2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <linux/bitmap.h>
46 #include <asm/uaccess.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/blkdev.h>
50 #include <linux/genhd.h>
51 #include <linux/completion.h>
52 #include <scsi/scsi.h>
54 #include <scsi/scsi_ioctl.h>
55 #include <linux/cdrom.h>
56 #include <linux/scatterlist.h>
57 #include <linux/kthread.h>
59 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
60 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
61 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
63 /* Embedded module documentation macros - see modules.h */
64 MODULE_AUTHOR("Hewlett-Packard Company");
65 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
66 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
67 MODULE_VERSION("3.6.26");
68 MODULE_LICENSE("GPL");
69 static int cciss_tape_cmds = 6;
70 module_param(cciss_tape_cmds, int, 0644);
71 MODULE_PARM_DESC(cciss_tape_cmds,
72 "number of commands to allocate for tape devices (default: 6)");
73 static int cciss_simple_mode;
74 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(cciss_simple_mode,
76 "Use 'simple mode' rather than 'performant mode'");
78 static DEFINE_MUTEX(cciss_mutex);
79 static struct proc_dir_entry *proc_cciss;
81 #include "cciss_cmd.h"
83 #include <linux/cciss_ioctl.h>
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id cciss_pci_device_id[] = {
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
90 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
91 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
92 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
93 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
94 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
95 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
110 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
112 /* board_id = Subsystem Device ID & Vendor ID
113 * product = Marketing Name for the board
114 * access = Address of the struct of function pointers
116 static struct board_type products[] = {
117 {0x40700E11, "Smart Array 5300", &SA5_access},
118 {0x40800E11, "Smart Array 5i", &SA5B_access},
119 {0x40820E11, "Smart Array 532", &SA5B_access},
120 {0x40830E11, "Smart Array 5312", &SA5B_access},
121 {0x409A0E11, "Smart Array 641", &SA5_access},
122 {0x409B0E11, "Smart Array 642", &SA5_access},
123 {0x409C0E11, "Smart Array 6400", &SA5_access},
124 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
125 {0x40910E11, "Smart Array 6i", &SA5_access},
126 {0x3225103C, "Smart Array P600", &SA5_access},
127 {0x3223103C, "Smart Array P800", &SA5_access},
128 {0x3234103C, "Smart Array P400", &SA5_access},
129 {0x3235103C, "Smart Array P400i", &SA5_access},
130 {0x3211103C, "Smart Array E200i", &SA5_access},
131 {0x3212103C, "Smart Array E200", &SA5_access},
132 {0x3213103C, "Smart Array E200i", &SA5_access},
133 {0x3214103C, "Smart Array E200i", &SA5_access},
134 {0x3215103C, "Smart Array E200i", &SA5_access},
135 {0x3237103C, "Smart Array E500", &SA5_access},
136 {0x3223103C, "Smart Array P800", &SA5_access},
137 {0x3234103C, "Smart Array P400", &SA5_access},
138 {0x323D103C, "Smart Array P700m", &SA5_access},
141 /* How long to wait (in milliseconds) for board to go into simple mode */
142 #define MAX_CONFIG_WAIT 30000
143 #define MAX_IOCTL_CONFIG_WAIT 1000
145 /*define how many times we will try a command because of bus resets */
146 #define MAX_CMD_RETRIES 3
150 /* Originally cciss driver only supports 8 major numbers */
151 #define MAX_CTLR_ORIG 8
153 static ctlr_info_t *hba[MAX_CTLR];
155 static struct task_struct *cciss_scan_thread;
156 static DEFINE_MUTEX(scan_mutex);
157 static LIST_HEAD(scan_q);
159 static void do_cciss_request(struct request_queue *q);
160 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
161 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
162 static int cciss_open(struct block_device *bdev, fmode_t mode);
163 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
164 static int cciss_release(struct gendisk *disk, fmode_t mode);
165 static int do_ioctl(struct block_device *bdev, fmode_t mode,
166 unsigned int cmd, unsigned long arg);
167 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
168 unsigned int cmd, unsigned long arg);
169 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
171 static int cciss_revalidate(struct gendisk *disk);
172 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
173 static int deregister_disk(ctlr_info_t *h, int drv_index,
174 int clear_all, int via_ioctl);
176 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
177 sector_t *total_size, unsigned int *block_size);
178 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
179 sector_t *total_size, unsigned int *block_size);
180 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
182 unsigned int block_size, InquiryData_struct *inq_buff,
183 drive_info_struct *drv);
184 static void cciss_interrupt_mode(ctlr_info_t *);
185 static int cciss_enter_simple_mode(struct ctlr_info *h);
186 static void start_io(ctlr_info_t *h);
187 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
188 __u8 page_code, unsigned char scsi3addr[],
190 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
192 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
194 static int add_to_scan_list(struct ctlr_info *h);
195 static int scan_thread(void *data);
196 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
197 static void cciss_hba_release(struct device *dev);
198 static void cciss_device_release(struct device *dev);
199 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
200 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
201 static inline u32 next_command(ctlr_info_t *h);
202 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
203 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
205 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
206 unsigned long *memory_bar);
207 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
208 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
210 /* performant mode helper functions */
211 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
213 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
215 #ifdef CONFIG_PROC_FS
216 static void cciss_procinit(ctlr_info_t *h);
218 static void cciss_procinit(ctlr_info_t *h)
221 #endif /* CONFIG_PROC_FS */
224 static int cciss_compat_ioctl(struct block_device *, fmode_t,
225 unsigned, unsigned long);
228 static const struct block_device_operations cciss_fops = {
229 .owner = THIS_MODULE,
230 .open = cciss_unlocked_open,
231 .release = cciss_release,
233 .getgeo = cciss_getgeo,
235 .compat_ioctl = cciss_compat_ioctl,
237 .revalidate_disk = cciss_revalidate,
240 /* set_performant_mode: Modify the tag for cciss performant
241 * set bit 0 for pull model, bits 3-1 for block fetch
244 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
246 if (likely(h->transMethod & CFGTBL_Trans_Performant))
247 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
251 * Enqueuing and dequeuing functions for cmdlists.
253 static inline void addQ(struct list_head *list, CommandList_struct *c)
255 list_add_tail(&c->list, list);
258 static inline void removeQ(CommandList_struct *c)
261 * After kexec/dump some commands might still
262 * be in flight, which the firmware will try
263 * to complete. Resetting the firmware doesn't work
264 * with old fw revisions, so we have to mark
265 * them off as 'stale' to prevent the driver from
268 if (WARN_ON(list_empty(&c->list))) {
269 c->cmd_type = CMD_MSG_STALE;
273 list_del_init(&c->list);
276 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
277 CommandList_struct *c)
280 set_performant_mode(h, c);
281 spin_lock_irqsave(&h->lock, flags);
284 if (h->Qdepth > h->maxQsinceinit)
285 h->maxQsinceinit = h->Qdepth;
287 spin_unlock_irqrestore(&h->lock, flags);
290 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
297 for (i = 0; i < nr_cmds; i++) {
298 kfree(cmd_sg_list[i]);
299 cmd_sg_list[i] = NULL;
304 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
305 ctlr_info_t *h, int chainsize, int nr_cmds)
308 SGDescriptor_struct **cmd_sg_list;
313 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
317 /* Build up chain blocks for each command */
318 for (j = 0; j < nr_cmds; j++) {
319 /* Need a block of chainsized s/g elements. */
320 cmd_sg_list[j] = kmalloc((chainsize *
321 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
322 if (!cmd_sg_list[j]) {
323 dev_err(&h->pdev->dev, "Cannot get memory "
324 "for s/g chains.\n");
330 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
334 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
336 SGDescriptor_struct *chain_sg;
339 if (c->Header.SGTotal <= h->max_cmd_sgentries)
342 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
343 temp64.val32.lower = chain_sg->Addr.lower;
344 temp64.val32.upper = chain_sg->Addr.upper;
345 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
348 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
349 SGDescriptor_struct *chain_block, int len)
351 SGDescriptor_struct *chain_sg;
354 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
355 chain_sg->Ext = CCISS_SG_CHAIN;
357 temp64.val = pci_map_single(h->pdev, chain_block, len,
359 chain_sg->Addr.lower = temp64.val32.lower;
360 chain_sg->Addr.upper = temp64.val32.upper;
363 #include "cciss_scsi.c" /* For SCSI tape support */
365 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
368 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
370 #ifdef CONFIG_PROC_FS
373 * Report information about this controller.
375 #define ENG_GIG 1000000000
376 #define ENG_GIG_FACTOR (ENG_GIG/512)
377 #define ENGAGE_SCSI "engage scsi"
379 static void cciss_seq_show_header(struct seq_file *seq)
381 ctlr_info_t *h = seq->private;
383 seq_printf(seq, "%s: HP %s Controller\n"
384 "Board ID: 0x%08lx\n"
385 "Firmware Version: %c%c%c%c\n"
387 "Logical drives: %d\n"
388 "Current Q depth: %d\n"
389 "Current # commands on controller: %d\n"
390 "Max Q depth since init: %d\n"
391 "Max # commands on controller since init: %d\n"
392 "Max SG entries since init: %d\n",
395 (unsigned long)h->board_id,
396 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
397 h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
399 h->Qdepth, h->commands_outstanding,
400 h->maxQsinceinit, h->max_outstanding, h->maxSG);
402 #ifdef CONFIG_CISS_SCSI_TAPE
403 cciss_seq_tape_report(seq, h);
404 #endif /* CONFIG_CISS_SCSI_TAPE */
407 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
409 ctlr_info_t *h = seq->private;
412 /* prevent displaying bogus info during configuration
413 * or deconfiguration of a logical volume
415 spin_lock_irqsave(&h->lock, flags);
416 if (h->busy_configuring) {
417 spin_unlock_irqrestore(&h->lock, flags);
418 return ERR_PTR(-EBUSY);
420 h->busy_configuring = 1;
421 spin_unlock_irqrestore(&h->lock, flags);
424 cciss_seq_show_header(seq);
429 static int cciss_seq_show(struct seq_file *seq, void *v)
431 sector_t vol_sz, vol_sz_frac;
432 ctlr_info_t *h = seq->private;
433 unsigned ctlr = h->ctlr;
435 drive_info_struct *drv = h->drv[*pos];
437 if (*pos > h->highest_lun)
440 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
446 vol_sz = drv->nr_blocks;
447 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
449 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
451 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
452 drv->raid_level = RAID_UNKNOWN;
453 seq_printf(seq, "cciss/c%dd%d:"
454 "\t%4u.%02uGB\tRAID %s\n",
455 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
456 raid_label[drv->raid_level]);
460 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
462 ctlr_info_t *h = seq->private;
464 if (*pos > h->highest_lun)
471 static void cciss_seq_stop(struct seq_file *seq, void *v)
473 ctlr_info_t *h = seq->private;
475 /* Only reset h->busy_configuring if we succeeded in setting
476 * it during cciss_seq_start. */
477 if (v == ERR_PTR(-EBUSY))
480 h->busy_configuring = 0;
483 static const struct seq_operations cciss_seq_ops = {
484 .start = cciss_seq_start,
485 .show = cciss_seq_show,
486 .next = cciss_seq_next,
487 .stop = cciss_seq_stop,
490 static int cciss_seq_open(struct inode *inode, struct file *file)
492 int ret = seq_open(file, &cciss_seq_ops);
493 struct seq_file *seq = file->private_data;
496 seq->private = PDE(inode)->data;
502 cciss_proc_write(struct file *file, const char __user *buf,
503 size_t length, loff_t *ppos)
508 #ifndef CONFIG_CISS_SCSI_TAPE
512 if (!buf || length > PAGE_SIZE - 1)
515 buffer = (char *)__get_free_page(GFP_KERNEL);
520 if (copy_from_user(buffer, buf, length))
522 buffer[length] = '\0';
524 #ifdef CONFIG_CISS_SCSI_TAPE
525 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
526 struct seq_file *seq = file->private_data;
527 ctlr_info_t *h = seq->private;
529 err = cciss_engage_scsi(h);
533 #endif /* CONFIG_CISS_SCSI_TAPE */
535 /* might be nice to have "disengage" too, but it's not
536 safely possible. (only 1 module use count, lock issues.) */
539 free_page((unsigned long)buffer);
543 static const struct file_operations cciss_proc_fops = {
544 .owner = THIS_MODULE,
545 .open = cciss_seq_open,
548 .release = seq_release,
549 .write = cciss_proc_write,
552 static void cciss_procinit(ctlr_info_t *h)
554 struct proc_dir_entry *pde;
556 if (proc_cciss == NULL)
557 proc_cciss = proc_mkdir("driver/cciss", NULL);
560 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
562 &cciss_proc_fops, h);
564 #endif /* CONFIG_PROC_FS */
566 #define MAX_PRODUCT_NAME_LEN 19
568 #define to_hba(n) container_of(n, struct ctlr_info, dev)
569 #define to_drv(n) container_of(n, drive_info_struct, dev)
571 /* List of controllers which cannot be hard reset on kexec with reset_devices */
572 static u32 unresettable_controller[] = {
573 0x324a103C, /* Smart Array P712m */
574 0x324b103C, /* SmartArray P711m */
575 0x3223103C, /* Smart Array P800 */
576 0x3234103C, /* Smart Array P400 */
577 0x3235103C, /* Smart Array P400i */
578 0x3211103C, /* Smart Array E200i */
579 0x3212103C, /* Smart Array E200 */
580 0x3213103C, /* Smart Array E200i */
581 0x3214103C, /* Smart Array E200i */
582 0x3215103C, /* Smart Array E200i */
583 0x3237103C, /* Smart Array E500 */
584 0x323D103C, /* Smart Array P700m */
585 0x409C0E11, /* Smart Array 6400 */
586 0x409D0E11, /* Smart Array 6400 EM */
589 /* List of controllers which cannot even be soft reset */
590 static u32 soft_unresettable_controller[] = {
591 0x409C0E11, /* Smart Array 6400 */
592 0x409D0E11, /* Smart Array 6400 EM */
595 static int ctlr_is_hard_resettable(u32 board_id)
599 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
600 if (unresettable_controller[i] == board_id)
605 static int ctlr_is_soft_resettable(u32 board_id)
609 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
610 if (soft_unresettable_controller[i] == board_id)
615 static int ctlr_is_resettable(u32 board_id)
617 return ctlr_is_hard_resettable(board_id) ||
618 ctlr_is_soft_resettable(board_id);
621 static ssize_t host_show_resettable(struct device *dev,
622 struct device_attribute *attr,
625 struct ctlr_info *h = to_hba(dev);
627 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
629 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
631 static ssize_t host_store_rescan(struct device *dev,
632 struct device_attribute *attr,
633 const char *buf, size_t count)
635 struct ctlr_info *h = to_hba(dev);
638 wake_up_process(cciss_scan_thread);
639 wait_for_completion_interruptible(&h->scan_wait);
643 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
645 static ssize_t host_show_transport_mode(struct device *dev,
646 struct device_attribute *attr,
649 struct ctlr_info *h = to_hba(dev);
651 return snprintf(buf, 20, "%s\n",
652 h->transMethod & CFGTBL_Trans_Performant ?
653 "performant" : "simple");
655 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
657 static ssize_t dev_show_unique_id(struct device *dev,
658 struct device_attribute *attr,
661 drive_info_struct *drv = to_drv(dev);
662 struct ctlr_info *h = to_hba(drv->dev.parent);
667 spin_lock_irqsave(&h->lock, flags);
668 if (h->busy_configuring)
671 memcpy(sn, drv->serial_no, sizeof(sn));
672 spin_unlock_irqrestore(&h->lock, flags);
677 return snprintf(buf, 16 * 2 + 2,
678 "%02X%02X%02X%02X%02X%02X%02X%02X"
679 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
680 sn[0], sn[1], sn[2], sn[3],
681 sn[4], sn[5], sn[6], sn[7],
682 sn[8], sn[9], sn[10], sn[11],
683 sn[12], sn[13], sn[14], sn[15]);
685 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
687 static ssize_t dev_show_vendor(struct device *dev,
688 struct device_attribute *attr,
691 drive_info_struct *drv = to_drv(dev);
692 struct ctlr_info *h = to_hba(drv->dev.parent);
693 char vendor[VENDOR_LEN + 1];
697 spin_lock_irqsave(&h->lock, flags);
698 if (h->busy_configuring)
701 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
702 spin_unlock_irqrestore(&h->lock, flags);
707 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
709 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
711 static ssize_t dev_show_model(struct device *dev,
712 struct device_attribute *attr,
715 drive_info_struct *drv = to_drv(dev);
716 struct ctlr_info *h = to_hba(drv->dev.parent);
717 char model[MODEL_LEN + 1];
721 spin_lock_irqsave(&h->lock, flags);
722 if (h->busy_configuring)
725 memcpy(model, drv->model, MODEL_LEN + 1);
726 spin_unlock_irqrestore(&h->lock, flags);
731 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
733 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
735 static ssize_t dev_show_rev(struct device *dev,
736 struct device_attribute *attr,
739 drive_info_struct *drv = to_drv(dev);
740 struct ctlr_info *h = to_hba(drv->dev.parent);
741 char rev[REV_LEN + 1];
745 spin_lock_irqsave(&h->lock, flags);
746 if (h->busy_configuring)
749 memcpy(rev, drv->rev, REV_LEN + 1);
750 spin_unlock_irqrestore(&h->lock, flags);
755 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
757 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
759 static ssize_t cciss_show_lunid(struct device *dev,
760 struct device_attribute *attr, char *buf)
762 drive_info_struct *drv = to_drv(dev);
763 struct ctlr_info *h = to_hba(drv->dev.parent);
765 unsigned char lunid[8];
767 spin_lock_irqsave(&h->lock, flags);
768 if (h->busy_configuring) {
769 spin_unlock_irqrestore(&h->lock, flags);
773 spin_unlock_irqrestore(&h->lock, flags);
776 memcpy(lunid, drv->LunID, sizeof(lunid));
777 spin_unlock_irqrestore(&h->lock, flags);
778 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
779 lunid[0], lunid[1], lunid[2], lunid[3],
780 lunid[4], lunid[5], lunid[6], lunid[7]);
782 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
784 static ssize_t cciss_show_raid_level(struct device *dev,
785 struct device_attribute *attr, char *buf)
787 drive_info_struct *drv = to_drv(dev);
788 struct ctlr_info *h = to_hba(drv->dev.parent);
792 spin_lock_irqsave(&h->lock, flags);
793 if (h->busy_configuring) {
794 spin_unlock_irqrestore(&h->lock, flags);
797 raid = drv->raid_level;
798 spin_unlock_irqrestore(&h->lock, flags);
799 if (raid < 0 || raid > RAID_UNKNOWN)
802 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
805 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
807 static ssize_t cciss_show_usage_count(struct device *dev,
808 struct device_attribute *attr, char *buf)
810 drive_info_struct *drv = to_drv(dev);
811 struct ctlr_info *h = to_hba(drv->dev.parent);
815 spin_lock_irqsave(&h->lock, flags);
816 if (h->busy_configuring) {
817 spin_unlock_irqrestore(&h->lock, flags);
820 count = drv->usage_count;
821 spin_unlock_irqrestore(&h->lock, flags);
822 return snprintf(buf, 20, "%d\n", count);
824 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
826 static struct attribute *cciss_host_attrs[] = {
827 &dev_attr_rescan.attr,
828 &dev_attr_resettable.attr,
829 &dev_attr_transport_mode.attr,
833 static struct attribute_group cciss_host_attr_group = {
834 .attrs = cciss_host_attrs,
837 static const struct attribute_group *cciss_host_attr_groups[] = {
838 &cciss_host_attr_group,
842 static struct device_type cciss_host_type = {
843 .name = "cciss_host",
844 .groups = cciss_host_attr_groups,
845 .release = cciss_hba_release,
848 static struct attribute *cciss_dev_attrs[] = {
849 &dev_attr_unique_id.attr,
850 &dev_attr_model.attr,
851 &dev_attr_vendor.attr,
853 &dev_attr_lunid.attr,
854 &dev_attr_raid_level.attr,
855 &dev_attr_usage_count.attr,
859 static struct attribute_group cciss_dev_attr_group = {
860 .attrs = cciss_dev_attrs,
863 static const struct attribute_group *cciss_dev_attr_groups[] = {
864 &cciss_dev_attr_group,
868 static struct device_type cciss_dev_type = {
869 .name = "cciss_device",
870 .groups = cciss_dev_attr_groups,
871 .release = cciss_device_release,
874 static struct bus_type cciss_bus_type = {
879 * cciss_hba_release is called when the reference count
880 * of h->dev goes to zero.
882 static void cciss_hba_release(struct device *dev)
885 * nothing to do, but need this to avoid a warning
886 * about not having a release handler from lib/kref.c.
891 * Initialize sysfs entry for each controller. This sets up and registers
892 * the 'cciss#' directory for each individual controller under
893 * /sys/bus/pci/devices/<dev>/.
895 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
897 device_initialize(&h->dev);
898 h->dev.type = &cciss_host_type;
899 h->dev.bus = &cciss_bus_type;
900 dev_set_name(&h->dev, "%s", h->devname);
901 h->dev.parent = &h->pdev->dev;
903 return device_add(&h->dev);
907 * Remove sysfs entries for an hba.
909 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
912 put_device(&h->dev); /* final put. */
915 /* cciss_device_release is called when the reference count
916 * of h->drv[x]dev goes to zero.
918 static void cciss_device_release(struct device *dev)
920 drive_info_struct *drv = to_drv(dev);
925 * Initialize sysfs for each logical drive. This sets up and registers
926 * the 'c#d#' directory for each individual logical drive under
927 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
928 * /sys/block/cciss!c#d# to this entry.
930 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
935 if (h->drv[drv_index]->device_initialized)
938 dev = &h->drv[drv_index]->dev;
939 device_initialize(dev);
940 dev->type = &cciss_dev_type;
941 dev->bus = &cciss_bus_type;
942 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
943 dev->parent = &h->dev;
944 h->drv[drv_index]->device_initialized = 1;
945 return device_add(dev);
949 * Remove sysfs entries for a logical drive.
951 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
954 struct device *dev = &h->drv[drv_index]->dev;
956 /* special case for c*d0, we only destroy it on controller exit */
957 if (drv_index == 0 && !ctlr_exiting)
961 put_device(dev); /* the "final" put. */
962 h->drv[drv_index] = NULL;
966 * For operations that cannot sleep, a command block is allocated at init,
967 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
968 * which ones are free or in use.
970 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
972 CommandList_struct *c;
975 dma_addr_t cmd_dma_handle, err_dma_handle;
978 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
981 } while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
983 memset(c, 0, sizeof(CommandList_struct));
984 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
985 c->err_info = h->errinfo_pool + i;
986 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
987 err_dma_handle = h->errinfo_pool_dhandle
988 + i * sizeof(ErrorInfo_struct);
993 INIT_LIST_HEAD(&c->list);
994 c->busaddr = (__u32) cmd_dma_handle;
995 temp64.val = (__u64) err_dma_handle;
996 c->ErrDesc.Addr.lower = temp64.val32.lower;
997 c->ErrDesc.Addr.upper = temp64.val32.upper;
998 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1004 /* allocate a command using pci_alloc_consistent, used for ioctls,
1005 * etc., not for the main i/o path.
1007 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1009 CommandList_struct *c;
1011 dma_addr_t cmd_dma_handle, err_dma_handle;
1013 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1014 sizeof(CommandList_struct), &cmd_dma_handle);
1017 memset(c, 0, sizeof(CommandList_struct));
1021 c->err_info = (ErrorInfo_struct *)
1022 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1025 if (c->err_info == NULL) {
1026 pci_free_consistent(h->pdev,
1027 sizeof(CommandList_struct), c, cmd_dma_handle);
1030 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1032 INIT_LIST_HEAD(&c->list);
1033 c->busaddr = (__u32) cmd_dma_handle;
1034 temp64.val = (__u64) err_dma_handle;
1035 c->ErrDesc.Addr.lower = temp64.val32.lower;
1036 c->ErrDesc.Addr.upper = temp64.val32.upper;
1037 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1043 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1047 i = c - h->cmd_pool;
1048 clear_bit(i, h->cmd_pool_bits);
1052 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1056 temp64.val32.lower = c->ErrDesc.Addr.lower;
1057 temp64.val32.upper = c->ErrDesc.Addr.upper;
1058 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1059 c->err_info, (dma_addr_t) temp64.val);
1060 pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1061 (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1064 static inline ctlr_info_t *get_host(struct gendisk *disk)
1066 return disk->queue->queuedata;
1069 static inline drive_info_struct *get_drv(struct gendisk *disk)
1071 return disk->private_data;
1075 * Open. Make sure the device is really there.
1077 static int cciss_open(struct block_device *bdev, fmode_t mode)
1079 ctlr_info_t *h = get_host(bdev->bd_disk);
1080 drive_info_struct *drv = get_drv(bdev->bd_disk);
1082 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1083 if (drv->busy_configuring)
1086 * Root is allowed to open raw volume zero even if it's not configured
1087 * so array config can still work. Root is also allowed to open any
1088 * volume that has a LUN ID, so it can issue IOCTL to reread the
1089 * disk information. I don't think I really like this
1090 * but I'm already using way to many device nodes to claim another one
1091 * for "raw controller".
1093 if (drv->heads == 0) {
1094 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1095 /* if not node 0 make sure it is a partition = 0 */
1096 if (MINOR(bdev->bd_dev) & 0x0f) {
1098 /* if it is, make sure we have a LUN ID */
1099 } else if (memcmp(drv->LunID, CTLR_LUNID,
1100 sizeof(drv->LunID))) {
1104 if (!capable(CAP_SYS_ADMIN))
1112 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1116 mutex_lock(&cciss_mutex);
1117 ret = cciss_open(bdev, mode);
1118 mutex_unlock(&cciss_mutex);
1124 * Close. Sync first.
1126 static int cciss_release(struct gendisk *disk, fmode_t mode)
1129 drive_info_struct *drv;
1131 mutex_lock(&cciss_mutex);
1133 drv = get_drv(disk);
1134 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1137 mutex_unlock(&cciss_mutex);
1141 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1142 unsigned cmd, unsigned long arg)
1145 mutex_lock(&cciss_mutex);
1146 ret = cciss_ioctl(bdev, mode, cmd, arg);
1147 mutex_unlock(&cciss_mutex);
1151 #ifdef CONFIG_COMPAT
1153 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1154 unsigned cmd, unsigned long arg);
1155 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1156 unsigned cmd, unsigned long arg);
1158 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1159 unsigned cmd, unsigned long arg)
1162 case CCISS_GETPCIINFO:
1163 case CCISS_GETINTINFO:
1164 case CCISS_SETINTINFO:
1165 case CCISS_GETNODENAME:
1166 case CCISS_SETNODENAME:
1167 case CCISS_GETHEARTBEAT:
1168 case CCISS_GETBUSTYPES:
1169 case CCISS_GETFIRMVER:
1170 case CCISS_GETDRIVVER:
1171 case CCISS_REVALIDVOLS:
1172 case CCISS_DEREGDISK:
1173 case CCISS_REGNEWDISK:
1175 case CCISS_RESCANDISK:
1176 case CCISS_GETLUNINFO:
1177 return do_ioctl(bdev, mode, cmd, arg);
1179 case CCISS_PASSTHRU32:
1180 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1181 case CCISS_BIG_PASSTHRU32:
1182 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1185 return -ENOIOCTLCMD;
1189 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1190 unsigned cmd, unsigned long arg)
1192 IOCTL32_Command_struct __user *arg32 =
1193 (IOCTL32_Command_struct __user *) arg;
1194 IOCTL_Command_struct arg64;
1195 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1201 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1202 sizeof(arg64.LUN_info));
1204 copy_from_user(&arg64.Request, &arg32->Request,
1205 sizeof(arg64.Request));
1207 copy_from_user(&arg64.error_info, &arg32->error_info,
1208 sizeof(arg64.error_info));
1209 err |= get_user(arg64.buf_size, &arg32->buf_size);
1210 err |= get_user(cp, &arg32->buf);
1211 arg64.buf = compat_ptr(cp);
1212 err |= copy_to_user(p, &arg64, sizeof(arg64));
1217 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1221 copy_in_user(&arg32->error_info, &p->error_info,
1222 sizeof(arg32->error_info));
1228 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1229 unsigned cmd, unsigned long arg)
1231 BIG_IOCTL32_Command_struct __user *arg32 =
1232 (BIG_IOCTL32_Command_struct __user *) arg;
1233 BIG_IOCTL_Command_struct arg64;
1234 BIG_IOCTL_Command_struct __user *p =
1235 compat_alloc_user_space(sizeof(arg64));
1239 memset(&arg64, 0, sizeof(arg64));
1242 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1243 sizeof(arg64.LUN_info));
1245 copy_from_user(&arg64.Request, &arg32->Request,
1246 sizeof(arg64.Request));
1248 copy_from_user(&arg64.error_info, &arg32->error_info,
1249 sizeof(arg64.error_info));
1250 err |= get_user(arg64.buf_size, &arg32->buf_size);
1251 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1252 err |= get_user(cp, &arg32->buf);
1253 arg64.buf = compat_ptr(cp);
1254 err |= copy_to_user(p, &arg64, sizeof(arg64));
1259 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1263 copy_in_user(&arg32->error_info, &p->error_info,
1264 sizeof(arg32->error_info));
1271 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1273 drive_info_struct *drv = get_drv(bdev->bd_disk);
1275 if (!drv->cylinders)
1278 geo->heads = drv->heads;
1279 geo->sectors = drv->sectors;
1280 geo->cylinders = drv->cylinders;
1284 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1286 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1287 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1288 (void)check_for_unit_attention(h, c);
1291 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1293 cciss_pci_info_struct pciinfo;
1297 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1298 pciinfo.bus = h->pdev->bus->number;
1299 pciinfo.dev_fn = h->pdev->devfn;
1300 pciinfo.board_id = h->board_id;
1301 if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1306 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1308 cciss_coalint_struct intinfo;
1312 intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1313 intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1315 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1320 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1322 cciss_coalint_struct intinfo;
1323 unsigned long flags;
1328 if (!capable(CAP_SYS_ADMIN))
1330 if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1332 if ((intinfo.delay == 0) && (intinfo.count == 0))
1334 spin_lock_irqsave(&h->lock, flags);
1335 /* Update the field, and then ring the doorbell */
1336 writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1337 writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1338 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1340 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1341 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1343 udelay(1000); /* delay and try again */
1345 spin_unlock_irqrestore(&h->lock, flags);
1346 if (i >= MAX_IOCTL_CONFIG_WAIT)
1351 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1353 NodeName_type NodeName;
1358 for (i = 0; i < 16; i++)
1359 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1360 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1365 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1367 NodeName_type NodeName;
1368 unsigned long flags;
1373 if (!capable(CAP_SYS_ADMIN))
1375 if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1377 spin_lock_irqsave(&h->lock, flags);
1378 /* Update the field, and then ring the doorbell */
1379 for (i = 0; i < 16; i++)
1380 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1381 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1382 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1383 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1385 udelay(1000); /* delay and try again */
1387 spin_unlock_irqrestore(&h->lock, flags);
1388 if (i >= MAX_IOCTL_CONFIG_WAIT)
1393 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1395 Heartbeat_type heartbeat;
1399 heartbeat = readl(&h->cfgtable->HeartBeat);
1400 if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1405 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1407 BusTypes_type BusTypes;
1411 BusTypes = readl(&h->cfgtable->BusTypes);
1412 if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1417 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1419 FirmwareVer_type firmware;
1423 memcpy(firmware, h->firm_ver, 4);
1426 (argp, firmware, sizeof(FirmwareVer_type)))
1431 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1433 DriverVer_type DriverVer = DRIVER_VERSION;
1437 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1442 static int cciss_getluninfo(ctlr_info_t *h,
1443 struct gendisk *disk, void __user *argp)
1445 LogvolInfo_struct luninfo;
1446 drive_info_struct *drv = get_drv(disk);
1450 memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1451 luninfo.num_opens = drv->usage_count;
1452 luninfo.num_parts = 0;
1453 if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1458 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1460 IOCTL_Command_struct iocommand;
1461 CommandList_struct *c;
1464 DECLARE_COMPLETION_ONSTACK(wait);
1469 if (!capable(CAP_SYS_RAWIO))
1473 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1475 if ((iocommand.buf_size < 1) &&
1476 (iocommand.Request.Type.Direction != XFER_NONE)) {
1479 if (iocommand.buf_size > 0) {
1480 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1484 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1485 /* Copy the data into the buffer we created */
1486 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1491 memset(buff, 0, iocommand.buf_size);
1493 c = cmd_special_alloc(h);
1498 /* Fill in the command type */
1499 c->cmd_type = CMD_IOCTL_PEND;
1500 /* Fill in Command Header */
1501 c->Header.ReplyQueue = 0; /* unused in simple mode */
1502 if (iocommand.buf_size > 0) { /* buffer to fill */
1503 c->Header.SGList = 1;
1504 c->Header.SGTotal = 1;
1505 } else { /* no buffers to fill */
1506 c->Header.SGList = 0;
1507 c->Header.SGTotal = 0;
1509 c->Header.LUN = iocommand.LUN_info;
1510 /* use the kernel address the cmd block for tag */
1511 c->Header.Tag.lower = c->busaddr;
1513 /* Fill in Request block */
1514 c->Request = iocommand.Request;
1516 /* Fill in the scatter gather information */
1517 if (iocommand.buf_size > 0) {
1518 temp64.val = pci_map_single(h->pdev, buff,
1519 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1520 c->SG[0].Addr.lower = temp64.val32.lower;
1521 c->SG[0].Addr.upper = temp64.val32.upper;
1522 c->SG[0].Len = iocommand.buf_size;
1523 c->SG[0].Ext = 0; /* we are not chaining */
1527 enqueue_cmd_and_start_io(h, c);
1528 wait_for_completion(&wait);
1530 /* unlock the buffers from DMA */
1531 temp64.val32.lower = c->SG[0].Addr.lower;
1532 temp64.val32.upper = c->SG[0].Addr.upper;
1533 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1534 PCI_DMA_BIDIRECTIONAL);
1535 check_ioctl_unit_attention(h, c);
1537 /* Copy the error information out */
1538 iocommand.error_info = *(c->err_info);
1539 if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1541 cmd_special_free(h, c);
1545 if (iocommand.Request.Type.Direction == XFER_READ) {
1546 /* Copy the data out of the buffer we created */
1547 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1549 cmd_special_free(h, c);
1554 cmd_special_free(h, c);
1558 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1560 BIG_IOCTL_Command_struct *ioc;
1561 CommandList_struct *c;
1562 unsigned char **buff = NULL;
1563 int *buff_size = NULL;
1568 DECLARE_COMPLETION_ONSTACK(wait);
1571 BYTE __user *data_ptr;
1575 if (!capable(CAP_SYS_RAWIO))
1577 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1582 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1586 if ((ioc->buf_size < 1) &&
1587 (ioc->Request.Type.Direction != XFER_NONE)) {
1591 /* Check kmalloc limits using all SGs */
1592 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1596 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1600 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1605 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1610 left = ioc->buf_size;
1611 data_ptr = ioc->buf;
1613 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1614 buff_size[sg_used] = sz;
1615 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1616 if (buff[sg_used] == NULL) {
1620 if (ioc->Request.Type.Direction == XFER_WRITE) {
1621 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1626 memset(buff[sg_used], 0, sz);
1632 c = cmd_special_alloc(h);
1637 c->cmd_type = CMD_IOCTL_PEND;
1638 c->Header.ReplyQueue = 0;
1639 c->Header.SGList = sg_used;
1640 c->Header.SGTotal = sg_used;
1641 c->Header.LUN = ioc->LUN_info;
1642 c->Header.Tag.lower = c->busaddr;
1644 c->Request = ioc->Request;
1645 for (i = 0; i < sg_used; i++) {
1646 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1647 PCI_DMA_BIDIRECTIONAL);
1648 c->SG[i].Addr.lower = temp64.val32.lower;
1649 c->SG[i].Addr.upper = temp64.val32.upper;
1650 c->SG[i].Len = buff_size[i];
1651 c->SG[i].Ext = 0; /* we are not chaining */
1654 enqueue_cmd_and_start_io(h, c);
1655 wait_for_completion(&wait);
1656 /* unlock the buffers from DMA */
1657 for (i = 0; i < sg_used; i++) {
1658 temp64.val32.lower = c->SG[i].Addr.lower;
1659 temp64.val32.upper = c->SG[i].Addr.upper;
1660 pci_unmap_single(h->pdev,
1661 (dma_addr_t) temp64.val, buff_size[i],
1662 PCI_DMA_BIDIRECTIONAL);
1664 check_ioctl_unit_attention(h, c);
1665 /* Copy the error information out */
1666 ioc->error_info = *(c->err_info);
1667 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1668 cmd_special_free(h, c);
1672 if (ioc->Request.Type.Direction == XFER_READ) {
1673 /* Copy the data out of the buffer we created */
1674 BYTE __user *ptr = ioc->buf;
1675 for (i = 0; i < sg_used; i++) {
1676 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1677 cmd_special_free(h, c);
1681 ptr += buff_size[i];
1684 cmd_special_free(h, c);
1688 for (i = 0; i < sg_used; i++)
1697 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1698 unsigned int cmd, unsigned long arg)
1700 struct gendisk *disk = bdev->bd_disk;
1701 ctlr_info_t *h = get_host(disk);
1702 void __user *argp = (void __user *)arg;
1704 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1707 case CCISS_GETPCIINFO:
1708 return cciss_getpciinfo(h, argp);
1709 case CCISS_GETINTINFO:
1710 return cciss_getintinfo(h, argp);
1711 case CCISS_SETINTINFO:
1712 return cciss_setintinfo(h, argp);
1713 case CCISS_GETNODENAME:
1714 return cciss_getnodename(h, argp);
1715 case CCISS_SETNODENAME:
1716 return cciss_setnodename(h, argp);
1717 case CCISS_GETHEARTBEAT:
1718 return cciss_getheartbeat(h, argp);
1719 case CCISS_GETBUSTYPES:
1720 return cciss_getbustypes(h, argp);
1721 case CCISS_GETFIRMVER:
1722 return cciss_getfirmver(h, argp);
1723 case CCISS_GETDRIVVER:
1724 return cciss_getdrivver(h, argp);
1725 case CCISS_DEREGDISK:
1727 case CCISS_REVALIDVOLS:
1728 return rebuild_lun_table(h, 0, 1);
1729 case CCISS_GETLUNINFO:
1730 return cciss_getluninfo(h, disk, argp);
1731 case CCISS_PASSTHRU:
1732 return cciss_passthru(h, argp);
1733 case CCISS_BIG_PASSTHRU:
1734 return cciss_bigpassthru(h, argp);
1736 /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1737 /* very meaningful for cciss. SG_IO is the main one people want. */
1739 case SG_GET_VERSION_NUM:
1740 case SG_SET_TIMEOUT:
1741 case SG_GET_TIMEOUT:
1742 case SG_GET_RESERVED_SIZE:
1743 case SG_SET_RESERVED_SIZE:
1744 case SG_EMULATED_HOST:
1746 case SCSI_IOCTL_SEND_COMMAND:
1747 return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1749 /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1750 /* they aren't a good fit for cciss, as CD-ROMs are */
1751 /* not supported, and we don't have any bus/target/lun */
1752 /* which we present to the kernel. */
1754 case CDROM_SEND_PACKET:
1755 case CDROMCLOSETRAY:
1757 case SCSI_IOCTL_GET_IDLUN:
1758 case SCSI_IOCTL_GET_BUS_NUMBER:
1764 static void cciss_check_queues(ctlr_info_t *h)
1766 int start_queue = h->next_to_run;
1769 /* check to see if we have maxed out the number of commands that can
1770 * be placed on the queue. If so then exit. We do this check here
1771 * in case the interrupt we serviced was from an ioctl and did not
1772 * free any new commands.
1774 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1777 /* We have room on the queue for more commands. Now we need to queue
1778 * them up. We will also keep track of the next queue to run so
1779 * that every queue gets a chance to be started first.
1781 for (i = 0; i < h->highest_lun + 1; i++) {
1782 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1783 /* make sure the disk has been added and the drive is real
1784 * because this can be called from the middle of init_one.
1786 if (!h->drv[curr_queue])
1788 if (!(h->drv[curr_queue]->queue) ||
1789 !(h->drv[curr_queue]->heads))
1791 blk_start_queue(h->gendisk[curr_queue]->queue);
1793 /* check to see if we have maxed out the number of commands
1794 * that can be placed on the queue.
1796 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1797 if (curr_queue == start_queue) {
1799 (start_queue + 1) % (h->highest_lun + 1);
1802 h->next_to_run = curr_queue;
1809 static void cciss_softirq_done(struct request *rq)
1811 CommandList_struct *c = rq->completion_data;
1812 ctlr_info_t *h = hba[c->ctlr];
1813 SGDescriptor_struct *curr_sg = c->SG;
1815 unsigned long flags;
1819 if (c->Request.Type.Direction == XFER_READ)
1820 ddir = PCI_DMA_FROMDEVICE;
1822 ddir = PCI_DMA_TODEVICE;
1824 /* command did not need to be retried */
1825 /* unmap the DMA mapping for all the scatter gather elements */
1826 for (i = 0; i < c->Header.SGList; i++) {
1827 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1828 cciss_unmap_sg_chain_block(h, c);
1829 /* Point to the next block */
1830 curr_sg = h->cmd_sg_list[c->cmdindex];
1833 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1834 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1835 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1840 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1842 /* set the residual count for pc requests */
1843 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1844 rq->resid_len = c->err_info->ResidualCnt;
1846 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1848 spin_lock_irqsave(&h->lock, flags);
1850 cciss_check_queues(h);
1851 spin_unlock_irqrestore(&h->lock, flags);
1854 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1855 unsigned char scsi3addr[], uint32_t log_unit)
1857 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1858 sizeof(h->drv[log_unit]->LunID));
1861 /* This function gets the SCSI vendor, model, and revision of a logical drive
1862 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1863 * they cannot be read.
1865 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1866 char *vendor, char *model, char *rev)
1869 InquiryData_struct *inq_buf;
1870 unsigned char scsi3addr[8];
1876 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1880 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1881 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1882 scsi3addr, TYPE_CMD);
1884 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1885 vendor[VENDOR_LEN] = '\0';
1886 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1887 model[MODEL_LEN] = '\0';
1888 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1889 rev[REV_LEN] = '\0';
1896 /* This function gets the serial number of a logical drive via
1897 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1898 * number cannot be had, for whatever reason, 16 bytes of 0xff
1899 * are returned instead.
1901 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1902 unsigned char *serial_no, int buflen)
1904 #define PAGE_83_INQ_BYTES 64
1907 unsigned char scsi3addr[8];
1911 memset(serial_no, 0xff, buflen);
1912 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1915 memset(serial_no, 0, buflen);
1916 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1917 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1918 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1920 memcpy(serial_no, &buf[8], buflen);
1926 * cciss_add_disk sets up the block device queue for a logical drive
1928 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1931 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1933 goto init_queue_failure;
1934 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1935 disk->major = h->major;
1936 disk->first_minor = drv_index << NWD_SHIFT;
1937 disk->fops = &cciss_fops;
1938 if (cciss_create_ld_sysfs_entry(h, drv_index))
1940 disk->private_data = h->drv[drv_index];
1941 disk->driverfs_dev = &h->drv[drv_index]->dev;
1943 /* Set up queue information */
1944 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1946 /* This is a hardware imposed limit. */
1947 blk_queue_max_segments(disk->queue, h->maxsgentries);
1949 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1951 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1953 disk->queue->queuedata = h;
1955 blk_queue_logical_block_size(disk->queue,
1956 h->drv[drv_index]->block_size);
1958 /* Make sure all queue data is written out before */
1959 /* setting h->drv[drv_index]->queue, as setting this */
1960 /* allows the interrupt handler to start the queue */
1962 h->drv[drv_index]->queue = disk->queue;
1967 blk_cleanup_queue(disk->queue);
1973 /* This function will check the usage_count of the drive to be updated/added.
1974 * If the usage_count is zero and it is a heretofore unknown drive, or,
1975 * the drive's capacity, geometry, or serial number has changed,
1976 * then the drive information will be updated and the disk will be
1977 * re-registered with the kernel. If these conditions don't hold,
1978 * then it will be left alone for the next reboot. The exception to this
1979 * is disk 0 which will always be left registered with the kernel since it
1980 * is also the controller node. Any changes to disk 0 will show up on
1983 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1984 int first_time, int via_ioctl)
1986 struct gendisk *disk;
1987 InquiryData_struct *inq_buff = NULL;
1988 unsigned int block_size;
1989 sector_t total_size;
1990 unsigned long flags = 0;
1992 drive_info_struct *drvinfo;
1994 /* Get information about the disk and modify the driver structure */
1995 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1996 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1997 if (inq_buff == NULL || drvinfo == NULL)
2000 /* testing to see if 16-byte CDBs are already being used */
2001 if (h->cciss_read == CCISS_READ_16) {
2002 cciss_read_capacity_16(h, drv_index,
2003 &total_size, &block_size);
2006 cciss_read_capacity(h, drv_index, &total_size, &block_size);
2007 /* if read_capacity returns all F's this volume is >2TB */
2008 /* in size so we switch to 16-byte CDB's for all */
2009 /* read/write ops */
2010 if (total_size == 0xFFFFFFFFULL) {
2011 cciss_read_capacity_16(h, drv_index,
2012 &total_size, &block_size);
2013 h->cciss_read = CCISS_READ_16;
2014 h->cciss_write = CCISS_WRITE_16;
2016 h->cciss_read = CCISS_READ_10;
2017 h->cciss_write = CCISS_WRITE_10;
2021 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2023 drvinfo->block_size = block_size;
2024 drvinfo->nr_blocks = total_size + 1;
2026 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2027 drvinfo->model, drvinfo->rev);
2028 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2029 sizeof(drvinfo->serial_no));
2030 /* Save the lunid in case we deregister the disk, below. */
2031 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2032 sizeof(drvinfo->LunID));
2034 /* Is it the same disk we already know, and nothing's changed? */
2035 if (h->drv[drv_index]->raid_level != -1 &&
2036 ((memcmp(drvinfo->serial_no,
2037 h->drv[drv_index]->serial_no, 16) == 0) &&
2038 drvinfo->block_size == h->drv[drv_index]->block_size &&
2039 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2040 drvinfo->heads == h->drv[drv_index]->heads &&
2041 drvinfo->sectors == h->drv[drv_index]->sectors &&
2042 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2043 /* The disk is unchanged, nothing to update */
2046 /* If we get here it's not the same disk, or something's changed,
2047 * so we need to * deregister it, and re-register it, if it's not
2049 * If the disk already exists then deregister it before proceeding
2050 * (unless it's the first disk (for the controller node).
2052 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2053 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2054 spin_lock_irqsave(&h->lock, flags);
2055 h->drv[drv_index]->busy_configuring = 1;
2056 spin_unlock_irqrestore(&h->lock, flags);
2058 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2059 * which keeps the interrupt handler from starting
2062 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2065 /* If the disk is in use return */
2069 /* Save the new information from cciss_geometry_inquiry
2070 * and serial number inquiry. If the disk was deregistered
2071 * above, then h->drv[drv_index] will be NULL.
2073 if (h->drv[drv_index] == NULL) {
2074 drvinfo->device_initialized = 0;
2075 h->drv[drv_index] = drvinfo;
2076 drvinfo = NULL; /* so it won't be freed below. */
2078 /* special case for cxd0 */
2079 h->drv[drv_index]->block_size = drvinfo->block_size;
2080 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2081 h->drv[drv_index]->heads = drvinfo->heads;
2082 h->drv[drv_index]->sectors = drvinfo->sectors;
2083 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2084 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2085 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2086 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2088 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2089 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2093 disk = h->gendisk[drv_index];
2094 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2096 /* If it's not disk 0 (drv_index != 0)
2097 * or if it was disk 0, but there was previously
2098 * no actual corresponding configured logical drive
2099 * (raid_leve == -1) then we want to update the
2100 * logical drive's information.
2102 if (drv_index || first_time) {
2103 if (cciss_add_disk(h, disk, drv_index) != 0) {
2104 cciss_free_gendisk(h, drv_index);
2105 cciss_free_drive_info(h, drv_index);
2106 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2117 dev_err(&h->pdev->dev, "out of memory\n");
2121 /* This function will find the first index of the controllers drive array
2122 * that has a null drv pointer and allocate the drive info struct and
2123 * will return that index This is where new drives will be added.
2124 * If the index to be returned is greater than the highest_lun index for
2125 * the controller then highest_lun is set * to this new index.
2126 * If there are no available indexes or if tha allocation fails, then -1
2127 * is returned. * "controller_node" is used to know if this is a real
2128 * logical drive, or just the controller node, which determines if this
2129 * counts towards highest_lun.
2131 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2134 drive_info_struct *drv;
2136 /* Search for an empty slot for our drive info */
2137 for (i = 0; i < CISS_MAX_LUN; i++) {
2139 /* if not cxd0 case, and it's occupied, skip it. */
2140 if (h->drv[i] && i != 0)
2143 * If it's cxd0 case, and drv is alloc'ed already, and a
2144 * disk is configured there, skip it.
2146 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2150 * We've found an empty slot. Update highest_lun
2151 * provided this isn't just the fake cxd0 controller node.
2153 if (i > h->highest_lun && !controller_node)
2156 /* If adding a real disk at cxd0, and it's already alloc'ed */
2157 if (i == 0 && h->drv[i] != NULL)
2161 * Found an empty slot, not already alloc'ed. Allocate it.
2162 * Mark it with raid_level == -1, so we know it's new later on.
2164 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2167 drv->raid_level = -1; /* so we know it's new */
2174 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2176 kfree(h->drv[drv_index]);
2177 h->drv[drv_index] = NULL;
2180 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2182 put_disk(h->gendisk[drv_index]);
2183 h->gendisk[drv_index] = NULL;
2186 /* cciss_add_gendisk finds a free hba[]->drv structure
2187 * and allocates a gendisk if needed, and sets the lunid
2188 * in the drvinfo structure. It returns the index into
2189 * the ->drv[] array, or -1 if none are free.
2190 * is_controller_node indicates whether highest_lun should
2191 * count this disk, or if it's only being added to provide
2192 * a means to talk to the controller in case no logical
2193 * drives have yet been configured.
2195 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2196 int controller_node)
2200 drv_index = cciss_alloc_drive_info(h, controller_node);
2201 if (drv_index == -1)
2204 /*Check if the gendisk needs to be allocated */
2205 if (!h->gendisk[drv_index]) {
2206 h->gendisk[drv_index] =
2207 alloc_disk(1 << NWD_SHIFT);
2208 if (!h->gendisk[drv_index]) {
2209 dev_err(&h->pdev->dev,
2210 "could not allocate a new disk %d\n",
2212 goto err_free_drive_info;
2215 memcpy(h->drv[drv_index]->LunID, lunid,
2216 sizeof(h->drv[drv_index]->LunID));
2217 if (cciss_create_ld_sysfs_entry(h, drv_index))
2219 /* Don't need to mark this busy because nobody */
2220 /* else knows about this disk yet to contend */
2221 /* for access to it. */
2222 h->drv[drv_index]->busy_configuring = 0;
2227 cciss_free_gendisk(h, drv_index);
2228 err_free_drive_info:
2229 cciss_free_drive_info(h, drv_index);
2233 /* This is for the special case of a controller which
2234 * has no logical drives. In this case, we still need
2235 * to register a disk so the controller can be accessed
2236 * by the Array Config Utility.
2238 static void cciss_add_controller_node(ctlr_info_t *h)
2240 struct gendisk *disk;
2243 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2246 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2247 if (drv_index == -1)
2249 h->drv[drv_index]->block_size = 512;
2250 h->drv[drv_index]->nr_blocks = 0;
2251 h->drv[drv_index]->heads = 0;
2252 h->drv[drv_index]->sectors = 0;
2253 h->drv[drv_index]->cylinders = 0;
2254 h->drv[drv_index]->raid_level = -1;
2255 memset(h->drv[drv_index]->serial_no, 0, 16);
2256 disk = h->gendisk[drv_index];
2257 if (cciss_add_disk(h, disk, drv_index) == 0)
2259 cciss_free_gendisk(h, drv_index);
2260 cciss_free_drive_info(h, drv_index);
2262 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2266 /* This function will add and remove logical drives from the Logical
2267 * drive array of the controller and maintain persistency of ordering
2268 * so that mount points are preserved until the next reboot. This allows
2269 * for the removal of logical drives in the middle of the drive array
2270 * without a re-ordering of those drives.
2272 * h = The controller to perform the operations on
2274 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2278 ReportLunData_struct *ld_buff = NULL;
2284 unsigned char lunid[8] = CTLR_LUNID;
2285 unsigned long flags;
2287 if (!capable(CAP_SYS_RAWIO))
2290 /* Set busy_configuring flag for this operation */
2291 spin_lock_irqsave(&h->lock, flags);
2292 if (h->busy_configuring) {
2293 spin_unlock_irqrestore(&h->lock, flags);
2296 h->busy_configuring = 1;
2297 spin_unlock_irqrestore(&h->lock, flags);
2299 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2300 if (ld_buff == NULL)
2303 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2304 sizeof(ReportLunData_struct),
2305 0, CTLR_LUNID, TYPE_CMD);
2307 if (return_code == IO_OK)
2308 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2309 else { /* reading number of logical volumes failed */
2310 dev_warn(&h->pdev->dev,
2311 "report logical volume command failed\n");
2316 num_luns = listlength / 8; /* 8 bytes per entry */
2317 if (num_luns > CISS_MAX_LUN) {
2318 num_luns = CISS_MAX_LUN;
2319 dev_warn(&h->pdev->dev, "more luns configured"
2320 " on controller than can be handled by"
2325 cciss_add_controller_node(h);
2327 /* Compare controller drive array to driver's drive array
2328 * to see if any drives are missing on the controller due
2329 * to action of Array Config Utility (user deletes drive)
2330 * and deregister logical drives which have disappeared.
2332 for (i = 0; i <= h->highest_lun; i++) {
2336 /* skip holes in the array from already deleted drives */
2337 if (h->drv[i] == NULL)
2340 for (j = 0; j < num_luns; j++) {
2341 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2342 if (memcmp(h->drv[i]->LunID, lunid,
2343 sizeof(lunid)) == 0) {
2349 /* Deregister it from the OS, it's gone. */
2350 spin_lock_irqsave(&h->lock, flags);
2351 h->drv[i]->busy_configuring = 1;
2352 spin_unlock_irqrestore(&h->lock, flags);
2353 return_code = deregister_disk(h, i, 1, via_ioctl);
2354 if (h->drv[i] != NULL)
2355 h->drv[i]->busy_configuring = 0;
2359 /* Compare controller drive array to driver's drive array.
2360 * Check for updates in the drive information and any new drives
2361 * on the controller due to ACU adding logical drives, or changing
2362 * a logical drive's size, etc. Reregister any new/changed drives
2364 for (i = 0; i < num_luns; i++) {
2369 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2370 /* Find if the LUN is already in the drive array
2371 * of the driver. If so then update its info
2372 * if not in use. If it does not exist then find
2373 * the first free index and add it.
2375 for (j = 0; j <= h->highest_lun; j++) {
2376 if (h->drv[j] != NULL &&
2377 memcmp(h->drv[j]->LunID, lunid,
2378 sizeof(h->drv[j]->LunID)) == 0) {
2385 /* check if the drive was found already in the array */
2387 drv_index = cciss_add_gendisk(h, lunid, 0);
2388 if (drv_index == -1)
2391 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2396 h->busy_configuring = 0;
2397 /* We return -1 here to tell the ACU that we have registered/updated
2398 * all of the drives that we can and to keep it from calling us
2403 dev_err(&h->pdev->dev, "out of memory\n");
2404 h->busy_configuring = 0;
2408 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2410 /* zero out the disk size info */
2411 drive_info->nr_blocks = 0;
2412 drive_info->block_size = 0;
2413 drive_info->heads = 0;
2414 drive_info->sectors = 0;
2415 drive_info->cylinders = 0;
2416 drive_info->raid_level = -1;
2417 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2418 memset(drive_info->model, 0, sizeof(drive_info->model));
2419 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2420 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2422 * don't clear the LUNID though, we need to remember which
2427 /* This function will deregister the disk and it's queue from the
2428 * kernel. It must be called with the controller lock held and the
2429 * drv structures busy_configuring flag set. It's parameters are:
2431 * disk = This is the disk to be deregistered
2432 * drv = This is the drive_info_struct associated with the disk to be
2433 * deregistered. It contains information about the disk used
2435 * clear_all = This flag determines whether or not the disk information
2436 * is going to be completely cleared out and the highest_lun
2437 * reset. Sometimes we want to clear out information about
2438 * the disk in preparation for re-adding it. In this case
2439 * the highest_lun should be left unchanged and the LunID
2440 * should not be cleared.
2442 * This indicates whether we've reached this path via ioctl.
2443 * This affects the maximum usage count allowed for c0d0 to be messed with.
2444 * If this path is reached via ioctl(), then the max_usage_count will
2445 * be 1, as the process calling ioctl() has got to have the device open.
2446 * If we get here via sysfs, then the max usage count will be zero.
2448 static int deregister_disk(ctlr_info_t *h, int drv_index,
2449 int clear_all, int via_ioctl)
2452 struct gendisk *disk;
2453 drive_info_struct *drv;
2454 int recalculate_highest_lun;
2456 if (!capable(CAP_SYS_RAWIO))
2459 drv = h->drv[drv_index];
2460 disk = h->gendisk[drv_index];
2462 /* make sure logical volume is NOT is use */
2463 if (clear_all || (h->gendisk[0] == disk)) {
2464 if (drv->usage_count > via_ioctl)
2466 } else if (drv->usage_count > 0)
2469 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2471 /* invalidate the devices and deregister the disk. If it is disk
2472 * zero do not deregister it but just zero out it's values. This
2473 * allows us to delete disk zero but keep the controller registered.
2475 if (h->gendisk[0] != disk) {
2476 struct request_queue *q = disk->queue;
2477 if (disk->flags & GENHD_FL_UP) {
2478 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2482 blk_cleanup_queue(q);
2483 /* If clear_all is set then we are deleting the logical
2484 * drive, not just refreshing its info. For drives
2485 * other than disk 0 we will call put_disk. We do not
2486 * do this for disk 0 as we need it to be able to
2487 * configure the controller.
2490 /* This isn't pretty, but we need to find the
2491 * disk in our array and NULL our the pointer.
2492 * This is so that we will call alloc_disk if
2493 * this index is used again later.
2495 for (i=0; i < CISS_MAX_LUN; i++){
2496 if (h->gendisk[i] == disk) {
2497 h->gendisk[i] = NULL;
2504 set_capacity(disk, 0);
2505 cciss_clear_drive_info(drv);
2510 /* if it was the last disk, find the new hightest lun */
2511 if (clear_all && recalculate_highest_lun) {
2512 int newhighest = -1;
2513 for (i = 0; i <= h->highest_lun; i++) {
2514 /* if the disk has size > 0, it is available */
2515 if (h->drv[i] && h->drv[i]->heads)
2518 h->highest_lun = newhighest;
2523 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2524 size_t size, __u8 page_code, unsigned char *scsi3addr,
2527 u64bit buff_dma_handle;
2530 c->cmd_type = CMD_IOCTL_PEND;
2531 c->Header.ReplyQueue = 0;
2533 c->Header.SGList = 1;
2534 c->Header.SGTotal = 1;
2536 c->Header.SGList = 0;
2537 c->Header.SGTotal = 0;
2539 c->Header.Tag.lower = c->busaddr;
2540 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2542 c->Request.Type.Type = cmd_type;
2543 if (cmd_type == TYPE_CMD) {
2546 /* are we trying to read a vital product page */
2547 if (page_code != 0) {
2548 c->Request.CDB[1] = 0x01;
2549 c->Request.CDB[2] = page_code;
2551 c->Request.CDBLen = 6;
2552 c->Request.Type.Attribute = ATTR_SIMPLE;
2553 c->Request.Type.Direction = XFER_READ;
2554 c->Request.Timeout = 0;
2555 c->Request.CDB[0] = CISS_INQUIRY;
2556 c->Request.CDB[4] = size & 0xFF;
2558 case CISS_REPORT_LOG:
2559 case CISS_REPORT_PHYS:
2560 /* Talking to controller so It's a physical command
2561 mode = 00 target = 0. Nothing to write.
2563 c->Request.CDBLen = 12;
2564 c->Request.Type.Attribute = ATTR_SIMPLE;
2565 c->Request.Type.Direction = XFER_READ;
2566 c->Request.Timeout = 0;
2567 c->Request.CDB[0] = cmd;
2568 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2569 c->Request.CDB[7] = (size >> 16) & 0xFF;
2570 c->Request.CDB[8] = (size >> 8) & 0xFF;
2571 c->Request.CDB[9] = size & 0xFF;
2574 case CCISS_READ_CAPACITY:
2575 c->Request.CDBLen = 10;
2576 c->Request.Type.Attribute = ATTR_SIMPLE;
2577 c->Request.Type.Direction = XFER_READ;
2578 c->Request.Timeout = 0;
2579 c->Request.CDB[0] = cmd;
2581 case CCISS_READ_CAPACITY_16:
2582 c->Request.CDBLen = 16;
2583 c->Request.Type.Attribute = ATTR_SIMPLE;
2584 c->Request.Type.Direction = XFER_READ;
2585 c->Request.Timeout = 0;
2586 c->Request.CDB[0] = cmd;
2587 c->Request.CDB[1] = 0x10;
2588 c->Request.CDB[10] = (size >> 24) & 0xFF;
2589 c->Request.CDB[11] = (size >> 16) & 0xFF;
2590 c->Request.CDB[12] = (size >> 8) & 0xFF;
2591 c->Request.CDB[13] = size & 0xFF;
2592 c->Request.Timeout = 0;
2593 c->Request.CDB[0] = cmd;
2595 case CCISS_CACHE_FLUSH:
2596 c->Request.CDBLen = 12;
2597 c->Request.Type.Attribute = ATTR_SIMPLE;
2598 c->Request.Type.Direction = XFER_WRITE;
2599 c->Request.Timeout = 0;
2600 c->Request.CDB[0] = BMIC_WRITE;
2601 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2602 c->Request.CDB[7] = (size >> 8) & 0xFF;
2603 c->Request.CDB[8] = size & 0xFF;
2605 case TEST_UNIT_READY:
2606 c->Request.CDBLen = 6;
2607 c->Request.Type.Attribute = ATTR_SIMPLE;
2608 c->Request.Type.Direction = XFER_NONE;
2609 c->Request.Timeout = 0;
2612 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2615 } else if (cmd_type == TYPE_MSG) {
2617 case CCISS_ABORT_MSG:
2618 c->Request.CDBLen = 12;
2619 c->Request.Type.Attribute = ATTR_SIMPLE;
2620 c->Request.Type.Direction = XFER_WRITE;
2621 c->Request.Timeout = 0;
2622 c->Request.CDB[0] = cmd; /* abort */
2623 c->Request.CDB[1] = 0; /* abort a command */
2624 /* buff contains the tag of the command to abort */
2625 memcpy(&c->Request.CDB[4], buff, 8);
2627 case CCISS_RESET_MSG:
2628 c->Request.CDBLen = 16;
2629 c->Request.Type.Attribute = ATTR_SIMPLE;
2630 c->Request.Type.Direction = XFER_NONE;
2631 c->Request.Timeout = 0;
2632 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2633 c->Request.CDB[0] = cmd; /* reset */
2634 c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2636 case CCISS_NOOP_MSG:
2637 c->Request.CDBLen = 1;
2638 c->Request.Type.Attribute = ATTR_SIMPLE;
2639 c->Request.Type.Direction = XFER_WRITE;
2640 c->Request.Timeout = 0;
2641 c->Request.CDB[0] = cmd;
2644 dev_warn(&h->pdev->dev,
2645 "unknown message type %d\n", cmd);
2649 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2652 /* Fill in the scatter gather information */
2654 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2656 PCI_DMA_BIDIRECTIONAL);
2657 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2658 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2659 c->SG[0].Len = size;
2660 c->SG[0].Ext = 0; /* we are not chaining */
2665 static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2668 CommandList_struct *c;
2674 return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2675 CTLR_LUNID, TYPE_MSG);
2676 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2677 if (return_status != IO_OK) {
2678 cmd_special_free(h, c);
2679 return return_status;
2682 enqueue_cmd_and_start_io(h, c);
2683 /* Don't wait for completion, the reset won't complete. Don't free
2684 * the command either. This is the last command we will send before
2685 * re-initializing everything, so it doesn't matter and won't leak.
2690 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2692 switch (c->err_info->ScsiStatus) {
2695 case SAM_STAT_CHECK_CONDITION:
2696 switch (0xf & c->err_info->SenseInfo[2]) {
2697 case 0: return IO_OK; /* no sense */
2698 case 1: return IO_OK; /* recovered error */
2700 if (check_for_unit_attention(h, c))
2701 return IO_NEEDS_RETRY;
2702 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2703 "check condition, sense key = 0x%02x\n",
2704 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2708 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2709 "scsi status = 0x%02x\n",
2710 c->Request.CDB[0], c->err_info->ScsiStatus);
2716 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2718 int return_status = IO_OK;
2720 if (c->err_info->CommandStatus == CMD_SUCCESS)
2723 switch (c->err_info->CommandStatus) {
2724 case CMD_TARGET_STATUS:
2725 return_status = check_target_status(h, c);
2727 case CMD_DATA_UNDERRUN:
2728 case CMD_DATA_OVERRUN:
2729 /* expected for inquiry and report lun commands */
2732 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2733 "reported invalid\n", c->Request.CDB[0]);
2734 return_status = IO_ERROR;
2736 case CMD_PROTOCOL_ERR:
2737 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2738 "protocol error\n", c->Request.CDB[0]);
2739 return_status = IO_ERROR;
2741 case CMD_HARDWARE_ERR:
2742 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2743 " hardware error\n", c->Request.CDB[0]);
2744 return_status = IO_ERROR;
2746 case CMD_CONNECTION_LOST:
2747 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2748 "connection lost\n", c->Request.CDB[0]);
2749 return_status = IO_ERROR;
2752 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2753 "aborted\n", c->Request.CDB[0]);
2754 return_status = IO_ERROR;
2756 case CMD_ABORT_FAILED:
2757 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2758 "abort failed\n", c->Request.CDB[0]);
2759 return_status = IO_ERROR;
2761 case CMD_UNSOLICITED_ABORT:
2762 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2764 return_status = IO_NEEDS_RETRY;
2766 case CMD_UNABORTABLE:
2767 dev_warn(&h->pdev->dev, "cmd unabortable\n");
2768 return_status = IO_ERROR;
2771 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2772 "unknown status %x\n", c->Request.CDB[0],
2773 c->err_info->CommandStatus);
2774 return_status = IO_ERROR;
2776 return return_status;
2779 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2782 DECLARE_COMPLETION_ONSTACK(wait);
2783 u64bit buff_dma_handle;
2784 int return_status = IO_OK;
2788 enqueue_cmd_and_start_io(h, c);
2790 wait_for_completion(&wait);
2792 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2795 return_status = process_sendcmd_error(h, c);
2797 if (return_status == IO_NEEDS_RETRY &&
2798 c->retry_count < MAX_CMD_RETRIES) {
2799 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2802 /* erase the old error information */
2803 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2804 return_status = IO_OK;
2805 INIT_COMPLETION(wait);
2810 /* unlock the buffers from DMA */
2811 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2812 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2813 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2814 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2815 return return_status;
2818 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2819 __u8 page_code, unsigned char scsi3addr[],
2822 CommandList_struct *c;
2825 c = cmd_special_alloc(h);
2828 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2829 scsi3addr, cmd_type);
2830 if (return_status == IO_OK)
2831 return_status = sendcmd_withirq_core(h, c, 1);
2833 cmd_special_free(h, c);
2834 return return_status;
2837 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2838 sector_t total_size,
2839 unsigned int block_size,
2840 InquiryData_struct *inq_buff,
2841 drive_info_struct *drv)
2845 unsigned char scsi3addr[8];
2847 memset(inq_buff, 0, sizeof(InquiryData_struct));
2848 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2849 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2850 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2851 if (return_code == IO_OK) {
2852 if (inq_buff->data_byte[8] == 0xFF) {
2853 dev_warn(&h->pdev->dev,
2854 "reading geometry failed, volume "
2855 "does not support reading geometry\n");
2857 drv->sectors = 32; /* Sectors per track */
2858 drv->cylinders = total_size + 1;
2859 drv->raid_level = RAID_UNKNOWN;
2861 drv->heads = inq_buff->data_byte[6];
2862 drv->sectors = inq_buff->data_byte[7];
2863 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2864 drv->cylinders += inq_buff->data_byte[5];
2865 drv->raid_level = inq_buff->data_byte[8];
2867 drv->block_size = block_size;
2868 drv->nr_blocks = total_size + 1;
2869 t = drv->heads * drv->sectors;
2871 sector_t real_size = total_size + 1;
2872 unsigned long rem = sector_div(real_size, t);
2875 drv->cylinders = real_size;
2877 } else { /* Get geometry failed */
2878 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2883 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2884 unsigned int *block_size)
2886 ReadCapdata_struct *buf;
2888 unsigned char scsi3addr[8];
2890 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2892 dev_warn(&h->pdev->dev, "out of memory\n");
2896 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2897 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2898 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2899 if (return_code == IO_OK) {
2900 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2901 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2902 } else { /* read capacity command failed */
2903 dev_warn(&h->pdev->dev, "read capacity failed\n");
2905 *block_size = BLOCK_SIZE;
2910 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2911 sector_t *total_size, unsigned int *block_size)
2913 ReadCapdata_struct_16 *buf;
2915 unsigned char scsi3addr[8];
2917 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2919 dev_warn(&h->pdev->dev, "out of memory\n");
2923 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2924 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2925 buf, sizeof(ReadCapdata_struct_16),
2926 0, scsi3addr, TYPE_CMD);
2927 if (return_code == IO_OK) {
2928 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2929 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2930 } else { /* read capacity command failed */
2931 dev_warn(&h->pdev->dev, "read capacity failed\n");
2933 *block_size = BLOCK_SIZE;
2935 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2936 (unsigned long long)*total_size+1, *block_size);
2940 static int cciss_revalidate(struct gendisk *disk)
2942 ctlr_info_t *h = get_host(disk);
2943 drive_info_struct *drv = get_drv(disk);
2946 unsigned int block_size;
2947 sector_t total_size;
2948 InquiryData_struct *inq_buff = NULL;
2950 for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2951 if (!h->drv[logvol])
2953 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2954 sizeof(drv->LunID)) == 0) {
2963 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2964 if (inq_buff == NULL) {
2965 dev_warn(&h->pdev->dev, "out of memory\n");
2968 if (h->cciss_read == CCISS_READ_10) {
2969 cciss_read_capacity(h, logvol,
2970 &total_size, &block_size);
2972 cciss_read_capacity_16(h, logvol,
2973 &total_size, &block_size);
2975 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2978 blk_queue_logical_block_size(drv->queue, drv->block_size);
2979 set_capacity(disk, drv->nr_blocks);
2986 * Map (physical) PCI mem into (virtual) kernel space
2988 static void __iomem *remap_pci_mem(ulong base, ulong size)
2990 ulong page_base = ((ulong) base) & PAGE_MASK;
2991 ulong page_offs = ((ulong) base) - page_base;
2992 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2994 return page_remapped ? (page_remapped + page_offs) : NULL;
2998 * Takes jobs of the Q and sends them to the hardware, then puts it on
2999 * the Q to wait for completion.
3001 static void start_io(ctlr_info_t *h)
3003 CommandList_struct *c;
3005 while (!list_empty(&h->reqQ)) {
3006 c = list_entry(h->reqQ.next, CommandList_struct, list);
3007 /* can't do anything if fifo is full */
3008 if ((h->access.fifo_full(h))) {
3009 dev_warn(&h->pdev->dev, "fifo full\n");
3013 /* Get the first entry from the Request Q */
3017 /* Tell the controller execute command */
3018 h->access.submit_command(h, c);
3020 /* Put job onto the completed Q */
3025 /* Assumes that h->lock is held. */
3026 /* Zeros out the error record and then resends the command back */
3027 /* to the controller */
3028 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3030 /* erase the old error information */
3031 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3033 /* add it to software queue and then send it to the controller */
3036 if (h->Qdepth > h->maxQsinceinit)
3037 h->maxQsinceinit = h->Qdepth;
3042 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3043 unsigned int msg_byte, unsigned int host_byte,
3044 unsigned int driver_byte)
3046 /* inverse of macros in scsi.h */
3047 return (scsi_status_byte & 0xff) |
3048 ((msg_byte & 0xff) << 8) |
3049 ((host_byte & 0xff) << 16) |
3050 ((driver_byte & 0xff) << 24);
3053 static inline int evaluate_target_status(ctlr_info_t *h,
3054 CommandList_struct *cmd, int *retry_cmd)
3056 unsigned char sense_key;
3057 unsigned char status_byte, msg_byte, host_byte, driver_byte;
3061 /* If we get in here, it means we got "target status", that is, scsi status */
3062 status_byte = cmd->err_info->ScsiStatus;
3063 driver_byte = DRIVER_OK;
3064 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3066 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3067 host_byte = DID_PASSTHROUGH;
3071 error_value = make_status_bytes(status_byte, msg_byte,
3072 host_byte, driver_byte);
3074 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3075 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3076 dev_warn(&h->pdev->dev, "cmd %p "
3077 "has SCSI Status 0x%x\n",
3078 cmd, cmd->err_info->ScsiStatus);
3082 /* check the sense key */
3083 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3084 /* no status or recovered error */
3085 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3086 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3089 if (check_for_unit_attention(h, cmd)) {
3090 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3094 /* Not SG_IO or similar? */
3095 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3096 if (error_value != 0)
3097 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3098 " sense key = 0x%x\n", cmd, sense_key);
3102 /* SG_IO or similar, copy sense data back */
3103 if (cmd->rq->sense) {
3104 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3105 cmd->rq->sense_len = cmd->err_info->SenseLen;
3106 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3107 cmd->rq->sense_len);
3109 cmd->rq->sense_len = 0;
3114 /* checks the status of the job and calls complete buffers to mark all
3115 * buffers for the completed job. Note that this function does not need
3116 * to hold the hba/queue lock.
3118 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3122 struct request *rq = cmd->rq;
3127 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3129 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3130 goto after_error_processing;
3132 switch (cmd->err_info->CommandStatus) {
3133 case CMD_TARGET_STATUS:
3134 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3136 case CMD_DATA_UNDERRUN:
3137 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3138 dev_warn(&h->pdev->dev, "cmd %p has"
3139 " completed with data underrun "
3141 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3144 case CMD_DATA_OVERRUN:
3145 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3146 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3147 " completed with data overrun "
3151 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3152 "reported invalid\n", cmd);
3153 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3154 cmd->err_info->CommandStatus, DRIVER_OK,
3155 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3156 DID_PASSTHROUGH : DID_ERROR);
3158 case CMD_PROTOCOL_ERR:
3159 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3160 "protocol error\n", cmd);
3161 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3162 cmd->err_info->CommandStatus, DRIVER_OK,
3163 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3164 DID_PASSTHROUGH : DID_ERROR);
3166 case CMD_HARDWARE_ERR:
3167 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3168 " hardware error\n", cmd);
3169 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3170 cmd->err_info->CommandStatus, DRIVER_OK,
3171 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3172 DID_PASSTHROUGH : DID_ERROR);
3174 case CMD_CONNECTION_LOST:
3175 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3176 "connection lost\n", cmd);
3177 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3178 cmd->err_info->CommandStatus, DRIVER_OK,
3179 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3180 DID_PASSTHROUGH : DID_ERROR);
3183 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3185 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3186 cmd->err_info->CommandStatus, DRIVER_OK,
3187 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3188 DID_PASSTHROUGH : DID_ABORT);
3190 case CMD_ABORT_FAILED:
3191 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3192 "abort failed\n", cmd);
3193 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3194 cmd->err_info->CommandStatus, DRIVER_OK,
3195 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3196 DID_PASSTHROUGH : DID_ERROR);
3198 case CMD_UNSOLICITED_ABORT:
3199 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3200 "abort %p\n", h->ctlr, cmd);
3201 if (cmd->retry_count < MAX_CMD_RETRIES) {
3203 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3206 dev_warn(&h->pdev->dev,
3207 "%p retried too many times\n", cmd);
3208 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3209 cmd->err_info->CommandStatus, DRIVER_OK,
3210 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3211 DID_PASSTHROUGH : DID_ABORT);
3214 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3215 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3216 cmd->err_info->CommandStatus, DRIVER_OK,
3217 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3218 DID_PASSTHROUGH : DID_ERROR);
3220 case CMD_UNABORTABLE:
3221 dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3222 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3223 cmd->err_info->CommandStatus, DRIVER_OK,
3224 cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3225 DID_PASSTHROUGH : DID_ERROR);
3228 dev_warn(&h->pdev->dev, "cmd %p returned "
3229 "unknown status %x\n", cmd,
3230 cmd->err_info->CommandStatus);
3231 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3232 cmd->err_info->CommandStatus, DRIVER_OK,
3233 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3234 DID_PASSTHROUGH : DID_ERROR);
3237 after_error_processing:
3239 /* We need to return this command */
3241 resend_cciss_cmd(h, cmd);
3244 cmd->rq->completion_data = cmd;
3245 blk_complete_request(cmd->rq);
3248 static inline u32 cciss_tag_contains_index(u32 tag)
3250 #define DIRECT_LOOKUP_BIT 0x10
3251 return tag & DIRECT_LOOKUP_BIT;
3254 static inline u32 cciss_tag_to_index(u32 tag)
3256 #define DIRECT_LOOKUP_SHIFT 5
3257 return tag >> DIRECT_LOOKUP_SHIFT;
3260 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3262 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3263 #define CCISS_SIMPLE_ERROR_BITS 0x03
3264 if (likely(h->transMethod & CFGTBL_Trans_Performant))
3265 return tag & ~CCISS_PERF_ERROR_BITS;
3266 return tag & ~CCISS_SIMPLE_ERROR_BITS;
3269 static inline void cciss_mark_tag_indexed(u32 *tag)
3271 *tag |= DIRECT_LOOKUP_BIT;
3274 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3276 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3280 * Get a request and submit it to the controller.
3282 static void do_cciss_request(struct request_queue *q)
3284 ctlr_info_t *h = q->queuedata;
3285 CommandList_struct *c;
3288 struct request *creq;
3290 struct scatterlist *tmp_sg;
3291 SGDescriptor_struct *curr_sg;
3292 drive_info_struct *drv;
3298 creq = blk_peek_request(q);
3302 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3308 blk_start_request(creq);
3310 tmp_sg = h->scatter_list[c->cmdindex];
3311 spin_unlock_irq(q->queue_lock);
3313 c->cmd_type = CMD_RWREQ;
3316 /* fill in the request */
3317 drv = creq->rq_disk->private_data;
3318 c->Header.ReplyQueue = 0; /* unused in simple mode */
3319 /* got command from pool, so use the command block index instead */
3320 /* for direct lookups. */
3321 /* The first 2 bits are reserved for controller error reporting. */
3322 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3323 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3324 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3325 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3326 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3327 c->Request.Type.Attribute = ATTR_SIMPLE;
3328 c->Request.Type.Direction =