flags);
614 if (h->busy_configuring)
617 memcpy(sn, drv->serial_no, sizeof(sn));
618 spin_unlock_irqrestore(&h->lock, flags);
623 return snprintf(buf, 16 * 2 + 2,
624 "%02X%02X%02X%02X%02X%02X%02X%02X"
625 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
626 sn[0], sn[1], sn[2], sn[3],
627 sn[4], sn[5], sn[6], sn[7],
628 sn[8], sn[9], sn[10], sn[11],
629 sn[12], sn[13], sn[14], sn[15]);
631 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
633 static ssize_t dev_show_vendor(struct device *dev,
634 struct device_attribute *attr,
637 drive_info_struct *drv = to_drv(dev);
638 struct ctlr_info *h = to_hba(drv->dev.parent);
639 char vendor[VENDOR_LEN + 1];
643 spin_lock_irqsave(&h->lock, flags);
644 if (h->busy_configuring)
647 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
648 spin_unlock_irqrestore(&h->lock, flags);
653 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
655 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
657 static ssize_t dev_show_model(struct device *dev,
658 struct device_attribute *attr,
661 drive_info_struct *drv = to_drv(dev);
662 struct ctlr_info *h = to_hba(drv->dev.parent);
663 char model[MODEL_LEN + 1];
667 spin_lock_irqsave(&h->lock, flags);
668 if (h->busy_configuring)
671 memcpy(model, drv->model, MODEL_LEN + 1);
672 spin_unlock_irqrestore(&h->lock, flags);
677 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
679 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
681 static ssize_t dev_show_rev(struct device *dev,
682 struct device_attribute *attr,
685 drive_info_struct *drv = to_drv(dev);
686 struct ctlr_info *h = to_hba(drv->dev.parent);
687 char rev[REV_LEN + 1];
691 spin_lock_irqsave(&h->lock, flags);
692 if (h->busy_configuring)
695 memcpy(rev, drv->rev, REV_LEN + 1);
696 spin_unlock_irqrestore(&h->lock, flags);
701 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
703 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
705 static ssize_t cciss_show_lunid(struct device *dev,
706 struct device_attribute *attr, char *buf)
708 drive_info_struct *drv = to_drv(dev);
709 struct ctlr_info *h = to_hba(drv->dev.parent);
711 unsigned char lunid[8];
713 spin_lock_irqsave(&h->lock, flags);
714 if (h->busy_configuring) {
715 spin_unlock_irqrestore(&h->lock, flags);
719 spin_unlock_irqrestore(&h->lock, flags);
722 memcpy(lunid, drv->LunID, sizeof(lunid));
723 spin_unlock_irqrestore(&h->lock, flags);
724 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
725 lunid[0], lunid[1], lunid[2], lunid[3],
726 lunid[4], lunid[5], lunid[6], lunid[7]);
728 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
730 static ssize_t cciss_show_raid_level(struct device *dev,
731 struct device_attribute *attr, char *buf)
733 drive_info_struct *drv = to_drv(dev);
734 struct ctlr_info *h = to_hba(drv->dev.parent);
738 spin_lock_irqsave(&h->lock, flags);
739 if (h->busy_configuring) {
740 spin_unlock_irqrestore(&h->lock, flags);
743 raid = drv->raid_level;
744 spin_unlock_irqrestore(&h->lock, flags);
745 if (raid < 0 || raid > RAID_UNKNOWN)
748 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
751 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
753 static ssize_t cciss_show_usage_count(struct device *dev,
754 struct device_attribute *attr, char *buf)
756 drive_info_struct *drv = to_drv(dev);
757 struct ctlr_info *h = to_hba(drv->dev.parent);
761 spin_lock_irqsave(&h->lock, flags);
762 if (h->busy_configuring) {
763 spin_unlock_irqrestore(&h->lock, flags);
766 count = drv->usage_count;
767 spin_unlock_irqrestore(&h->lock, flags);
768 return snprintf(buf, 20, "%d\n", count);
770 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
772 static struct attribute *cciss_host_attrs[] = {
773 &dev_attr_rescan.attr,
777 static struct attribute_group cciss_host_attr_group = {
778 .attrs = cciss_host_attrs,
781 static const struct attribute_group *cciss_host_attr_groups[] = {
782 &cciss_host_attr_group,
786 static struct device_type cciss_host_type = {
787 .name = "cciss_host",
788 .groups = cciss_host_attr_groups,
789 .release = cciss_hba_release,
792 static struct attribute *cciss_dev_attrs[] = {
793 &dev_attr_unique_id.attr,
794 &dev_attr_model.attr,
795 &dev_attr_vendor.attr,
797 &dev_attr_lunid.attr,
798 &dev_attr_raid_level.attr,
799 &dev_attr_usage_count.attr,
803 static struct attribute_group cciss_dev_attr_group = {
804 .attrs = cciss_dev_attrs,
807 static const struct attribute_group *cciss_dev_attr_groups[] = {
808 &cciss_dev_attr_group,
812 static struct device_type cciss_dev_type = {
813 .name = "cciss_device",
814 .groups = cciss_dev_attr_groups,
815 .release = cciss_device_release,
818 static struct bus_type cciss_bus_type = {
823 * cciss_hba_release is called when the reference count
824 * of h->dev goes to zero.
826 static void cciss_hba_release(struct device *dev)
829 * nothing to do, but need this to avoid a warning
830 * about not having a release handler from lib/kref.c.
835 * Initialize sysfs entry for each controller. This sets up and registers
836 * the 'cciss#' directory for each individual controller under
837 * /sys/bus/pci/devices/<dev>/.
839 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
841 device_initialize(&h->dev);
842 h->dev.type = &cciss_host_type;
843 h->dev.bus = &cciss_bus_type;
844 dev_set_name(&h->dev, "%s", h->devname);
845 h->dev.parent = &h->pdev->dev;
847 return device_add(&h->dev);
851 * Remove sysfs entries for an hba.
853 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
856 put_device(&h->dev); /* final put. */
859 /* cciss_device_release is called when the reference count
860 * of h->drv[x]dev goes to zero.
862 static void cciss_device_release(struct device *dev)
864 drive_info_struct *drv = to_drv(dev);
869 * Initialize sysfs for each logical drive. This sets up and registers
870 * the 'c#d#' directory for each individual logical drive under
871 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
872 * /sys/block/cciss!c#d# to this entry.
874 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
879 if (h->drv[drv_index]->device_initialized)
882 dev = &h->drv[drv_index]->dev;
883 device_initialize(dev);
884 dev->type = &cciss_dev_type;
885 dev->bus = &cciss_bus_type;
886 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
887 dev->parent = &h->dev;
888 h->drv[drv_index]->device_initialized = 1;
889 return device_add(dev);
893 * Remove sysfs entries for a logical drive.
895 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
898 struct device *dev = &h->drv[drv_index]->dev;
900 /* special case for c*d0, we only destroy it on controller exit */
901 if (drv_index == 0 && !ctlr_exiting)
905 put_device(dev); /* the "final" put. */
906 h->drv[drv_index] = NULL;
910 * For operations that cannot sleep, a command block is allocated at init,
911 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
912 * which ones are free or in use.
914 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
916 CommandList_struct *c;
919 dma_addr_t cmd_dma_handle, err_dma_handle;
922 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
925 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
926 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
928 memset(c, 0, sizeof(CommandList_struct));
929 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
930 c->err_info = h->errinfo_pool + i;
931 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
932 err_dma_handle = h->errinfo_pool_dhandle
933 + i * sizeof(ErrorInfo_struct);
938 INIT_LIST_HEAD(&c->list);
939 c->busaddr = (__u32) cmd_dma_handle;
940 temp64.val = (__u64) err_dma_handle;
941 c->ErrDesc.Addr.lower = temp64.val32.lower;
942 c->ErrDesc.Addr.upper = temp64.val32.upper;
943 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
949 /* allocate a command using pci_alloc_consistent, used for ioctls,
950 * etc., not for the main i/o path.
952 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
954 CommandList_struct *c;
956 dma_addr_t cmd_dma_handle, err_dma_handle;
958 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
959 sizeof(CommandList_struct), &cmd_dma_handle);
962 memset(c, 0, sizeof(CommandList_struct));
966 c->err_info = (ErrorInfo_struct *)
967 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
970 if (c->err_info == NULL) {
971 pci_free_consistent(h->pdev,
972 sizeof(CommandList_struct), c, cmd_dma_handle);
975 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
977 INIT_LIST_HEAD(&c->list);
978 c->busaddr = (__u32) cmd_dma_handle;
979 temp64.val = (__u64) err_dma_handle;
980 c->ErrDesc.Addr.lower = temp64.val32.lower;
981 c->ErrDesc.Addr.upper = temp64.val32.upper;
982 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
988 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
993 clear_bit(i & (BITS_PER_LONG - 1),
994 h->cmd_pool_bits + (i / BITS_PER_LONG));
998 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1002 temp64.val32.lower = c->ErrDesc.Addr.lower;
1003 temp64.val32.upper = c->ErrDesc.Addr.upper;
1004 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1005 c->err_info, (dma_addr_t) temp64.val);
1006 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
1007 c, (dma_addr_t) c->busaddr);
1010 static inline ctlr_info_t *get_host(struct gendisk *disk)
1012 return disk->queue->queuedata;
1015 static inline drive_info_struct *get_drv(struct gendisk *disk)
1017 return disk->private_data;
1021 * Open. Make sure the device is really there.
1023 static int cciss_open(struct block_device *bdev, fmode_t mode)
1025 ctlr_info_t *h = get_host(bdev->bd_disk);
1026 drive_info_struct *drv = get_drv(bdev->bd_disk);
1028 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1029 if (drv->busy_configuring)
1032 * Root is allowed to open raw volume zero even if it's not configured
1033 * so array config can still work. Root is also allowed to open any
1034 * volume that has a LUN ID, so it can issue IOCTL to reread the
1035 * disk information. I don't think I really like this
1036 * but I'm already using way to many device nodes to claim another one
1037 * for "raw controller".
1039 if (drv->heads == 0) {
1040 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1041 /* if not node 0 make sure it is a partition = 0 */
1042 if (MINOR(bdev->bd_dev) & 0x0f) {
1044 /* if it is, make sure we have a LUN ID */
1045 } else if (memcmp(drv->LunID, CTLR_LUNID,
1046 sizeof(drv->LunID))) {
1050 if (!capable(CAP_SYS_ADMIN))
1058 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1063 ret = cciss_open(bdev, mode);
1070 * Close. Sync first.
1072 static int cciss_release(struct gendisk *disk, fmode_t mode)
1075 drive_info_struct *drv;
1079 drv = get_drv(disk);
1080 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1087 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1088 unsigned cmd, unsigned long arg)
1092 ret = cciss_ioctl(bdev, mode, cmd, arg);
1097 #ifdef CONFIG_COMPAT
1099 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1100 unsigned cmd, unsigned long arg);
1101 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1102 unsigned cmd, unsigned long arg);
1104 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1105 unsigned cmd, unsigned long arg)
1108 case CCISS_GETPCIINFO:
1109 case CCISS_GETINTINFO:
1110 case CCISS_SETINTINFO:
1111 case CCISS_GETNODENAME:
1112 case CCISS_SETNODENAME:
1113 case CCISS_GETHEARTBEAT:
1114 case CCISS_GETBUSTYPES:
1115 case CCISS_GETFIRMVER:
1116 case CCISS_GETDRIVVER:
1117 case CCISS_REVALIDVOLS:
1118 case CCISS_DEREGDISK:
1119 case CCISS_REGNEWDISK:
1121 case CCISS_RESCANDISK:
1122 case CCISS_GETLUNINFO:
1123 return do_ioctl(bdev, mode, cmd, arg);
1125 case CCISS_PASSTHRU32:
1126 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1127 case CCISS_BIG_PASSTHRU32:
1128 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1131 return -ENOIOCTLCMD;
1135 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1136 unsigned cmd, unsigned long arg)
1138 IOCTL32_Command_struct __user *arg32 =
1139 (IOCTL32_Command_struct __user *) arg;
1140 IOCTL_Command_struct arg64;
1141 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1147 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1148 sizeof(arg64.LUN_info));
1150 copy_from_user(&arg64.Request, &arg32->Request,
1151 sizeof(arg64.Request));
1153 copy_from_user(&arg64.error_info, &arg32->error_info,
1154 sizeof(arg64.error_info));
1155 err |= get_user(arg64.buf_size, &arg32->buf_size);
1156 err |= get_user(cp, &arg32->buf);
1157 arg64.buf = compat_ptr(cp);
1158 err |= copy_to_user(p, &arg64, sizeof(arg64));
1163 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1167 copy_in_user(&arg32->error_info, &p->error_info,
1168 sizeof(arg32->error_info));
1174 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1175 unsigned cmd, unsigned long arg)
1177 BIG_IOCTL32_Command_struct __user *arg32 =
1178 (BIG_IOCTL32_Command_struct __user *) arg;
1179 BIG_IOCTL_Command_struct arg64;
1180 BIG_IOCTL_Command_struct __user *p =
1181 compat_alloc_user_space(sizeof(arg64));
1187 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1188 sizeof(arg64.LUN_info));
1190 copy_from_user(&arg64.Request, &arg32->Request,
1191 sizeof(arg64.Request));
1193 copy_from_user(&arg64.error_info, &arg32->error_info,
1194 sizeof(arg64.error_info));
1195 err |= get_user(arg64.buf_size, &arg32->buf_size);
1196 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1197 err |= get_user(cp, &arg32->buf);
1198 arg64.buf = compat_ptr(cp);
1199 err |= copy_to_user(p, &arg64, sizeof(arg64));
1204 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1208 copy_in_user(&arg32->error_info, &p->error_info,
1209 sizeof(arg32->error_info));
1216 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1218 drive_info_struct *drv = get_drv(bdev->bd_disk);
1220 if (!drv->cylinders)
1223 geo->heads = drv->heads;
1224 geo->sectors = drv->sectors;
1225 geo->cylinders = drv->cylinders;
1229 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1231 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1232 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1233 (void)check_for_unit_attention(h, c);
1238 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1239 unsigned int cmd, unsigned long arg)
1241 struct gendisk *disk = bdev->bd_disk;
1242 ctlr_info_t *h = get_host(disk);
1243 drive_info_struct *drv = get_drv(disk);
1244 void __user *argp = (void __user *)arg;
1246 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1249 case CCISS_GETPCIINFO:
1251 cciss_pci_info_struct pciinfo;
1255 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1256 pciinfo.bus = h->pdev->bus->number;
1257 pciinfo.dev_fn = h->pdev->devfn;
1258 pciinfo.board_id = h->board_id;
1260 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1264 case CCISS_GETINTINFO:
1266 cciss_coalint_struct intinfo;
1270 readl(&h->cfgtable->HostWrite.CoalIntDelay);
1272 readl(&h->cfgtable->HostWrite.CoalIntCount);
1274 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1278 case CCISS_SETINTINFO:
1280 cciss_coalint_struct intinfo;
1281 unsigned long flags;
1286 if (!capable(CAP_SYS_ADMIN))
1289 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1291 if ((intinfo.delay == 0) && (intinfo.count == 0))
1293 spin_lock_irqsave(&h->lock, flags);
1294 /* Update the field, and then ring the doorbell */
1295 writel(intinfo.delay,
1296 &(h->cfgtable->HostWrite.CoalIntDelay));
1297 writel(intinfo.count,
1298 &(h->cfgtable->HostWrite.CoalIntCount));
1299 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1301 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1302 if (!(readl(h->vaddr + SA5_DOORBELL)
1303 & CFGTBL_ChangeReq))
1305 /* delay and try again */
1308 spin_unlock_irqrestore(&h->lock, flags);
1309 if (i >= MAX_IOCTL_CONFIG_WAIT)
1313 case CCISS_GETNODENAME:
1315 NodeName_type NodeName;
1320 for (i = 0; i < 16; i++)
1322 readb(&h->cfgtable->ServerName[i]);
1323 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1327 case CCISS_SETNODENAME:
1329 NodeName_type NodeName;
1330 unsigned long flags;
1335 if (!capable(CAP_SYS_ADMIN))
1339 (NodeName, argp, sizeof(NodeName_type)))
1342 spin_lock_irqsave(&h->lock, flags);
1344 /* Update the field, and then ring the doorbell */
1345 for (i = 0; i < 16; i++)
1347 &h->cfgtable->ServerName[i]);
1349 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1351 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1352 if (!(readl(h->vaddr + SA5_DOORBELL)
1353 & CFGTBL_ChangeReq))
1355 /* delay and try again */
1358 spin_unlock_irqrestore(&h->lock, flags);
1359 if (i >= MAX_IOCTL_CONFIG_WAIT)
1364 case CCISS_GETHEARTBEAT:
1366 Heartbeat_type heartbeat;
1370 heartbeat = readl(&h->cfgtable->HeartBeat);
1372 (argp, &heartbeat, sizeof(Heartbeat_type)))
1376 case CCISS_GETBUSTYPES:
1378 BusTypes_type BusTypes;
1382 BusTypes = readl(&h->cfgtable->BusTypes);
1384 (argp, &BusTypes, sizeof(BusTypes_type)))
1388 case CCISS_GETFIRMVER:
1390 FirmwareVer_type firmware;
1394 memcpy(firmware, h->firm_ver, 4);
1397 (argp, firmware, sizeof(FirmwareVer_type)))
1401 case CCISS_GETDRIVVER:
1403 DriverVer_type DriverVer = DRIVER_VERSION;
1409 (argp, &DriverVer, sizeof(DriverVer_type)))
1414 case CCISS_DEREGDISK:
1416 case CCISS_REVALIDVOLS:
1417 return rebuild_lun_table(h, 0, 1);
1419 case CCISS_GETLUNINFO:{
1420 LogvolInfo_struct luninfo;
1422 memcpy(&luninfo.LunID, drv->LunID,
1423 sizeof(luninfo.LunID));
1424 luninfo.num_opens = drv->usage_count;
1425 luninfo.num_parts = 0;
1426 if (copy_to_user(argp, &luninfo,
1427 sizeof(LogvolInfo_struct)))
1431 case CCISS_PASSTHRU:
1433 IOCTL_Command_struct iocommand;
1434 CommandList_struct *c;
1437 DECLARE_COMPLETION_ONSTACK(wait);
1442 if (!capable(CAP_SYS_RAWIO))
1446 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1448 if ((iocommand.buf_size < 1) &&
1449 (iocommand.Request.Type.Direction != XFER_NONE)) {
1452 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1453 /* Check kmalloc limits */
1454 if (iocommand.buf_size > 128000)
1457 if (iocommand.buf_size > 0) {
1458 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1462 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1463 /* Copy the data into the buffer we created */
1465 (buff, iocommand.buf, iocommand.buf_size)) {
1470 memset(buff, 0, iocommand.buf_size);
1472 c = cmd_special_alloc(h);
1477 /* Fill in the command type */
1478 c->cmd_type = CMD_IOCTL_PEND;
1479 /* Fill in Command Header */
1480 c->Header.ReplyQueue = 0; /* unused in simple mode */
1481 if (iocommand.buf_size > 0) /* buffer to fill */
1483 c->Header.SGList = 1;
1484 c->Header.SGTotal = 1;
1485 } else /* no buffers to fill */
1487 c->Header.SGList = 0;
1488 c->Header.SGTotal = 0;
1490 c->Header.LUN = iocommand.LUN_info;
1491 /* use the kernel address the cmd block for tag */
1492 c->Header.Tag.lower = c->busaddr;
1494 /* Fill in Request block */
1495 c->Request = iocommand.Request;
1497 /* Fill in the scatter gather information */
1498 if (iocommand.buf_size > 0) {
1499 temp64.val = pci_map_single(h->pdev, buff,
1501 PCI_DMA_BIDIRECTIONAL);
1502 c->SG[0].Addr.lower = temp64.val32.lower;
1503 c->SG[0].Addr.upper = temp64.val32.upper;
1504 c->SG[0].Len = iocommand.buf_size;
1505 c->SG[0].Ext = 0; /* we are not chaining */
1509 enqueue_cmd_and_start_io(h, c);
1510 wait_for_completion(&wait);
1512 /* unlock the buffers from DMA */
1513 temp64.val32.lower = c->SG[0].Addr.lower;
1514 temp64.val32.upper = c->SG[0].Addr.upper;
1515 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val,
1517 PCI_DMA_BIDIRECTIONAL);
1519 check_ioctl_unit_attention(h, c);
1521 /* Copy the error information out */
1522 iocommand.error_info = *(c->err_info);
1524 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1526 cmd_special_free(h, c);
1530 if (iocommand.Request.Type.Direction == XFER_READ) {
1531 /* Copy the data out of the buffer we created */
1533 (iocommand.buf, buff, iocommand.buf_size)) {
1535 cmd_special_free(h, c);
1540 cmd_special_free(h, c);
1543 case CCISS_BIG_PASSTHRU:{
1544 BIG_IOCTL_Command_struct *ioc;
1545 CommandList_struct *c;
1546 unsigned char **buff = NULL;
1547 int *buff_size = NULL;
1552 DECLARE_COMPLETION_ONSTACK(wait);
1555 BYTE __user *data_ptr;
1559 if (!capable(CAP_SYS_RAWIO))
1561 ioc = (BIG_IOCTL_Command_struct *)
1562 kmalloc(sizeof(*ioc), GFP_KERNEL);
1567 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1571 if ((ioc->buf_size < 1) &&
1572 (ioc->Request.Type.Direction != XFER_NONE)) {
1576 /* Check kmalloc limits using all SGs */
1577 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1581 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1586 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1591 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1597 left = ioc->buf_size;
1598 data_ptr = ioc->buf;
1601 ioc->malloc_size) ? ioc->
1603 buff_size[sg_used] = sz;
1604 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1605 if (buff[sg_used] == NULL) {
1609 if (ioc->Request.Type.Direction == XFER_WRITE) {
1611 (buff[sg_used], data_ptr, sz)) {
1616 memset(buff[sg_used], 0, sz);
1622 c = cmd_special_alloc(h);
1627 c->cmd_type = CMD_IOCTL_PEND;
1628 c->Header.ReplyQueue = 0;
1630 if (ioc->buf_size > 0) {
1631 c->Header.SGList = sg_used;
1632 c->Header.SGTotal = sg_used;
1634 c->Header.SGList = 0;
1635 c->Header.SGTotal = 0;
1637 c->Header.LUN = ioc->LUN_info;
1638 c->Header.Tag.lower = c->busaddr;
1640 c->Request = ioc->Request;
1641 if (ioc->buf_size > 0) {
1642 for (i = 0; i < sg_used; i++) {
1644 pci_map_single(h->pdev, buff[i],
1646 PCI_DMA_BIDIRECTIONAL);
1647 c->SG[i].Addr.lower =
1649 c->SG[i].Addr.upper =
1651 c->SG[i].Len = buff_size[i];
1652 c->SG[i].Ext = 0; /* we are not chaining */
1656 enqueue_cmd_and_start_io(h, c);
1657 wait_for_completion(&wait);
1658 /* unlock the buffers from DMA */
1659 for (i = 0; i < sg_used; i++) {
1660 temp64.val32.lower = c->SG[i].Addr.lower;
1661 temp64.val32.upper = c->SG[i].Addr.upper;
1662 pci_unmap_single(h->pdev,
1663 (dma_addr_t) temp64.val, buff_size[i],
1664 PCI_DMA_BIDIRECTIONAL);
1666 check_ioctl_unit_attention(h, c);
1667 /* Copy the error information out */
1668 ioc->error_info = *(c->err_info);
1669 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1670 cmd_special_free(h, c);
1674 if (ioc->Request.Type.Direction == XFER_READ) {
1675 /* Copy the data out of the buffer we created */
1676 BYTE __user *ptr = ioc->buf;
1677 for (i = 0; i < sg_used; i++) {
1679 (ptr, buff[i], buff_size[i])) {
1680 cmd_special_free(h, c);
1684 ptr += buff_size[i];
1687 cmd_special_free(h, c);
1691 for (i = 0; i < sg_used; i++)
1700 /* scsi_cmd_ioctl handles these, below, though some are not */
1701 /* very meaningful for cciss. SG_IO is the main one people want. */
1703 case SG_GET_VERSION_NUM:
1704 case SG_SET_TIMEOUT:
1705 case SG_GET_TIMEOUT:
1706 case SG_GET_RESERVED_SIZE:
1707 case SG_SET_RESERVED_SIZE:
1708 case SG_EMULATED_HOST:
1710 case SCSI_IOCTL_SEND_COMMAND:
1711 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1713 /* scsi_cmd_ioctl would normally handle these, below, but */
1714 /* they aren't a good fit for cciss, as CD-ROMs are */
1715 /* not supported, and we don't have any bus/target/lun */
1716 /* which we present to the kernel. */
1718 case CDROM_SEND_PACKET:
1719 case CDROMCLOSETRAY:
1721 case SCSI_IOCTL_GET_IDLUN:
1722 case SCSI_IOCTL_GET_BUS_NUMBER:
1728 static void cciss_check_queues(ctlr_info_t *h)
1730 int start_queue = h->next_to_run;
1733 /* check to see if we have maxed out the number of commands that can
1734 * be placed on the queue. If so then exit. We do this check here
1735 * in case the interrupt we serviced was from an ioctl and did not
1736 * free any new commands.
1738 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1741 /* We have room on the queue for more commands. Now we need to queue
1742 * them up. We will also keep track of the next queue to run so
1743 * that every queue gets a chance to be started first.
1745 for (i = 0; i < h->highest_lun + 1; i++) {
1746 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1747 /* make sure the disk has been added and the drive is real
1748 * because this can be called from the middle of init_one.
1750 if (!h->drv[curr_queue])
1752 if (!(h->drv[curr_queue]->queue) ||
1753 !(h->drv[curr_queue]->heads))
1755 blk_start_queue(h->gendisk[curr_queue]->queue);
1757 /* check to see if we have maxed out the number of commands
1758 * that can be placed on the queue.
1760 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1761 if (curr_queue == start_queue) {
1763 (start_queue + 1) % (h->highest_lun + 1);
1766 h->next_to_run = curr_queue;
1773 static void cciss_softirq_done(struct request *rq)
1775 CommandList_struct *c = rq->completion_data;
1776 ctlr_info_t *h = hba[c->ctlr];
1777 SGDescriptor_struct *curr_sg = c->SG;
1779 unsigned long flags;
1783 if (c->Request.Type.Direction == XFER_READ)
1784 ddir = PCI_DMA_FROMDEVICE;
1786 ddir = PCI_DMA_TODEVICE;
1788 /* command did not need to be retried */
1789 /* unmap the DMA mapping for all the scatter gather elements */
1790 for (i = 0; i < c->Header.SGList; i++) {
1791 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1792 cciss_unmap_sg_chain_block(h, c);
1793 /* Point to the next block */
1794 curr_sg = h->cmd_sg_list[c->cmdindex];
1797 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1798 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1799 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1804 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1806 /* set the residual count for pc requests */
1807 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1808 rq->resid_len = c->err_info->ResidualCnt;
1810 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1812 spin_lock_irqsave(&h->lock, flags);
1814 cciss_check_queues(h);
1815 spin_unlock_irqrestore(&h->lock, flags);
1818 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1819 unsigned char scsi3addr[], uint32_t log_unit)
1821 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1822 sizeof(h->drv[log_unit]->LunID));
1825 /* This function gets the SCSI vendor, model, and revision of a logical drive
1826 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1827 * they cannot be read.
1829 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1830 char *vendor, char *model, char *rev)
1833 InquiryData_struct *inq_buf;
1834 unsigned char scsi3addr[8];
1840 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1844 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1845 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1846 scsi3addr, TYPE_CMD);
1848 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1849 vendor[VENDOR_LEN] = '\0';
1850 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1851 model[MODEL_LEN] = '\0';
1852 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1853 rev[REV_LEN] = '\0';
1860 /* This function gets the serial number of a logical drive via
1861 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1862 * number cannot be had, for whatever reason, 16 bytes of 0xff
1863 * are returned instead.
1865 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1866 unsigned char *serial_no, int buflen)
1868 #define PAGE_83_INQ_BYTES 64
1871 unsigned char scsi3addr[8];
1875 memset(serial_no, 0xff, buflen);
1876 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1879 memset(serial_no, 0, buflen);
1880 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1881 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1882 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1884 memcpy(serial_no, &buf[8], buflen);
1890 * cciss_add_disk sets up the block device queue for a logical drive
1892 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1895 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1897 goto init_queue_failure;
1898 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1899 disk->major = h->major;
1900 disk->first_minor = drv_index << NWD_SHIFT;
1901 disk->fops = &cciss_fops;
1902 if (cciss_create_ld_sysfs_entry(h, drv_index))
1904 disk->private_data = h->drv[drv_index];
1905 disk->driverfs_dev = &h->drv[drv_index]->dev;
1907 /* Set up queue information */
1908 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1910 /* This is a hardware imposed limit. */
1911 blk_queue_max_segments(disk->queue, h->maxsgentries);
1913 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1915 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1917 disk->queue->queuedata = h;
1919 blk_queue_logical_block_size(disk->queue,
1920 h->drv[drv_index]->block_size);
1922 /* Make sure all queue data is written out before */
1923 /* setting h->drv[drv_index]->queue, as setting this */
1924 /* allows the interrupt handler to start the queue */
1926 h->drv[drv_index]->queue = disk->queue;
1931 blk_cleanup_queue(disk->queue);
1937 /* This function will check the usage_count of the drive to be updated/added.
1938 * If the usage_count is zero and it is a heretofore unknown drive, or,
1939 * the drive's capacity, geometry, or serial number has changed,
1940 * then the drive information will be updated and the disk will be
1941 * re-registered with the kernel. If these conditions don't hold,
1942 * then it will be left alone for the next reboot. The exception to this
1943 * is disk 0 which will always be left registered with the kernel since it
1944 * is also the controller node. Any changes to disk 0 will show up on
1947 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1948 int first_time, int via_ioctl)
1950 struct gendisk *disk;
1951 InquiryData_struct *inq_buff = NULL;
1952 unsigned int block_size;
1953 sector_t total_size;
1954 unsigned long flags = 0;
1956 drive_info_struct *drvinfo;
1958 /* Get information about the disk and modify the driver structure */
1959 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1960 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1961 if (inq_buff == NULL || drvinfo == NULL)
1964 /* testing to see if 16-byte CDBs are already being used */
1965 if (h->cciss_read == CCISS_READ_16) {
1966 cciss_read_capacity_16(h, drv_index,
1967 &total_size, &block_size);
1970 cciss_read_capacity(h, drv_index, &total_size, &block_size);
1971 /* if read_capacity returns all F's this volume is >2TB */
1972 /* in size so we switch to 16-byte CDB's for all */
1973 /* read/write ops */
1974 if (total_size == 0xFFFFFFFFULL) {
1975 cciss_read_capacity_16(h, drv_index,
1976 &total_size, &block_size);
1977 h->cciss_read = CCISS_READ_16;
1978 h->cciss_write = CCISS_WRITE_16;
1980 h->cciss_read = CCISS_READ_10;
1981 h->cciss_write = CCISS_WRITE_10;
1985 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
1987 drvinfo->block_size = block_size;
1988 drvinfo->nr_blocks = total_size + 1;
1990 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
1991 drvinfo->model, drvinfo->rev);
1992 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
1993 sizeof(drvinfo->serial_no));
1994 /* Save the lunid in case we deregister the disk, below. */
1995 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1996 sizeof(drvinfo->LunID));
1998 /* Is it the same disk we already know, and nothing's changed? */
1999 if (h->drv[drv_index]->raid_level != -1 &&
2000 ((memcmp(drvinfo->serial_no,
2001 h->drv[drv_index]->serial_no, 16) == 0) &&
2002 drvinfo->block_size == h->drv[drv_index]->block_size &&
2003 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2004 drvinfo->heads == h->drv[drv_index]->heads &&
2005 drvinfo->sectors == h->drv[drv_index]->sectors &&
2006 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2007 /* The disk is unchanged, nothing to update */
2010 /* If we get here it's not the same disk, or something's changed,
2011 * so we need to * deregister it, and re-register it, if it's not
2013 * If the disk already exists then deregister it before proceeding
2014 * (unless it's the first disk (for the controller node).
2016 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2017 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2018 spin_lock_irqsave(&h->lock, flags);
2019 h->drv[drv_index]->busy_configuring = 1;
2020 spin_unlock_irqrestore(&h->lock, flags);
2022 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2023 * which keeps the interrupt handler from starting
2026 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2029 /* If the disk is in use return */
2033 /* Save the new information from cciss_geometry_inquiry
2034 * and serial number inquiry. If the disk was deregistered
2035 * above, then h->drv[drv_index] will be NULL.
2037 if (h->drv[drv_index] == NULL) {
2038 drvinfo->device_initialized = 0;
2039 h->drv[drv_index] = drvinfo;
2040 drvinfo = NULL; /* so it won't be freed below. */
2042 /* special case for cxd0 */
2043 h->drv[drv_index]->block_size = drvinfo->block_size;
2044 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2045 h->drv[drv_index]->heads = drvinfo->heads;
2046 h->drv[drv_index]->sectors = drvinfo->sectors;
2047 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2048 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2049 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2050 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2052 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2053 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2057 disk = h->gendisk[drv_index];
2058 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2060 /* If it's not disk 0 (drv_index != 0)
2061 * or if it was disk 0, but there was previously
2062 * no actual corresponding configured logical drive
2063 * (raid_leve == -1) then we want to update the
2064 * logical drive's information.
2066 if (drv_index || first_time) {
2067 if (cciss_add_disk(h, disk, drv_index) != 0) {
2068 cciss_free_gendisk(h, drv_index);
2069 cciss_free_drive_info(h, drv_index);
2070 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2081 dev_err(&h->pdev->dev, "out of memory\n");
2085 /* This function will find the first index of the controllers drive array
2086 * that has a null drv pointer and allocate the drive info struct and
2087 * will return that index This is where new drives will be added.
2088 * If the index to be returned is greater than the highest_lun index for
2089 * the controller then highest_lun is set * to this new index.
2090 * If there are no available indexes or if tha allocation fails, then -1
2091 * is returned. * "controller_node" is used to know if this is a real
2092 * logical drive, or just the controller node, which determines if this
2093 * counts towards highest_lun.
2095 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2098 drive_info_struct *drv;
2100 /* Search for an empty slot for our drive info */
2101 for (i = 0; i < CISS_MAX_LUN; i++) {
2103 /* if not cxd0 case, and it's occupied, skip it. */
2104 if (h->drv[i] && i != 0)
2107 * If it's cxd0 case, and drv is alloc'ed already, and a
2108 * disk is configured there, skip it.
2110 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2114 * We've found an empty slot. Update highest_lun
2115 * provided this isn't just the fake cxd0 controller node.
2117 if (i > h->highest_lun && !controller_node)
2120 /* If adding a real disk at cxd0, and it's already alloc'ed */
2121 if (i == 0 && h->drv[i] != NULL)
2125 * Found an empty slot, not already alloc'ed. Allocate it.
2126 * Mark it with raid_level == -1, so we know it's new later on.
2128 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2131 drv->raid_level = -1; /* so we know it's new */
2138 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2140 kfree(h->drv[drv_index]);
2141 h->drv[drv_index] = NULL;
2144 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2146 put_disk(h->gendisk[drv_index]);
2147 h->gendisk[drv_index] = NULL;
2150 /* cciss_add_gendisk finds a free hba[]->drv structure
2151 * and allocates a gendisk if needed, and sets the lunid
2152 * in the drvinfo structure. It returns the index into
2153 * the ->drv[] array, or -1 if none are free.
2154 * is_controller_node indicates whether highest_lun should
2155 * count this disk, or if it's only being added to provide
2156 * a means to talk to the controller in case no logical
2157 * drives have yet been configured.
2159 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2160 int controller_node)
2164 drv_index = cciss_alloc_drive_info(h, controller_node);
2165 if (drv_index == -1)
2168 /*Check if the gendisk needs to be allocated */
2169 if (!h->gendisk[drv_index]) {
2170 h->gendisk[drv_index] =
2171 alloc_disk(1 << NWD_SHIFT);
2172 if (!h->gendisk[drv_index]) {
2173 dev_err(&h->pdev->dev,
2174 "could not allocate a new disk %d\n",
2176 goto err_free_drive_info;
2179 memcpy(h->drv[drv_index]->LunID, lunid,
2180 sizeof(h->drv[drv_index]->LunID));
2181 if (cciss_create_ld_sysfs_entry(h, drv_index))
2183 /* Don't need to mark this busy because nobody */
2184 /* else knows about this disk yet to contend */
2185 /* for access to it. */
2186 h->drv[drv_index]->busy_configuring = 0;
2191 cciss_free_gendisk(h, drv_index);
2192 err_free_drive_info:
2193 cciss_free_drive_info(h, drv_index);
2197 /* This is for the special case of a controller which
2198 * has no logical drives. In this case, we still need
2199 * to register a disk so the controller can be accessed
2200 * by the Array Config Utility.
2202 static void cciss_add_controller_node(ctlr_info_t *h)
2204 struct gendisk *disk;
2207 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2210 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2211 if (drv_index == -1)
2213 h->drv[drv_index]->block_size = 512;
2214 h->drv[drv_index]->nr_blocks = 0;
2215 h->drv[drv_index]->heads = 0;
2216 h->drv[drv_index]->sectors = 0;
2217 h->drv[drv_index]->cylinders = 0;
2218 h->drv[drv_index]->raid_level = -1;
2219 memset(h->drv[drv_index]->serial_no, 0, 16);
2220 disk = h->gendisk[drv_index];
2221 if (cciss_add_disk(h, disk, drv_index) == 0)
2223 cciss_free_gendisk(h, drv_index);
2224 cciss_free_drive_info(h, drv_index);
2226 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2230 /* This function will add and remove logical drives from the Logical
2231 * drive array of the controller and maintain persistency of ordering
2232 * so that mount points are preserved until the next reboot. This allows
2233 * for the removal of logical drives in the middle of the drive array
2234 * without a re-ordering of those drives.
2236 * h = The controller to perform the operations on
2238 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2242 ReportLunData_struct *ld_buff = NULL;
2248 unsigned char lunid[8] = CTLR_LUNID;
2249 unsigned long flags;
2251 if (!capable(CAP_SYS_RAWIO))
2254 /* Set busy_configuring flag for this operation */
2255 spin_lock_irqsave(&h->lock, flags);
2256 if (h->busy_configuring) {
2257 spin_unlock_irqrestore(&h->lock, flags);
2260 h->busy_configuring = 1;
2261 spin_unlock_irqrestore(&h->lock, flags);
2263 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2264 if (ld_buff == NULL)
2267 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2268 sizeof(ReportLunData_struct),
2269 0, CTLR_LUNID, TYPE_CMD);
2271 if (return_code == IO_OK)
2272 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2273 else { /* reading number of logical volumes failed */
2274 dev_warn(&h->pdev->dev,
2275 "report logical volume command failed\n");
2280 num_luns = listlength / 8; /* 8 bytes per entry */
2281 if (num_luns > CISS_MAX_LUN) {
2282 num_luns = CISS_MAX_LUN;
2283 dev_warn(&h->pdev->dev, "more luns configured"
2284 " on controller than can be handled by"
2289 cciss_add_controller_node(h);
2291 /* Compare controller drive array to driver's drive array
2292 * to see if any drives are missing on the controller due
2293 * to action of Array Config Utility (user deletes drive)
2294 * and deregister logical drives which have disappeared.
2296 for (i = 0; i <= h->highest_lun; i++) {
2300 /* skip holes in the array from already deleted drives */
2301 if (h->drv[i] == NULL)
2304 for (j = 0; j < num_luns; j++) {
2305 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2306 if (memcmp(h->drv[i]->LunID, lunid,
2307 sizeof(lunid)) == 0) {
2313 /* Deregister it from the OS, it's gone. */
2314 spin_lock_irqsave(&h->lock, flags);
2315 h->drv[i]->busy_configuring = 1;
2316 spin_unlock_irqrestore(&h->lock, flags);
2317 return_code = deregister_disk(h, i, 1, via_ioctl);
2318 if (h->drv[i] != NULL)
2319 h->drv[i]->busy_configuring = 0;
2323 /* Compare controller drive array to driver's drive array.
2324 * Check for updates in the drive information and any new drives
2325 * on the controller due to ACU adding logical drives, or changing
2326 * a logical drive's size, etc. Reregister any new/changed drives
2328 for (i = 0; i < num_luns; i++) {
2333 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2334 /* Find if the LUN is already in the drive array
2335 * of the driver. If so then update its info
2336 * if not in use. If it does not exist then find
2337 * the first free index and add it.
2339 for (j = 0; j <= h->highest_lun; j++) {
2340 if (h->drv[j] != NULL &&
2341 memcmp(h->drv[j]->LunID, lunid,
2342 sizeof(h->drv[j]->LunID)) == 0) {
2349 /* check if the drive was found already in the array */
2351 drv_index = cciss_add_gendisk(h, lunid, 0);
2352 if (drv_index == -1)
2355 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2360 h->busy_configuring = 0;
2361 /* We return -1 here to tell the ACU that we have registered/updated
2362 * all of the drives that we can and to keep it from calling us
2367 dev_err(&h->pdev->dev, "out of memory\n");
2368 h->busy_configuring = 0;
2372 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2374 /* zero out the disk size info */
2375 drive_info->nr_blocks = 0;
2376 drive_info->block_size = 0;
2377 drive_info->heads = 0;
2378 drive_info->sectors = 0;
2379 drive_info->cylinders = 0;
2380 drive_info->raid_level = -1;
2381 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2382 memset(drive_info->model, 0, sizeof(drive_info->model));
2383 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2384 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2386 * don't clear the LUNID though, we need to remember which
2391 /* This function will deregister the disk and it's queue from the
2392 * kernel. It must be called with the controller lock held and the
2393 * drv structures busy_configuring flag set. It's parameters are:
2395 * disk = This is the disk to be deregistered
2396 * drv = This is the drive_info_struct associated with the disk to be
2397 * deregistered. It contains information about the disk used
2399 * clear_all = This flag determines whether or not the disk information
2400 * is going to be completely cleared out and the highest_lun
2401 * reset. Sometimes we want to clear out information about
2402 * the disk in preparation for re-adding it. In this case
2403 * the highest_lun should be left unchanged and the LunID
2404 * should not be cleared.
2406 * This indicates whether we've reached this path via ioctl.
2407 * This affects the maximum usage count allowed for c0d0 to be messed with.
2408 * If this path is reached via ioctl(), then the max_usage_count will
2409 * be 1, as the process calling ioctl() has got to have the device open.
2410 * If we get here via sysfs, then the max usage count will be zero.
2412 static int deregister_disk(ctlr_info_t *h, int drv_index,
2413 int clear_all, int via_ioctl)
2416 struct gendisk *disk;
2417 drive_info_struct *drv;
2418 int recalculate_highest_lun;
2420 if (!capable(CAP_SYS_RAWIO))
2423 drv = h->drv[drv_index];
2424 disk = h->gendisk[drv_index];
2426 /* make sure logical volume is NOT is use */
2427 if (clear_all || (h->gendisk[0] == disk)) {
2428 if (drv->usage_count > via_ioctl)
2430 } else if (drv->usage_count > 0)
2433 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2435 /* invalidate the devices and deregister the disk. If it is disk
2436 * zero do not deregister it but just zero out it's values. This
2437 * allows us to delete disk zero but keep the controller registered.
2439 if (h->gendisk[0] != disk) {
2440 struct request_queue *q = disk->queue;
2441 if (disk->flags & GENHD_FL_UP) {
2442 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2446 blk_cleanup_queue(q);
2447 /* If clear_all is set then we are deleting the logical
2448 * drive, not just refreshing its info. For drives
2449 * other than disk 0 we will call put_disk. We do not
2450 * do this for disk 0 as we need it to be able to
2451 * configure the controller.
2454 /* This isn't pretty, but we need to find the
2455 * disk in our array and NULL our the pointer.
2456 * This is so that we will call alloc_disk if
2457 * this index is used again later.
2459 for (i=0; i < CISS_MAX_LUN; i++){
2460 if (h->gendisk[i] == disk) {
2461 h->gendisk[i] = NULL;
2468 set_capacity(disk, 0);
2469 cciss_clear_drive_info(drv);
2474 /* if it was the last disk, find the new hightest lun */
2475 if (clear_all && recalculate_highest_lun) {
2476 int newhighest = -1;
2477 for (i = 0; i <= h->highest_lun; i++) {
2478 /* if the disk has size > 0, it is available */
2479 if (h->drv[i] && h->drv[i]->heads)
2482 h->highest_lun = newhighest;
2487 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2488 size_t size, __u8 page_code, unsigned char *scsi3addr,
2491 u64bit buff_dma_handle;
2494 c->cmd_type = CMD_IOCTL_PEND;
2495 c->Header.ReplyQueue = 0;
2497 c->Header.SGList = 1;
2498 c->Header.SGTotal = 1;
2500 c->Header.SGList = 0;
2501 c->Header.SGTotal = 0;
2503 c->Header.Tag.lower = c->busaddr;
2504 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2506 c->Request.Type.Type = cmd_type;
2507 if (cmd_type == TYPE_CMD) {
2510 /* are we trying to read a vital product page */
2511 if (page_code != 0) {
2512 c->Request.CDB[1] = 0x01;
2513 c->Request.CDB[2] = page_code;
2515 c->Request.CDBLen = 6;
2516 c->Request.Type.Attribute = ATTR_SIMPLE;
2517 c->Request.Type.Direction = XFER_READ;
2518 c->Request.Timeout = 0;
2519 c->Request.CDB[0] = CISS_INQUIRY;
2520 c->Request.CDB[4] = size & 0xFF;
2522 case CISS_REPORT_LOG:
2523 case CISS_REPORT_PHYS:
2524 /* Talking to controller so It's a physical command
2525 mode = 00 target = 0. Nothing to write.
2527 c->Request.CDBLen = 12;
2528 c->Request.Type.Attribute = ATTR_SIMPLE;
2529 c->Request.Type.Direction = XFER_READ;
2530 c->Request.Timeout = 0;
2531 c->Request.CDB[0] = cmd;
2532 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2533 c->Request.CDB[7] = (size >> 16) & 0xFF;
2534 c->Request.CDB[8] = (size >> 8) & 0xFF;
2535 c->Request.CDB[9] = size & 0xFF;
2538 case CCISS_READ_CAPACITY:
2539 c->Request.CDBLen = 10;
2540 c->Request.Type.Attribute = ATTR_SIMPLE;
2541 c->Request.Type.Direction = XFER_READ;
2542 c->Request.Timeout = 0;
2543 c->Request.CDB[0] = cmd;
2545 case CCISS_READ_CAPACITY_16:
2546 c->Request.CDBLen = 16;
2547 c->Request.Type.Attribute = ATTR_SIMPLE;
2548 c->Request.Type.Direction = XFER_READ;
2549 c->Request.Timeout = 0;
2550 c->Request.CDB[0] = cmd;
2551 c->Request.CDB[1] = 0x10;
2552 c->Request.CDB[10] = (size >> 24) & 0xFF;
2553 c->Request.CDB[11] = (size >> 16) & 0xFF;
2554 c->Request.CDB[12] = (size >> 8) & 0xFF;
2555 c->Request.CDB[13] = size & 0xFF;
2556 c->Request.Timeout = 0;
2557 c->Request.CDB[0] = cmd;
2559 case CCISS_CACHE_FLUSH:
2560 c->Request.CDBLen = 12;
2561 c->Request.Type.Attribute = ATTR_SIMPLE;
2562 c->Request.Type.Direction = XFER_WRITE;
2563 c->Request.Timeout = 0;
2564 c->Request.CDB[0] = BMIC_WRITE;
2565 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2567 case TEST_UNIT_READY:
2568 c->Request.CDBLen = 6;
2569 c->Request.Type.Attribute = ATTR_SIMPLE;
2570 c->Request.Type.Direction = XFER_NONE;
2571 c->Request.Timeout = 0;
2574 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2577 } else if (cmd_type == TYPE_MSG) {
2579 case 0: /* ABORT message */
2580 c->Request.CDBLen = 12;
2581 c->Request.Type.Attribute = ATTR_SIMPLE;
2582 c->Request.Type.Direction = XFER_WRITE;
2583 c->Request.Timeout = 0;
2584 c->Request.CDB[0] = cmd; /* abort */
2585 c->Request.CDB[1] = 0; /* abort a command */
2586 /* buff contains the tag of the command to abort */
2587 memcpy(&c->Request.CDB[4], buff, 8);
2589 case 1: /* RESET message */
2590 c->Request.CDBLen = 16;
2591 c->Request.Type.Attribute = ATTR_SIMPLE;
2592 c->Request.Type.Direction = XFER_NONE;
2593 c->Request.Timeout = 0;
2594 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2595 c->Request.CDB[0] = cmd; /* reset */
2596 c->Request.CDB[1] = 0x03; /* reset a target */
2598 case 3: /* No-Op message */
2599 c->Request.CDBLen = 1;
2600 c->Request.Type.Attribute = ATTR_SIMPLE;
2601 c->Request.Type.Direction = XFER_WRITE;
2602 c->Request.Timeout = 0;
2603 c->Request.CDB[0] = cmd;
2606 dev_warn(&h->pdev->dev,
2607 "unknown message type %d\n", cmd);
2611 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2614 /* Fill in the scatter gather information */
2616 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2618 PCI_DMA_BIDIRECTIONAL);
2619 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2620 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2621 c->SG[0].Len = size;
2622 c->SG[0].Ext = 0; /* we are not chaining */
2627 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2629 switch (c->err_info->ScsiStatus) {
2632 case SAM_STAT_CHECK_CONDITION:
2633 switch (0xf & c->err_info->SenseInfo[2]) {
2634 case 0: return IO_OK; /* no sense */
2635 case 1: return IO_OK; /* recovered error */
2637 if (check_for_unit_attention(h, c))
2638 return IO_NEEDS_RETRY;
2639 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2640 "check condition, sense key = 0x%02x\n",
2641 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2645 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2646 "scsi status = 0x%02x\n",
2647 c->Request.CDB[0], c->err_info->ScsiStatus);
2653 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2655 int return_status = IO_OK;
2657 if (c->err_info->CommandStatus == CMD_SUCCESS)
2660 switch (c->err_info->CommandStatus) {
2661 case CMD_TARGET_STATUS:
2662 return_status = check_target_status(h, c);
2664 case CMD_DATA_UNDERRUN:
2665 case CMD_DATA_OVERRUN:
2666 /* expected for inquiry and report lun commands */
2669 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2670 "reported invalid\n", c->Request.CDB[0]);
2671 return_status = IO_ERROR;
2673 case CMD_PROTOCOL_ERR:
2674 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2675 "protocol error\n", c->Request.CDB[0]);
2676 return_status = IO_ERROR;
2678 case CMD_HARDWARE_ERR:
2679 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2680 " hardware error\n", c->Request.CDB[0]);
2681 return_status = IO_ERROR;
2683 case CMD_CONNECTION_LOST:
2684 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2685 "connection lost\n", c->Request.CDB[0]);
2686 return_status = IO_ERROR;
2689 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2690 "aborted\n", c->Request.CDB[0]);
2691 return_status = IO_ERROR;
2693 case CMD_ABORT_FAILED:
2694 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2695 "abort failed\n", c->Request.CDB[0]);
2696 return_status = IO_ERROR;
2698 case CMD_UNSOLICITED_ABORT:
2699 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2701 return_status = IO_NEEDS_RETRY;
2704 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2705 "unknown status %x\n", c->Request.CDB[0],
2706 c->err_info->CommandStatus);
2707 return_status = IO_ERROR;
2709 return return_status;
2712 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2715 DECLARE_COMPLETION_ONSTACK(wait);
2716 u64bit buff_dma_handle;
2717 int return_status = IO_OK;
2721 enqueue_cmd_and_start_io(h, c);
2723 wait_for_completion(&wait);
2725 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2728 return_status = process_sendcmd_error(h, c);
2730 if (return_status == IO_NEEDS_RETRY &&
2731 c->retry_count < MAX_CMD_RETRIES) {
2732 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2735 /* erase the old error information */
2736 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2737 return_status = IO_OK;
2738 INIT_COMPLETION(wait);
2743 /* unlock the buffers from DMA */
2744 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2745 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2746 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2747 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2748 return return_status;
2751 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2752 __u8 page_code, unsigned char scsi3addr[],
2755 CommandList_struct *c;
2758 c = cmd_special_alloc(h);
2761 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2762 scsi3addr, cmd_type);
2763 if (return_status == IO_OK)
2764 return_status = sendcmd_withirq_core(h, c, 1);
2766 cmd_special_free(h, c);
2767 return return_status;
2770 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2771 sector_t total_size,
2772 unsigned int block_size,
2773 InquiryData_struct *inq_buff,
2774 drive_info_struct *drv)
2778 unsigned char scsi3addr[8];
2780 memset(inq_buff, 0, sizeof(InquiryData_struct));
2781 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2782 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2783 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2784 if (return_code == IO_OK) {
2785 if (inq_buff->data_byte[8] == 0xFF) {
2786 dev_warn(&h->pdev->dev,
2787 "reading geometry failed, volume "
2788 "does not support reading geometry\n");
2790 drv->sectors = 32; /* Sectors per track */
2791 drv->cylinders = total_size + 1;
2792 drv->raid_level = RAID_UNKNOWN;
2794 drv->heads = inq_buff->data_byte[6];
2795 drv->sectors = inq_buff->data_byte[7];
2796 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2797 drv->cylinders += inq_buff->data_byte[5];
2798 drv->raid_level = inq_buff->data_byte[8];
2800 drv->block_size = block_size;
2801 drv->nr_blocks = total_size + 1;
2802 t = drv->heads * drv->sectors;
2804 sector_t real_size = total_size + 1;
2805 unsigned long rem = sector_div(real_size, t);
2808 drv->cylinders = real_size;
2810 } else { /* Get geometry failed */
2811 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2816 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2817 unsigned int *block_size)
2819 ReadCapdata_struct *buf;
2821 unsigned char scsi3addr[8];
2823 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2825 dev_warn(&h->pdev->dev, "out of memory\n");
2829 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2830 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2831 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2832 if (return_code == IO_OK) {
2833 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2834 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2835 } else { /* read capacity command failed */
2836 dev_warn(&h->pdev->dev, "read capacity failed\n");
2838 *block_size = BLOCK_SIZE;
2843 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2844 sector_t *total_size, unsigned int *block_size)
2846 ReadCapdata_struct_16 *buf;
2848 unsigned char scsi3addr[8];
2850 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2852 dev_warn(&h->pdev->dev, "out of memory\n");
2856 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2857 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2858 buf, sizeof(ReadCapdata_struct_16),
2859 0, scsi3addr, TYPE_CMD);
2860 if (return_code == IO_OK) {
2861 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2862 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2863 } else { /* read capacity command failed */
2864 dev_warn(&h->pdev->dev, "read capacity failed\n");
2866 *block_size = BLOCK_SIZE;
2868 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2869 (unsigned long long)*total_size+1, *block_size);
2873 static int cciss_revalidate(struct gendisk *disk)
2875 ctlr_info_t *h = get_host(disk);
2876 drive_info_struct *drv = get_drv(disk);
2879 unsigned int block_size;
2880 sector_t total_size;
2881 InquiryData_struct *inq_buff = NULL;
2883 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2884 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2885 sizeof(drv->LunID)) == 0) {
2894 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2895 if (inq_buff == NULL) {
2896 dev_warn(&h->pdev->dev, "out of memory\n");
2899 if (h->cciss_read == CCISS_READ_10) {
2900 cciss_read_capacity(h, logvol,
2901 &total_size, &block_size);
2903 cciss_read_capacity_16(h, logvol,
2904 &total_size, &block_size);
2906 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2909 blk_queue_logical_block_size(drv->queue, drv->block_size);
2910 set_capacity(disk, drv->nr_blocks);
2917 * Map (physical) PCI mem into (virtual) kernel space
2919 static void __iomem *remap_pci_mem(ulong base, ulong size)
2921 ulong page_base = ((ulong) base) & PAGE_MASK;
2922 ulong page_offs = ((ulong) base) - page_base;
2923 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2925 return page_remapped ? (page_remapped + page_offs) : NULL;
2929 * Takes jobs of the Q and sends them to the hardware, then puts it on
2930 * the Q to wait for completion.
2932 static void start_io(ctlr_info_t *h)
2934 CommandList_struct *c;
2936 while (!list_empty(&h->reqQ)) {
2937 c = list_entry(h->reqQ.next, CommandList_struct, list);
2938 /* can't do anything if fifo is full */
2939 if ((h->access.fifo_full(h))) {
2940 dev_warn(&h->pdev->dev, "fifo full\n");
2944 /* Get the first entry from the Request Q */
2948 /* Tell the controller execute command */
2949 h->access.submit_command(h, c);
2951 /* Put job onto the completed Q */
2956 /* Assumes that h->lock is held. */
2957 /* Zeros out the error record and then resends the command back */
2958 /* to the controller */
2959 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2961 /* erase the old error information */
2962 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2964 /* add it to software queue and then send it to the controller */
2967 if (h->Qdepth > h->maxQsinceinit)
2968 h->maxQsinceinit = h->Qdepth;
2973 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2974 unsigned int msg_byte, unsigned int host_byte,
2975 unsigned int driver_byte)
2977 /* inverse of macros in scsi.h */
2978 return (scsi_status_byte & 0xff) |
2979 ((msg_byte & 0xff) << 8) |
2980 ((host_byte & 0xff) << 16) |
2981 ((driver_byte & 0xff) << 24);
2984 static inline int evaluate_target_status(ctlr_info_t *h,
2985 CommandList_struct *cmd, int *retry_cmd)
2987 unsigned char sense_key;
2988 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2992 /* If we get in here, it means we got "target status", that is, scsi status */
2993 status_byte = cmd->err_info->ScsiStatus;
2994 driver_byte = DRIVER_OK;
2995 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2997 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
2998 host_byte = DID_PASSTHROUGH;
3002 error_value = make_status_bytes(status_byte, msg_byte,
3003 host_byte, driver_byte);
3005 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3006 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3007 dev_warn(&h->pdev->dev, "cmd %p "
3008 "has SCSI Status 0x%x\n",
3009 cmd, cmd->err_info->ScsiStatus);
3013 /* check the sense key */
3014 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3015 /* no status or recovered error */
3016 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3017 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3020 if (check_for_unit_attention(h, cmd)) {
3021 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3025 /* Not SG_IO or similar? */
3026 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3027 if (error_value != 0)
3028 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3029 " sense key = 0x%x\n", cmd, sense_key);
3033 /* SG_IO or similar, copy sense data back */
3034 if (cmd->rq->sense) {
3035 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3036 cmd->rq->sense_len = cmd->err_info->SenseLen;
3037 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3038 cmd->rq->sense_len);
3040 cmd->rq->sense_len = 0;
3045 /* checks the status of the job and calls complete buffers to mark all
3046 * buffers for the completed job. Note that this function does not need
3047 * to hold the hba/queue lock.
3049 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3053 struct request *rq = cmd->rq;
3058 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3060 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3061 goto after_error_processing;
3063 switch (cmd->err_info->CommandStatus) {
3064 case CMD_TARGET_STATUS:
3065 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3067 case CMD_DATA_UNDERRUN:
3068 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3069 dev_warn(&h->pdev->dev, "cmd %p has"
3070 " completed with data underrun "
3072 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3075 case CMD_DATA_OVERRUN:
3076 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3077 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3078 " completed with data overrun "
3082 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3083 "reported invalid\n", cmd);
3084 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3085 cmd->err_info->CommandStatus, DRIVER_OK,
3086 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3087 DID_PASSTHROUGH : DID_ERROR);
3089 case CMD_PROTOCOL_ERR:
3090 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3091 "protocol error\n", cmd);
3092 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3093 cmd->err_info->CommandStatus, DRIVER_OK,
3094 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3095 DID_PASSTHROUGH : DID_ERROR);
3097 case CMD_HARDWARE_ERR:
3098 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3099 " hardware error\n", cmd);
3100 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3101 cmd->err_info->CommandStatus, DRIVER_OK,
3102 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3103 DID_PASSTHROUGH : DID_ERROR);
3105 case CMD_CONNECTION_LOST:
3106 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3107 "connection lost\n", cmd);
3108 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3109 cmd->err_info->CommandStatus, DRIVER_OK,
3110 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3111 DID_PASSTHROUGH : DID_ERROR);
3114 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3116 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3117 cmd->err_info->CommandStatus, DRIVER_OK,
3118 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3119 DID_PASSTHROUGH : DID_ABORT);
3121 case CMD_ABORT_FAILED:
3122 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3123 "abort failed\n", cmd);
3124 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3125 cmd->err_info->CommandStatus, DRIVER_OK,
3126 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3127 DID_PASSTHROUGH : DID_ERROR);
3129 case CMD_UNSOLICITED_ABORT:
3130 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3131 "abort %p\n", h->ctlr, cmd);
3132 if (cmd->retry_count < MAX_CMD_RETRIES) {
3134 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3137 dev_warn(&h->pdev->dev,
3138 "%p retried too many times\n", cmd);
3139 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3140 cmd->err_info->CommandStatus, DRIVER_OK,
3141 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3142 DID_PASSTHROUGH : DID_ABORT);
3145 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3146 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3147 cmd->err_info->CommandStatus, DRIVER_OK,
3148 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3149 DID_PASSTHROUGH : DID_ERROR);
3152 dev_warn(&h->pdev->dev, "cmd %p returned "
3153 "unknown status %x\n", cmd,
3154 cmd->err_info->CommandStatus);
3155 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3156 cmd->err_info->CommandStatus, DRIVER_OK,
3157 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3158 DID_PASSTHROUGH : DID_ERROR);
3161 after_error_processing:
3163 /* We need to return this command */
3165 resend_cciss_cmd(h, cmd);
3168 cmd->rq->completion_data = cmd;
3169 blk_complete_request(cmd->rq);
3172 static inline u32 cciss_tag_contains_index(u32 tag)
3174 #define DIRECT_LOOKUP_BIT 0x10
3175 return tag & DIRECT_LOOKUP_BIT;
3178 static inline u32 cciss_tag_to_index(u32 tag)
3180 #define DIRECT_LOOKUP_SHIFT 5
3181 return tag >> DIRECT_LOOKUP_SHIFT;
3184 static inline u32 cciss_tag_discard_error_bits(u32 tag)
3186 #define CCISS_ERROR_BITS 0x03
3187 return tag & ~CCISS_ERROR_BITS;
3190 static inline void cciss_mark_tag_indexed(u32 *tag)
3192 *tag |= DIRECT_LOOKUP_BIT;
3195 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3197 *tag |= (index << DIRECT_LOOKUP_SHIFT);