]> git.openfabrics.org - ~shefty/rdma-dev.git/blob - drivers/block/cciss.c
a54f7f4b91f6f352aa69365c38f1c491524215f7
[~shefty/rdma-dev.git] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
68
69 static int cciss_allow_hpsa;
70 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
71 MODULE_PARM_DESC(cciss_allow_hpsa,
72         "Prevent cciss driver from accessing hardware known to be "
73         " supported by the hpsa driver");
74
75 #include "cciss_cmd.h"
76 #include "cciss.h"
77 #include <linux/cciss_ioctl.h>
78
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id[] = {
81         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
82         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
83         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
84         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
85         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
86         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
87         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
88         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
89         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
113         {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
117
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123         {0x40700E11, "Smart Array 5300", &SA5_access},
124         {0x40800E11, "Smart Array 5i", &SA5B_access},
125         {0x40820E11, "Smart Array 532", &SA5B_access},
126         {0x40830E11, "Smart Array 5312", &SA5B_access},
127         {0x409A0E11, "Smart Array 641", &SA5_access},
128         {0x409B0E11, "Smart Array 642", &SA5_access},
129         {0x409C0E11, "Smart Array 6400", &SA5_access},
130         {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131         {0x40910E11, "Smart Array 6i", &SA5_access},
132         {0x3225103C, "Smart Array P600", &SA5_access},
133         {0x3235103C, "Smart Array P400i", &SA5_access},
134         {0x3211103C, "Smart Array E200i", &SA5_access},
135         {0x3212103C, "Smart Array E200", &SA5_access},
136         {0x3213103C, "Smart Array E200i", &SA5_access},
137         {0x3214103C, "Smart Array E200i", &SA5_access},
138         {0x3215103C, "Smart Array E200i", &SA5_access},
139         {0x3237103C, "Smart Array E500", &SA5_access},
140 /* controllers below this line are also supported by the hpsa driver. */
141 #define HPSA_BOUNDARY 0x3223103C
142         {0x3223103C, "Smart Array P800", &SA5_access},
143         {0x3234103C, "Smart Array P400", &SA5_access},
144         {0x323D103C, "Smart Array P700m", &SA5_access},
145         {0x3241103C, "Smart Array P212", &SA5_access},
146         {0x3243103C, "Smart Array P410", &SA5_access},
147         {0x3245103C, "Smart Array P410i", &SA5_access},
148         {0x3247103C, "Smart Array P411", &SA5_access},
149         {0x3249103C, "Smart Array P812", &SA5_access},
150         {0x324A103C, "Smart Array P712m", &SA5_access},
151         {0x324B103C, "Smart Array P711m", &SA5_access},
152         {0x3250103C, "Smart Array", &SA5_access},
153         {0x3251103C, "Smart Array", &SA5_access},
154         {0x3252103C, "Smart Array", &SA5_access},
155         {0x3253103C, "Smart Array", &SA5_access},
156         {0x3254103C, "Smart Array", &SA5_access},
157 };
158
159 /* How long to wait (in milliseconds) for board to go into simple mode */
160 #define MAX_CONFIG_WAIT 30000
161 #define MAX_IOCTL_CONFIG_WAIT 1000
162
163 /*define how many times we will try a command because of bus resets */
164 #define MAX_CMD_RETRIES 3
165
166 #define MAX_CTLR        32
167
168 /* Originally cciss driver only supports 8 major numbers */
169 #define MAX_CTLR_ORIG   8
170
171 static ctlr_info_t *hba[MAX_CTLR];
172
173 static struct task_struct *cciss_scan_thread;
174 static DEFINE_MUTEX(scan_mutex);
175 static LIST_HEAD(scan_q);
176
177 static void do_cciss_request(struct request_queue *q);
178 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
179 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
180 static int cciss_open(struct block_device *bdev, fmode_t mode);
181 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
182 static int cciss_release(struct gendisk *disk, fmode_t mode);
183 static int do_ioctl(struct block_device *bdev, fmode_t mode,
184                     unsigned int cmd, unsigned long arg);
185 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
186                        unsigned int cmd, unsigned long arg);
187 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
188
189 static int cciss_revalidate(struct gendisk *disk);
190 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
191 static int deregister_disk(ctlr_info_t *h, int drv_index,
192                            int clear_all, int via_ioctl);
193
194 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
195                         sector_t *total_size, unsigned int *block_size);
196 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
197                         sector_t *total_size, unsigned int *block_size);
198 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
199                         sector_t total_size,
200                         unsigned int block_size, InquiryData_struct *inq_buff,
201                                    drive_info_struct *drv);
202 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
203 static void start_io(ctlr_info_t *h);
204 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
205                         __u8 page_code, unsigned char scsi3addr[],
206                         int cmd_type);
207 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
208         int attempt_retry);
209 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
210
211 static int add_to_scan_list(struct ctlr_info *h);
212 static int scan_thread(void *data);
213 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
214 static void cciss_hba_release(struct device *dev);
215 static void cciss_device_release(struct device *dev);
216 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
217 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
218 static inline u32 next_command(ctlr_info_t *h);
219 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
220         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
221         u64 *cfg_offset);
222 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
223         unsigned long *memory_bar);
224
225
226 /* performant mode helper functions */
227 static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
228                                 int *bucket_map);
229 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
230
231 #ifdef CONFIG_PROC_FS
232 static void cciss_procinit(ctlr_info_t *h);
233 #else
234 static void cciss_procinit(ctlr_info_t *h)
235 {
236 }
237 #endif                          /* CONFIG_PROC_FS */
238
239 #ifdef CONFIG_COMPAT
240 static int cciss_compat_ioctl(struct block_device *, fmode_t,
241                               unsigned, unsigned long);
242 #endif
243
244 static const struct block_device_operations cciss_fops = {
245         .owner = THIS_MODULE,
246         .open = cciss_unlocked_open,
247         .release = cciss_release,
248         .ioctl = do_ioctl,
249         .getgeo = cciss_getgeo,
250 #ifdef CONFIG_COMPAT
251         .compat_ioctl = cciss_compat_ioctl,
252 #endif
253         .revalidate_disk = cciss_revalidate,
254 };
255
256 /* set_performant_mode: Modify the tag for cciss performant
257  * set bit 0 for pull model, bits 3-1 for block fetch
258  * register number
259  */
260 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
261 {
262         if (likely(h->transMethod == CFGTBL_Trans_Performant))
263                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
264 }
265
266 /*
267  * Enqueuing and dequeuing functions for cmdlists.
268  */
269 static inline void addQ(struct list_head *list, CommandList_struct *c)
270 {
271         list_add_tail(&c->list, list);
272 }
273
274 static inline void removeQ(CommandList_struct *c)
275 {
276         /*
277          * After kexec/dump some commands might still
278          * be in flight, which the firmware will try
279          * to complete. Resetting the firmware doesn't work
280          * with old fw revisions, so we have to mark
281          * them off as 'stale' to prevent the driver from
282          * falling over.
283          */
284         if (WARN_ON(list_empty(&c->list))) {
285                 c->cmd_type = CMD_MSG_STALE;
286                 return;
287         }
288
289         list_del_init(&c->list);
290 }
291
292 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
293         CommandList_struct *c)
294 {
295         unsigned long flags;
296         set_performant_mode(h, c);
297         spin_lock_irqsave(&h->lock, flags);
298         addQ(&h->reqQ, c);
299         h->Qdepth++;
300         if (h->Qdepth > h->maxQsinceinit)
301                 h->maxQsinceinit = h->Qdepth;
302         start_io(h);
303         spin_unlock_irqrestore(&h->lock, flags);
304 }
305
306 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
307         int nr_cmds)
308 {
309         int i;
310
311         if (!cmd_sg_list)
312                 return;
313         for (i = 0; i < nr_cmds; i++) {
314                 kfree(cmd_sg_list[i]);
315                 cmd_sg_list[i] = NULL;
316         }
317         kfree(cmd_sg_list);
318 }
319
320 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
321         ctlr_info_t *h, int chainsize, int nr_cmds)
322 {
323         int j;
324         SGDescriptor_struct **cmd_sg_list;
325
326         if (chainsize <= 0)
327                 return NULL;
328
329         cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
330         if (!cmd_sg_list)
331                 return NULL;
332
333         /* Build up chain blocks for each command */
334         for (j = 0; j < nr_cmds; j++) {
335                 /* Need a block of chainsized s/g elements. */
336                 cmd_sg_list[j] = kmalloc((chainsize *
337                         sizeof(*cmd_sg_list[j])), GFP_KERNEL);
338                 if (!cmd_sg_list[j]) {
339                         dev_err(&h->pdev->dev, "Cannot get memory "
340                                 "for s/g chains.\n");
341                         goto clean;
342                 }
343         }
344         return cmd_sg_list;
345 clean:
346         cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
347         return NULL;
348 }
349
350 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
351 {
352         SGDescriptor_struct *chain_sg;
353         u64bit temp64;
354
355         if (c->Header.SGTotal <= h->max_cmd_sgentries)
356                 return;
357
358         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
359         temp64.val32.lower = chain_sg->Addr.lower;
360         temp64.val32.upper = chain_sg->Addr.upper;
361         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
362 }
363
364 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
365         SGDescriptor_struct *chain_block, int len)
366 {
367         SGDescriptor_struct *chain_sg;
368         u64bit temp64;
369
370         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
371         chain_sg->Ext = CCISS_SG_CHAIN;
372         chain_sg->Len = len;
373         temp64.val = pci_map_single(h->pdev, chain_block, len,
374                                 PCI_DMA_TODEVICE);
375         chain_sg->Addr.lower = temp64.val32.lower;
376         chain_sg->Addr.upper = temp64.val32.upper;
377 }
378
379 #include "cciss_scsi.c"         /* For SCSI tape support */
380
381 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
382         "UNKNOWN"
383 };
384 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
385
386 #ifdef CONFIG_PROC_FS
387
388 /*
389  * Report information about this controller.
390  */
391 #define ENG_GIG 1000000000
392 #define ENG_GIG_FACTOR (ENG_GIG/512)
393 #define ENGAGE_SCSI     "engage scsi"
394
395 static struct proc_dir_entry *proc_cciss;
396
397 static void cciss_seq_show_header(struct seq_file *seq)
398 {
399         ctlr_info_t *h = seq->private;
400
401         seq_printf(seq, "%s: HP %s Controller\n"
402                 "Board ID: 0x%08lx\n"
403                 "Firmware Version: %c%c%c%c\n"
404                 "IRQ: %d\n"
405                 "Logical drives: %d\n"
406                 "Current Q depth: %d\n"
407                 "Current # commands on controller: %d\n"
408                 "Max Q depth since init: %d\n"
409                 "Max # commands on controller since init: %d\n"
410                 "Max SG entries since init: %d\n",
411                 h->devname,
412                 h->product_name,
413                 (unsigned long)h->board_id,
414                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
415                 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
416                 h->num_luns,
417                 h->Qdepth, h->commands_outstanding,
418                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
419
420 #ifdef CONFIG_CISS_SCSI_TAPE
421         cciss_seq_tape_report(seq, h);
422 #endif /* CONFIG_CISS_SCSI_TAPE */
423 }
424
425 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
426 {
427         ctlr_info_t *h = seq->private;
428         unsigned long flags;
429
430         /* prevent displaying bogus info during configuration
431          * or deconfiguration of a logical volume
432          */
433         spin_lock_irqsave(&h->lock, flags);
434         if (h->busy_configuring) {
435                 spin_unlock_irqrestore(&h->lock, flags);
436                 return ERR_PTR(-EBUSY);
437         }
438         h->busy_configuring = 1;
439         spin_unlock_irqrestore(&h->lock, flags);
440
441         if (*pos == 0)
442                 cciss_seq_show_header(seq);
443
444         return pos;
445 }
446
447 static int cciss_seq_show(struct seq_file *seq, void *v)
448 {
449         sector_t vol_sz, vol_sz_frac;
450         ctlr_info_t *h = seq->private;
451         unsigned ctlr = h->ctlr;
452         loff_t *pos = v;
453         drive_info_struct *drv = h->drv[*pos];
454
455         if (*pos > h->highest_lun)
456                 return 0;
457
458         if (drv == NULL) /* it's possible for h->drv[] to have holes. */
459                 return 0;
460
461         if (drv->heads == 0)
462                 return 0;
463
464         vol_sz = drv->nr_blocks;
465         vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
466         vol_sz_frac *= 100;
467         sector_div(vol_sz_frac, ENG_GIG_FACTOR);
468
469         if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
470                 drv->raid_level = RAID_UNKNOWN;
471         seq_printf(seq, "cciss/c%dd%d:"
472                         "\t%4u.%02uGB\tRAID %s\n",
473                         ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
474                         raid_label[drv->raid_level]);
475         return 0;
476 }
477
478 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
479 {
480         ctlr_info_t *h = seq->private;
481
482         if (*pos > h->highest_lun)
483                 return NULL;
484         *pos += 1;
485
486         return pos;
487 }
488
489 static void cciss_seq_stop(struct seq_file *seq, void *v)
490 {
491         ctlr_info_t *h = seq->private;
492
493         /* Only reset h->busy_configuring if we succeeded in setting
494          * it during cciss_seq_start. */
495         if (v == ERR_PTR(-EBUSY))
496                 return;
497
498         h->busy_configuring = 0;
499 }
500
501 static const struct seq_operations cciss_seq_ops = {
502         .start = cciss_seq_start,
503         .show  = cciss_seq_show,
504         .next  = cciss_seq_next,
505         .stop  = cciss_seq_stop,
506 };
507
508 static int cciss_seq_open(struct inode *inode, struct file *file)
509 {
510         int ret = seq_open(file, &cciss_seq_ops);
511         struct seq_file *seq = file->private_data;
512
513         if (!ret)
514                 seq->private = PDE(inode)->data;
515
516         return ret;
517 }
518
519 static ssize_t
520 cciss_proc_write(struct file *file, const char __user *buf,
521                  size_t length, loff_t *ppos)
522 {
523         int err;
524         char *buffer;
525
526 #ifndef CONFIG_CISS_SCSI_TAPE
527         return -EINVAL;
528 #endif
529
530         if (!buf || length > PAGE_SIZE - 1)
531                 return -EINVAL;
532
533         buffer = (char *)__get_free_page(GFP_KERNEL);
534         if (!buffer)
535                 return -ENOMEM;
536
537         err = -EFAULT;
538         if (copy_from_user(buffer, buf, length))
539                 goto out;
540         buffer[length] = '\0';
541
542 #ifdef CONFIG_CISS_SCSI_TAPE
543         if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
544                 struct seq_file *seq = file->private_data;
545                 ctlr_info_t *h = seq->private;
546
547                 err = cciss_engage_scsi(h);
548                 if (err == 0)
549                         err = length;
550         } else
551 #endif /* CONFIG_CISS_SCSI_TAPE */
552                 err = -EINVAL;
553         /* might be nice to have "disengage" too, but it's not
554            safely possible. (only 1 module use count, lock issues.) */
555
556 out:
557         free_page((unsigned long)buffer);
558         return err;
559 }
560
561 static const struct file_operations cciss_proc_fops = {
562         .owner   = THIS_MODULE,
563         .open    = cciss_seq_open,
564         .read    = seq_read,
565         .llseek  = seq_lseek,
566         .release = seq_release,
567         .write   = cciss_proc_write,
568 };
569
570 static void __devinit cciss_procinit(ctlr_info_t *h)
571 {
572         struct proc_dir_entry *pde;
573
574         if (proc_cciss == NULL)
575                 proc_cciss = proc_mkdir("driver/cciss", NULL);
576         if (!proc_cciss)
577                 return;
578         pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
579                                         S_IROTH, proc_cciss,
580                                         &cciss_proc_fops, h);
581 }
582 #endif                          /* CONFIG_PROC_FS */
583
584 #define MAX_PRODUCT_NAME_LEN 19
585
586 #define to_hba(n) container_of(n, struct ctlr_info, dev)
587 #define to_drv(n) container_of(n, drive_info_struct, dev)
588
589 static ssize_t host_store_rescan(struct device *dev,
590                                  struct device_attribute *attr,
591                                  const char *buf, size_t count)
592 {
593         struct ctlr_info *h = to_hba(dev);
594
595         add_to_scan_list(h);
596         wake_up_process(cciss_scan_thread);
597         wait_for_completion_interruptible(&h->scan_wait);
598
599         return count;
600 }
601 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
602
603 static ssize_t dev_show_unique_id(struct device *dev,
604                                  struct device_attribute *attr,
605                                  char *buf)
606 {
607         drive_info_struct *drv = to_drv(dev);
608         struct ctlr_info *h = to_hba(drv->dev.parent);
609         __u8 sn[16];
610         unsigned long flags;
611         int ret = 0;
612
613         spin_lock_irqsave(&h->lock, flags);
614         if (h->busy_configuring)
615                 ret = -EBUSY;
616         else
617                 memcpy(sn, drv->serial_no, sizeof(sn));
618         spin_unlock_irqrestore(&h->lock, flags);
619
620         if (ret)
621                 return ret;
622         else
623                 return snprintf(buf, 16 * 2 + 2,
624                                 "%02X%02X%02X%02X%02X%02X%02X%02X"
625                                 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
626                                 sn[0], sn[1], sn[2], sn[3],
627                                 sn[4], sn[5], sn[6], sn[7],
628                                 sn[8], sn[9], sn[10], sn[11],
629                                 sn[12], sn[13], sn[14], sn[15]);
630 }
631 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
632
633 static ssize_t dev_show_vendor(struct device *dev,
634                                struct device_attribute *attr,
635                                char *buf)
636 {
637         drive_info_struct *drv = to_drv(dev);
638         struct ctlr_info *h = to_hba(drv->dev.parent);
639         char vendor[VENDOR_LEN + 1];
640         unsigned long flags;
641         int ret = 0;
642
643         spin_lock_irqsave(&h->lock, flags);
644         if (h->busy_configuring)
645                 ret = -EBUSY;
646         else
647                 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
648         spin_unlock_irqrestore(&h->lock, flags);
649
650         if (ret)
651                 return ret;
652         else
653                 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
654 }
655 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
656
657 static ssize_t dev_show_model(struct device *dev,
658                               struct device_attribute *attr,
659                               char *buf)
660 {
661         drive_info_struct *drv = to_drv(dev);
662         struct ctlr_info *h = to_hba(drv->dev.parent);
663         char model[MODEL_LEN + 1];
664         unsigned long flags;
665         int ret = 0;
666
667         spin_lock_irqsave(&h->lock, flags);
668         if (h->busy_configuring)
669                 ret = -EBUSY;
670         else
671                 memcpy(model, drv->model, MODEL_LEN + 1);
672         spin_unlock_irqrestore(&h->lock, flags);
673
674         if (ret)
675                 return ret;
676         else
677                 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
678 }
679 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
680
681 static ssize_t dev_show_rev(struct device *dev,
682                             struct device_attribute *attr,
683                             char *buf)
684 {
685         drive_info_struct *drv = to_drv(dev);
686         struct ctlr_info *h = to_hba(drv->dev.parent);
687         char rev[REV_LEN + 1];
688         unsigned long flags;
689         int ret = 0;
690
691         spin_lock_irqsave(&h->lock, flags);
692         if (h->busy_configuring)
693                 ret = -EBUSY;
694         else
695                 memcpy(rev, drv->rev, REV_LEN + 1);
696         spin_unlock_irqrestore(&h->lock, flags);
697
698         if (ret)
699                 return ret;
700         else
701                 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
702 }
703 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
704
705 static ssize_t cciss_show_lunid(struct device *dev,
706                                 struct device_attribute *attr, char *buf)
707 {
708         drive_info_struct *drv = to_drv(dev);
709         struct ctlr_info *h = to_hba(drv->dev.parent);
710         unsigned long flags;
711         unsigned char lunid[8];
712
713         spin_lock_irqsave(&h->lock, flags);
714         if (h->busy_configuring) {
715                 spin_unlock_irqrestore(&h->lock, flags);
716                 return -EBUSY;
717         }
718         if (!drv->heads) {
719                 spin_unlock_irqrestore(&h->lock, flags);
720                 return -ENOTTY;
721         }
722         memcpy(lunid, drv->LunID, sizeof(lunid));
723         spin_unlock_irqrestore(&h->lock, flags);
724         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
725                 lunid[0], lunid[1], lunid[2], lunid[3],
726                 lunid[4], lunid[5], lunid[6], lunid[7]);
727 }
728 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
729
730 static ssize_t cciss_show_raid_level(struct device *dev,
731                                      struct device_attribute *attr, char *buf)
732 {
733         drive_info_struct *drv = to_drv(dev);
734         struct ctlr_info *h = to_hba(drv->dev.parent);
735         int raid;
736         unsigned long flags;
737
738         spin_lock_irqsave(&h->lock, flags);
739         if (h->busy_configuring) {
740                 spin_unlock_irqrestore(&h->lock, flags);
741                 return -EBUSY;
742         }
743         raid = drv->raid_level;
744         spin_unlock_irqrestore(&h->lock, flags);
745         if (raid < 0 || raid > RAID_UNKNOWN)
746                 raid = RAID_UNKNOWN;
747
748         return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
749                         raid_label[raid]);
750 }
751 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
752
753 static ssize_t cciss_show_usage_count(struct device *dev,
754                                       struct device_attribute *attr, char *buf)
755 {
756         drive_info_struct *drv = to_drv(dev);
757         struct ctlr_info *h = to_hba(drv->dev.parent);
758         unsigned long flags;
759         int count;
760
761         spin_lock_irqsave(&h->lock, flags);
762         if (h->busy_configuring) {
763                 spin_unlock_irqrestore(&h->lock, flags);
764                 return -EBUSY;
765         }
766         count = drv->usage_count;
767         spin_unlock_irqrestore(&h->lock, flags);
768         return snprintf(buf, 20, "%d\n", count);
769 }
770 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
771
772 static struct attribute *cciss_host_attrs[] = {
773         &dev_attr_rescan.attr,
774         NULL
775 };
776
777 static struct attribute_group cciss_host_attr_group = {
778         .attrs = cciss_host_attrs,
779 };
780
781 static const struct attribute_group *cciss_host_attr_groups[] = {
782         &cciss_host_attr_group,
783         NULL
784 };
785
786 static struct device_type cciss_host_type = {
787         .name           = "cciss_host",
788         .groups         = cciss_host_attr_groups,
789         .release        = cciss_hba_release,
790 };
791
792 static struct attribute *cciss_dev_attrs[] = {
793         &dev_attr_unique_id.attr,
794         &dev_attr_model.attr,
795         &dev_attr_vendor.attr,
796         &dev_attr_rev.attr,
797         &dev_attr_lunid.attr,
798         &dev_attr_raid_level.attr,
799         &dev_attr_usage_count.attr,
800         NULL
801 };
802
803 static struct attribute_group cciss_dev_attr_group = {
804         .attrs = cciss_dev_attrs,
805 };
806
807 static const struct attribute_group *cciss_dev_attr_groups[] = {
808         &cciss_dev_attr_group,
809         NULL
810 };
811
812 static struct device_type cciss_dev_type = {
813         .name           = "cciss_device",
814         .groups         = cciss_dev_attr_groups,
815         .release        = cciss_device_release,
816 };
817
818 static struct bus_type cciss_bus_type = {
819         .name           = "cciss",
820 };
821
822 /*
823  * cciss_hba_release is called when the reference count
824  * of h->dev goes to zero.
825  */
826 static void cciss_hba_release(struct device *dev)
827 {
828         /*
829          * nothing to do, but need this to avoid a warning
830          * about not having a release handler from lib/kref.c.
831          */
832 }
833
834 /*
835  * Initialize sysfs entry for each controller.  This sets up and registers
836  * the 'cciss#' directory for each individual controller under
837  * /sys/bus/pci/devices/<dev>/.
838  */
839 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
840 {
841         device_initialize(&h->dev);
842         h->dev.type = &cciss_host_type;
843         h->dev.bus = &cciss_bus_type;
844         dev_set_name(&h->dev, "%s", h->devname);
845         h->dev.parent = &h->pdev->dev;
846
847         return device_add(&h->dev);
848 }
849
850 /*
851  * Remove sysfs entries for an hba.
852  */
853 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
854 {
855         device_del(&h->dev);
856         put_device(&h->dev); /* final put. */
857 }
858
859 /* cciss_device_release is called when the reference count
860  * of h->drv[x]dev goes to zero.
861  */
862 static void cciss_device_release(struct device *dev)
863 {
864         drive_info_struct *drv = to_drv(dev);
865         kfree(drv);
866 }
867
868 /*
869  * Initialize sysfs for each logical drive.  This sets up and registers
870  * the 'c#d#' directory for each individual logical drive under
871  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
872  * /sys/block/cciss!c#d# to this entry.
873  */
874 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
875                                        int drv_index)
876 {
877         struct device *dev;
878
879         if (h->drv[drv_index]->device_initialized)
880                 return 0;
881
882         dev = &h->drv[drv_index]->dev;
883         device_initialize(dev);
884         dev->type = &cciss_dev_type;
885         dev->bus = &cciss_bus_type;
886         dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
887         dev->parent = &h->dev;
888         h->drv[drv_index]->device_initialized = 1;
889         return device_add(dev);
890 }
891
892 /*
893  * Remove sysfs entries for a logical drive.
894  */
895 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
896         int ctlr_exiting)
897 {
898         struct device *dev = &h->drv[drv_index]->dev;
899
900         /* special case for c*d0, we only destroy it on controller exit */
901         if (drv_index == 0 && !ctlr_exiting)
902                 return;
903
904         device_del(dev);
905         put_device(dev); /* the "final" put. */
906         h->drv[drv_index] = NULL;
907 }
908
909 /*
910  * For operations that cannot sleep, a command block is allocated at init,
911  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
912  * which ones are free or in use.
913  */
914 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
915 {
916         CommandList_struct *c;
917         int i;
918         u64bit temp64;
919         dma_addr_t cmd_dma_handle, err_dma_handle;
920
921         do {
922                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
923                 if (i == h->nr_cmds)
924                         return NULL;
925         } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
926                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
927         c = h->cmd_pool + i;
928         memset(c, 0, sizeof(CommandList_struct));
929         cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
930         c->err_info = h->errinfo_pool + i;
931         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
932         err_dma_handle = h->errinfo_pool_dhandle
933             + i * sizeof(ErrorInfo_struct);
934         h->nr_allocs++;
935
936         c->cmdindex = i;
937
938         INIT_LIST_HEAD(&c->list);
939         c->busaddr = (__u32) cmd_dma_handle;
940         temp64.val = (__u64) err_dma_handle;
941         c->ErrDesc.Addr.lower = temp64.val32.lower;
942         c->ErrDesc.Addr.upper = temp64.val32.upper;
943         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
944
945         c->ctlr = h->ctlr;
946         return c;
947 }
948
949 /* allocate a command using pci_alloc_consistent, used for ioctls,
950  * etc., not for the main i/o path.
951  */
952 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
953 {
954         CommandList_struct *c;
955         u64bit temp64;
956         dma_addr_t cmd_dma_handle, err_dma_handle;
957
958         c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
959                 sizeof(CommandList_struct), &cmd_dma_handle);
960         if (c == NULL)
961                 return NULL;
962         memset(c, 0, sizeof(CommandList_struct));
963
964         c->cmdindex = -1;
965
966         c->err_info = (ErrorInfo_struct *)
967             pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
968                     &err_dma_handle);
969
970         if (c->err_info == NULL) {
971                 pci_free_consistent(h->pdev,
972                         sizeof(CommandList_struct), c, cmd_dma_handle);
973                 return NULL;
974         }
975         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
976
977         INIT_LIST_HEAD(&c->list);
978         c->busaddr = (__u32) cmd_dma_handle;
979         temp64.val = (__u64) err_dma_handle;
980         c->ErrDesc.Addr.lower = temp64.val32.lower;
981         c->ErrDesc.Addr.upper = temp64.val32.upper;
982         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
983
984         c->ctlr = h->ctlr;
985         return c;
986 }
987
988 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
989 {
990         int i;
991
992         i = c - h->cmd_pool;
993         clear_bit(i & (BITS_PER_LONG - 1),
994                   h->cmd_pool_bits + (i / BITS_PER_LONG));
995         h->nr_frees++;
996 }
997
998 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
999 {
1000         u64bit temp64;
1001
1002         temp64.val32.lower = c->ErrDesc.Addr.lower;
1003         temp64.val32.upper = c->ErrDesc.Addr.upper;
1004         pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1005                             c->err_info, (dma_addr_t) temp64.val);
1006         pci_free_consistent(h->pdev, sizeof(CommandList_struct),
1007                             c, (dma_addr_t) c->busaddr);
1008 }
1009
1010 static inline ctlr_info_t *get_host(struct gendisk *disk)
1011 {
1012         return disk->queue->queuedata;
1013 }
1014
1015 static inline drive_info_struct *get_drv(struct gendisk *disk)
1016 {
1017         return disk->private_data;
1018 }
1019
1020 /*
1021  * Open.  Make sure the device is really there.
1022  */
1023 static int cciss_open(struct block_device *bdev, fmode_t mode)
1024 {
1025         ctlr_info_t *h = get_host(bdev->bd_disk);
1026         drive_info_struct *drv = get_drv(bdev->bd_disk);
1027
1028         dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1029         if (drv->busy_configuring)
1030                 return -EBUSY;
1031         /*
1032          * Root is allowed to open raw volume zero even if it's not configured
1033          * so array config can still work. Root is also allowed to open any
1034          * volume that has a LUN ID, so it can issue IOCTL to reread the
1035          * disk information.  I don't think I really like this
1036          * but I'm already using way to many device nodes to claim another one
1037          * for "raw controller".
1038          */
1039         if (drv->heads == 0) {
1040                 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1041                         /* if not node 0 make sure it is a partition = 0 */
1042                         if (MINOR(bdev->bd_dev) & 0x0f) {
1043                                 return -ENXIO;
1044                                 /* if it is, make sure we have a LUN ID */
1045                         } else if (memcmp(drv->LunID, CTLR_LUNID,
1046                                 sizeof(drv->LunID))) {
1047                                 return -ENXIO;
1048                         }
1049                 }
1050                 if (!capable(CAP_SYS_ADMIN))
1051                         return -EPERM;
1052         }
1053         drv->usage_count++;
1054         h->usage_count++;
1055         return 0;
1056 }
1057
1058 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1059 {
1060         int ret;
1061
1062         lock_kernel();
1063         ret = cciss_open(bdev, mode);
1064         unlock_kernel();
1065
1066         return ret;
1067 }
1068
1069 /*
1070  * Close.  Sync first.
1071  */
1072 static int cciss_release(struct gendisk *disk, fmode_t mode)
1073 {
1074         ctlr_info_t *h;
1075         drive_info_struct *drv;
1076
1077         lock_kernel();
1078         h = get_host(disk);
1079         drv = get_drv(disk);
1080         dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1081         drv->usage_count--;
1082         h->usage_count--;
1083         unlock_kernel();
1084         return 0;
1085 }
1086
1087 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1088                     unsigned cmd, unsigned long arg)
1089 {
1090         int ret;
1091         lock_kernel();
1092         ret = cciss_ioctl(bdev, mode, cmd, arg);
1093         unlock_kernel();
1094         return ret;
1095 }
1096
1097 #ifdef CONFIG_COMPAT
1098
1099 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1100                                   unsigned cmd, unsigned long arg);
1101 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1102                                       unsigned cmd, unsigned long arg);
1103
1104 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1105                               unsigned cmd, unsigned long arg)
1106 {
1107         switch (cmd) {
1108         case CCISS_GETPCIINFO:
1109         case CCISS_GETINTINFO:
1110         case CCISS_SETINTINFO:
1111         case CCISS_GETNODENAME:
1112         case CCISS_SETNODENAME:
1113         case CCISS_GETHEARTBEAT:
1114         case CCISS_GETBUSTYPES:
1115         case CCISS_GETFIRMVER:
1116         case CCISS_GETDRIVVER:
1117         case CCISS_REVALIDVOLS:
1118         case CCISS_DEREGDISK:
1119         case CCISS_REGNEWDISK:
1120         case CCISS_REGNEWD:
1121         case CCISS_RESCANDISK:
1122         case CCISS_GETLUNINFO:
1123                 return do_ioctl(bdev, mode, cmd, arg);
1124
1125         case CCISS_PASSTHRU32:
1126                 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1127         case CCISS_BIG_PASSTHRU32:
1128                 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1129
1130         default:
1131                 return -ENOIOCTLCMD;
1132         }
1133 }
1134
1135 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1136                                   unsigned cmd, unsigned long arg)
1137 {
1138         IOCTL32_Command_struct __user *arg32 =
1139             (IOCTL32_Command_struct __user *) arg;
1140         IOCTL_Command_struct arg64;
1141         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1142         int err;
1143         u32 cp;
1144
1145         err = 0;
1146         err |=
1147             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1148                            sizeof(arg64.LUN_info));
1149         err |=
1150             copy_from_user(&arg64.Request, &arg32->Request,
1151                            sizeof(arg64.Request));
1152         err |=
1153             copy_from_user(&arg64.error_info, &arg32->error_info,
1154                            sizeof(arg64.error_info));
1155         err |= get_user(arg64.buf_size, &arg32->buf_size);
1156         err |= get_user(cp, &arg32->buf);
1157         arg64.buf = compat_ptr(cp);
1158         err |= copy_to_user(p, &arg64, sizeof(arg64));
1159
1160         if (err)
1161                 return -EFAULT;
1162
1163         err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1164         if (err)
1165                 return err;
1166         err |=
1167             copy_in_user(&arg32->error_info, &p->error_info,
1168                          sizeof(arg32->error_info));
1169         if (err)
1170                 return -EFAULT;
1171         return err;
1172 }
1173
1174 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1175                                       unsigned cmd, unsigned long arg)
1176 {
1177         BIG_IOCTL32_Command_struct __user *arg32 =
1178             (BIG_IOCTL32_Command_struct __user *) arg;
1179         BIG_IOCTL_Command_struct arg64;
1180         BIG_IOCTL_Command_struct __user *p =
1181             compat_alloc_user_space(sizeof(arg64));
1182         int err;
1183         u32 cp;
1184
1185         err = 0;
1186         err |=
1187             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1188                            sizeof(arg64.LUN_info));
1189         err |=
1190             copy_from_user(&arg64.Request, &arg32->Request,
1191                            sizeof(arg64.Request));
1192         err |=
1193             copy_from_user(&arg64.error_info, &arg32->error_info,
1194                            sizeof(arg64.error_info));
1195         err |= get_user(arg64.buf_size, &arg32->buf_size);
1196         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1197         err |= get_user(cp, &arg32->buf);
1198         arg64.buf = compat_ptr(cp);
1199         err |= copy_to_user(p, &arg64, sizeof(arg64));
1200
1201         if (err)
1202                 return -EFAULT;
1203
1204         err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1205         if (err)
1206                 return err;
1207         err |=
1208             copy_in_user(&arg32->error_info, &p->error_info,
1209                          sizeof(arg32->error_info));
1210         if (err)
1211                 return -EFAULT;
1212         return err;
1213 }
1214 #endif
1215
1216 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1217 {
1218         drive_info_struct *drv = get_drv(bdev->bd_disk);
1219
1220         if (!drv->cylinders)
1221                 return -ENXIO;
1222
1223         geo->heads = drv->heads;
1224         geo->sectors = drv->sectors;
1225         geo->cylinders = drv->cylinders;
1226         return 0;
1227 }
1228
1229 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1230 {
1231         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1232                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1233                 (void)check_for_unit_attention(h, c);
1234 }
1235 /*
1236  * ioctl
1237  */
1238 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1239                        unsigned int cmd, unsigned long arg)
1240 {
1241         struct gendisk *disk = bdev->bd_disk;
1242         ctlr_info_t *h = get_host(disk);
1243         drive_info_struct *drv = get_drv(disk);
1244         void __user *argp = (void __user *)arg;
1245
1246         dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1247                 cmd, arg);
1248         switch (cmd) {
1249         case CCISS_GETPCIINFO:
1250                 {
1251                         cciss_pci_info_struct pciinfo;
1252
1253                         if (!arg)
1254                                 return -EINVAL;
1255                         pciinfo.domain = pci_domain_nr(h->pdev->bus);
1256                         pciinfo.bus = h->pdev->bus->number;
1257                         pciinfo.dev_fn = h->pdev->devfn;
1258                         pciinfo.board_id = h->board_id;
1259                         if (copy_to_user
1260                             (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1261                                 return -EFAULT;
1262                         return 0;
1263                 }
1264         case CCISS_GETINTINFO:
1265                 {
1266                         cciss_coalint_struct intinfo;
1267                         if (!arg)
1268                                 return -EINVAL;
1269                         intinfo.delay =
1270                             readl(&h->cfgtable->HostWrite.CoalIntDelay);
1271                         intinfo.count =
1272                             readl(&h->cfgtable->HostWrite.CoalIntCount);
1273                         if (copy_to_user
1274                             (argp, &intinfo, sizeof(cciss_coalint_struct)))
1275                                 return -EFAULT;
1276                         return 0;
1277                 }
1278         case CCISS_SETINTINFO:
1279                 {
1280                         cciss_coalint_struct intinfo;
1281                         unsigned long flags;
1282                         int i;
1283
1284                         if (!arg)
1285                                 return -EINVAL;
1286                         if (!capable(CAP_SYS_ADMIN))
1287                                 return -EPERM;
1288                         if (copy_from_user
1289                             (&intinfo, argp, sizeof(cciss_coalint_struct)))
1290                                 return -EFAULT;
1291                         if ((intinfo.delay == 0) && (intinfo.count == 0))
1292                                 return -EINVAL;
1293                         spin_lock_irqsave(&h->lock, flags);
1294                         /* Update the field, and then ring the doorbell */
1295                         writel(intinfo.delay,
1296                                &(h->cfgtable->HostWrite.CoalIntDelay));
1297                         writel(intinfo.count,
1298                                &(h->cfgtable->HostWrite.CoalIntCount));
1299                         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1300
1301                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1302                                 if (!(readl(h->vaddr + SA5_DOORBELL)
1303                                       & CFGTBL_ChangeReq))
1304                                         break;
1305                                 /* delay and try again */
1306                                 udelay(1000);
1307                         }
1308                         spin_unlock_irqrestore(&h->lock, flags);
1309                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1310                                 return -EAGAIN;
1311                         return 0;
1312                 }
1313         case CCISS_GETNODENAME:
1314                 {
1315                         NodeName_type NodeName;
1316                         int i;
1317
1318                         if (!arg)
1319                                 return -EINVAL;
1320                         for (i = 0; i < 16; i++)
1321                                 NodeName[i] =
1322                                     readb(&h->cfgtable->ServerName[i]);
1323                         if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1324                                 return -EFAULT;
1325                         return 0;
1326                 }
1327         case CCISS_SETNODENAME:
1328                 {
1329                         NodeName_type NodeName;
1330                         unsigned long flags;
1331                         int i;
1332
1333                         if (!arg)
1334                                 return -EINVAL;
1335                         if (!capable(CAP_SYS_ADMIN))
1336                                 return -EPERM;
1337
1338                         if (copy_from_user
1339                             (NodeName, argp, sizeof(NodeName_type)))
1340                                 return -EFAULT;
1341
1342                         spin_lock_irqsave(&h->lock, flags);
1343
1344                         /* Update the field, and then ring the doorbell */
1345                         for (i = 0; i < 16; i++)
1346                                 writeb(NodeName[i],
1347                                        &h->cfgtable->ServerName[i]);
1348
1349                         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1350
1351                         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1352                                 if (!(readl(h->vaddr + SA5_DOORBELL)
1353                                       & CFGTBL_ChangeReq))
1354                                         break;
1355                                 /* delay and try again */
1356                                 udelay(1000);
1357                         }
1358                         spin_unlock_irqrestore(&h->lock, flags);
1359                         if (i >= MAX_IOCTL_CONFIG_WAIT)
1360                                 return -EAGAIN;
1361                         return 0;
1362                 }
1363
1364         case CCISS_GETHEARTBEAT:
1365                 {
1366                         Heartbeat_type heartbeat;
1367
1368                         if (!arg)
1369                                 return -EINVAL;
1370                         heartbeat = readl(&h->cfgtable->HeartBeat);
1371                         if (copy_to_user
1372                             (argp, &heartbeat, sizeof(Heartbeat_type)))
1373                                 return -EFAULT;
1374                         return 0;
1375                 }
1376         case CCISS_GETBUSTYPES:
1377                 {
1378                         BusTypes_type BusTypes;
1379
1380                         if (!arg)
1381                                 return -EINVAL;
1382                         BusTypes = readl(&h->cfgtable->BusTypes);
1383                         if (copy_to_user
1384                             (argp, &BusTypes, sizeof(BusTypes_type)))
1385                                 return -EFAULT;
1386                         return 0;
1387                 }
1388         case CCISS_GETFIRMVER:
1389                 {
1390                         FirmwareVer_type firmware;
1391
1392                         if (!arg)
1393                                 return -EINVAL;
1394                         memcpy(firmware, h->firm_ver, 4);
1395
1396                         if (copy_to_user
1397                             (argp, firmware, sizeof(FirmwareVer_type)))
1398                                 return -EFAULT;
1399                         return 0;
1400                 }
1401         case CCISS_GETDRIVVER:
1402                 {
1403                         DriverVer_type DriverVer = DRIVER_VERSION;
1404
1405                         if (!arg)
1406                                 return -EINVAL;
1407
1408                         if (copy_to_user
1409                             (argp, &DriverVer, sizeof(DriverVer_type)))
1410                                 return -EFAULT;
1411                         return 0;
1412                 }
1413
1414         case CCISS_DEREGDISK:
1415         case CCISS_REGNEWD:
1416         case CCISS_REVALIDVOLS:
1417                 return rebuild_lun_table(h, 0, 1);
1418
1419         case CCISS_GETLUNINFO:{
1420                         LogvolInfo_struct luninfo;
1421
1422                         memcpy(&luninfo.LunID, drv->LunID,
1423                                 sizeof(luninfo.LunID));
1424                         luninfo.num_opens = drv->usage_count;
1425                         luninfo.num_parts = 0;
1426                         if (copy_to_user(argp, &luninfo,
1427                                          sizeof(LogvolInfo_struct)))
1428                                 return -EFAULT;
1429                         return 0;
1430                 }
1431         case CCISS_PASSTHRU:
1432                 {
1433                         IOCTL_Command_struct iocommand;
1434                         CommandList_struct *c;
1435                         char *buff = NULL;
1436                         u64bit temp64;
1437                         DECLARE_COMPLETION_ONSTACK(wait);
1438
1439                         if (!arg)
1440                                 return -EINVAL;
1441
1442                         if (!capable(CAP_SYS_RAWIO))
1443                                 return -EPERM;
1444
1445                         if (copy_from_user
1446                             (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1447                                 return -EFAULT;
1448                         if ((iocommand.buf_size < 1) &&
1449                             (iocommand.Request.Type.Direction != XFER_NONE)) {
1450                                 return -EINVAL;
1451                         }
1452 #if 0                           /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1453                         /* Check kmalloc limits */
1454                         if (iocommand.buf_size > 128000)
1455                                 return -EINVAL;
1456 #endif
1457                         if (iocommand.buf_size > 0) {
1458                                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1459                                 if (buff == NULL)
1460                                         return -EFAULT;
1461                         }
1462                         if (iocommand.Request.Type.Direction == XFER_WRITE) {
1463                                 /* Copy the data into the buffer we created */
1464                                 if (copy_from_user
1465                                     (buff, iocommand.buf, iocommand.buf_size)) {
1466                                         kfree(buff);
1467                                         return -EFAULT;
1468                                 }
1469                         } else {
1470                                 memset(buff, 0, iocommand.buf_size);
1471                         }
1472                         c = cmd_special_alloc(h);
1473                         if (!c) {
1474                                 kfree(buff);
1475                                 return -ENOMEM;
1476                         }
1477                         /* Fill in the command type */
1478                         c->cmd_type = CMD_IOCTL_PEND;
1479                         /* Fill in Command Header */
1480                         c->Header.ReplyQueue = 0;   /* unused in simple mode */
1481                         if (iocommand.buf_size > 0) /* buffer to fill */
1482                         {
1483                                 c->Header.SGList = 1;
1484                                 c->Header.SGTotal = 1;
1485                         } else /* no buffers to fill */
1486                         {
1487                                 c->Header.SGList = 0;
1488                                 c->Header.SGTotal = 0;
1489                         }
1490                         c->Header.LUN = iocommand.LUN_info;
1491                         /* use the kernel address the cmd block for tag */
1492                         c->Header.Tag.lower = c->busaddr;
1493
1494                         /* Fill in Request block */
1495                         c->Request = iocommand.Request;
1496
1497                         /* Fill in the scatter gather information */
1498                         if (iocommand.buf_size > 0) {
1499                                 temp64.val = pci_map_single(h->pdev, buff,
1500                                         iocommand.buf_size,
1501                                         PCI_DMA_BIDIRECTIONAL);
1502                                 c->SG[0].Addr.lower = temp64.val32.lower;
1503                                 c->SG[0].Addr.upper = temp64.val32.upper;
1504                                 c->SG[0].Len = iocommand.buf_size;
1505                                 c->SG[0].Ext = 0;  /* we are not chaining */
1506                         }
1507                         c->waiting = &wait;
1508
1509                         enqueue_cmd_and_start_io(h, c);
1510                         wait_for_completion(&wait);
1511
1512                         /* unlock the buffers from DMA */
1513                         temp64.val32.lower = c->SG[0].Addr.lower;
1514                         temp64.val32.upper = c->SG[0].Addr.upper;
1515                         pci_unmap_single(h->pdev, (dma_addr_t) temp64.val,
1516                                          iocommand.buf_size,
1517                                          PCI_DMA_BIDIRECTIONAL);
1518
1519                         check_ioctl_unit_attention(h, c);
1520
1521                         /* Copy the error information out */
1522                         iocommand.error_info = *(c->err_info);
1523                         if (copy_to_user
1524                             (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1525                                 kfree(buff);
1526                                 cmd_special_free(h, c);
1527                                 return -EFAULT;
1528                         }
1529
1530                         if (iocommand.Request.Type.Direction == XFER_READ) {
1531                                 /* Copy the data out of the buffer we created */
1532                                 if (copy_to_user
1533                                     (iocommand.buf, buff, iocommand.buf_size)) {
1534                                         kfree(buff);
1535                                         cmd_special_free(h, c);
1536                                         return -EFAULT;
1537                                 }
1538                         }
1539                         kfree(buff);
1540                         cmd_special_free(h, c);
1541                         return 0;
1542                 }
1543         case CCISS_BIG_PASSTHRU:{
1544                         BIG_IOCTL_Command_struct *ioc;
1545                         CommandList_struct *c;
1546                         unsigned char **buff = NULL;
1547                         int *buff_size = NULL;
1548                         u64bit temp64;
1549                         BYTE sg_used = 0;
1550                         int status = 0;
1551                         int i;
1552                         DECLARE_COMPLETION_ONSTACK(wait);
1553                         __u32 left;
1554                         __u32 sz;
1555                         BYTE __user *data_ptr;
1556
1557                         if (!arg)
1558                                 return -EINVAL;
1559                         if (!capable(CAP_SYS_RAWIO))
1560                                 return -EPERM;
1561                         ioc = (BIG_IOCTL_Command_struct *)
1562                             kmalloc(sizeof(*ioc), GFP_KERNEL);
1563                         if (!ioc) {
1564                                 status = -ENOMEM;
1565                                 goto cleanup1;
1566                         }
1567                         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1568                                 status = -EFAULT;
1569                                 goto cleanup1;
1570                         }
1571                         if ((ioc->buf_size < 1) &&
1572                             (ioc->Request.Type.Direction != XFER_NONE)) {
1573                                 status = -EINVAL;
1574                                 goto cleanup1;
1575                         }
1576                         /* Check kmalloc limits  using all SGs */
1577                         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1578                                 status = -EINVAL;
1579                                 goto cleanup1;
1580                         }
1581                         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1582                                 status = -EINVAL;
1583                                 goto cleanup1;
1584                         }
1585                         buff =
1586                             kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1587                         if (!buff) {
1588                                 status = -ENOMEM;
1589                                 goto cleanup1;
1590                         }
1591                         buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1592                                                    GFP_KERNEL);
1593                         if (!buff_size) {
1594                                 status = -ENOMEM;
1595                                 goto cleanup1;
1596                         }
1597                         left = ioc->buf_size;
1598                         data_ptr = ioc->buf;
1599                         while (left) {
1600                                 sz = (left >
1601                                       ioc->malloc_size) ? ioc->
1602                                     malloc_size : left;
1603                                 buff_size[sg_used] = sz;
1604                                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1605                                 if (buff[sg_used] == NULL) {
1606                                         status = -ENOMEM;
1607                                         goto cleanup1;
1608                                 }
1609                                 if (ioc->Request.Type.Direction == XFER_WRITE) {
1610                                         if (copy_from_user
1611                                             (buff[sg_used], data_ptr, sz)) {
1612                                                 status = -EFAULT;
1613                                                 goto cleanup1;
1614                                         }
1615                                 } else {
1616                                         memset(buff[sg_used], 0, sz);
1617                                 }
1618                                 left -= sz;
1619                                 data_ptr += sz;
1620                                 sg_used++;
1621                         }
1622                         c = cmd_special_alloc(h);
1623                         if (!c) {
1624                                 status = -ENOMEM;
1625                                 goto cleanup1;
1626                         }
1627                         c->cmd_type = CMD_IOCTL_PEND;
1628                         c->Header.ReplyQueue = 0;
1629
1630                         if (ioc->buf_size > 0) {
1631                                 c->Header.SGList = sg_used;
1632                                 c->Header.SGTotal = sg_used;
1633                         } else {
1634                                 c->Header.SGList = 0;
1635                                 c->Header.SGTotal = 0;
1636                         }
1637                         c->Header.LUN = ioc->LUN_info;
1638                         c->Header.Tag.lower = c->busaddr;
1639
1640                         c->Request = ioc->Request;
1641                         if (ioc->buf_size > 0) {
1642                                 for (i = 0; i < sg_used; i++) {
1643                                         temp64.val =
1644                                             pci_map_single(h->pdev, buff[i],
1645                                                     buff_size[i],
1646                                                     PCI_DMA_BIDIRECTIONAL);
1647                                         c->SG[i].Addr.lower =
1648                                             temp64.val32.lower;
1649                                         c->SG[i].Addr.upper =
1650                                             temp64.val32.upper;
1651                                         c->SG[i].Len = buff_size[i];
1652                                         c->SG[i].Ext = 0;       /* we are not chaining */
1653                                 }
1654                         }
1655                         c->waiting = &wait;
1656                         enqueue_cmd_and_start_io(h, c);
1657                         wait_for_completion(&wait);
1658                         /* unlock the buffers from DMA */
1659                         for (i = 0; i < sg_used; i++) {
1660                                 temp64.val32.lower = c->SG[i].Addr.lower;
1661                                 temp64.val32.upper = c->SG[i].Addr.upper;
1662                                 pci_unmap_single(h->pdev,
1663                                         (dma_addr_t) temp64.val, buff_size[i],
1664                                         PCI_DMA_BIDIRECTIONAL);
1665                         }
1666                         check_ioctl_unit_attention(h, c);
1667                         /* Copy the error information out */
1668                         ioc->error_info = *(c->err_info);
1669                         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1670                                 cmd_special_free(h, c);
1671                                 status = -EFAULT;
1672                                 goto cleanup1;
1673                         }
1674                         if (ioc->Request.Type.Direction == XFER_READ) {
1675                                 /* Copy the data out of the buffer we created */
1676                                 BYTE __user *ptr = ioc->buf;
1677                                 for (i = 0; i < sg_used; i++) {
1678                                         if (copy_to_user
1679                                             (ptr, buff[i], buff_size[i])) {
1680                                                 cmd_special_free(h, c);
1681                                                 status = -EFAULT;
1682                                                 goto cleanup1;
1683                                         }
1684                                         ptr += buff_size[i];
1685                                 }
1686                         }
1687                         cmd_special_free(h, c);
1688                         status = 0;
1689                       cleanup1:
1690                         if (buff) {
1691                                 for (i = 0; i < sg_used; i++)
1692                                         kfree(buff[i]);
1693                                 kfree(buff);
1694                         }
1695                         kfree(buff_size);
1696                         kfree(ioc);
1697                         return status;
1698                 }
1699
1700         /* scsi_cmd_ioctl handles these, below, though some are not */
1701         /* very meaningful for cciss.  SG_IO is the main one people want. */
1702
1703         case SG_GET_VERSION_NUM:
1704         case SG_SET_TIMEOUT:
1705         case SG_GET_TIMEOUT:
1706         case SG_GET_RESERVED_SIZE:
1707         case SG_SET_RESERVED_SIZE:
1708         case SG_EMULATED_HOST:
1709         case SG_IO:
1710         case SCSI_IOCTL_SEND_COMMAND:
1711                 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1712
1713         /* scsi_cmd_ioctl would normally handle these, below, but */
1714         /* they aren't a good fit for cciss, as CD-ROMs are */
1715         /* not supported, and we don't have any bus/target/lun */
1716         /* which we present to the kernel. */
1717
1718         case CDROM_SEND_PACKET:
1719         case CDROMCLOSETRAY:
1720         case CDROMEJECT:
1721         case SCSI_IOCTL_GET_IDLUN:
1722         case SCSI_IOCTL_GET_BUS_NUMBER:
1723         default:
1724                 return -ENOTTY;
1725         }
1726 }
1727
1728 static void cciss_check_queues(ctlr_info_t *h)
1729 {
1730         int start_queue = h->next_to_run;
1731         int i;
1732
1733         /* check to see if we have maxed out the number of commands that can
1734          * be placed on the queue.  If so then exit.  We do this check here
1735          * in case the interrupt we serviced was from an ioctl and did not
1736          * free any new commands.
1737          */
1738         if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1739                 return;
1740
1741         /* We have room on the queue for more commands.  Now we need to queue
1742          * them up.  We will also keep track of the next queue to run so
1743          * that every queue gets a chance to be started first.
1744          */
1745         for (i = 0; i < h->highest_lun + 1; i++) {
1746                 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1747                 /* make sure the disk has been added and the drive is real
1748                  * because this can be called from the middle of init_one.
1749                  */
1750                 if (!h->drv[curr_queue])
1751                         continue;
1752                 if (!(h->drv[curr_queue]->queue) ||
1753                         !(h->drv[curr_queue]->heads))
1754                         continue;
1755                 blk_start_queue(h->gendisk[curr_queue]->queue);
1756
1757                 /* check to see if we have maxed out the number of commands
1758                  * that can be placed on the queue.
1759                  */
1760                 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1761                         if (curr_queue == start_queue) {
1762                                 h->next_to_run =
1763                                     (start_queue + 1) % (h->highest_lun + 1);
1764                                 break;
1765                         } else {
1766                                 h->next_to_run = curr_queue;
1767                                 break;
1768                         }
1769                 }
1770         }
1771 }
1772
1773 static void cciss_softirq_done(struct request *rq)
1774 {
1775         CommandList_struct *c = rq->completion_data;
1776         ctlr_info_t *h = hba[c->ctlr];
1777         SGDescriptor_struct *curr_sg = c->SG;
1778         u64bit temp64;
1779         unsigned long flags;
1780         int i, ddir;
1781         int sg_index = 0;
1782
1783         if (c->Request.Type.Direction == XFER_READ)
1784                 ddir = PCI_DMA_FROMDEVICE;
1785         else
1786                 ddir = PCI_DMA_TODEVICE;
1787
1788         /* command did not need to be retried */
1789         /* unmap the DMA mapping for all the scatter gather elements */
1790         for (i = 0; i < c->Header.SGList; i++) {
1791                 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1792                         cciss_unmap_sg_chain_block(h, c);
1793                         /* Point to the next block */
1794                         curr_sg = h->cmd_sg_list[c->cmdindex];
1795                         sg_index = 0;
1796                 }
1797                 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1798                 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1799                 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1800                                 ddir);
1801                 ++sg_index;
1802         }
1803
1804         dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1805
1806         /* set the residual count for pc requests */
1807         if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1808                 rq->resid_len = c->err_info->ResidualCnt;
1809
1810         blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1811
1812         spin_lock_irqsave(&h->lock, flags);
1813         cmd_free(h, c);
1814         cciss_check_queues(h);
1815         spin_unlock_irqrestore(&h->lock, flags);
1816 }
1817
1818 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1819         unsigned char scsi3addr[], uint32_t log_unit)
1820 {
1821         memcpy(scsi3addr, h->drv[log_unit]->LunID,
1822                 sizeof(h->drv[log_unit]->LunID));
1823 }
1824
1825 /* This function gets the SCSI vendor, model, and revision of a logical drive
1826  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1827  * they cannot be read.
1828  */
1829 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1830                                    char *vendor, char *model, char *rev)
1831 {
1832         int rc;
1833         InquiryData_struct *inq_buf;
1834         unsigned char scsi3addr[8];
1835
1836         *vendor = '\0';
1837         *model = '\0';
1838         *rev = '\0';
1839
1840         inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1841         if (!inq_buf)
1842                 return;
1843
1844         log_unit_to_scsi3addr(h, scsi3addr, logvol);
1845         rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1846                         scsi3addr, TYPE_CMD);
1847         if (rc == IO_OK) {
1848                 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1849                 vendor[VENDOR_LEN] = '\0';
1850                 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1851                 model[MODEL_LEN] = '\0';
1852                 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1853                 rev[REV_LEN] = '\0';
1854         }
1855
1856         kfree(inq_buf);
1857         return;
1858 }
1859
1860 /* This function gets the serial number of a logical drive via
1861  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1862  * number cannot be had, for whatever reason, 16 bytes of 0xff
1863  * are returned instead.
1864  */
1865 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1866                                 unsigned char *serial_no, int buflen)
1867 {
1868 #define PAGE_83_INQ_BYTES 64
1869         int rc;
1870         unsigned char *buf;
1871         unsigned char scsi3addr[8];
1872
1873         if (buflen > 16)
1874                 buflen = 16;
1875         memset(serial_no, 0xff, buflen);
1876         buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1877         if (!buf)
1878                 return;
1879         memset(serial_no, 0, buflen);
1880         log_unit_to_scsi3addr(h, scsi3addr, logvol);
1881         rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1882                 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1883         if (rc == IO_OK)
1884                 memcpy(serial_no, &buf[8], buflen);
1885         kfree(buf);
1886         return;
1887 }
1888
1889 /*
1890  * cciss_add_disk sets up the block device queue for a logical drive
1891  */
1892 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1893                                 int drv_index)
1894 {
1895         disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1896         if (!disk->queue)
1897                 goto init_queue_failure;
1898         sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1899         disk->major = h->major;
1900         disk->first_minor = drv_index << NWD_SHIFT;
1901         disk->fops = &cciss_fops;
1902         if (cciss_create_ld_sysfs_entry(h, drv_index))
1903                 goto cleanup_queue;
1904         disk->private_data = h->drv[drv_index];
1905         disk->driverfs_dev = &h->drv[drv_index]->dev;
1906
1907         /* Set up queue information */
1908         blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1909
1910         /* This is a hardware imposed limit. */
1911         blk_queue_max_segments(disk->queue, h->maxsgentries);
1912
1913         blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1914
1915         blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1916
1917         disk->queue->queuedata = h;
1918
1919         blk_queue_logical_block_size(disk->queue,
1920                                      h->drv[drv_index]->block_size);
1921
1922         /* Make sure all queue data is written out before */
1923         /* setting h->drv[drv_index]->queue, as setting this */
1924         /* allows the interrupt handler to start the queue */
1925         wmb();
1926         h->drv[drv_index]->queue = disk->queue;
1927         add_disk(disk);
1928         return 0;
1929
1930 cleanup_queue:
1931         blk_cleanup_queue(disk->queue);
1932         disk->queue = NULL;
1933 init_queue_failure:
1934         return -1;
1935 }
1936
1937 /* This function will check the usage_count of the drive to be updated/added.
1938  * If the usage_count is zero and it is a heretofore unknown drive, or,
1939  * the drive's capacity, geometry, or serial number has changed,
1940  * then the drive information will be updated and the disk will be
1941  * re-registered with the kernel.  If these conditions don't hold,
1942  * then it will be left alone for the next reboot.  The exception to this
1943  * is disk 0 which will always be left registered with the kernel since it
1944  * is also the controller node.  Any changes to disk 0 will show up on
1945  * the next reboot.
1946  */
1947 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1948         int first_time, int via_ioctl)
1949 {
1950         struct gendisk *disk;
1951         InquiryData_struct *inq_buff = NULL;
1952         unsigned int block_size;
1953         sector_t total_size;
1954         unsigned long flags = 0;
1955         int ret = 0;
1956         drive_info_struct *drvinfo;
1957
1958         /* Get information about the disk and modify the driver structure */
1959         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1960         drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1961         if (inq_buff == NULL || drvinfo == NULL)
1962                 goto mem_msg;
1963
1964         /* testing to see if 16-byte CDBs are already being used */
1965         if (h->cciss_read == CCISS_READ_16) {
1966                 cciss_read_capacity_16(h, drv_index,
1967                         &total_size, &block_size);
1968
1969         } else {
1970                 cciss_read_capacity(h, drv_index, &total_size, &block_size);
1971                 /* if read_capacity returns all F's this volume is >2TB */
1972                 /* in size so we switch to 16-byte CDB's for all */
1973                 /* read/write ops */
1974                 if (total_size == 0xFFFFFFFFULL) {
1975                         cciss_read_capacity_16(h, drv_index,
1976                         &total_size, &block_size);
1977                         h->cciss_read = CCISS_READ_16;
1978                         h->cciss_write = CCISS_WRITE_16;
1979                 } else {
1980                         h->cciss_read = CCISS_READ_10;
1981                         h->cciss_write = CCISS_WRITE_10;
1982                 }
1983         }
1984
1985         cciss_geometry_inquiry(h, drv_index, total_size, block_size,
1986                                inq_buff, drvinfo);
1987         drvinfo->block_size = block_size;
1988         drvinfo->nr_blocks = total_size + 1;
1989
1990         cciss_get_device_descr(h, drv_index, drvinfo->vendor,
1991                                 drvinfo->model, drvinfo->rev);
1992         cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
1993                         sizeof(drvinfo->serial_no));
1994         /* Save the lunid in case we deregister the disk, below. */
1995         memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1996                 sizeof(drvinfo->LunID));
1997
1998         /* Is it the same disk we already know, and nothing's changed? */
1999         if (h->drv[drv_index]->raid_level != -1 &&
2000                 ((memcmp(drvinfo->serial_no,
2001                                 h->drv[drv_index]->serial_no, 16) == 0) &&
2002                 drvinfo->block_size == h->drv[drv_index]->block_size &&
2003                 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2004                 drvinfo->heads == h->drv[drv_index]->heads &&
2005                 drvinfo->sectors == h->drv[drv_index]->sectors &&
2006                 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2007                         /* The disk is unchanged, nothing to update */
2008                         goto freeret;
2009
2010         /* If we get here it's not the same disk, or something's changed,
2011          * so we need to * deregister it, and re-register it, if it's not
2012          * in use.
2013          * If the disk already exists then deregister it before proceeding
2014          * (unless it's the first disk (for the controller node).
2015          */
2016         if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2017                 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2018                 spin_lock_irqsave(&h->lock, flags);
2019                 h->drv[drv_index]->busy_configuring = 1;
2020                 spin_unlock_irqrestore(&h->lock, flags);
2021
2022                 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2023                  * which keeps the interrupt handler from starting
2024                  * the queue.
2025                  */
2026                 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2027         }
2028
2029         /* If the disk is in use return */
2030         if (ret)
2031                 goto freeret;
2032
2033         /* Save the new information from cciss_geometry_inquiry
2034          * and serial number inquiry.  If the disk was deregistered
2035          * above, then h->drv[drv_index] will be NULL.
2036          */
2037         if (h->drv[drv_index] == NULL) {
2038                 drvinfo->device_initialized = 0;
2039                 h->drv[drv_index] = drvinfo;
2040                 drvinfo = NULL; /* so it won't be freed below. */
2041         } else {
2042                 /* special case for cxd0 */
2043                 h->drv[drv_index]->block_size = drvinfo->block_size;
2044                 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2045                 h->drv[drv_index]->heads = drvinfo->heads;
2046                 h->drv[drv_index]->sectors = drvinfo->sectors;
2047                 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2048                 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2049                 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2050                 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2051                         VENDOR_LEN + 1);
2052                 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2053                 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2054         }
2055
2056         ++h->num_luns;
2057         disk = h->gendisk[drv_index];
2058         set_capacity(disk, h->drv[drv_index]->nr_blocks);
2059
2060         /* If it's not disk 0 (drv_index != 0)
2061          * or if it was disk 0, but there was previously
2062          * no actual corresponding configured logical drive
2063          * (raid_leve == -1) then we want to update the
2064          * logical drive's information.
2065          */
2066         if (drv_index || first_time) {
2067                 if (cciss_add_disk(h, disk, drv_index) != 0) {
2068                         cciss_free_gendisk(h, drv_index);
2069                         cciss_free_drive_info(h, drv_index);
2070                         dev_warn(&h->pdev->dev, "could not update disk %d\n",
2071                                 drv_index);
2072                         --h->num_luns;
2073                 }
2074         }
2075
2076 freeret:
2077         kfree(inq_buff);
2078         kfree(drvinfo);
2079         return;
2080 mem_msg:
2081         dev_err(&h->pdev->dev, "out of memory\n");
2082         goto freeret;
2083 }
2084
2085 /* This function will find the first index of the controllers drive array
2086  * that has a null drv pointer and allocate the drive info struct and
2087  * will return that index   This is where new drives will be added.
2088  * If the index to be returned is greater than the highest_lun index for
2089  * the controller then highest_lun is set * to this new index.
2090  * If there are no available indexes or if tha allocation fails, then -1
2091  * is returned.  * "controller_node" is used to know if this is a real
2092  * logical drive, or just the controller node, which determines if this
2093  * counts towards highest_lun.
2094  */
2095 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2096 {
2097         int i;
2098         drive_info_struct *drv;
2099
2100         /* Search for an empty slot for our drive info */
2101         for (i = 0; i < CISS_MAX_LUN; i++) {
2102
2103                 /* if not cxd0 case, and it's occupied, skip it. */
2104                 if (h->drv[i] && i != 0)
2105                         continue;
2106                 /*
2107                  * If it's cxd0 case, and drv is alloc'ed already, and a
2108                  * disk is configured there, skip it.
2109                  */
2110                 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2111                         continue;
2112
2113                 /*
2114                  * We've found an empty slot.  Update highest_lun
2115                  * provided this isn't just the fake cxd0 controller node.
2116                  */
2117                 if (i > h->highest_lun && !controller_node)
2118                         h->highest_lun = i;
2119
2120                 /* If adding a real disk at cxd0, and it's already alloc'ed */
2121                 if (i == 0 && h->drv[i] != NULL)
2122                         return i;
2123
2124                 /*
2125                  * Found an empty slot, not already alloc'ed.  Allocate it.
2126                  * Mark it with raid_level == -1, so we know it's new later on.
2127                  */
2128                 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2129                 if (!drv)
2130                         return -1;
2131                 drv->raid_level = -1; /* so we know it's new */
2132                 h->drv[i] = drv;
2133                 return i;
2134         }
2135         return -1;
2136 }
2137
2138 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2139 {
2140         kfree(h->drv[drv_index]);
2141         h->drv[drv_index] = NULL;
2142 }
2143
2144 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2145 {
2146         put_disk(h->gendisk[drv_index]);
2147         h->gendisk[drv_index] = NULL;
2148 }
2149
2150 /* cciss_add_gendisk finds a free hba[]->drv structure
2151  * and allocates a gendisk if needed, and sets the lunid
2152  * in the drvinfo structure.   It returns the index into
2153  * the ->drv[] array, or -1 if none are free.
2154  * is_controller_node indicates whether highest_lun should
2155  * count this disk, or if it's only being added to provide
2156  * a means to talk to the controller in case no logical
2157  * drives have yet been configured.
2158  */
2159 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2160         int controller_node)
2161 {
2162         int drv_index;
2163
2164         drv_index = cciss_alloc_drive_info(h, controller_node);
2165         if (drv_index == -1)
2166                 return -1;
2167
2168         /*Check if the gendisk needs to be allocated */
2169         if (!h->gendisk[drv_index]) {
2170                 h->gendisk[drv_index] =
2171                         alloc_disk(1 << NWD_SHIFT);
2172                 if (!h->gendisk[drv_index]) {
2173                         dev_err(&h->pdev->dev,
2174                                 "could not allocate a new disk %d\n",
2175                                 drv_index);
2176                         goto err_free_drive_info;
2177                 }
2178         }
2179         memcpy(h->drv[drv_index]->LunID, lunid,
2180                 sizeof(h->drv[drv_index]->LunID));
2181         if (cciss_create_ld_sysfs_entry(h, drv_index))
2182                 goto err_free_disk;
2183         /* Don't need to mark this busy because nobody */
2184         /* else knows about this disk yet to contend */
2185         /* for access to it. */
2186         h->drv[drv_index]->busy_configuring = 0;
2187         wmb();
2188         return drv_index;
2189
2190 err_free_disk:
2191         cciss_free_gendisk(h, drv_index);
2192 err_free_drive_info:
2193         cciss_free_drive_info(h, drv_index);
2194         return -1;
2195 }
2196
2197 /* This is for the special case of a controller which
2198  * has no logical drives.  In this case, we still need
2199  * to register a disk so the controller can be accessed
2200  * by the Array Config Utility.
2201  */
2202 static void cciss_add_controller_node(ctlr_info_t *h)
2203 {
2204         struct gendisk *disk;
2205         int drv_index;
2206
2207         if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2208                 return;
2209
2210         drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2211         if (drv_index == -1)
2212                 goto error;
2213         h->drv[drv_index]->block_size = 512;
2214         h->drv[drv_index]->nr_blocks = 0;
2215         h->drv[drv_index]->heads = 0;
2216         h->drv[drv_index]->sectors = 0;
2217         h->drv[drv_index]->cylinders = 0;
2218         h->drv[drv_index]->raid_level = -1;
2219         memset(h->drv[drv_index]->serial_no, 0, 16);
2220         disk = h->gendisk[drv_index];
2221         if (cciss_add_disk(h, disk, drv_index) == 0)
2222                 return;
2223         cciss_free_gendisk(h, drv_index);
2224         cciss_free_drive_info(h, drv_index);
2225 error:
2226         dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2227         return;
2228 }
2229
2230 /* This function will add and remove logical drives from the Logical
2231  * drive array of the controller and maintain persistency of ordering
2232  * so that mount points are preserved until the next reboot.  This allows
2233  * for the removal of logical drives in the middle of the drive array
2234  * without a re-ordering of those drives.
2235  * INPUT
2236  * h            = The controller to perform the operations on
2237  */
2238 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2239         int via_ioctl)
2240 {
2241         int num_luns;
2242         ReportLunData_struct *ld_buff = NULL;
2243         int return_code;
2244         int listlength = 0;
2245         int i;
2246         int drv_found;
2247         int drv_index = 0;
2248         unsigned char lunid[8] = CTLR_LUNID;
2249         unsigned long flags;
2250
2251         if (!capable(CAP_SYS_RAWIO))
2252                 return -EPERM;
2253
2254         /* Set busy_configuring flag for this operation */
2255         spin_lock_irqsave(&h->lock, flags);
2256         if (h->busy_configuring) {
2257                 spin_unlock_irqrestore(&h->lock, flags);
2258                 return -EBUSY;
2259         }
2260         h->busy_configuring = 1;
2261         spin_unlock_irqrestore(&h->lock, flags);
2262
2263         ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2264         if (ld_buff == NULL)
2265                 goto mem_msg;
2266
2267         return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2268                                       sizeof(ReportLunData_struct),
2269                                       0, CTLR_LUNID, TYPE_CMD);
2270
2271         if (return_code == IO_OK)
2272                 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2273         else {  /* reading number of logical volumes failed */
2274                 dev_warn(&h->pdev->dev,
2275                         "report logical volume command failed\n");
2276                 listlength = 0;
2277                 goto freeret;
2278         }
2279
2280         num_luns = listlength / 8;      /* 8 bytes per entry */
2281         if (num_luns > CISS_MAX_LUN) {
2282                 num_luns = CISS_MAX_LUN;
2283                 dev_warn(&h->pdev->dev, "more luns configured"
2284                        " on controller than can be handled by"
2285                        " this driver.\n");
2286         }
2287
2288         if (num_luns == 0)
2289                 cciss_add_controller_node(h);
2290
2291         /* Compare controller drive array to driver's drive array
2292          * to see if any drives are missing on the controller due
2293          * to action of Array Config Utility (user deletes drive)
2294          * and deregister logical drives which have disappeared.
2295          */
2296         for (i = 0; i <= h->highest_lun; i++) {
2297                 int j;
2298                 drv_found = 0;
2299
2300                 /* skip holes in the array from already deleted drives */
2301                 if (h->drv[i] == NULL)
2302                         continue;
2303
2304                 for (j = 0; j < num_luns; j++) {
2305                         memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2306                         if (memcmp(h->drv[i]->LunID, lunid,
2307                                 sizeof(lunid)) == 0) {
2308                                 drv_found = 1;
2309                                 break;
2310                         }
2311                 }
2312                 if (!drv_found) {
2313                         /* Deregister it from the OS, it's gone. */
2314                         spin_lock_irqsave(&h->lock, flags);
2315                         h->drv[i]->busy_configuring = 1;
2316                         spin_unlock_irqrestore(&h->lock, flags);
2317                         return_code = deregister_disk(h, i, 1, via_ioctl);
2318                         if (h->drv[i] != NULL)
2319                                 h->drv[i]->busy_configuring = 0;
2320                 }
2321         }
2322
2323         /* Compare controller drive array to driver's drive array.
2324          * Check for updates in the drive information and any new drives
2325          * on the controller due to ACU adding logical drives, or changing
2326          * a logical drive's size, etc.  Reregister any new/changed drives
2327          */
2328         for (i = 0; i < num_luns; i++) {
2329                 int j;
2330
2331                 drv_found = 0;
2332
2333                 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2334                 /* Find if the LUN is already in the drive array
2335                  * of the driver.  If so then update its info
2336                  * if not in use.  If it does not exist then find
2337                  * the first free index and add it.
2338                  */
2339                 for (j = 0; j <= h->highest_lun; j++) {
2340                         if (h->drv[j] != NULL &&
2341                                 memcmp(h->drv[j]->LunID, lunid,
2342                                         sizeof(h->drv[j]->LunID)) == 0) {
2343                                 drv_index = j;
2344                                 drv_found = 1;
2345                                 break;
2346                         }
2347                 }
2348
2349                 /* check if the drive was found already in the array */
2350                 if (!drv_found) {
2351                         drv_index = cciss_add_gendisk(h, lunid, 0);
2352                         if (drv_index == -1)
2353                                 goto freeret;
2354                 }
2355                 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2356         }               /* end for */
2357
2358 freeret:
2359         kfree(ld_buff);
2360         h->busy_configuring = 0;
2361         /* We return -1 here to tell the ACU that we have registered/updated
2362          * all of the drives that we can and to keep it from calling us
2363          * additional times.
2364          */
2365         return -1;
2366 mem_msg:
2367         dev_err(&h->pdev->dev, "out of memory\n");
2368         h->busy_configuring = 0;
2369         goto freeret;
2370 }
2371
2372 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2373 {
2374         /* zero out the disk size info */
2375         drive_info->nr_blocks = 0;
2376         drive_info->block_size = 0;
2377         drive_info->heads = 0;
2378         drive_info->sectors = 0;
2379         drive_info->cylinders = 0;
2380         drive_info->raid_level = -1;
2381         memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2382         memset(drive_info->model, 0, sizeof(drive_info->model));
2383         memset(drive_info->rev, 0, sizeof(drive_info->rev));
2384         memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2385         /*
2386          * don't clear the LUNID though, we need to remember which
2387          * one this one is.
2388          */
2389 }
2390
2391 /* This function will deregister the disk and it's queue from the
2392  * kernel.  It must be called with the controller lock held and the
2393  * drv structures busy_configuring flag set.  It's parameters are:
2394  *
2395  * disk = This is the disk to be deregistered
2396  * drv  = This is the drive_info_struct associated with the disk to be
2397  *        deregistered.  It contains information about the disk used
2398  *        by the driver.
2399  * clear_all = This flag determines whether or not the disk information
2400  *             is going to be completely cleared out and the highest_lun
2401  *             reset.  Sometimes we want to clear out information about
2402  *             the disk in preparation for re-adding it.  In this case
2403  *             the highest_lun should be left unchanged and the LunID
2404  *             should not be cleared.
2405  * via_ioctl
2406  *    This indicates whether we've reached this path via ioctl.
2407  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2408  *    If this path is reached via ioctl(), then the max_usage_count will
2409  *    be 1, as the process calling ioctl() has got to have the device open.
2410  *    If we get here via sysfs, then the max usage count will be zero.
2411 */
2412 static int deregister_disk(ctlr_info_t *h, int drv_index,
2413                            int clear_all, int via_ioctl)
2414 {
2415         int i;
2416         struct gendisk *disk;
2417         drive_info_struct *drv;
2418         int recalculate_highest_lun;
2419
2420         if (!capable(CAP_SYS_RAWIO))
2421                 return -EPERM;
2422
2423         drv = h->drv[drv_index];
2424         disk = h->gendisk[drv_index];
2425
2426         /* make sure logical volume is NOT is use */
2427         if (clear_all || (h->gendisk[0] == disk)) {
2428                 if (drv->usage_count > via_ioctl)
2429                         return -EBUSY;
2430         } else if (drv->usage_count > 0)
2431                 return -EBUSY;
2432
2433         recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2434
2435         /* invalidate the devices and deregister the disk.  If it is disk
2436          * zero do not deregister it but just zero out it's values.  This
2437          * allows us to delete disk zero but keep the controller registered.
2438          */
2439         if (h->gendisk[0] != disk) {
2440                 struct request_queue *q = disk->queue;
2441                 if (disk->flags & GENHD_FL_UP) {
2442                         cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2443                         del_gendisk(disk);
2444                 }
2445                 if (q)
2446                         blk_cleanup_queue(q);
2447                 /* If clear_all is set then we are deleting the logical
2448                  * drive, not just refreshing its info.  For drives
2449                  * other than disk 0 we will call put_disk.  We do not
2450                  * do this for disk 0 as we need it to be able to
2451                  * configure the controller.
2452                  */
2453                 if (clear_all){
2454                         /* This isn't pretty, but we need to find the
2455                          * disk in our array and NULL our the pointer.
2456                          * This is so that we will call alloc_disk if
2457                          * this index is used again later.
2458                          */
2459                         for (i=0; i < CISS_MAX_LUN; i++){
2460                                 if (h->gendisk[i] == disk) {
2461                                         h->gendisk[i] = NULL;
2462                                         break;
2463                                 }
2464                         }
2465                         put_disk(disk);
2466                 }
2467         } else {
2468                 set_capacity(disk, 0);
2469                 cciss_clear_drive_info(drv);
2470         }
2471
2472         --h->num_luns;
2473
2474         /* if it was the last disk, find the new hightest lun */
2475         if (clear_all && recalculate_highest_lun) {
2476                 int newhighest = -1;
2477                 for (i = 0; i <= h->highest_lun; i++) {
2478                         /* if the disk has size > 0, it is available */
2479                         if (h->drv[i] && h->drv[i]->heads)
2480                                 newhighest = i;
2481                 }
2482                 h->highest_lun = newhighest;
2483         }
2484         return 0;
2485 }
2486
2487 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2488                 size_t size, __u8 page_code, unsigned char *scsi3addr,
2489                 int cmd_type)
2490 {
2491         u64bit buff_dma_handle;
2492         int status = IO_OK;
2493
2494         c->cmd_type = CMD_IOCTL_PEND;
2495         c->Header.ReplyQueue = 0;
2496         if (buff != NULL) {
2497                 c->Header.SGList = 1;
2498                 c->Header.SGTotal = 1;
2499         } else {
2500                 c->Header.SGList = 0;
2501                 c->Header.SGTotal = 0;
2502         }
2503         c->Header.Tag.lower = c->busaddr;
2504         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2505
2506         c->Request.Type.Type = cmd_type;
2507         if (cmd_type == TYPE_CMD) {
2508                 switch (cmd) {
2509                 case CISS_INQUIRY:
2510                         /* are we trying to read a vital product page */
2511                         if (page_code != 0) {
2512                                 c->Request.CDB[1] = 0x01;
2513                                 c->Request.CDB[2] = page_code;
2514                         }
2515                         c->Request.CDBLen = 6;
2516                         c->Request.Type.Attribute = ATTR_SIMPLE;
2517                         c->Request.Type.Direction = XFER_READ;
2518                         c->Request.Timeout = 0;
2519                         c->Request.CDB[0] = CISS_INQUIRY;
2520                         c->Request.CDB[4] = size & 0xFF;
2521                         break;
2522                 case CISS_REPORT_LOG:
2523                 case CISS_REPORT_PHYS:
2524                         /* Talking to controller so It's a physical command
2525                            mode = 00 target = 0.  Nothing to write.
2526                          */
2527                         c->Request.CDBLen = 12;
2528                         c->Request.Type.Attribute = ATTR_SIMPLE;
2529                         c->Request.Type.Direction = XFER_READ;
2530                         c->Request.Timeout = 0;
2531                         c->Request.CDB[0] = cmd;
2532                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2533                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2534                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2535                         c->Request.CDB[9] = size & 0xFF;
2536                         break;
2537
2538                 case CCISS_READ_CAPACITY:
2539                         c->Request.CDBLen = 10;
2540                         c->Request.Type.Attribute = ATTR_SIMPLE;
2541                         c->Request.Type.Direction = XFER_READ;
2542                         c->Request.Timeout = 0;
2543                         c->Request.CDB[0] = cmd;
2544                         break;
2545                 case CCISS_READ_CAPACITY_16:
2546                         c->Request.CDBLen = 16;
2547                         c->Request.Type.Attribute = ATTR_SIMPLE;
2548                         c->Request.Type.Direction = XFER_READ;
2549                         c->Request.Timeout = 0;
2550                         c->Request.CDB[0] = cmd;
2551                         c->Request.CDB[1] = 0x10;
2552                         c->Request.CDB[10] = (size >> 24) & 0xFF;
2553                         c->Request.CDB[11] = (size >> 16) & 0xFF;
2554                         c->Request.CDB[12] = (size >> 8) & 0xFF;
2555                         c->Request.CDB[13] = size & 0xFF;
2556                         c->Request.Timeout = 0;
2557                         c->Request.CDB[0] = cmd;
2558                         break;
2559                 case CCISS_CACHE_FLUSH:
2560                         c->Request.CDBLen = 12;
2561                         c->Request.Type.Attribute = ATTR_SIMPLE;
2562                         c->Request.Type.Direction = XFER_WRITE;
2563                         c->Request.Timeout = 0;
2564                         c->Request.CDB[0] = BMIC_WRITE;
2565                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2566                         break;
2567                 case TEST_UNIT_READY:
2568                         c->Request.CDBLen = 6;
2569                         c->Request.Type.Attribute = ATTR_SIMPLE;
2570                         c->Request.Type.Direction = XFER_NONE;
2571                         c->Request.Timeout = 0;
2572                         break;
2573                 default:
2574                         dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2575                         return IO_ERROR;
2576                 }
2577         } else if (cmd_type == TYPE_MSG) {
2578                 switch (cmd) {
2579                 case 0: /* ABORT message */
2580                         c->Request.CDBLen = 12;
2581                         c->Request.Type.Attribute = ATTR_SIMPLE;
2582                         c->Request.Type.Direction = XFER_WRITE;
2583                         c->Request.Timeout = 0;
2584                         c->Request.CDB[0] = cmd;        /* abort */
2585                         c->Request.CDB[1] = 0;  /* abort a command */
2586                         /* buff contains the tag of the command to abort */
2587                         memcpy(&c->Request.CDB[4], buff, 8);
2588                         break;
2589                 case 1: /* RESET message */
2590                         c->Request.CDBLen = 16;
2591                         c->Request.Type.Attribute = ATTR_SIMPLE;
2592                         c->Request.Type.Direction = XFER_NONE;
2593                         c->Request.Timeout = 0;
2594                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2595                         c->Request.CDB[0] = cmd;        /* reset */
2596                         c->Request.CDB[1] = 0x03;       /* reset a target */
2597                         break;
2598                 case 3: /* No-Op message */
2599                         c->Request.CDBLen = 1;
2600                         c->Request.Type.Attribute = ATTR_SIMPLE;
2601                         c->Request.Type.Direction = XFER_WRITE;
2602                         c->Request.Timeout = 0;
2603                         c->Request.CDB[0] = cmd;
2604                         break;
2605                 default:
2606                         dev_warn(&h->pdev->dev,
2607                                 "unknown message type %d\n", cmd);
2608                         return IO_ERROR;
2609                 }
2610         } else {
2611                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2612                 return IO_ERROR;
2613         }
2614         /* Fill in the scatter gather information */
2615         if (size > 0) {
2616                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2617                                                              buff, size,
2618                                                              PCI_DMA_BIDIRECTIONAL);
2619                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2620                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2621                 c->SG[0].Len = size;
2622                 c->SG[0].Ext = 0;       /* we are not chaining */
2623         }
2624         return status;
2625 }
2626
2627 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2628 {
2629         switch (c->err_info->ScsiStatus) {
2630         case SAM_STAT_GOOD:
2631                 return IO_OK;
2632         case SAM_STAT_CHECK_CONDITION:
2633                 switch (0xf & c->err_info->SenseInfo[2]) {
2634                 case 0: return IO_OK; /* no sense */
2635                 case 1: return IO_OK; /* recovered error */
2636                 default:
2637                         if (check_for_unit_attention(h, c))
2638                                 return IO_NEEDS_RETRY;
2639                         dev_warn(&h->pdev->dev, "cmd 0x%02x "
2640                                 "check condition, sense key = 0x%02x\n",
2641                                 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2642                 }
2643                 break;
2644         default:
2645                 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2646                         "scsi status = 0x%02x\n",
2647                         c->Request.CDB[0], c->err_info->ScsiStatus);
2648                 break;
2649         }
2650         return IO_ERROR;
2651 }
2652
2653 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2654 {
2655         int return_status = IO_OK;
2656
2657         if (c->err_info->CommandStatus == CMD_SUCCESS)
2658                 return IO_OK;
2659
2660         switch (c->err_info->CommandStatus) {
2661         case CMD_TARGET_STATUS:
2662                 return_status = check_target_status(h, c);
2663                 break;
2664         case CMD_DATA_UNDERRUN:
2665         case CMD_DATA_OVERRUN:
2666                 /* expected for inquiry and report lun commands */
2667                 break;
2668         case CMD_INVALID:
2669                 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2670                        "reported invalid\n", c->Request.CDB[0]);
2671                 return_status = IO_ERROR;
2672                 break;
2673         case CMD_PROTOCOL_ERR:
2674                 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2675                        "protocol error\n", c->Request.CDB[0]);
2676                 return_status = IO_ERROR;
2677                 break;
2678         case CMD_HARDWARE_ERR:
2679                 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2680                        " hardware error\n", c->Request.CDB[0]);
2681                 return_status = IO_ERROR;
2682                 break;
2683         case CMD_CONNECTION_LOST:
2684                 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2685                        "connection lost\n", c->Request.CDB[0]);
2686                 return_status = IO_ERROR;
2687                 break;
2688         case CMD_ABORTED:
2689                 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2690                        "aborted\n", c->Request.CDB[0]);
2691                 return_status = IO_ERROR;
2692                 break;
2693         case CMD_ABORT_FAILED:
2694                 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2695                        "abort failed\n", c->Request.CDB[0]);
2696                 return_status = IO_ERROR;
2697                 break;
2698         case CMD_UNSOLICITED_ABORT:
2699                 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2700                         c->Request.CDB[0]);
2701                 return_status = IO_NEEDS_RETRY;
2702                 break;
2703         default:
2704                 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2705                        "unknown status %x\n", c->Request.CDB[0],
2706                        c->err_info->CommandStatus);
2707                 return_status = IO_ERROR;
2708         }
2709         return return_status;
2710 }
2711
2712 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2713         int attempt_retry)
2714 {
2715         DECLARE_COMPLETION_ONSTACK(wait);
2716         u64bit buff_dma_handle;
2717         int return_status = IO_OK;
2718
2719 resend_cmd2:
2720         c->waiting = &wait;
2721         enqueue_cmd_and_start_io(h, c);
2722
2723         wait_for_completion(&wait);
2724
2725         if (c->err_info->CommandStatus == 0 || !attempt_retry)
2726                 goto command_done;
2727
2728         return_status = process_sendcmd_error(h, c);
2729
2730         if (return_status == IO_NEEDS_RETRY &&
2731                 c->retry_count < MAX_CMD_RETRIES) {
2732                 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2733                         c->Request.CDB[0]);
2734                 c->retry_count++;
2735                 /* erase the old error information */
2736                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2737                 return_status = IO_OK;
2738                 INIT_COMPLETION(wait);
2739                 goto resend_cmd2;
2740         }
2741
2742 command_done:
2743         /* unlock the buffers from DMA */
2744         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2745         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2746         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2747                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2748         return return_status;
2749 }
2750
2751 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2752                            __u8 page_code, unsigned char scsi3addr[],
2753                         int cmd_type)
2754 {
2755         CommandList_struct *c;
2756         int return_status;
2757
2758         c = cmd_special_alloc(h);
2759         if (!c)
2760                 return -ENOMEM;
2761         return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2762                 scsi3addr, cmd_type);
2763         if (return_status == IO_OK)
2764                 return_status = sendcmd_withirq_core(h, c, 1);
2765
2766         cmd_special_free(h, c);
2767         return return_status;
2768 }
2769
2770 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2771                                    sector_t total_size,
2772                                    unsigned int block_size,
2773                                    InquiryData_struct *inq_buff,
2774                                    drive_info_struct *drv)
2775 {
2776         int return_code;
2777         unsigned long t;
2778         unsigned char scsi3addr[8];
2779
2780         memset(inq_buff, 0, sizeof(InquiryData_struct));
2781         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2782         return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2783                         sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2784         if (return_code == IO_OK) {
2785                 if (inq_buff->data_byte[8] == 0xFF) {
2786                         dev_warn(&h->pdev->dev,
2787                                "reading geometry failed, volume "
2788                                "does not support reading geometry\n");
2789                         drv->heads = 255;
2790                         drv->sectors = 32;      /* Sectors per track */
2791                         drv->cylinders = total_size + 1;
2792                         drv->raid_level = RAID_UNKNOWN;
2793                 } else {
2794                         drv->heads = inq_buff->data_byte[6];
2795                         drv->sectors = inq_buff->data_byte[7];
2796                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2797                         drv->cylinders += inq_buff->data_byte[5];
2798                         drv->raid_level = inq_buff->data_byte[8];
2799                 }
2800                 drv->block_size = block_size;
2801                 drv->nr_blocks = total_size + 1;
2802                 t = drv->heads * drv->sectors;
2803                 if (t > 1) {
2804                         sector_t real_size = total_size + 1;
2805                         unsigned long rem = sector_div(real_size, t);
2806                         if (rem)
2807                                 real_size++;
2808                         drv->cylinders = real_size;
2809                 }
2810         } else {                /* Get geometry failed */
2811                 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2812         }
2813 }
2814
2815 static void
2816 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2817                     unsigned int *block_size)
2818 {
2819         ReadCapdata_struct *buf;
2820         int return_code;
2821         unsigned char scsi3addr[8];
2822
2823         buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2824         if (!buf) {
2825                 dev_warn(&h->pdev->dev, "out of memory\n");
2826                 return;
2827         }
2828
2829         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2830         return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2831                 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2832         if (return_code == IO_OK) {
2833                 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2834                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2835         } else {                /* read capacity command failed */
2836                 dev_warn(&h->pdev->dev, "read capacity failed\n");
2837                 *total_size = 0;
2838                 *block_size = BLOCK_SIZE;
2839         }
2840         kfree(buf);
2841 }
2842
2843 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2844         sector_t *total_size, unsigned int *block_size)
2845 {
2846         ReadCapdata_struct_16 *buf;
2847         int return_code;
2848         unsigned char scsi3addr[8];
2849
2850         buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2851         if (!buf) {
2852                 dev_warn(&h->pdev->dev, "out of memory\n");
2853                 return;
2854         }
2855
2856         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2857         return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2858                 buf, sizeof(ReadCapdata_struct_16),
2859                         0, scsi3addr, TYPE_CMD);
2860         if (return_code == IO_OK) {
2861                 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2862                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2863         } else {                /* read capacity command failed */
2864                 dev_warn(&h->pdev->dev, "read capacity failed\n");
2865                 *total_size = 0;
2866                 *block_size = BLOCK_SIZE;
2867         }
2868         dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2869                (unsigned long long)*total_size+1, *block_size);
2870         kfree(buf);
2871 }
2872
2873 static int cciss_revalidate(struct gendisk *disk)
2874 {
2875         ctlr_info_t *h = get_host(disk);
2876         drive_info_struct *drv = get_drv(disk);
2877         int logvol;
2878         int FOUND = 0;
2879         unsigned int block_size;
2880         sector_t total_size;
2881         InquiryData_struct *inq_buff = NULL;
2882
2883         for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2884                 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2885                         sizeof(drv->LunID)) == 0) {
2886                         FOUND = 1;
2887                         break;
2888                 }
2889         }
2890
2891         if (!FOUND)
2892                 return 1;
2893
2894         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2895         if (inq_buff == NULL) {
2896                 dev_warn(&h->pdev->dev, "out of memory\n");
2897                 return 1;
2898         }
2899         if (h->cciss_read == CCISS_READ_10) {
2900                 cciss_read_capacity(h, logvol,
2901                                         &total_size, &block_size);
2902         } else {
2903                 cciss_read_capacity_16(h, logvol,
2904                                         &total_size, &block_size);
2905         }
2906         cciss_geometry_inquiry(h, logvol, total_size, block_size,
2907                                inq_buff, drv);
2908
2909         blk_queue_logical_block_size(drv->queue, drv->block_size);
2910         set_capacity(disk, drv->nr_blocks);
2911
2912         kfree(inq_buff);
2913         return 0;
2914 }
2915
2916 /*
2917  * Map (physical) PCI mem into (virtual) kernel space
2918  */
2919 static void __iomem *remap_pci_mem(ulong base, ulong size)
2920 {
2921         ulong page_base = ((ulong) base) & PAGE_MASK;
2922         ulong page_offs = ((ulong) base) - page_base;
2923         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2924
2925         return page_remapped ? (page_remapped + page_offs) : NULL;
2926 }
2927
2928 /*
2929  * Takes jobs of the Q and sends them to the hardware, then puts it on
2930  * the Q to wait for completion.
2931  */
2932 static void start_io(ctlr_info_t *h)
2933 {
2934         CommandList_struct *c;
2935
2936         while (!list_empty(&h->reqQ)) {
2937                 c = list_entry(h->reqQ.next, CommandList_struct, list);
2938                 /* can't do anything if fifo is full */
2939                 if ((h->access.fifo_full(h))) {
2940                         dev_warn(&h->pdev->dev, "fifo full\n");
2941                         break;
2942                 }
2943
2944                 /* Get the first entry from the Request Q */
2945                 removeQ(c);
2946                 h->Qdepth--;
2947
2948                 /* Tell the controller execute command */
2949                 h->access.submit_command(h, c);
2950
2951                 /* Put job onto the completed Q */
2952                 addQ(&h->cmpQ, c);
2953         }
2954 }
2955
2956 /* Assumes that h->lock is held. */
2957 /* Zeros out the error record and then resends the command back */
2958 /* to the controller */
2959 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2960 {
2961         /* erase the old error information */
2962         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2963
2964         /* add it to software queue and then send it to the controller */
2965         addQ(&h->reqQ, c);
2966         h->Qdepth++;
2967         if (h->Qdepth > h->maxQsinceinit)
2968                 h->maxQsinceinit = h->Qdepth;
2969
2970         start_io(h);
2971 }
2972
2973 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2974         unsigned int msg_byte, unsigned int host_byte,
2975         unsigned int driver_byte)
2976 {
2977         /* inverse of macros in scsi.h */
2978         return (scsi_status_byte & 0xff) |
2979                 ((msg_byte & 0xff) << 8) |
2980                 ((host_byte & 0xff) << 16) |
2981                 ((driver_byte & 0xff) << 24);
2982 }
2983
2984 static inline int evaluate_target_status(ctlr_info_t *h,
2985                         CommandList_struct *cmd, int *retry_cmd)
2986 {
2987         unsigned char sense_key;
2988         unsigned char status_byte, msg_byte, host_byte, driver_byte;
2989         int error_value;
2990
2991         *retry_cmd = 0;
2992         /* If we get in here, it means we got "target status", that is, scsi status */
2993         status_byte = cmd->err_info->ScsiStatus;
2994         driver_byte = DRIVER_OK;
2995         msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
2996
2997         if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
2998                 host_byte = DID_PASSTHROUGH;
2999         else
3000                 host_byte = DID_OK;
3001
3002         error_value = make_status_bytes(status_byte, msg_byte,
3003                 host_byte, driver_byte);
3004
3005         if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3006                 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3007                         dev_warn(&h->pdev->dev, "cmd %p "
3008                                "has SCSI Status 0x%x\n",
3009                                cmd, cmd->err_info->ScsiStatus);
3010                 return error_value;
3011         }
3012
3013         /* check the sense key */
3014         sense_key = 0xf & cmd->err_info->SenseInfo[2];
3015         /* no status or recovered error */
3016         if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3017             (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3018                 error_value = 0;
3019
3020         if (check_for_unit_attention(h, cmd)) {
3021                 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3022                 return 0;
3023         }
3024
3025         /* Not SG_IO or similar? */
3026         if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3027                 if (error_value != 0)
3028                         dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3029                                " sense key = 0x%x\n", cmd, sense_key);
3030                 return error_value;
3031         }
3032
3033         /* SG_IO or similar, copy sense data back */
3034         if (cmd->rq->sense) {
3035                 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3036                         cmd->rq->sense_len = cmd->err_info->SenseLen;
3037                 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3038                         cmd->rq->sense_len);
3039         } else
3040                 cmd->rq->sense_len = 0;
3041
3042         return error_value;
3043 }
3044
3045 /* checks the status of the job and calls complete buffers to mark all
3046  * buffers for the completed job. Note that this function does not need
3047  * to hold the hba/queue lock.
3048  */
3049 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3050                                     int timeout)
3051 {
3052         int retry_cmd = 0;
3053         struct request *rq = cmd->rq;
3054
3055         rq->errors = 0;
3056
3057         if (timeout)
3058                 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3059
3060         if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
3061                 goto after_error_processing;
3062
3063         switch (cmd->err_info->CommandStatus) {
3064         case CMD_TARGET_STATUS:
3065                 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3066                 break;
3067         case CMD_DATA_UNDERRUN:
3068                 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3069                         dev_warn(&h->pdev->dev, "cmd %p has"
3070                                " completed with data underrun "
3071                                "reported\n", cmd);
3072                         cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3073                 }
3074                 break;
3075         case CMD_DATA_OVERRUN:
3076                 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3077                         dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3078                                " completed with data overrun "
3079                                "reported\n", cmd);
3080                 break;
3081         case CMD_INVALID:
3082                 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3083                        "reported invalid\n", cmd);
3084                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3085                         cmd->err_info->CommandStatus, DRIVER_OK,
3086                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3087                                 DID_PASSTHROUGH : DID_ERROR);
3088                 break;
3089         case CMD_PROTOCOL_ERR:
3090                 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3091                        "protocol error\n", cmd);
3092                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3093                         cmd->err_info->CommandStatus, DRIVER_OK,
3094                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3095                                 DID_PASSTHROUGH : DID_ERROR);
3096                 break;
3097         case CMD_HARDWARE_ERR:
3098                 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3099                        " hardware error\n", cmd);
3100                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3101                         cmd->err_info->CommandStatus, DRIVER_OK,
3102                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3103                                 DID_PASSTHROUGH : DID_ERROR);
3104                 break;
3105         case CMD_CONNECTION_LOST:
3106                 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3107                        "connection lost\n", cmd);
3108                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3109                         cmd->err_info->CommandStatus, DRIVER_OK,
3110                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3111                                 DID_PASSTHROUGH : DID_ERROR);
3112                 break;
3113         case CMD_ABORTED:
3114                 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3115                        "aborted\n", cmd);
3116                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3117                         cmd->err_info->CommandStatus, DRIVER_OK,
3118                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3119                                 DID_PASSTHROUGH : DID_ABORT);
3120                 break;
3121         case CMD_ABORT_FAILED:
3122                 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3123                        "abort failed\n", cmd);
3124                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3125                         cmd->err_info->CommandStatus, DRIVER_OK,
3126                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3127                                 DID_PASSTHROUGH : DID_ERROR);
3128                 break;
3129         case CMD_UNSOLICITED_ABORT:
3130                 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3131                        "abort %p\n", h->ctlr, cmd);
3132                 if (cmd->retry_count < MAX_CMD_RETRIES) {
3133                         retry_cmd = 1;
3134                         dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3135                         cmd->retry_count++;
3136                 } else
3137                         dev_warn(&h->pdev->dev,
3138                                 "%p retried too many times\n", cmd);
3139                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3140                         cmd->err_info->CommandStatus, DRIVER_OK,
3141                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3142                                 DID_PASSTHROUGH : DID_ABORT);
3143                 break;
3144         case CMD_TIMEOUT:
3145                 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3146                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3147                         cmd->err_info->CommandStatus, DRIVER_OK,
3148                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3149                                 DID_PASSTHROUGH : DID_ERROR);
3150                 break;
3151         default:
3152                 dev_warn(&h->pdev->dev, "cmd %p returned "
3153                        "unknown status %x\n", cmd,
3154                        cmd->err_info->CommandStatus);
3155                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3156                         cmd->err_info->CommandStatus, DRIVER_OK,
3157                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3158                                 DID_PASSTHROUGH : DID_ERROR);
3159         }
3160
3161 after_error_processing:
3162
3163         /* We need to return this command */
3164         if (retry_cmd) {
3165                 resend_cciss_cmd(h, cmd);
3166                 return;
3167         }
3168         cmd->rq->completion_data = cmd;
3169         blk_complete_request(cmd->rq);
3170 }
3171
3172 static inline u32 cciss_tag_contains_index(u32 tag)
3173 {
3174 #define DIRECT_LOOKUP_BIT 0x10
3175         return tag & DIRECT_LOOKUP_BIT;
3176 }
3177
3178 static inline u32 cciss_tag_to_index(u32 tag)
3179 {
3180 #define DIRECT_LOOKUP_SHIFT 5
3181         return tag >> DIRECT_LOOKUP_SHIFT;
3182 }
3183
3184 static inline u32 cciss_tag_discard_error_bits(u32 tag)
3185 {
3186 #define CCISS_ERROR_BITS 0x03
3187         return tag & ~CCISS_ERROR_BITS;
3188 }
3189
3190 static inline void cciss_mark_tag_indexed(u32 *tag)
3191 {
3192         *tag |= DIRECT_LOOKUP_BIT;
3193 }
3194
3195 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3196 {
3197         *tag |= (index << DIRECT_LOOKUP_SHIFT);
3198 }
3199
3200 /*