50fcf9c04569a18007816dc322382103a604c542
[~shefty/rdma-dev.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/seq_file.h>
47 #include <linux/timer.h>
48 #include <linux/errno.h>
49 #include <linux/spinlock.h>
50 #include <linux/slab.h>
51 #include <linux/delay.h>
52 #include <linux/list.h>
53 #include <linux/pci.h>
54 #include <linux/ioport.h>
55 #include <linux/notifier.h>
56 #include <linux/mutex.h>
57 #include <linux/kthread.h>
58 #include <asm/irq.h>
59 #include <linux/interrupt.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ipmi.h>
62 #include <linux/ipmi_smi.h>
63 #include <asm/io.h>
64 #include "ipmi_si_sm.h"
65 #include <linux/init.h>
66 #include <linux/dmi.h>
67 #include <linux/string.h>
68 #include <linux/ctype.h>
69 #include <linux/pnp.h>
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #include <linux/of_address.h>
73 #include <linux/of_irq.h>
74
75 #define PFX "ipmi_si: "
76
77 /* Measure times between events in the driver. */
78 #undef DEBUG_TIMING
79
80 /* Call every 10 ms. */
81 #define SI_TIMEOUT_TIME_USEC    10000
82 #define SI_USEC_PER_JIFFY       (1000000/HZ)
83 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
84 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
85                                       short timeout */
86
87 enum si_intf_state {
88         SI_NORMAL,
89         SI_GETTING_FLAGS,
90         SI_GETTING_EVENTS,
91         SI_CLEARING_FLAGS,
92         SI_CLEARING_FLAGS_THEN_SET_IRQ,
93         SI_GETTING_MESSAGES,
94         SI_ENABLE_INTERRUPTS1,
95         SI_ENABLE_INTERRUPTS2,
96         SI_DISABLE_INTERRUPTS1,
97         SI_DISABLE_INTERRUPTS2
98         /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
112                                         "ACPI", "SMBIOS", "PCI",
113                                         "device-tree", "default" };
114
115 #define DEVICE_NAME "ipmi_si"
116
117 static struct platform_driver ipmi_driver;
118
119 /*
120  * Indexes into stats[] in smi_info below.
121  */
122 enum si_stat_indexes {
123         /*
124          * Number of times the driver requested a timer while an operation
125          * was in progress.
126          */
127         SI_STAT_short_timeouts = 0,
128
129         /*
130          * Number of times the driver requested a timer while nothing was in
131          * progress.
132          */
133         SI_STAT_long_timeouts,
134
135         /* Number of times the interface was idle while being polled. */
136         SI_STAT_idles,
137
138         /* Number of interrupts the driver handled. */
139         SI_STAT_interrupts,
140
141         /* Number of time the driver got an ATTN from the hardware. */
142         SI_STAT_attentions,
143
144         /* Number of times the driver requested flags from the hardware. */
145         SI_STAT_flag_fetches,
146
147         /* Number of times the hardware didn't follow the state machine. */
148         SI_STAT_hosed_count,
149
150         /* Number of completed messages. */
151         SI_STAT_complete_transactions,
152
153         /* Number of IPMI events received from the hardware. */
154         SI_STAT_events,
155
156         /* Number of watchdog pretimeouts. */
157         SI_STAT_watchdog_pretimeouts,
158
159         /* Number of asyncronous messages received. */
160         SI_STAT_incoming_messages,
161
162
163         /* This *must* remain last, add new values above this. */
164         SI_NUM_STATS
165 };
166
167 struct smi_info {
168         int                    intf_num;
169         ipmi_smi_t             intf;
170         struct si_sm_data      *si_sm;
171         struct si_sm_handlers  *handlers;
172         enum si_type           si_type;
173         spinlock_t             si_lock;
174         spinlock_t             msg_lock;
175         struct list_head       xmit_msgs;
176         struct list_head       hp_xmit_msgs;
177         struct ipmi_smi_msg    *curr_msg;
178         enum si_intf_state     si_state;
179
180         /*
181          * Used to handle the various types of I/O that can occur with
182          * IPMI
183          */
184         struct si_sm_io io;
185         int (*io_setup)(struct smi_info *info);
186         void (*io_cleanup)(struct smi_info *info);
187         int (*irq_setup)(struct smi_info *info);
188         void (*irq_cleanup)(struct smi_info *info);
189         unsigned int io_size;
190         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
191         void (*addr_source_cleanup)(struct smi_info *info);
192         void *addr_source_data;
193
194         /*
195          * Per-OEM handler, called from handle_flags().  Returns 1
196          * when handle_flags() needs to be re-run or 0 indicating it
197          * set si_state itself.
198          */
199         int (*oem_data_avail_handler)(struct smi_info *smi_info);
200
201         /*
202          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
203          * is set to hold the flags until we are done handling everything
204          * from the flags.
205          */
206 #define RECEIVE_MSG_AVAIL       0x01
207 #define EVENT_MSG_BUFFER_FULL   0x02
208 #define WDT_PRE_TIMEOUT_INT     0x08
209 #define OEM0_DATA_AVAIL     0x20
210 #define OEM1_DATA_AVAIL     0x40
211 #define OEM2_DATA_AVAIL     0x80
212 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
213                              OEM1_DATA_AVAIL | \
214                              OEM2_DATA_AVAIL)
215         unsigned char       msg_flags;
216
217         /* Does the BMC have an event buffer? */
218         char                has_event_buffer;
219
220         /*
221          * If set to true, this will request events the next time the
222          * state machine is idle.
223          */
224         atomic_t            req_events;
225
226         /*
227          * If true, run the state machine to completion on every send
228          * call.  Generally used after a panic to make sure stuff goes
229          * out.
230          */
231         int                 run_to_completion;
232
233         /* The I/O port of an SI interface. */
234         int                 port;
235
236         /*
237          * The space between start addresses of the two ports.  For
238          * instance, if the first port is 0xca2 and the spacing is 4, then
239          * the second port is 0xca6.
240          */
241         unsigned int        spacing;
242
243         /* zero if no irq; */
244         int                 irq;
245
246         /* The timer for this si. */
247         struct timer_list   si_timer;
248
249         /* The time (in jiffies) the last timeout occurred at. */
250         unsigned long       last_timeout_jiffies;
251
252         /* Used to gracefully stop the timer without race conditions. */
253         atomic_t            stop_operation;
254
255         /*
256          * The driver will disable interrupts when it gets into a
257          * situation where it cannot handle messages due to lack of
258          * memory.  Once that situation clears up, it will re-enable
259          * interrupts.
260          */
261         int interrupt_disabled;
262
263         /* From the get device id response... */
264         struct ipmi_device_id device_id;
265
266         /* Driver model stuff. */
267         struct device *dev;
268         struct platform_device *pdev;
269
270         /*
271          * True if we allocated the device, false if it came from
272          * someplace else (like PCI).
273          */
274         int dev_registered;
275
276         /* Slave address, could be reported from DMI. */
277         unsigned char slave_addr;
278
279         /* Counters and things for the proc filesystem. */
280         atomic_t stats[SI_NUM_STATS];
281
282         struct task_struct *thread;
283
284         struct list_head link;
285         union ipmi_smi_info_union addr_info;
286 };
287
288 #define smi_inc_stat(smi, stat) \
289         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292
293 #define SI_MAX_PARMS 4
294
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297 #ifdef CONFIG_PCI
298 static int pci_registered;
299 #endif
300 #ifdef CONFIG_ACPI
301 static int pnp_registered;
302 #endif
303
304 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
305 static int num_max_busy_us;
306
307 static int unload_when_empty = 1;
308
309 static int add_smi(struct smi_info *smi);
310 static int try_smi_init(struct smi_info *smi);
311 static void cleanup_one_si(struct smi_info *to_clean);
312 static void cleanup_ipmi_si(void);
313
314 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
315 static int register_xaction_notifier(struct notifier_block *nb)
316 {
317         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
318 }
319
320 static void deliver_recv_msg(struct smi_info *smi_info,
321                              struct ipmi_smi_msg *msg)
322 {
323         /* Deliver the message to the upper layer with the lock
324            released. */
325
326         if (smi_info->run_to_completion) {
327                 ipmi_smi_msg_received(smi_info->intf, msg);
328         } else {
329                 spin_unlock(&(smi_info->si_lock));
330                 ipmi_smi_msg_received(smi_info->intf, msg);
331                 spin_lock(&(smi_info->si_lock));
332         }
333 }
334
335 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
336 {
337         struct ipmi_smi_msg *msg = smi_info->curr_msg;
338
339         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
340                 cCode = IPMI_ERR_UNSPECIFIED;
341         /* else use it as is */
342
343         /* Make it a response */
344         msg->rsp[0] = msg->data[0] | 4;
345         msg->rsp[1] = msg->data[1];
346         msg->rsp[2] = cCode;
347         msg->rsp_size = 3;
348
349         smi_info->curr_msg = NULL;
350         deliver_recv_msg(smi_info, msg);
351 }
352
353 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
354 {
355         int              rv;
356         struct list_head *entry = NULL;
357 #ifdef DEBUG_TIMING
358         struct timeval t;
359 #endif
360
361         /*
362          * No need to save flags, we aleady have interrupts off and we
363          * already hold the SMI lock.
364          */
365         if (!smi_info->run_to_completion)
366                 spin_lock(&(smi_info->msg_lock));
367
368         /* Pick the high priority queue first. */
369         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
370                 entry = smi_info->hp_xmit_msgs.next;
371         } else if (!list_empty(&(smi_info->xmit_msgs))) {
372                 entry = smi_info->xmit_msgs.next;
373         }
374
375         if (!entry) {
376                 smi_info->curr_msg = NULL;
377                 rv = SI_SM_IDLE;
378         } else {
379                 int err;
380
381                 list_del(entry);
382                 smi_info->curr_msg = list_entry(entry,
383                                                 struct ipmi_smi_msg,
384                                                 link);
385 #ifdef DEBUG_TIMING
386                 do_gettimeofday(&t);
387                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
388 #endif
389                 err = atomic_notifier_call_chain(&xaction_notifier_list,
390                                 0, smi_info);
391                 if (err & NOTIFY_STOP_MASK) {
392                         rv = SI_SM_CALL_WITHOUT_DELAY;
393                         goto out;
394                 }
395                 err = smi_info->handlers->start_transaction(
396                         smi_info->si_sm,
397                         smi_info->curr_msg->data,
398                         smi_info->curr_msg->data_size);
399                 if (err)
400                         return_hosed_msg(smi_info, err);
401
402                 rv = SI_SM_CALL_WITHOUT_DELAY;
403         }
404  out:
405         if (!smi_info->run_to_completion)
406                 spin_unlock(&(smi_info->msg_lock));
407
408         return rv;
409 }
410
411 static void start_enable_irq(struct smi_info *smi_info)
412 {
413         unsigned char msg[2];
414
415         /*
416          * If we are enabling interrupts, we have to tell the
417          * BMC to use them.
418          */
419         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
420         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
421
422         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
423         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
424 }
425
426 static void start_disable_irq(struct smi_info *smi_info)
427 {
428         unsigned char msg[2];
429
430         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
432
433         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
434         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
435 }
436
437 static void start_clear_flags(struct smi_info *smi_info)
438 {
439         unsigned char msg[3];
440
441         /* Make sure the watchdog pre-timeout flag is not set at startup. */
442         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
444         msg[2] = WDT_PRE_TIMEOUT_INT;
445
446         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
447         smi_info->si_state = SI_CLEARING_FLAGS;
448 }
449
450 /*
451  * When we have a situtaion where we run out of memory and cannot
452  * allocate messages, we just leave them in the BMC and run the system
453  * polled until we can allocate some memory.  Once we have some
454  * memory, we will re-enable the interrupt.
455  */
456 static inline void disable_si_irq(struct smi_info *smi_info)
457 {
458         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
459                 start_disable_irq(smi_info);
460                 smi_info->interrupt_disabled = 1;
461                 if (!atomic_read(&smi_info->stop_operation))
462                         mod_timer(&smi_info->si_timer,
463                                   jiffies + SI_TIMEOUT_JIFFIES);
464         }
465 }
466
467 static inline void enable_si_irq(struct smi_info *smi_info)
468 {
469         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
470                 start_enable_irq(smi_info);
471                 smi_info->interrupt_disabled = 0;
472         }
473 }
474
475 static void handle_flags(struct smi_info *smi_info)
476 {
477  retry:
478         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
479                 /* Watchdog pre-timeout */
480                 smi_inc_stat(smi_info, watchdog_pretimeouts);
481
482                 start_clear_flags(smi_info);
483                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
484                 spin_unlock(&(smi_info->si_lock));
485                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
486                 spin_lock(&(smi_info->si_lock));
487         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
488                 /* Messages available. */
489                 smi_info->curr_msg = ipmi_alloc_smi_msg();
490                 if (!smi_info->curr_msg) {
491                         disable_si_irq(smi_info);
492                         smi_info->si_state = SI_NORMAL;
493                         return;
494                 }
495                 enable_si_irq(smi_info);
496
497                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
498                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
499                 smi_info->curr_msg->data_size = 2;
500
501                 smi_info->handlers->start_transaction(
502                         smi_info->si_sm,
503                         smi_info->curr_msg->data,
504                         smi_info->curr_msg->data_size);
505                 smi_info->si_state = SI_GETTING_MESSAGES;
506         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
507                 /* Events available. */
508                 smi_info->curr_msg = ipmi_alloc_smi_msg();
509                 if (!smi_info->curr_msg) {
510                         disable_si_irq(smi_info);
511                         smi_info->si_state = SI_NORMAL;
512                         return;
513                 }
514                 enable_si_irq(smi_info);
515
516                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
517                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
518                 smi_info->curr_msg->data_size = 2;
519
520                 smi_info->handlers->start_transaction(
521                         smi_info->si_sm,
522                         smi_info->curr_msg->data,
523                         smi_info->curr_msg->data_size);
524                 smi_info->si_state = SI_GETTING_EVENTS;
525         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
526                    smi_info->oem_data_avail_handler) {
527                 if (smi_info->oem_data_avail_handler(smi_info))
528                         goto retry;
529         } else
530                 smi_info->si_state = SI_NORMAL;
531 }
532
533 static void handle_transaction_done(struct smi_info *smi_info)
534 {
535         struct ipmi_smi_msg *msg;
536 #ifdef DEBUG_TIMING
537         struct timeval t;
538
539         do_gettimeofday(&t);
540         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
541 #endif
542         switch (smi_info->si_state) {
543         case SI_NORMAL:
544                 if (!smi_info->curr_msg)
545                         break;
546
547                 smi_info->curr_msg->rsp_size
548                         = smi_info->handlers->get_result(
549                                 smi_info->si_sm,
550                                 smi_info->curr_msg->rsp,
551                                 IPMI_MAX_MSG_LENGTH);
552
553                 /*
554                  * Do this here becase deliver_recv_msg() releases the
555                  * lock, and a new message can be put in during the
556                  * time the lock is released.
557                  */
558                 msg = smi_info->curr_msg;
559                 smi_info->curr_msg = NULL;
560                 deliver_recv_msg(smi_info, msg);
561                 break;
562
563         case SI_GETTING_FLAGS:
564         {
565                 unsigned char msg[4];
566                 unsigned int  len;
567
568                 /* We got the flags from the SMI, now handle them. */
569                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
570                 if (msg[2] != 0) {
571                         /* Error fetching flags, just give up for now. */
572                         smi_info->si_state = SI_NORMAL;
573                 } else if (len < 4) {
574                         /*
575                          * Hmm, no flags.  That's technically illegal, but
576                          * don't use uninitialized data.
577                          */
578                         smi_info->si_state = SI_NORMAL;
579                 } else {
580                         smi_info->msg_flags = msg[3];
581                         handle_flags(smi_info);
582                 }
583                 break;
584         }
585
586         case SI_CLEARING_FLAGS:
587         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
588         {
589                 unsigned char msg[3];
590
591                 /* We cleared the flags. */
592                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
593                 if (msg[2] != 0) {
594                         /* Error clearing flags */
595                         dev_warn(smi_info->dev,
596                                  "Error clearing flags: %2.2x\n", msg[2]);
597                 }
598                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
599                         start_enable_irq(smi_info);
600                 else
601                         smi_info->si_state = SI_NORMAL;
602                 break;
603         }
604
605         case SI_GETTING_EVENTS:
606         {
607                 smi_info->curr_msg->rsp_size
608                         = smi_info->handlers->get_result(
609                                 smi_info->si_sm,
610                                 smi_info->curr_msg->rsp,
611                                 IPMI_MAX_MSG_LENGTH);
612
613                 /*
614                  * Do this here becase deliver_recv_msg() releases the
615                  * lock, and a new message can be put in during the
616                  * time the lock is released.
617                  */
618                 msg = smi_info->curr_msg;
619                 smi_info->curr_msg = NULL;
620                 if (msg->rsp[2] != 0) {
621                         /* Error getting event, probably done. */
622                         msg->done(msg);
623
624                         /* Take off the event flag. */
625                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
626                         handle_flags(smi_info);
627                 } else {
628                         smi_inc_stat(smi_info, events);
629
630                         /*
631                          * Do this before we deliver the message
632                          * because delivering the message releases the
633                          * lock and something else can mess with the
634                          * state.
635                          */
636                         handle_flags(smi_info);
637
638                         deliver_recv_msg(smi_info, msg);
639                 }
640                 break;
641         }
642
643         case SI_GETTING_MESSAGES:
644         {
645                 smi_info->curr_msg->rsp_size
646                         = smi_info->handlers->get_result(
647                                 smi_info->si_sm,
648                                 smi_info->curr_msg->rsp,
649                                 IPMI_MAX_MSG_LENGTH);
650
651                 /*
652                  * Do this here becase deliver_recv_msg() releases the
653                  * lock, and a new message can be put in during the
654                  * time the lock is released.
655                  */
656                 msg = smi_info->curr_msg;
657                 smi_info->curr_msg = NULL;
658                 if (msg->rsp[2] != 0) {
659                         /* Error getting event, probably done. */
660                         msg->done(msg);
661
662                         /* Take off the msg flag. */
663                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
664                         handle_flags(smi_info);
665                 } else {
666                         smi_inc_stat(smi_info, incoming_messages);
667
668                         /*
669                          * Do this before we deliver the message
670                          * because delivering the message releases the
671                          * lock and something else can mess with the
672                          * state.
673                          */
674                         handle_flags(smi_info);
675
676                         deliver_recv_msg(smi_info, msg);
677                 }
678                 break;
679         }
680
681         case SI_ENABLE_INTERRUPTS1:
682         {
683                 unsigned char msg[4];
684
685                 /* We got the flags from the SMI, now handle them. */
686                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
687                 if (msg[2] != 0) {
688                         dev_warn(smi_info->dev, "Could not enable interrupts"
689                                  ", failed get, using polled mode.\n");
690                         smi_info->si_state = SI_NORMAL;
691                 } else {
692                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
693                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
694                         msg[2] = (msg[3] |
695                                   IPMI_BMC_RCV_MSG_INTR |
696                                   IPMI_BMC_EVT_MSG_INTR);
697                         smi_info->handlers->start_transaction(
698                                 smi_info->si_sm, msg, 3);
699                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
700                 }
701                 break;
702         }
703
704         case SI_ENABLE_INTERRUPTS2:
705         {
706                 unsigned char msg[4];
707
708                 /* We got the flags from the SMI, now handle them. */
709                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
710                 if (msg[2] != 0)
711                         dev_warn(smi_info->dev, "Could not enable interrupts"
712                                  ", failed set, using polled mode.\n");
713                 else
714                         smi_info->interrupt_disabled = 0;
715                 smi_info->si_state = SI_NORMAL;
716                 break;
717         }
718
719         case SI_DISABLE_INTERRUPTS1:
720         {
721                 unsigned char msg[4];
722
723                 /* We got the flags from the SMI, now handle them. */
724                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
725                 if (msg[2] != 0) {
726                         dev_warn(smi_info->dev, "Could not disable interrupts"
727                                  ", failed get.\n");
728                         smi_info->si_state = SI_NORMAL;
729                 } else {
730                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
731                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
732                         msg[2] = (msg[3] &
733                                   ~(IPMI_BMC_RCV_MSG_INTR |
734                                     IPMI_BMC_EVT_MSG_INTR));
735                         smi_info->handlers->start_transaction(
736                                 smi_info->si_sm, msg, 3);
737                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
738                 }
739                 break;
740         }
741
742         case SI_DISABLE_INTERRUPTS2:
743         {
744                 unsigned char msg[4];
745
746                 /* We got the flags from the SMI, now handle them. */
747                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
748                 if (msg[2] != 0) {
749                         dev_warn(smi_info->dev, "Could not disable interrupts"
750                                  ", failed set.\n");
751                 }
752                 smi_info->si_state = SI_NORMAL;
753                 break;
754         }
755         }
756 }
757
758 /*
759  * Called on timeouts and events.  Timeouts should pass the elapsed
760  * time, interrupts should pass in zero.  Must be called with
761  * si_lock held and interrupts disabled.
762  */
763 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
764                                            int time)
765 {
766         enum si_sm_result si_sm_result;
767
768  restart:
769         /*
770          * There used to be a loop here that waited a little while
771          * (around 25us) before giving up.  That turned out to be
772          * pointless, the minimum delays I was seeing were in the 300us
773          * range, which is far too long to wait in an interrupt.  So
774          * we just run until the state machine tells us something
775          * happened or it needs a delay.
776          */
777         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
778         time = 0;
779         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
780                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
781
782         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
783                 smi_inc_stat(smi_info, complete_transactions);
784
785                 handle_transaction_done(smi_info);
786                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
787         } else if (si_sm_result == SI_SM_HOSED) {
788                 smi_inc_stat(smi_info, hosed_count);
789
790                 /*
791                  * Do the before return_hosed_msg, because that
792                  * releases the lock.
793                  */
794                 smi_info->si_state = SI_NORMAL;
795                 if (smi_info->curr_msg != NULL) {
796                         /*
797                          * If we were handling a user message, format
798                          * a response to send to the upper layer to
799                          * tell it about the error.
800                          */
801                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
802                 }
803                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
804         }
805
806         /*
807          * We prefer handling attn over new messages.  But don't do
808          * this if there is not yet an upper layer to handle anything.
809          */
810         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
811                 unsigned char msg[2];
812
813                 smi_inc_stat(smi_info, attentions);
814
815                 /*
816                  * Got a attn, send down a get message flags to see
817                  * what's causing it.  It would be better to handle
818                  * this in the upper layer, but due to the way
819                  * interrupts work with the SMI, that's not really
820                  * possible.
821                  */
822                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
823                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
824
825                 smi_info->handlers->start_transaction(
826                         smi_info->si_sm, msg, 2);
827                 smi_info->si_state = SI_GETTING_FLAGS;
828                 goto restart;
829         }
830
831         /* If we are currently idle, try to start the next message. */
832         if (si_sm_result == SI_SM_IDLE) {
833                 smi_inc_stat(smi_info, idles);
834
835                 si_sm_result = start_next_msg(smi_info);
836                 if (si_sm_result != SI_SM_IDLE)
837                         goto restart;
838         }
839
840         if ((si_sm_result == SI_SM_IDLE)
841             && (atomic_read(&smi_info->req_events))) {
842                 /*
843                  * We are idle and the upper layer requested that I fetch
844                  * events, so do so.
845                  */
846                 atomic_set(&smi_info->req_events, 0);
847
848                 smi_info->curr_msg = ipmi_alloc_smi_msg();
849                 if (!smi_info->curr_msg)
850                         goto out;
851
852                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
853                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
854                 smi_info->curr_msg->data_size = 2;
855
856                 smi_info->handlers->start_transaction(
857                         smi_info->si_sm,
858                         smi_info->curr_msg->data,
859                         smi_info->curr_msg->data_size);
860                 smi_info->si_state = SI_GETTING_EVENTS;
861                 goto restart;
862         }
863  out:
864         return si_sm_result;
865 }
866
867 static void sender(void                *send_info,
868                    struct ipmi_smi_msg *msg,
869                    int                 priority)
870 {
871         struct smi_info   *smi_info = send_info;
872         enum si_sm_result result;
873         unsigned long     flags;
874 #ifdef DEBUG_TIMING
875         struct timeval    t;
876 #endif
877
878         if (atomic_read(&smi_info->stop_operation)) {
879                 msg->rsp[0] = msg->data[0] | 4;
880                 msg->rsp[1] = msg->data[1];
881                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
882                 msg->rsp_size = 3;
883                 deliver_recv_msg(smi_info, msg);
884                 return;
885         }
886
887 #ifdef DEBUG_TIMING
888         do_gettimeofday(&t);
889         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
890 #endif
891
892         /*
893          * last_timeout_jiffies is updated here to avoid
894          * smi_timeout() handler passing very large time_diff
895          * value to smi_event_handler() that causes
896          * the send command to abort.
897          */
898         smi_info->last_timeout_jiffies = jiffies;
899
900         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
901
902         if (smi_info->thread)
903                 wake_up_process(smi_info->thread);
904
905         if (smi_info->run_to_completion) {
906                 /*
907                  * If we are running to completion, then throw it in
908                  * the list and run transactions until everything is
909                  * clear.  Priority doesn't matter here.
910                  */
911
912                 /*
913                  * Run to completion means we are single-threaded, no
914                  * need for locks.
915                  */
916                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
917
918                 result = smi_event_handler(smi_info, 0);
919                 while (result != SI_SM_IDLE) {
920                         udelay(SI_SHORT_TIMEOUT_USEC);
921                         result = smi_event_handler(smi_info,
922                                                    SI_SHORT_TIMEOUT_USEC);
923                 }
924                 return;
925         }
926
927         spin_lock_irqsave(&smi_info->msg_lock, flags);
928         if (priority > 0)
929                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
930         else
931                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
932         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
933
934         spin_lock_irqsave(&smi_info->si_lock, flags);
935         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
936                 start_next_msg(smi_info);
937         spin_unlock_irqrestore(&smi_info->si_lock, flags);
938 }
939
940 static void set_run_to_completion(void *send_info, int i_run_to_completion)
941 {
942         struct smi_info   *smi_info = send_info;
943         enum si_sm_result result;
944
945         smi_info->run_to_completion = i_run_to_completion;
946         if (i_run_to_completion) {
947                 result = smi_event_handler(smi_info, 0);
948                 while (result != SI_SM_IDLE) {
949                         udelay(SI_SHORT_TIMEOUT_USEC);
950                         result = smi_event_handler(smi_info,
951                                                    SI_SHORT_TIMEOUT_USEC);
952                 }
953         }
954 }
955
956 /*
957  * Use -1 in the nsec value of the busy waiting timespec to tell that
958  * we are spinning in kipmid looking for something and not delaying
959  * between checks
960  */
961 static inline void ipmi_si_set_not_busy(struct timespec *ts)
962 {
963         ts->tv_nsec = -1;
964 }
965 static inline int ipmi_si_is_busy(struct timespec *ts)
966 {
967         return ts->tv_nsec != -1;
968 }
969
970 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
971                                  const struct smi_info *smi_info,
972                                  struct timespec *busy_until)
973 {
974         unsigned int max_busy_us = 0;
975
976         if (smi_info->intf_num < num_max_busy_us)
977                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
978         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
979                 ipmi_si_set_not_busy(busy_until);
980         else if (!ipmi_si_is_busy(busy_until)) {
981                 getnstimeofday(busy_until);
982                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
983         } else {
984                 struct timespec now;
985                 getnstimeofday(&now);
986                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
987                         ipmi_si_set_not_busy(busy_until);
988                         return 0;
989                 }
990         }
991         return 1;
992 }
993
994
995 /*
996  * A busy-waiting loop for speeding up IPMI operation.
997  *
998  * Lousy hardware makes this hard.  This is only enabled for systems
999  * that are not BT and do not have interrupts.  It starts spinning
1000  * when an operation is complete or until max_busy tells it to stop
1001  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1002  * Documentation/IPMI.txt for details.
1003  */
1004 static int ipmi_thread(void *data)
1005 {
1006         struct smi_info *smi_info = data;
1007         unsigned long flags;
1008         enum si_sm_result smi_result;
1009         struct timespec busy_until;
1010
1011         ipmi_si_set_not_busy(&busy_until);
1012         set_user_nice(current, 19);
1013         while (!kthread_should_stop()) {
1014                 int busy_wait;
1015
1016                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1017                 smi_result = smi_event_handler(smi_info, 0);
1018                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1019                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1020                                                   &busy_until);
1021                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1022                         ; /* do nothing */
1023                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1024                         schedule();
1025                 else if (smi_result == SI_SM_IDLE)
1026                         schedule_timeout_interruptible(100);
1027                 else
1028                         schedule_timeout_interruptible(1);
1029         }
1030         return 0;
1031 }
1032
1033
1034 static void poll(void *send_info)
1035 {
1036         struct smi_info *smi_info = send_info;
1037         unsigned long flags;
1038
1039         /*
1040          * Make sure there is some delay in the poll loop so we can
1041          * drive time forward and timeout things.
1042          */
1043         udelay(10);
1044         spin_lock_irqsave(&smi_info->si_lock, flags);
1045         smi_event_handler(smi_info, 10);
1046         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1047 }
1048
1049 static void request_events(void *send_info)
1050 {
1051         struct smi_info *smi_info = send_info;
1052
1053         if (atomic_read(&smi_info->stop_operation) ||
1054                                 !smi_info->has_event_buffer)
1055                 return;
1056
1057         atomic_set(&smi_info->req_events, 1);
1058 }
1059
1060 static int initialized;
1061
1062 static void smi_timeout(unsigned long data)
1063 {
1064         struct smi_info   *smi_info = (struct smi_info *) data;
1065         enum si_sm_result smi_result;
1066         unsigned long     flags;
1067         unsigned long     jiffies_now;
1068         long              time_diff;
1069         long              timeout;
1070 #ifdef DEBUG_TIMING
1071         struct timeval    t;
1072 #endif
1073
1074         spin_lock_irqsave(&(smi_info->si_lock), flags);
1075 #ifdef DEBUG_TIMING
1076         do_gettimeofday(&t);
1077         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1078 #endif
1079         jiffies_now = jiffies;
1080         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1081                      * SI_USEC_PER_JIFFY);
1082         smi_result = smi_event_handler(smi_info, time_diff);
1083
1084         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1085
1086         smi_info->last_timeout_jiffies = jiffies_now;
1087
1088         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1089                 /* Running with interrupts, only do long timeouts. */
1090                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1091                 smi_inc_stat(smi_info, long_timeouts);
1092                 goto do_mod_timer;
1093         }
1094
1095         /*
1096          * If the state machine asks for a short delay, then shorten
1097          * the timer timeout.
1098          */
1099         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1100                 smi_inc_stat(smi_info, short_timeouts);
1101                 timeout = jiffies + 1;
1102         } else {
1103                 smi_inc_stat(smi_info, long_timeouts);
1104                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1105         }
1106
1107  do_mod_timer:
1108         if (smi_result != SI_SM_IDLE)
1109                 mod_timer(&(smi_info->si_timer), timeout);
1110 }
1111
1112 static irqreturn_t si_irq_handler(int irq, void *data)
1113 {
1114         struct smi_info *smi_info = data;
1115         unsigned long   flags;
1116 #ifdef DEBUG_TIMING
1117         struct timeval  t;
1118 #endif
1119
1120         spin_lock_irqsave(&(smi_info->si_lock), flags);
1121
1122         smi_inc_stat(smi_info, interrupts);
1123
1124 #ifdef DEBUG_TIMING
1125         do_gettimeofday(&t);
1126         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1127 #endif
1128         smi_event_handler(smi_info, 0);
1129         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1130         return IRQ_HANDLED;
1131 }
1132
1133 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1134 {
1135         struct smi_info *smi_info = data;
1136         /* We need to clear the IRQ flag for the BT interface. */
1137         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1138                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1139                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1140         return si_irq_handler(irq, data);
1141 }
1142
1143 static int smi_start_processing(void       *send_info,
1144                                 ipmi_smi_t intf)
1145 {
1146         struct smi_info *new_smi = send_info;
1147         int             enable = 0;
1148
1149         new_smi->intf = intf;
1150
1151         /* Try to claim any interrupts. */
1152         if (new_smi->irq_setup)
1153                 new_smi->irq_setup(new_smi);
1154
1155         /* Set up the timer that drives the interface. */
1156         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1157         new_smi->last_timeout_jiffies = jiffies;
1158         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1159
1160         /*
1161          * Check if the user forcefully enabled the daemon.
1162          */
1163         if (new_smi->intf_num < num_force_kipmid)
1164                 enable = force_kipmid[new_smi->intf_num];
1165         /*
1166          * The BT interface is efficient enough to not need a thread,
1167          * and there is no need for a thread if we have interrupts.
1168          */
1169         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1170                 enable = 1;
1171
1172         if (enable) {
1173                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1174                                               "kipmi%d", new_smi->intf_num);
1175                 if (IS_ERR(new_smi->thread)) {
1176                         dev_notice(new_smi->dev, "Could not start"
1177                                    " kernel thread due to error %ld, only using"
1178                                    " timers to drive the interface\n",
1179                                    PTR_ERR(new_smi->thread));
1180                         new_smi->thread = NULL;
1181                 }
1182         }
1183
1184         return 0;
1185 }
1186
1187 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1188 {
1189         struct smi_info *smi = send_info;
1190
1191         data->addr_src = smi->addr_source;
1192         data->dev = smi->dev;
1193         data->addr_info = smi->addr_info;
1194         get_device(smi->dev);
1195
1196         return 0;
1197 }
1198
1199 static void set_maintenance_mode(void *send_info, int enable)
1200 {
1201         struct smi_info   *smi_info = send_info;
1202
1203         if (!enable)
1204                 atomic_set(&smi_info->req_events, 0);
1205 }
1206
1207 static struct ipmi_smi_handlers handlers = {
1208         .owner                  = THIS_MODULE,
1209         .start_processing       = smi_start_processing,
1210         .get_smi_info           = get_smi_info,
1211         .sender                 = sender,
1212         .request_events         = request_events,
1213         .set_maintenance_mode   = set_maintenance_mode,
1214         .set_run_to_completion  = set_run_to_completion,
1215         .poll                   = poll,
1216 };
1217
1218 /*
1219  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1220  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1221  */
1222
1223 static LIST_HEAD(smi_infos);
1224 static DEFINE_MUTEX(smi_infos_lock);
1225 static int smi_num; /* Used to sequence the SMIs */
1226
1227 #define DEFAULT_REGSPACING      1
1228 #define DEFAULT_REGSIZE         1
1229
1230 static bool          si_trydefaults = 1;
1231 static char          *si_type[SI_MAX_PARMS];
1232 #define MAX_SI_TYPE_STR 30
1233 static char          si_type_str[MAX_SI_TYPE_STR];
1234 static unsigned long addrs[SI_MAX_PARMS];
1235 static unsigned int num_addrs;
1236 static unsigned int  ports[SI_MAX_PARMS];
1237 static unsigned int num_ports;
1238 static int           irqs[SI_MAX_PARMS];
1239 static unsigned int num_irqs;
1240 static int           regspacings[SI_MAX_PARMS];
1241 static unsigned int num_regspacings;
1242 static int           regsizes[SI_MAX_PARMS];
1243 static unsigned int num_regsizes;
1244 static int           regshifts[SI_MAX_PARMS];
1245 static unsigned int num_regshifts;
1246 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1247 static unsigned int num_slave_addrs;
1248
1249 #define IPMI_IO_ADDR_SPACE  0
1250 #define IPMI_MEM_ADDR_SPACE 1
1251 static char *addr_space_to_str[] = { "i/o", "mem" };
1252
1253 static int hotmod_handler(const char *val, struct kernel_param *kp);
1254
1255 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1256 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1257                  " Documentation/IPMI.txt in the kernel sources for the"
1258                  " gory details.");
1259
1260 module_param_named(trydefaults, si_trydefaults, bool, 0);
1261 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1262                  " default scan of the KCS and SMIC interface at the standard"
1263                  " address");
1264 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1265 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1266                  " interface separated by commas.  The types are 'kcs',"
1267                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1268                  " the first interface to kcs and the second to bt");
1269 module_param_array(addrs, ulong, &num_addrs, 0);
1270 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1271                  " addresses separated by commas.  Only use if an interface"
1272                  " is in memory.  Otherwise, set it to zero or leave"
1273                  " it blank.");
1274 module_param_array(ports, uint, &num_ports, 0);
1275 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1276                  " addresses separated by commas.  Only use if an interface"
1277                  " is a port.  Otherwise, set it to zero or leave"
1278                  " it blank.");
1279 module_param_array(irqs, int, &num_irqs, 0);
1280 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1281                  " addresses separated by commas.  Only use if an interface"
1282                  " has an interrupt.  Otherwise, set it to zero or leave"
1283                  " it blank.");
1284 module_param_array(regspacings, int, &num_regspacings, 0);
1285 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1286                  " and each successive register used by the interface.  For"
1287                  " instance, if the start address is 0xca2 and the spacing"
1288                  " is 2, then the second address is at 0xca4.  Defaults"
1289                  " to 1.");
1290 module_param_array(regsizes, int, &num_regsizes, 0);
1291 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1292                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1293                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1294                  " the 8-bit IPMI register has to be read from a larger"
1295                  " register.");
1296 module_param_array(regshifts, int, &num_regshifts, 0);
1297 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1298                  " IPMI register, in bits.  For instance, if the data"
1299                  " is read from a 32-bit word and the IPMI data is in"
1300                  " bit 8-15, then the shift would be 8");
1301 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1302 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1303                  " the controller.  Normally this is 0x20, but can be"
1304                  " overridden by this parm.  This is an array indexed"
1305                  " by interface number.");
1306 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1307 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1308                  " disabled(0).  Normally the IPMI driver auto-detects"
1309                  " this, but the value may be overridden by this parm.");
1310 module_param(unload_when_empty, int, 0);
1311 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1312                  " specified or found, default is 1.  Setting to 0"
1313                  " is useful for hot add of devices using hotmod.");
1314 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1315 MODULE_PARM_DESC(kipmid_max_busy_us,
1316                  "Max time (in microseconds) to busy-wait for IPMI data before"
1317                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1318                  " if kipmid is using up a lot of CPU time.");
1319
1320
1321 static void std_irq_cleanup(struct smi_info *info)
1322 {
1323         if (info->si_type == SI_BT)
1324                 /* Disable the interrupt in the BT interface. */
1325                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1326         free_irq(info->irq, info);
1327 }
1328
1329 static int std_irq_setup(struct smi_info *info)
1330 {
1331         int rv;
1332
1333         if (!info->irq)
1334                 return 0;
1335
1336         if (info->si_type == SI_BT) {
1337                 rv = request_irq(info->irq,
1338                                  si_bt_irq_handler,
1339                                  IRQF_SHARED | IRQF_DISABLED,
1340                                  DEVICE_NAME,
1341                                  info);
1342                 if (!rv)
1343                         /* Enable the interrupt in the BT interface. */
1344                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1345                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1346         } else
1347                 rv = request_irq(info->irq,
1348                                  si_irq_handler,
1349                                  IRQF_SHARED | IRQF_DISABLED,
1350                                  DEVICE_NAME,
1351                                  info);
1352         if (rv) {
1353                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1354                          " running polled\n",
1355                          DEVICE_NAME, info->irq);
1356                 info->irq = 0;
1357         } else {
1358                 info->irq_cleanup = std_irq_cleanup;
1359                 dev_info(info->dev, "Using irq %d\n", info->irq);
1360         }
1361
1362         return rv;
1363 }
1364
1365 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1366 {
1367         unsigned int addr = io->addr_data;
1368
1369         return inb(addr + (offset * io->regspacing));
1370 }
1371
1372 static void port_outb(struct si_sm_io *io, unsigned int offset,
1373                       unsigned char b)
1374 {
1375         unsigned int addr = io->addr_data;
1376
1377         outb(b, addr + (offset * io->regspacing));
1378 }
1379
1380 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1381 {
1382         unsigned int addr = io->addr_data;
1383
1384         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1385 }
1386
1387 static void port_outw(struct si_sm_io *io, unsigned int offset,
1388                       unsigned char b)
1389 {
1390         unsigned int addr = io->addr_data;
1391
1392         outw(b << io->regshift, addr + (offset * io->regspacing));
1393 }
1394
1395 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1396 {
1397         unsigned int addr = io->addr_data;
1398
1399         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1400 }
1401
1402 static void port_outl(struct si_sm_io *io, unsigned int offset,
1403                       unsigned char b)
1404 {
1405         unsigned int addr = io->addr_data;
1406
1407         outl(b << io->regshift, addr+(offset * io->regspacing));
1408 }
1409
1410 static void port_cleanup(struct smi_info *info)
1411 {
1412         unsigned int addr = info->io.addr_data;
1413         int          idx;
1414
1415         if (addr) {
1416                 for (idx = 0; idx < info->io_size; idx++)
1417                         release_region(addr + idx * info->io.regspacing,
1418                                        info->io.regsize);
1419         }
1420 }
1421
1422 static int port_setup(struct smi_info *info)
1423 {
1424         unsigned int addr = info->io.addr_data;
1425         int          idx;
1426
1427         if (!addr)
1428                 return -ENODEV;
1429
1430         info->io_cleanup = port_cleanup;
1431
1432         /*
1433          * Figure out the actual inb/inw/inl/etc routine to use based
1434          * upon the register size.
1435          */
1436         switch (info->io.regsize) {
1437         case 1:
1438                 info->io.inputb = port_inb;
1439                 info->io.outputb = port_outb;
1440                 break;
1441         case 2:
1442                 info->io.inputb = port_inw;
1443                 info->io.outputb = port_outw;
1444                 break;
1445         case 4:
1446                 info->io.inputb = port_inl;
1447                 info->io.outputb = port_outl;
1448                 break;
1449         default:
1450                 dev_warn(info->dev, "Invalid register size: %d\n",
1451                          info->io.regsize);
1452                 return -EINVAL;
1453         }
1454
1455         /*
1456          * Some BIOSes reserve disjoint I/O regions in their ACPI
1457          * tables.  This causes problems when trying to register the
1458          * entire I/O region.  Therefore we must register each I/O
1459          * port separately.
1460          */
1461         for (idx = 0; idx < info->io_size; idx++) {
1462                 if (request_region(addr + idx * info->io.regspacing,
1463                                    info->io.regsize, DEVICE_NAME) == NULL) {
1464                         /* Undo allocations */
1465                         while (idx--) {
1466                                 release_region(addr + idx * info->io.regspacing,
1467                                                info->io.regsize);
1468                         }
1469                         return -EIO;
1470                 }
1471         }
1472         return 0;
1473 }
1474
1475 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1476 {
1477         return readb((io->addr)+(offset * io->regspacing));
1478 }
1479
1480 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1481                      unsigned char b)
1482 {
1483         writeb(b, (io->addr)+(offset * io->regspacing));
1484 }
1485
1486 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1487 {
1488         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1489                 & 0xff;
1490 }
1491
1492 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1493                      unsigned char b)
1494 {
1495         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1496 }
1497
1498 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1499 {
1500         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1501                 & 0xff;
1502 }
1503
1504 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1505                      unsigned char b)
1506 {
1507         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1508 }
1509
1510 #ifdef readq
1511 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1512 {
1513         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1514                 & 0xff;
1515 }
1516
1517 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1518                      unsigned char b)
1519 {
1520         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1521 }
1522 #endif
1523
1524 static void mem_cleanup(struct smi_info *info)
1525 {
1526         unsigned long addr = info->io.addr_data;
1527         int           mapsize;
1528
1529         if (info->io.addr) {
1530                 iounmap(info->io.addr);
1531
1532                 mapsize = ((info->io_size * info->io.regspacing)
1533                            - (info->io.regspacing - info->io.regsize));
1534
1535                 release_mem_region(addr, mapsize);
1536         }
1537 }
1538
1539 static int mem_setup(struct smi_info *info)
1540 {
1541         unsigned long addr = info->io.addr_data;
1542         int           mapsize;
1543
1544         if (!addr)
1545                 return -ENODEV;
1546
1547         info->io_cleanup = mem_cleanup;
1548
1549         /*
1550          * Figure out the actual readb/readw/readl/etc routine to use based
1551          * upon the register size.
1552          */
1553         switch (info->io.regsize) {
1554         case 1:
1555                 info->io.inputb = intf_mem_inb;
1556                 info->io.outputb = intf_mem_outb;
1557                 break;
1558         case 2:
1559                 info->io.inputb = intf_mem_inw;
1560                 info->io.outputb = intf_mem_outw;
1561                 break;
1562         case 4:
1563                 info->io.inputb = intf_mem_inl;
1564                 info->io.outputb = intf_mem_outl;
1565                 break;
1566 #ifdef readq
1567         case 8:
1568                 info->io.inputb = mem_inq;
1569                 info->io.outputb = mem_outq;
1570                 break;
1571 #endif
1572         default:
1573                 dev_warn(info->dev, "Invalid register size: %d\n",
1574                          info->io.regsize);
1575                 return -EINVAL;
1576         }
1577
1578         /*
1579          * Calculate the total amount of memory to claim.  This is an
1580          * unusual looking calculation, but it avoids claiming any
1581          * more memory than it has to.  It will claim everything
1582          * between the first address to the end of the last full
1583          * register.
1584          */
1585         mapsize = ((info->io_size * info->io.regspacing)
1586                    - (info->io.regspacing - info->io.regsize));
1587
1588         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1589                 return -EIO;
1590
1591         info->io.addr = ioremap(addr, mapsize);
1592         if (info->io.addr == NULL) {
1593                 release_mem_region(addr, mapsize);
1594                 return -EIO;
1595         }
1596         return 0;
1597 }
1598
1599 /*
1600  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1601  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1602  * Options are:
1603  *   rsp=<regspacing>
1604  *   rsi=<regsize>
1605  *   rsh=<regshift>
1606  *   irq=<irq>
1607  *   ipmb=<ipmb addr>
1608  */
1609 enum hotmod_op { HM_ADD, HM_REMOVE };
1610 struct hotmod_vals {
1611         char *name;
1612         int  val;
1613 };
1614 static struct hotmod_vals hotmod_ops[] = {
1615         { "add",        HM_ADD },
1616         { "remove",     HM_REMOVE },
1617         { NULL }
1618 };
1619 static struct hotmod_vals hotmod_si[] = {
1620         { "kcs",        SI_KCS },
1621         { "smic",       SI_SMIC },
1622         { "bt",         SI_BT },
1623         { NULL }
1624 };
1625 static struct hotmod_vals hotmod_as[] = {
1626         { "mem",        IPMI_MEM_ADDR_SPACE },
1627         { "i/o",        IPMI_IO_ADDR_SPACE },
1628         { NULL }
1629 };
1630
1631 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1632 {
1633         char *s;
1634         int  i;
1635
1636         s = strchr(*curr, ',');
1637         if (!s) {
1638                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1639                 return -EINVAL;
1640         }
1641         *s = '\0';
1642         s++;
1643         for (i = 0; hotmod_ops[i].name; i++) {
1644                 if (strcmp(*curr, v[i].name) == 0) {
1645                         *val = v[i].val;
1646                         *curr = s;
1647                         return 0;
1648                 }
1649         }
1650
1651         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1652         return -EINVAL;
1653 }
1654
1655 static int check_hotmod_int_op(const char *curr, const char *option,
1656                                const char *name, int *val)
1657 {
1658         char *n;
1659
1660         if (strcmp(curr, name) == 0) {
1661                 if (!option) {
1662                         printk(KERN_WARNING PFX
1663                                "No option given for '%s'\n",
1664                                curr);
1665                         return -EINVAL;
1666                 }
1667                 *val = simple_strtoul(option, &n, 0);
1668                 if ((*n != '\0') || (*option == '\0')) {
1669                         printk(KERN_WARNING PFX
1670                                "Bad option given for '%s'\n",
1671                                curr);
1672                         return -EINVAL;
1673                 }
1674                 return 1;
1675         }
1676         return 0;
1677 }
1678
1679 static struct smi_info *smi_info_alloc(void)
1680 {
1681         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1682
1683         if (info) {
1684                 spin_lock_init(&info->si_lock);
1685                 spin_lock_init(&info->msg_lock);
1686         }
1687         return info;
1688 }
1689
1690 static int hotmod_handler(const char *val, struct kernel_param *kp)
1691 {
1692         char *str = kstrdup(val, GFP_KERNEL);
1693         int  rv;
1694         char *next, *curr, *s, *n, *o;
1695         enum hotmod_op op;
1696         enum si_type si_type;
1697         int  addr_space;
1698         unsigned long addr;
1699         int regspacing;
1700         int regsize;
1701         int regshift;
1702         int irq;
1703         int ipmb;
1704         int ival;
1705         int len;
1706         struct smi_info *info;
1707
1708         if (!str)
1709                 return -ENOMEM;
1710
1711         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1712         len = strlen(str);
1713         ival = len - 1;
1714         while ((ival >= 0) && isspace(str[ival])) {
1715                 str[ival] = '\0';
1716                 ival--;
1717         }
1718
1719         for (curr = str; curr; curr = next) {
1720                 regspacing = 1;
1721                 regsize = 1;
1722                 regshift = 0;
1723                 irq = 0;
1724                 ipmb = 0; /* Choose the default if not specified */
1725
1726                 next = strchr(curr, ':');
1727                 if (next) {
1728                         *next = '\0';
1729                         next++;
1730                 }
1731
1732                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1733                 if (rv)
1734                         break;
1735                 op = ival;
1736
1737                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1738                 if (rv)
1739                         break;
1740                 si_type = ival;
1741
1742                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1743                 if (rv)
1744                         break;
1745
1746                 s = strchr(curr, ',');
1747                 if (s) {
1748                         *s = '\0';
1749                         s++;
1750                 }
1751                 addr = simple_strtoul(curr, &n, 0);
1752                 if ((*n != '\0') || (*curr == '\0')) {
1753                         printk(KERN_WARNING PFX "Invalid hotmod address"
1754                                " '%s'\n", curr);
1755                         break;
1756                 }
1757
1758                 while (s) {
1759                         curr = s;
1760                         s = strchr(curr, ',');
1761                         if (s) {
1762                                 *s = '\0';
1763                                 s++;
1764                         }
1765                         o = strchr(curr, '=');
1766                         if (o) {
1767                                 *o = '\0';
1768                                 o++;
1769                         }
1770                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1771                         if (rv < 0)
1772                                 goto out;
1773                         else if (rv)
1774                                 continue;
1775                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1776                         if (rv < 0)
1777                                 goto out;
1778                         else if (rv)
1779                                 continue;
1780                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1781                         if (rv < 0)
1782                                 goto out;
1783                         else if (rv)
1784                                 continue;
1785                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1786                         if (rv < 0)
1787                                 goto out;
1788                         else if (rv)
1789                                 continue;
1790                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1791                         if (rv < 0)
1792                                 goto out;
1793                         else if (rv)
1794                                 continue;
1795
1796                         rv = -EINVAL;
1797                         printk(KERN_WARNING PFX
1798                                "Invalid hotmod option '%s'\n",
1799                                curr);
1800                         goto out;
1801                 }
1802
1803                 if (op == HM_ADD) {
1804                         info = smi_info_alloc();
1805                         if (!info) {
1806                                 rv = -ENOMEM;
1807                                 goto out;
1808                         }
1809
1810                         info->addr_source = SI_HOTMOD;
1811                         info->si_type = si_type;
1812                         info->io.addr_data = addr;
1813                         info->io.addr_type = addr_space;
1814                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1815                                 info->io_setup = mem_setup;
1816                         else
1817                                 info->io_setup = port_setup;
1818
1819                         info->io.addr = NULL;
1820                         info->io.regspacing = regspacing;
1821                         if (!info->io.regspacing)
1822                                 info->io.regspacing = DEFAULT_REGSPACING;
1823                         info->io.regsize = regsize;
1824                         if (!info->io.regsize)
1825                                 info->io.regsize = DEFAULT_REGSPACING;
1826                         info->io.regshift = regshift;
1827                         info->irq = irq;
1828                         if (info->irq)
1829                                 info->irq_setup = std_irq_setup;
1830                         info->slave_addr = ipmb;
1831
1832                         if (!add_smi(info)) {
1833                                 if (try_smi_init(info))
1834                                         cleanup_one_si(info);
1835                         } else {
1836                                 kfree(info);
1837                         }
1838                 } else {
1839                         /* remove */
1840                         struct smi_info *e, *tmp_e;
1841
1842                         mutex_lock(&smi_infos_lock);
1843                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1844                                 if (e->io.addr_type != addr_space)
1845                                         continue;
1846                                 if (e->si_type != si_type)
1847                                         continue;
1848                                 if (e->io.addr_data == addr)
1849                                         cleanup_one_si(e);
1850                         }
1851                         mutex_unlock(&smi_infos_lock);
1852                 }
1853         }
1854         rv = len;
1855  out:
1856         kfree(str);
1857         return rv;
1858 }
1859
1860 static int __devinit hardcode_find_bmc(void)
1861 {
1862         int ret = -ENODEV;
1863         int             i;
1864         struct smi_info *info;
1865
1866         for (i = 0; i < SI_MAX_PARMS; i++) {
1867                 if (!ports[i] && !addrs[i])
1868                         continue;
1869
1870                 info = smi_info_alloc();
1871                 if (!info)
1872                         return -ENOMEM;
1873
1874                 info->addr_source = SI_HARDCODED;
1875                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1876
1877                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1878                         info->si_type = SI_KCS;
1879                 } else if (strcmp(si_type[i], "smic") == 0) {
1880                         info->si_type = SI_SMIC;
1881                 } else if (strcmp(si_type[i], "bt") == 0) {
1882                         info->si_type = SI_BT;
1883                 } else {
1884                         printk(KERN_WARNING PFX "Interface type specified "
1885                                "for interface %d, was invalid: %s\n",
1886                                i, si_type[i]);
1887                         kfree(info);
1888                         continue;
1889                 }
1890
1891                 if (ports[i]) {
1892                         /* An I/O port */
1893                         info->io_setup = port_setup;
1894                         info->io.addr_data = ports[i];
1895                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1896                 } else if (addrs[i]) {
1897                         /* A memory port */
1898                         info->io_setup = mem_setup;
1899                         info->io.addr_data = addrs[i];
1900                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1901                 } else {
1902                         printk(KERN_WARNING PFX "Interface type specified "
1903                                "for interface %d, but port and address were "
1904                                "not set or set to zero.\n", i);
1905                         kfree(info);
1906                         continue;
1907                 }
1908
1909                 info->io.addr = NULL;
1910                 info->io.regspacing = regspacings[i];
1911                 if (!info->io.regspacing)
1912                         info->io.regspacing = DEFAULT_REGSPACING;
1913                 info->io.regsize = regsizes[i];
1914                 if (!info->io.regsize)
1915                         info->io.regsize = DEFAULT_REGSPACING;
1916                 info->io.regshift = regshifts[i];
1917                 info->irq = irqs[i];
1918                 if (info->irq)
1919                         info->irq_setup = std_irq_setup;
1920                 info->slave_addr = slave_addrs[i];
1921
1922                 if (!add_smi(info)) {
1923                         if (try_smi_init(info))
1924                                 cleanup_one_si(info);
1925                         ret = 0;
1926                 } else {
1927                         kfree(info);
1928                 }
1929         }
1930         return ret;
1931 }
1932
1933 #ifdef CONFIG_ACPI
1934
1935 #include <linux/acpi.h>
1936
1937 /*
1938  * Once we get an ACPI failure, we don't try any more, because we go
1939  * through the tables sequentially.  Once we don't find a table, there
1940  * are no more.
1941  */
1942 static int acpi_failure;
1943
1944 /* For GPE-type interrupts. */
1945 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1946         u32 gpe_number, void *context)
1947 {
1948         struct smi_info *smi_info = context;
1949         unsigned long   flags;
1950 #ifdef DEBUG_TIMING
1951         struct timeval t;
1952 #endif
1953
1954         spin_lock_irqsave(&(smi_info->si_lock), flags);
1955
1956         smi_inc_stat(smi_info, interrupts);
1957
1958 #ifdef DEBUG_TIMING
1959         do_gettimeofday(&t);
1960         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1961 #endif
1962         smi_event_handler(smi_info, 0);
1963         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1964
1965         return ACPI_INTERRUPT_HANDLED;
1966 }
1967
1968 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1969 {
1970         if (!info->irq)
1971                 return;
1972
1973         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1974 }
1975
1976 static int acpi_gpe_irq_setup(struct smi_info *info)
1977 {
1978         acpi_status status;
1979
1980         if (!info->irq)
1981                 return 0;
1982
1983         /* FIXME - is level triggered right? */
1984         status = acpi_install_gpe_handler(NULL,
1985                                           info->irq,
1986                                           ACPI_GPE_LEVEL_TRIGGERED,
1987                                           &ipmi_acpi_gpe,
1988                                           info);
1989         if (status != AE_OK) {
1990                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1991                          " running polled\n", DEVICE_NAME, info->irq);
1992                 info->irq = 0;
1993                 return -EINVAL;
1994         } else {
1995                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1996                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1997                 return 0;
1998         }
1999 }
2000
2001 /*
2002  * Defined at
2003  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2004  */
2005 struct SPMITable {
2006         s8      Signature[4];
2007         u32     Length;
2008         u8      Revision;
2009         u8      Checksum;
2010         s8      OEMID[6];
2011         s8      OEMTableID[8];
2012         s8      OEMRevision[4];
2013         s8      CreatorID[4];
2014         s8      CreatorRevision[4];
2015         u8      InterfaceType;
2016         u8      IPMIlegacy;
2017         s16     SpecificationRevision;
2018
2019         /*
2020          * Bit 0 - SCI interrupt supported
2021          * Bit 1 - I/O APIC/SAPIC
2022          */
2023         u8      InterruptType;
2024
2025         /*
2026          * If bit 0 of InterruptType is set, then this is the SCI
2027          * interrupt in the GPEx_STS register.
2028          */
2029         u8      GPE;
2030
2031         s16     Reserved;
2032
2033         /*
2034          * If bit 1 of InterruptType is set, then this is the I/O
2035          * APIC/SAPIC interrupt.
2036          */
2037         u32     GlobalSystemInterrupt;
2038
2039         /* The actual register address. */
2040         struct acpi_generic_address addr;
2041
2042         u8      UID[4];
2043
2044         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2045 };
2046
2047 static int __devinit try_init_spmi(struct SPMITable *spmi)
2048 {
2049         struct smi_info  *info;
2050
2051         if (spmi->IPMIlegacy != 1) {
2052                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2053                 return -ENODEV;
2054         }
2055
2056         info = smi_info_alloc();
2057         if (!info) {
2058                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2059                 return -ENOMEM;
2060         }
2061
2062         info->addr_source = SI_SPMI;
2063         printk(KERN_INFO PFX "probing via SPMI\n");
2064
2065         /* Figure out the interface type. */
2066         switch (spmi->InterfaceType) {
2067         case 1: /* KCS */
2068                 info->si_type = SI_KCS;
2069                 break;
2070         case 2: /* SMIC */
2071                 info->si_type = SI_SMIC;
2072                 break;
2073         case 3: /* BT */
2074                 info->si_type = SI_BT;
2075                 break;
2076         default:
2077                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2078                        spmi->InterfaceType);
2079                 kfree(info);
2080                 return -EIO;
2081         }
2082
2083         if (spmi->InterruptType & 1) {
2084                 /* We've got a GPE interrupt. */
2085                 info->irq = spmi->GPE;
2086                 info->irq_setup = acpi_gpe_irq_setup;
2087         } else if (spmi->InterruptType & 2) {
2088                 /* We've got an APIC/SAPIC interrupt. */
2089                 info->irq = spmi->GlobalSystemInterrupt;
2090                 info->irq_setup = std_irq_setup;
2091         } else {
2092                 /* Use the default interrupt setting. */
2093                 info->irq = 0;
2094                 info->irq_setup = NULL;
2095         }
2096
2097         if (spmi->addr.bit_width) {
2098                 /* A (hopefully) properly formed register bit width. */
2099                 info->io.regspacing = spmi->addr.bit_width / 8;
2100         } else {
2101                 info->io.regspacing = DEFAULT_REGSPACING;
2102         }
2103         info->io.regsize = info->io.regspacing;
2104         info->io.regshift = spmi->addr.bit_offset;
2105
2106         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2107                 info->io_setup = mem_setup;
2108                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2109         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2110                 info->io_setup = port_setup;
2111                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2112         } else {
2113                 kfree(info);
2114                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2115                 return -EIO;
2116         }
2117         info->io.addr_data = spmi->addr.address;
2118
2119         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2120                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2121                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2122                  info->irq);
2123
2124         if (add_smi(info))
2125                 kfree(info);
2126
2127         return 0;
2128 }
2129
2130 static void __devinit spmi_find_bmc(void)
2131 {
2132         acpi_status      status;
2133         struct SPMITable *spmi;
2134         int              i;
2135
2136         if (acpi_disabled)
2137                 return;
2138
2139         if (acpi_failure)
2140                 return;
2141
2142         for (i = 0; ; i++) {
2143                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2144                                         (struct acpi_table_header **)&spmi);
2145                 if (status != AE_OK)
2146                         return;
2147
2148                 try_init_spmi(spmi);
2149         }
2150 }
2151
2152 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2153                                     const struct pnp_device_id *dev_id)
2154 {
2155         struct acpi_device *acpi_dev;
2156         struct smi_info *info;
2157         struct resource *res, *res_second;
2158         acpi_handle handle;
2159         acpi_status status;
2160         unsigned long long tmp;
2161
2162         acpi_dev = pnp_acpi_device(dev);
2163         if (!acpi_dev)
2164                 return -ENODEV;
2165
2166         info = smi_info_alloc();
2167         if (!info)
2168                 return -ENOMEM;
2169
2170         info->addr_source = SI_ACPI;
2171         printk(KERN_INFO PFX "probing via ACPI\n");
2172
2173         handle = acpi_dev->handle;
2174         info->addr_info.acpi_info.acpi_handle = handle;
2175
2176         /* _IFT tells us the interface type: KCS, BT, etc */
2177         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2178         if (ACPI_FAILURE(status))
2179                 goto err_free;
2180
2181         switch (tmp) {
2182         case 1:
2183                 info->si_type = SI_KCS;
2184                 break;
2185         case 2:
2186                 info->si_type = SI_SMIC;
2187                 break;
2188         case 3:
2189                 info->si_type = SI_BT;
2190                 break;
2191         default:
2192                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2193                 goto err_free;
2194         }
2195
2196         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2197         if (res) {
2198                 info->io_setup = port_setup;
2199                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2200         } else {
2201                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2202                 if (res) {
2203                         info->io_setup = mem_setup;
2204                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2205                 }
2206         }
2207         if (!res) {
2208                 dev_err(&dev->dev, "no I/O or memory address\n");
2209                 goto err_free;
2210         }
2211         info->io.addr_data = res->start;
2212
2213         info->io.regspacing = DEFAULT_REGSPACING;
2214         res_second = pnp_get_resource(dev,
2215                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2216                                         IORESOURCE_IO : IORESOURCE_MEM,
2217                                1);
2218         if (res_second) {
2219                 if (res_second->start > info->io.addr_data)
2220                         info->io.regspacing = res_second->start - info->io.addr_data;
2221         }
2222         info->io.regsize = DEFAULT_REGSPACING;
2223         info->io.regshift = 0;
2224
2225         /* If _GPE exists, use it; otherwise use standard interrupts */
2226         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2227         if (ACPI_SUCCESS(status)) {
2228                 info->irq = tmp;
2229                 info->irq_setup = acpi_gpe_irq_setup;
2230         } else if (pnp_irq_valid(dev, 0)) {
2231                 info->irq = pnp_irq(dev, 0);
2232                 info->irq_setup = std_irq_setup;
2233         }
2234
2235         info->dev = &dev->dev;
2236         pnp_set_drvdata(dev, info);
2237
2238         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2239                  res, info->io.regsize, info->io.regspacing,
2240                  info->irq);
2241
2242         if (add_smi(info))
2243                 goto err_free;
2244
2245         return 0;
2246
2247 err_free:
2248         kfree(info);
2249         return -EINVAL;
2250 }
2251
2252 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2253 {
2254         struct smi_info *info = pnp_get_drvdata(dev);
2255
2256         cleanup_one_si(info);
2257 }
2258
2259 static const struct pnp_device_id pnp_dev_table[] = {
2260         {"IPI0001", 0},
2261         {"", 0},
2262 };
2263
2264 static struct pnp_driver ipmi_pnp_driver = {
2265         .name           = DEVICE_NAME,
2266         .probe          = ipmi_pnp_probe,
2267         .remove         = __devexit_p(ipmi_pnp_remove),
2268         .id_table       = pnp_dev_table,
2269 };
2270 #endif
2271
2272 #ifdef CONFIG_DMI
2273 struct dmi_ipmi_data {
2274         u8              type;
2275         u8              addr_space;
2276         unsigned long   base_addr;
2277         u8              irq;
2278         u8              offset;
2279         u8              slave_addr;
2280 };
2281
2282 static int __devinit decode_dmi(const struct dmi_header *dm,
2283                                 struct dmi_ipmi_data *dmi)
2284 {
2285         const u8        *data = (const u8 *)dm;
2286         unsigned long   base_addr;
2287         u8              reg_spacing;
2288         u8              len = dm->length;
2289
2290         dmi->type = data[4];
2291
2292         memcpy(&base_addr, data+8, sizeof(unsigned long));
2293         if (len >= 0x11) {
2294                 if (base_addr & 1) {
2295                         /* I/O */
2296                         base_addr &= 0xFFFE;
2297                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2298                 } else
2299                         /* Memory */
2300                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2301
2302                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2303                    is odd. */
2304                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2305
2306                 dmi->irq = data[0x11];
2307
2308                 /* The top two bits of byte 0x10 hold the register spacing. */
2309                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2310                 switch (reg_spacing) {
2311                 case 0x00: /* Byte boundaries */
2312                     dmi->offset = 1;
2313                     break;
2314                 case 0x01: /* 32-bit boundaries */
2315                     dmi->offset = 4;
2316                     break;
2317                 case 0x02: /* 16-byte boundaries */
2318                     dmi->offset = 16;
2319                     break;
2320                 default:
2321                     /* Some other interface, just ignore it. */
2322                     return -EIO;
2323                 }
2324         } else {
2325                 /* Old DMI spec. */
2326                 /*
2327                  * Note that technically, the lower bit of the base
2328                  * address should be 1 if the address is I/O and 0 if
2329                  * the address is in memory.  So many systems get that
2330                  * wrong (and all that I have seen are I/O) so we just
2331                  * ignore that bit and assume I/O.  Systems that use
2332                  * memory should use the newer spec, anyway.
2333                  */
2334                 dmi->base_addr = base_addr & 0xfffe;
2335                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2336                 dmi->offset = 1;
2337         }
2338
2339         dmi->slave_addr = data[6];
2340
2341         return 0;
2342 }
2343
2344 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2345 {
2346         struct smi_info *info;
2347
2348         info = smi_info_alloc();
2349         if (!info) {
2350                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2351                 return;
2352         }
2353
2354         info->addr_source = SI_SMBIOS;
2355         printk(KERN_INFO PFX "probing via SMBIOS\n");
2356
2357         switch (ipmi_data->type) {
2358         case 0x01: /* KCS */
2359                 info->si_type = SI_KCS;
2360                 break;
2361         case 0x02: /* SMIC */
2362                 info->si_type = SI_SMIC;
2363                 break;
2364         case 0x03: /* BT */
2365                 info->si_type = SI_BT;
2366                 break;
2367         default:
2368                 kfree(info);
2369                 return;
2370         }
2371
2372         switch (ipmi_data->addr_space) {
2373         case IPMI_MEM_ADDR_SPACE:
2374                 info->io_setup = mem_setup;
2375                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2376                 break;
2377
2378         case IPMI_IO_ADDR_SPACE:
2379                 info->io_setup = port_setup;
2380                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2381                 break;
2382
2383         default:
2384                 kfree(info);
2385                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2386                        ipmi_data->addr_space);
2387                 return;
2388         }
2389         info->io.addr_data = ipmi_data->base_addr;
2390
2391         info->io.regspacing = ipmi_data->offset;
2392         if (!info->io.regspacing)
2393                 info->io.regspacing = DEFAULT_REGSPACING;
2394         info->io.regsize = DEFAULT_REGSPACING;
2395         info->io.regshift = 0;
2396
2397         info->slave_addr = ipmi_data->slave_addr;
2398
2399         info->irq = ipmi_data->irq;
2400         if (info->irq)
2401                 info->irq_setup = std_irq_setup;
2402
2403         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2404                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2405                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2406                  info->irq);
2407
2408         if (add_smi(info))
2409                 kfree(info);
2410 }
2411
2412 static void __devinit dmi_find_bmc(void)
2413 {
2414         const struct dmi_device *dev = NULL;
2415         struct dmi_ipmi_data data;
2416         int                  rv;
2417
2418         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2419                 memset(&data, 0, sizeof(data));
2420                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2421                                 &data);
2422                 if (!rv)
2423                         try_init_dmi(&data);
2424         }
2425 }
2426 #endif /* CONFIG_DMI */
2427
2428 #ifdef CONFIG_PCI
2429
2430 #define PCI_ERMC_CLASSCODE              0x0C0700
2431 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2435 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2436
2437 #define PCI_HP_VENDOR_ID    0x103C
2438 #define PCI_MMC_DEVICE_ID   0x121A
2439 #define PCI_MMC_ADDR_CW     0x10
2440
2441 static void ipmi_pci_cleanup(struct smi_info *info)
2442 {
2443         struct pci_dev *pdev = info->addr_source_data;
2444
2445         pci_disable_device(pdev);
2446 }
2447
2448 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2449                                     const struct pci_device_id *ent)
2450 {
2451         int rv;
2452         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2453         struct smi_info *info;
2454
2455         info = smi_info_alloc();
2456         if (!info)
2457                 return -ENOMEM;
2458
2459         info->addr_source = SI_PCI;
2460         dev_info(&pdev->dev, "probing via PCI");
2461
2462         switch (class_type) {
2463         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2464                 info->si_type = SI_SMIC;
2465                 break;
2466
2467         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2468                 info->si_type = SI_KCS;
2469                 break;
2470
2471         case PCI_ERMC_CLASSCODE_TYPE_BT:
2472                 info->si_type = SI_BT;
2473                 break;
2474
2475         default:
2476                 kfree(info);
2477                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2478                 return -ENOMEM;
2479         }
2480
2481         rv = pci_enable_device(pdev);
2482         if (rv) {
2483                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2484                 kfree(info);
2485                 return rv;
2486         }
2487
2488         info->addr_source_cleanup = ipmi_pci_cleanup;
2489         info->addr_source_data = pdev;
2490
2491         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2492                 info->io_setup = port_setup;
2493                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2494         } else {
2495                 info->io_setup = mem_setup;
2496                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2497         }
2498         info->io.addr_data = pci_resource_start(pdev, 0);
2499
2500         info->io.regspacing = DEFAULT_REGSPACING;
2501         info->io.regsize = DEFAULT_REGSPACING;
2502         info->io.regshift = 0;
2503
2504         info->irq = pdev->irq;
2505         if (info->irq)
2506                 info->irq_setup = std_irq_setup;
2507
2508         info->dev = &pdev->dev;
2509         pci_set_drvdata(pdev, info);
2510
2511         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2512                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2513                 info->irq);
2514
2515         if (add_smi(info))
2516                 kfree(info);
2517
2518         return 0;
2519 }
2520
2521 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2522 {
2523         struct smi_info *info = pci_get_drvdata(pdev);
2524         cleanup_one_si(info);
2525 }
2526
2527 #ifdef CONFIG_PM
2528 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2529 {
2530         return 0;
2531 }
2532
2533 static int ipmi_pci_resume(struct pci_dev *pdev)
2534 {
2535         return 0;
2536 }
2537 #endif
2538
2539 static struct pci_device_id ipmi_pci_devices[] = {
2540         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2541         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2542         { 0, }
2543 };
2544 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2545
2546 static struct pci_driver ipmi_pci_driver = {
2547         .name =         DEVICE_NAME,
2548         .id_table =     ipmi_pci_devices,
2549         .probe =        ipmi_pci_probe,
2550         .remove =       __devexit_p(ipmi_pci_remove),
2551 #ifdef CONFIG_PM
2552         .suspend =      ipmi_pci_suspend,
2553         .resume =       ipmi_pci_resume,
2554 #endif
2555 };
2556 #endif /* CONFIG_PCI */
2557
2558 static struct of_device_id ipmi_match[];
2559 static int __devinit ipmi_probe(struct platform_device *dev)
2560 {
2561 #ifdef CONFIG_OF
2562         const struct of_device_id *match;
2563         struct smi_info *info;
2564         struct resource resource;
2565         const __be32 *regsize, *regspacing, *regshift;
2566         struct device_node *np = dev->dev.of_node;
2567         int ret;
2568         int proplen;
2569
2570         dev_info(&dev->dev, "probing via device tree\n");
2571
2572         match = of_match_device(ipmi_match, &dev->dev);
2573         if (!match)
2574                 return -EINVAL;
2575
2576         ret = of_address_to_resource(np, 0, &resource);
2577         if (ret) {
2578                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2579                 return ret;
2580         }
2581
2582         regsize = of_get_property(np, "reg-size", &proplen);
2583         if (regsize && proplen != 4) {
2584                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2585                 return -EINVAL;
2586         }
2587
2588         regspacing = of_get_property(np, "reg-spacing", &proplen);
2589         if (regspacing && proplen != 4) {
2590                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2591                 return -EINVAL;
2592         }
2593
2594         regshift = of_get_property(np, "reg-shift", &proplen);
2595         if (regshift && proplen != 4) {
2596                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2597                 return -EINVAL;
2598         }
2599
2600         info = smi_info_alloc();
2601
2602         if (!info) {
2603                 dev_err(&dev->dev,
2604                         "could not allocate memory for OF probe\n");
2605                 return -ENOMEM;
2606         }
2607
2608         info->si_type           = (enum si_type) match->data;
2609         info->addr_source       = SI_DEVICETREE;
2610         info->irq_setup         = std_irq_setup;
2611
2612         if (resource.flags & IORESOURCE_IO) {
2613                 info->io_setup          = port_setup;
2614                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2615         } else {
2616                 info->io_setup          = mem_setup;
2617                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2618         }
2619
2620         info->io.addr_data      = resource.start;
2621
2622         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2623         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2624         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2625
2626         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2627         info->dev               = &dev->dev;
2628
2629         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2630                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2631                 info->irq);
2632
2633         dev_set_drvdata(&dev->dev, info);
2634
2635         if (add_smi(info)) {
2636                 kfree(info);
2637                 return -EBUSY;
2638         }
2639 #endif
2640         return 0;
2641 }
2642
2643 static int __devexit ipmi_remove(struct platform_device *dev)
2644 {
2645 #ifdef CONFIG_OF
2646         cleanup_one_si(dev_get_drvdata(&dev->dev));
2647 #endif
2648         return 0;
2649 }
2650
2651 static struct of_device_id ipmi_match[] =
2652 {
2653         { .type = "ipmi", .compatible = "ipmi-kcs",
2654           .data = (void *)(unsigned long) SI_KCS },
2655         { .type = "ipmi", .compatible = "ipmi-smic",
2656           .data = (void *)(unsigned long) SI_SMIC },
2657         { .type = "ipmi", .compatible = "ipmi-bt",
2658           .data = (void *)(unsigned long) SI_BT },
2659         {},
2660 };
2661
2662 static struct platform_driver ipmi_driver = {
2663         .driver = {
2664                 .name = DEVICE_NAME,
2665                 .owner = THIS_MODULE,
2666                 .of_match_table = ipmi_match,
2667         },
2668         .probe          = ipmi_probe,
2669         .remove         = __devexit_p(ipmi_remove),
2670 };
2671
2672 static int wait_for_msg_done(struct smi_info *smi_info)
2673 {
2674         enum si_sm_result     smi_result;
2675
2676         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2677         for (;;) {
2678                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2679                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2680                         schedule_timeout_uninterruptible(1);
2681                         smi_result = smi_info->handlers->event(
2682                                 smi_info->si_sm, 100);
2683                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2684                         smi_result = smi_info->handlers->event(
2685                                 smi_info->si_sm, 0);
2686                 } else
2687                         break;
2688         }
2689         if (smi_result == SI_SM_HOSED)
2690                 /*
2691                  * We couldn't get the state machine to run, so whatever's at
2692                  * the port is probably not an IPMI SMI interface.
2693                  */
2694                 return -ENODEV;
2695
2696         return 0;
2697 }
2698
2699 static int try_get_dev_id(struct smi_info *smi_info)
2700 {
2701         unsigned char         msg[2];
2702         unsigned char         *resp;
2703         unsigned long         resp_len;
2704         int                   rv = 0;
2705
2706         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2707         if (!resp)
2708                 return -ENOMEM;
2709
2710         /*
2711          * Do a Get Device ID command, since it comes back with some
2712          * useful info.
2713          */
2714         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2715         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2716         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2717
2718         rv = wait_for_msg_done(smi_info);
2719         if (rv)
2720                 goto out;
2721
2722         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2723                                                   resp, IPMI_MAX_MSG_LENGTH);
2724
2725         /* Check and record info from the get device id, in case we need it. */
2726         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2727
2728  out:
2729         kfree(resp);
2730         return rv;
2731 }
2732
2733 static int try_enable_event_buffer(struct smi_info *smi_info)
2734 {
2735         unsigned char         msg[3];
2736         unsigned char         *resp;
2737         unsigned long         resp_len;
2738         int                   rv = 0;
2739
2740         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2741         if (!resp)
2742                 return -ENOMEM;
2743
2744         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2745         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2746         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2747
2748         rv = wait_for_msg_done(smi_info);
2749         if (rv) {
2750                 printk(KERN_WARNING PFX "Error getting response from get"
2751                        " global enables command, the event buffer is not"
2752                        " enabled.\n");
2753                 goto out;
2754         }
2755
2756         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2757                                                   resp, IPMI_MAX_MSG_LENGTH);
2758
2759         if (resp_len < 4 ||
2760                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2761                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2762                         resp[2] != 0) {
2763                 printk(KERN_WARNING PFX "Invalid return from get global"
2764                        " enables command, cannot enable the event buffer.\n");
2765                 rv = -EINVAL;
2766                 goto out;
2767         }
2768
2769         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2770                 /* buffer is already enabled, nothing to do. */
2771                 goto out;
2772
2773         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2774         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2775         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2776         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2777
2778         rv = wait_for_msg_done(smi_info);
2779         if (rv) {
2780                 printk(KERN_WARNING PFX "Error getting response from set"
2781                        " global, enables command, the event buffer is not"
2782                        " enabled.\n");
2783                 goto out;
2784         }
2785
2786         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2787                                                   resp, IPMI_MAX_MSG_LENGTH);
2788
2789         if (resp_len < 3 ||
2790                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2791                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2792                 printk(KERN_WARNING PFX "Invalid return from get global,"
2793                        "enables command, not enable the event buffer.\n");
2794                 rv = -EINVAL;
2795                 goto out;
2796         }
2797
2798         if (resp[2] != 0)
2799                 /*
2800                  * An error when setting the event buffer bit means
2801                  * that the event buffer is not supported.
2802                  */
2803                 rv = -ENOENT;
2804  out:
2805         kfree(resp);
2806         return rv;
2807 }
2808
2809 static int smi_type_proc_show(struct seq_file *m, void *v)
2810 {
2811         struct smi_info *smi = m->private;
2812
2813         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2814 }
2815
2816 static int smi_type_proc_open(struct inode *inode, struct file *file)
2817 {
2818         return single_open(file, smi_type_proc_show, PDE(inode)->data);
2819 }
2820
2821 static const struct file_operations smi_type_proc_ops = {
2822         .open           = smi_type_proc_open,
2823         .read           = seq_read,
2824         .llseek         = seq_lseek,
2825         .release        = single_release,
2826 };
2827
2828 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2829 {
2830         struct smi_info *smi = m->private;
2831
2832         seq_printf(m, "interrupts_enabled:    %d\n",
2833                        smi->irq && !smi->interrupt_disabled);
2834         seq_printf(m, "short_timeouts:        %u\n",
2835                        smi_get_stat(smi, short_timeouts));
2836         seq_printf(m, "long_timeouts:         %u\n",
2837                        smi_get_stat(smi, long_timeouts));
2838         seq_printf(m, "idles:                 %u\n",
2839                        smi_get_stat(smi, idles));
2840         seq_printf(m, "interrupts:            %u\n",
2841                        smi_get_stat(smi, interrupts));
2842         seq_printf(m, "attentions:            %u\n",
2843                        smi_get_stat(smi, attentions));
2844         seq_printf(m, "flag_fetches:          %u\n",
2845                        smi_get_stat(smi, flag_fetches));
2846         seq_printf(m, "hosed_count:           %u\n",
2847                        smi_get_stat(smi, hosed_count));
2848         seq_printf(m, "complete_transactions: %u\n",
2849                        smi_get_stat(smi, complete_transactions));
2850         seq_printf(m, "events:                %u\n",
2851                        smi_get_stat(smi, events));
2852         seq_printf(m, "watchdog_pretimeouts:  %u\n",
2853                        smi_get_stat(smi, watchdog_pretimeouts));
2854         seq_printf(m, "incoming_messages:     %u\n",
2855                        smi_get_stat(smi, incoming_messages));
2856         return 0;
2857 }
2858
2859 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2860 {
2861         return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2862 }
2863
2864 static const struct file_operations smi_si_stats_proc_ops = {
2865         .open           = smi_si_stats_proc_open,
2866         .read           = seq_read,
2867         .llseek         = seq_lseek,
2868         .release        = single_release,
2869 };
2870
2871 static int smi_params_proc_show(struct seq_file *m, void *v)
2872 {
2873         struct smi_info *smi = m->private;
2874
2875         return seq_printf(m,
2876                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2877                        si_to_str[smi->si_type],
2878                        addr_space_to_str[smi->io.addr_type],
2879                        smi->io.addr_data,
2880                        smi->io.regspacing,
2881                        smi->io.regsize,
2882                        smi->io.regshift,
2883                        smi->irq,
2884                        smi->slave_addr);
2885 }
2886
2887 static int smi_params_proc_open(struct inode *inode, struct file *file)
2888 {
2889         return single_open(file, smi_params_proc_show, PDE(inode)->data);
2890 }
2891
2892 static const struct file_operations smi_params_proc_ops = {
2893         .open           = smi_params_proc_open,
2894         .read           = seq_read,
2895         .llseek         = seq_lseek,
2896         .release        = single_release,
2897 };
2898
2899 /*
2900  * oem_data_avail_to_receive_msg_avail
2901  * @info - smi_info structure with msg_flags set
2902  *
2903  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2904  * Returns 1 indicating need to re-run handle_flags().
2905  */
2906 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2907 {
2908         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2909                                RECEIVE_MSG_AVAIL);
2910         return 1;
2911 }
2912
2913 /*
2914  * setup_dell_poweredge_oem_data_handler
2915  * @info - smi_info.device_id must be populated
2916  *
2917  * Systems that match, but have firmware version < 1.40 may assert
2918  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2919  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2920  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2921  * as RECEIVE_MSG_AVAIL instead.
2922  *
2923  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2924  * assert the OEM[012] bits, and if it did, the driver would have to
2925  * change to handle that properly, we don't actually check for the
2926  * firmware version.
2927  * Device ID = 0x20                BMC on PowerEdge 8G servers
2928  * Device Revision = 0x80
2929  * Firmware Revision1 = 0x01       BMC version 1.40
2930  * Firmware Revision2 = 0x40       BCD encoded
2931  * IPMI Version = 0x51             IPMI 1.5
2932  * Manufacturer ID = A2 02 00      Dell IANA
2933  *
2934  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2935  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2936  *
2937  */
2938 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2939 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2940 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2941 #define DELL_IANA_MFR_ID 0x0002a2
2942 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2943 {
2944         struct ipmi_device_id *id = &smi_info->device_id;
2945         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2946                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2947                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2948                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2949                         smi_info->oem_data_avail_handler =
2950                                 oem_data_avail_to_receive_msg_avail;
2951                 } else if (ipmi_version_major(id) < 1 ||
2952                            (ipmi_version_major(id) == 1 &&
2953                             ipmi_version_minor(id) < 5)) {
2954                         smi_info->oem_data_avail_handler =
2955                                 oem_data_avail_to_receive_msg_avail;
2956                 }
2957         }
2958 }
2959
2960 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2961 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2962 {
2963         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2964
2965         /* Make it a response */
2966         msg->rsp[0] = msg->data[0] | 4;
2967         msg->rsp[1] = msg->data[1];
2968         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2969         msg->rsp_size = 3;
2970         smi_info->curr_msg = NULL;
2971         deliver_recv_msg(smi_info, msg);
2972 }
2973
2974 /*
2975  * dell_poweredge_bt_xaction_handler
2976  * @info - smi_info.device_id must be populated
2977  *
2978  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2979  * not respond to a Get SDR command if the length of the data
2980  * requested is exactly 0x3A, which leads to command timeouts and no
2981  * data returned.  This intercepts such commands, and causes userspace
2982  * callers to try again with a different-sized buffer, which succeeds.
2983  */
2984
2985 #define STORAGE_NETFN 0x0A
2986 #define STORAGE_CMD_GET_SDR 0x23
2987 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2988                                              unsigned long unused,
2989                                              void *in)
2990 {
2991         struct smi_info *smi_info = in;
2992         unsigned char *data = smi_info->curr_msg->data;
2993         unsigned int size   = smi_info->curr_msg->data_size;
2994         if (size >= 8 &&
2995             (data[0]>>2) == STORAGE_NETFN &&
2996             data[1] == STORAGE_CMD_GET_SDR &&
2997             data[7] == 0x3A) {
2998                 return_hosed_msg_badsize(smi_info);
2999                 return NOTIFY_STOP;
3000         }
3001         return NOTIFY_DONE;
3002 }
3003
3004 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3005         .notifier_call  = dell_poweredge_bt_xaction_handler,
3006 };
3007
3008 /*
3009  * setup_dell_poweredge_bt_xaction_handler
3010  * @info - smi_info.device_id must be filled in already
3011  *
3012  * Fills in smi_info.device_id.start_transaction_pre_hook
3013  * when we know what function to use there.
3014  */
3015 static void
3016 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3017 {
3018         struct ipmi_device_id *id = &smi_info->device_id;
3019         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3020             smi_info->si_type == SI_BT)
3021                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3022 }
3023
3024 /*
3025  * setup_oem_data_handler
3026  * @info - smi_info.device_id must be filled in already
3027  *
3028  * Fills in smi_info.device_id.oem_data_available_handler
3029  * when we know what function to use there.
3030  */
3031
3032 static void setup_oem_data_handler(struct smi_info *smi_info)
3033 {
3034         setup_dell_poweredge_oem_data_handler(smi_info);
3035 }
3036
3037 static void setup_xaction_handlers(struct smi_info *smi_info)
3038 {
3039         setup_dell_poweredge_bt_xaction_handler(smi_info);
3040 }
3041
3042 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3043 {
3044         if (smi_info->intf) {
3045                 /*
3046                  * The timer and thread are only running if the
3047                  * interface has been started up and registered.
3048                  */
3049                 if (smi_info->thread != NULL)
3050                         kthread_stop(smi_info->thread);
3051                 del_timer_sync(&smi_info->si_timer);
3052         }
3053 }
3054
3055 static __devinitdata struct ipmi_default_vals
3056 {
3057         int type;
3058         int port;
3059 } ipmi_defaults[] =
3060 {
3061         { .type = SI_KCS, .port = 0xca2 },
3062         { .type = SI_SMIC, .port = 0xca9 },
3063         { .type = SI_BT, .port = 0xe4 },
3064         { .port = 0 }
3065 };
3066
3067 static void __devinit default_find_bmc(void)
3068 {
3069         struct smi_info *info;
3070         int             i;
3071
3072         for (i = 0; ; i++) {
3073                 if (!ipmi_defaults[i].port)
3074                         break;
3075 #ifdef CONFIG_PPC
3076                 if (check_legacy_ioport(ipmi_defaults[i].port))
3077                         continue;
3078 #endif
3079                 info = smi_info_alloc();
3080                 if (!info)
3081                         return;
3082
3083                 info->addr_source = SI_DEFAULT;
3084
3085                 info->si_type = ipmi_defaults[i].type;
3086                 info->io_setup = port_setup;
3087                 info->io.addr_data = ipmi_defaults[i].port;
3088                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3089
3090                 info->io.addr = NULL;
3091                 info->io.regspacing = DEFAULT_REGSPACING;
3092                 info->io.regsize = DEFAULT_REGSPACING;
3093                 info->io.regshift = 0;
3094
3095                 if (add_smi(info) == 0) {
3096                         if ((try_smi_init(info)) == 0) {
3097                                 /* Found one... */
3098                                 printk(KERN_INFO PFX "Found default %s"
3099                                 " state machine at %s address 0x%lx\n",
3100                                 si_to_str[info->si_type],
3101                                 addr_space_to_str[info->io.addr_type],
3102                                 info->io.addr_data);
3103                         } else
3104                                 cleanup_one_si(info);
3105                 } else {
3106                         kfree(info);
3107                 }
3108         }
3109 }
3110
3111 static int is_new_interface(struct smi_info *info)
3112 {
3113         struct smi_info *e;
3114
3115         list_for_each_entry(e, &smi_infos, link) {
3116                 if (e->io.addr_type != info->io.addr_type)
3117                         continue;
3118                 if (e->io.addr_data == info->io.addr_data)
3119                         return 0;
3120         }
3121
3122         return 1;
3123 }
3124
3125 static int add_smi(struct smi_info *new_smi)
3126 {
3127         int rv = 0;
3128
3129         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3130                         ipmi_addr_src_to_str[new_smi->addr_source],
3131                         si_to_str[new_smi->si_type]);
3132         mutex_lock(&smi_infos_lock);
3133         if (!is_new_interface(new_smi)) {
3134                 printk(KERN_CONT " duplicate interface\n");
3135                 rv = -EBUSY;
3136                 goto out_err;
3137         }
3138
3139         printk(KERN_CONT "\n");
3140
3141         /* So we know not to free it unless we have allocated one. */
3142         new_smi->intf = NULL;
3143         new_smi->si_sm = NULL;
3144         new_smi->handlers = NULL;
3145
3146         list_add_tail(&new_smi->link, &smi_infos);
3147
3148 out_err:
3149         mutex_unlock(&smi_infos_lock);
3150         return rv;
3151 }
3152
3153 static int try_smi_init(struct smi_info *new_smi)
3154 {
3155         int rv = 0;
3156         int i;
3157
3158         printk(KERN_INFO PFX "Trying %s-specified %s state"
3159                " machine at %s address 0x%lx, slave address 0x%x,"
3160                " irq %d\n",
3161                ipmi_addr_src_to_str[new_smi->addr_source],
3162                si_to_str[new_smi->si_type],
3163                addr_space_to_str[new_smi->io.addr_type],
3164                new_smi->io.addr_data,
3165                new_smi->slave_addr, new_smi->irq);
3166
3167         switch (new_smi->si_type) {
3168         case SI_KCS:
3169                 new_smi->handlers = &kcs_smi_handlers;
3170                 break;
3171
3172         case SI_SMIC:
3173                 new_smi->handlers = &smic_smi_handlers;
3174                 break;
3175
3176         case SI_BT:
3177                 new_smi->handlers = &bt_smi_handlers;
3178                 break;
3179
3180         default:
3181                 /* No support for anything else yet. */
3182                 rv = -EIO;
3183                 goto out_err;
3184         }
3185
3186         /* Allocate the state machine's data and initialize it. */
3187         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3188         if (!new_smi->si_sm) {
3189                 printk(KERN_ERR PFX
3190                        "Could not allocate state machine memory\n");
3191                 rv = -ENOMEM;
3192                 goto out_err;
3193         }
3194         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3195                                                         &new_smi->io);
3196
3197         /* Now that we know the I/O size, we can set up the I/O. */
3198         rv = new_smi->io_setup(new_smi);
3199         if (rv) {
3200                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3201                 goto out_err;
3202         }
3203
3204         /* Do low-level detection first. */
3205         if (new_smi->handlers->detect(new_smi->si_sm)) {
3206                 if (new_smi->addr_source)
3207                         printk(KERN_INFO PFX "Interface detection failed\n");
3208                 rv = -ENODEV;
3209                 goto out_err;
3210         }
3211
3212         /*
3213          * Attempt a get device id command.  If it fails, we probably
3214          * don't have a BMC here.
3215          */
3216         rv = try_get_dev_id(new_smi);
3217         if (rv) {
3218                 if (new_smi->addr_source)
3219                         printk(KERN_INFO PFX "There appears to be no BMC"
3220                                " at this location\n");
3221                 goto out_err;
3222         }
3223
3224         setup_oem_data_handler(new_smi);
3225         setup_xaction_handlers(new_smi);
3226
3227         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3228         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3229         new_smi->cur