4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/seq_file.h>
47 #include <linux/timer.h>
48 #include <linux/errno.h>
49 #include <linux/spinlock.h>
50 #include <linux/slab.h>
51 #include <linux/delay.h>
52 #include <linux/list.h>
53 #include <linux/pci.h>
54 #include <linux/ioport.h>
55 #include <linux/notifier.h>
56 #include <linux/mutex.h>
57 #include <linux/kthread.h>
59 #include <linux/interrupt.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ipmi.h>
62 #include <linux/ipmi_smi.h>
64 #include "ipmi_si_sm.h"
65 #include <linux/init.h>
66 #include <linux/dmi.h>
67 #include <linux/string.h>
68 #include <linux/ctype.h>
69 #include <linux/pnp.h>
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #include <linux/of_address.h>
73 #include <linux/of_irq.h>
75 #define PFX "ipmi_si: "
77 /* Measure times between events in the driver. */
80 /* Call every 10 ms. */
81 #define SI_TIMEOUT_TIME_USEC 10000
82 #define SI_USEC_PER_JIFFY (1000000/HZ)
83 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
84 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
92 SI_CLEARING_FLAGS_THEN_SET_IRQ,
94 SI_ENABLE_INTERRUPTS1,
95 SI_ENABLE_INTERRUPTS2,
96 SI_DISABLE_INTERRUPTS1,
97 SI_DISABLE_INTERRUPTS2
98 /* FIXME - add watchdog stuff. */
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
107 SI_KCS, SI_SMIC, SI_BT
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
111 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
112 "ACPI", "SMBIOS", "PCI",
113 "device-tree", "default" };
115 #define DEVICE_NAME "ipmi_si"
117 static struct platform_driver ipmi_driver;
120 * Indexes into stats[] in smi_info below.
122 enum si_stat_indexes {
124 * Number of times the driver requested a timer while an operation
127 SI_STAT_short_timeouts = 0,
130 * Number of times the driver requested a timer while nothing was in
133 SI_STAT_long_timeouts,
135 /* Number of times the interface was idle while being polled. */
138 /* Number of interrupts the driver handled. */
141 /* Number of time the driver got an ATTN from the hardware. */
144 /* Number of times the driver requested flags from the hardware. */
145 SI_STAT_flag_fetches,
147 /* Number of times the hardware didn't follow the state machine. */
150 /* Number of completed messages. */
151 SI_STAT_complete_transactions,
153 /* Number of IPMI events received from the hardware. */
156 /* Number of watchdog pretimeouts. */
157 SI_STAT_watchdog_pretimeouts,
159 /* Number of asyncronous messages received. */
160 SI_STAT_incoming_messages,
163 /* This *must* remain last, add new values above this. */
170 struct si_sm_data *si_sm;
171 struct si_sm_handlers *handlers;
172 enum si_type si_type;
175 struct list_head xmit_msgs;
176 struct list_head hp_xmit_msgs;
177 struct ipmi_smi_msg *curr_msg;
178 enum si_intf_state si_state;
181 * Used to handle the various types of I/O that can occur with
185 int (*io_setup)(struct smi_info *info);
186 void (*io_cleanup)(struct smi_info *info);
187 int (*irq_setup)(struct smi_info *info);
188 void (*irq_cleanup)(struct smi_info *info);
189 unsigned int io_size;
190 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
191 void (*addr_source_cleanup)(struct smi_info *info);
192 void *addr_source_data;
195 * Per-OEM handler, called from handle_flags(). Returns 1
196 * when handle_flags() needs to be re-run or 0 indicating it
197 * set si_state itself.
199 int (*oem_data_avail_handler)(struct smi_info *smi_info);
202 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
203 * is set to hold the flags until we are done handling everything
206 #define RECEIVE_MSG_AVAIL 0x01
207 #define EVENT_MSG_BUFFER_FULL 0x02
208 #define WDT_PRE_TIMEOUT_INT 0x08
209 #define OEM0_DATA_AVAIL 0x20
210 #define OEM1_DATA_AVAIL 0x40
211 #define OEM2_DATA_AVAIL 0x80
212 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
215 unsigned char msg_flags;
217 /* Does the BMC have an event buffer? */
218 char has_event_buffer;
221 * If set to true, this will request events the next time the
222 * state machine is idle.
227 * If true, run the state machine to completion on every send
228 * call. Generally used after a panic to make sure stuff goes
231 int run_to_completion;
233 /* The I/O port of an SI interface. */
237 * The space between start addresses of the two ports. For
238 * instance, if the first port is 0xca2 and the spacing is 4, then
239 * the second port is 0xca6.
241 unsigned int spacing;
243 /* zero if no irq; */
246 /* The timer for this si. */
247 struct timer_list si_timer;
249 /* The time (in jiffies) the last timeout occurred at. */
250 unsigned long last_timeout_jiffies;
252 /* Used to gracefully stop the timer without race conditions. */
253 atomic_t stop_operation;
256 * The driver will disable interrupts when it gets into a
257 * situation where it cannot handle messages due to lack of
258 * memory. Once that situation clears up, it will re-enable
261 int interrupt_disabled;
263 /* From the get device id response... */
264 struct ipmi_device_id device_id;
266 /* Driver model stuff. */
268 struct platform_device *pdev;
271 * True if we allocated the device, false if it came from
272 * someplace else (like PCI).
276 /* Slave address, could be reported from DMI. */
277 unsigned char slave_addr;
279 /* Counters and things for the proc filesystem. */
280 atomic_t stats[SI_NUM_STATS];
282 struct task_struct *thread;
284 struct list_head link;
285 union ipmi_smi_info_union addr_info;
288 #define smi_inc_stat(smi, stat) \
289 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
293 #define SI_MAX_PARMS 4
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
298 static int pci_registered;
301 static int pnp_registered;
304 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
305 static int num_max_busy_us;
307 static int unload_when_empty = 1;
309 static int add_smi(struct smi_info *smi);
310 static int try_smi_init(struct smi_info *smi);
311 static void cleanup_one_si(struct smi_info *to_clean);
312 static void cleanup_ipmi_si(void);
314 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
315 static int register_xaction_notifier(struct notifier_block *nb)
317 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
320 static void deliver_recv_msg(struct smi_info *smi_info,
321 struct ipmi_smi_msg *msg)
323 /* Deliver the message to the upper layer with the lock
326 if (smi_info->run_to_completion) {
327 ipmi_smi_msg_received(smi_info->intf, msg);
329 spin_unlock(&(smi_info->si_lock));
330 ipmi_smi_msg_received(smi_info->intf, msg);
331 spin_lock(&(smi_info->si_lock));
335 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
337 struct ipmi_smi_msg *msg = smi_info->curr_msg;
339 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
340 cCode = IPMI_ERR_UNSPECIFIED;
341 /* else use it as is */
343 /* Make it a response */
344 msg->rsp[0] = msg->data[0] | 4;
345 msg->rsp[1] = msg->data[1];
349 smi_info->curr_msg = NULL;
350 deliver_recv_msg(smi_info, msg);
353 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
356 struct list_head *entry = NULL;
362 * No need to save flags, we aleady have interrupts off and we
363 * already hold the SMI lock.
365 if (!smi_info->run_to_completion)
366 spin_lock(&(smi_info->msg_lock));
368 /* Pick the high priority queue first. */
369 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
370 entry = smi_info->hp_xmit_msgs.next;
371 } else if (!list_empty(&(smi_info->xmit_msgs))) {
372 entry = smi_info->xmit_msgs.next;
376 smi_info->curr_msg = NULL;
382 smi_info->curr_msg = list_entry(entry,
387 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
389 err = atomic_notifier_call_chain(&xaction_notifier_list,
391 if (err & NOTIFY_STOP_MASK) {
392 rv = SI_SM_CALL_WITHOUT_DELAY;
395 err = smi_info->handlers->start_transaction(
397 smi_info->curr_msg->data,
398 smi_info->curr_msg->data_size);
400 return_hosed_msg(smi_info, err);
402 rv = SI_SM_CALL_WITHOUT_DELAY;
405 if (!smi_info->run_to_completion)
406 spin_unlock(&(smi_info->msg_lock));
411 static void start_enable_irq(struct smi_info *smi_info)
413 unsigned char msg[2];
416 * If we are enabling interrupts, we have to tell the
419 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
420 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
422 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
423 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
426 static void start_disable_irq(struct smi_info *smi_info)
428 unsigned char msg[2];
430 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
434 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
437 static void start_clear_flags(struct smi_info *smi_info)
439 unsigned char msg[3];
441 /* Make sure the watchdog pre-timeout flag is not set at startup. */
442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
444 msg[2] = WDT_PRE_TIMEOUT_INT;
446 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
447 smi_info->si_state = SI_CLEARING_FLAGS;
451 * When we have a situtaion where we run out of memory and cannot
452 * allocate messages, we just leave them in the BMC and run the system
453 * polled until we can allocate some memory. Once we have some
454 * memory, we will re-enable the interrupt.
456 static inline void disable_si_irq(struct smi_info *smi_info)
458 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
459 start_disable_irq(smi_info);
460 smi_info->interrupt_disabled = 1;
461 if (!atomic_read(&smi_info->stop_operation))
462 mod_timer(&smi_info->si_timer,
463 jiffies + SI_TIMEOUT_JIFFIES);
467 static inline void enable_si_irq(struct smi_info *smi_info)
469 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
470 start_enable_irq(smi_info);
471 smi_info->interrupt_disabled = 0;
475 static void handle_flags(struct smi_info *smi_info)
478 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
479 /* Watchdog pre-timeout */
480 smi_inc_stat(smi_info, watchdog_pretimeouts);
482 start_clear_flags(smi_info);
483 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
484 spin_unlock(&(smi_info->si_lock));
485 ipmi_smi_watchdog_pretimeout(smi_info->intf);
486 spin_lock(&(smi_info->si_lock));
487 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
488 /* Messages available. */
489 smi_info->curr_msg = ipmi_alloc_smi_msg();
490 if (!smi_info->curr_msg) {
491 disable_si_irq(smi_info);
492 smi_info->si_state = SI_NORMAL;
495 enable_si_irq(smi_info);
497 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
498 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
499 smi_info->curr_msg->data_size = 2;
501 smi_info->handlers->start_transaction(
503 smi_info->curr_msg->data,
504 smi_info->curr_msg->data_size);
505 smi_info->si_state = SI_GETTING_MESSAGES;
506 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
507 /* Events available. */
508 smi_info->curr_msg = ipmi_alloc_smi_msg();
509 if (!smi_info->curr_msg) {
510 disable_si_irq(smi_info);
511 smi_info->si_state = SI_NORMAL;
514 enable_si_irq(smi_info);
516 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
517 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
518 smi_info->curr_msg->data_size = 2;
520 smi_info->handlers->start_transaction(
522 smi_info->curr_msg->data,
523 smi_info->curr_msg->data_size);
524 smi_info->si_state = SI_GETTING_EVENTS;
525 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
526 smi_info->oem_data_avail_handler) {
527 if (smi_info->oem_data_avail_handler(smi_info))
530 smi_info->si_state = SI_NORMAL;
533 static void handle_transaction_done(struct smi_info *smi_info)
535 struct ipmi_smi_msg *msg;
540 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
542 switch (smi_info->si_state) {
544 if (!smi_info->curr_msg)
547 smi_info->curr_msg->rsp_size
548 = smi_info->handlers->get_result(
550 smi_info->curr_msg->rsp,
551 IPMI_MAX_MSG_LENGTH);
554 * Do this here becase deliver_recv_msg() releases the
555 * lock, and a new message can be put in during the
556 * time the lock is released.
558 msg = smi_info->curr_msg;
559 smi_info->curr_msg = NULL;
560 deliver_recv_msg(smi_info, msg);
563 case SI_GETTING_FLAGS:
565 unsigned char msg[4];
568 /* We got the flags from the SMI, now handle them. */
569 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
571 /* Error fetching flags, just give up for now. */
572 smi_info->si_state = SI_NORMAL;
573 } else if (len < 4) {
575 * Hmm, no flags. That's technically illegal, but
576 * don't use uninitialized data.
578 smi_info->si_state = SI_NORMAL;
580 smi_info->msg_flags = msg[3];
581 handle_flags(smi_info);
586 case SI_CLEARING_FLAGS:
587 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
589 unsigned char msg[3];
591 /* We cleared the flags. */
592 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
594 /* Error clearing flags */
595 dev_warn(smi_info->dev,
596 "Error clearing flags: %2.2x\n", msg[2]);
598 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
599 start_enable_irq(smi_info);
601 smi_info->si_state = SI_NORMAL;
605 case SI_GETTING_EVENTS:
607 smi_info->curr_msg->rsp_size
608 = smi_info->handlers->get_result(
610 smi_info->curr_msg->rsp,
611 IPMI_MAX_MSG_LENGTH);
614 * Do this here becase deliver_recv_msg() releases the
615 * lock, and a new message can be put in during the
616 * time the lock is released.
618 msg = smi_info->curr_msg;
619 smi_info->curr_msg = NULL;
620 if (msg->rsp[2] != 0) {
621 /* Error getting event, probably done. */
624 /* Take off the event flag. */
625 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
626 handle_flags(smi_info);
628 smi_inc_stat(smi_info, events);
631 * Do this before we deliver the message
632 * because delivering the message releases the
633 * lock and something else can mess with the
636 handle_flags(smi_info);
638 deliver_recv_msg(smi_info, msg);
643 case SI_GETTING_MESSAGES:
645 smi_info->curr_msg->rsp_size
646 = smi_info->handlers->get_result(
648 smi_info->curr_msg->rsp,
649 IPMI_MAX_MSG_LENGTH);
652 * Do this here becase deliver_recv_msg() releases the
653 * lock, and a new message can be put in during the
654 * time the lock is released.
656 msg = smi_info->curr_msg;
657 smi_info->curr_msg = NULL;
658 if (msg->rsp[2] != 0) {
659 /* Error getting event, probably done. */
662 /* Take off the msg flag. */
663 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
664 handle_flags(smi_info);
666 smi_inc_stat(smi_info, incoming_messages);
669 * Do this before we deliver the message
670 * because delivering the message releases the
671 * lock and something else can mess with the
674 handle_flags(smi_info);
676 deliver_recv_msg(smi_info, msg);
681 case SI_ENABLE_INTERRUPTS1:
683 unsigned char msg[4];
685 /* We got the flags from the SMI, now handle them. */
686 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688 dev_warn(smi_info->dev, "Could not enable interrupts"
689 ", failed get, using polled mode.\n");
690 smi_info->si_state = SI_NORMAL;
692 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
693 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
695 IPMI_BMC_RCV_MSG_INTR |
696 IPMI_BMC_EVT_MSG_INTR);
697 smi_info->handlers->start_transaction(
698 smi_info->si_sm, msg, 3);
699 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
704 case SI_ENABLE_INTERRUPTS2:
706 unsigned char msg[4];
708 /* We got the flags from the SMI, now handle them. */
709 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
711 dev_warn(smi_info->dev, "Could not enable interrupts"
712 ", failed set, using polled mode.\n");
714 smi_info->interrupt_disabled = 0;
715 smi_info->si_state = SI_NORMAL;
719 case SI_DISABLE_INTERRUPTS1:
721 unsigned char msg[4];
723 /* We got the flags from the SMI, now handle them. */
724 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726 dev_warn(smi_info->dev, "Could not disable interrupts"
728 smi_info->si_state = SI_NORMAL;
730 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
731 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
733 ~(IPMI_BMC_RCV_MSG_INTR |
734 IPMI_BMC_EVT_MSG_INTR));
735 smi_info->handlers->start_transaction(
736 smi_info->si_sm, msg, 3);
737 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
742 case SI_DISABLE_INTERRUPTS2:
744 unsigned char msg[4];
746 /* We got the flags from the SMI, now handle them. */
747 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
749 dev_warn(smi_info->dev, "Could not disable interrupts"
752 smi_info->si_state = SI_NORMAL;
759 * Called on timeouts and events. Timeouts should pass the elapsed
760 * time, interrupts should pass in zero. Must be called with
761 * si_lock held and interrupts disabled.
763 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
766 enum si_sm_result si_sm_result;
770 * There used to be a loop here that waited a little while
771 * (around 25us) before giving up. That turned out to be
772 * pointless, the minimum delays I was seeing were in the 300us
773 * range, which is far too long to wait in an interrupt. So
774 * we just run until the state machine tells us something
775 * happened or it needs a delay.
777 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
779 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
780 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
783 smi_inc_stat(smi_info, complete_transactions);
785 handle_transaction_done(smi_info);
786 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
787 } else if (si_sm_result == SI_SM_HOSED) {
788 smi_inc_stat(smi_info, hosed_count);
791 * Do the before return_hosed_msg, because that
794 smi_info->si_state = SI_NORMAL;
795 if (smi_info->curr_msg != NULL) {
797 * If we were handling a user message, format
798 * a response to send to the upper layer to
799 * tell it about the error.
801 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
803 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
807 * We prefer handling attn over new messages. But don't do
808 * this if there is not yet an upper layer to handle anything.
810 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
811 unsigned char msg[2];
813 smi_inc_stat(smi_info, attentions);
816 * Got a attn, send down a get message flags to see
817 * what's causing it. It would be better to handle
818 * this in the upper layer, but due to the way
819 * interrupts work with the SMI, that's not really
822 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
823 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
825 smi_info->handlers->start_transaction(
826 smi_info->si_sm, msg, 2);
827 smi_info->si_state = SI_GETTING_FLAGS;
831 /* If we are currently idle, try to start the next message. */
832 if (si_sm_result == SI_SM_IDLE) {
833 smi_inc_stat(smi_info, idles);
835 si_sm_result = start_next_msg(smi_info);
836 if (si_sm_result != SI_SM_IDLE)
840 if ((si_sm_result == SI_SM_IDLE)
841 && (atomic_read(&smi_info->req_events))) {
843 * We are idle and the upper layer requested that I fetch
846 atomic_set(&smi_info->req_events, 0);
848 smi_info->curr_msg = ipmi_alloc_smi_msg();
849 if (!smi_info->curr_msg)
852 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
853 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
854 smi_info->curr_msg->data_size = 2;
856 smi_info->handlers->start_transaction(
858 smi_info->curr_msg->data,
859 smi_info->curr_msg->data_size);
860 smi_info->si_state = SI_GETTING_EVENTS;
867 static void sender(void *send_info,
868 struct ipmi_smi_msg *msg,
871 struct smi_info *smi_info = send_info;
872 enum si_sm_result result;
878 if (atomic_read(&smi_info->stop_operation)) {
879 msg->rsp[0] = msg->data[0] | 4;
880 msg->rsp[1] = msg->data[1];
881 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
883 deliver_recv_msg(smi_info, msg);
889 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
893 * last_timeout_jiffies is updated here to avoid
894 * smi_timeout() handler passing very large time_diff
895 * value to smi_event_handler() that causes
896 * the send command to abort.
898 smi_info->last_timeout_jiffies = jiffies;
900 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
902 if (smi_info->thread)
903 wake_up_process(smi_info->thread);
905 if (smi_info->run_to_completion) {
907 * If we are running to completion, then throw it in
908 * the list and run transactions until everything is
909 * clear. Priority doesn't matter here.
913 * Run to completion means we are single-threaded, no
916 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
918 result = smi_event_handler(smi_info, 0);
919 while (result != SI_SM_IDLE) {
920 udelay(SI_SHORT_TIMEOUT_USEC);
921 result = smi_event_handler(smi_info,
922 SI_SHORT_TIMEOUT_USEC);
927 spin_lock_irqsave(&smi_info->msg_lock, flags);
929 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
931 list_add_tail(&msg->link, &smi_info->xmit_msgs);
932 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
934 spin_lock_irqsave(&smi_info->si_lock, flags);
935 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
936 start_next_msg(smi_info);
937 smi_event_handler(smi_info, 0);
939 spin_unlock_irqrestore(&smi_info->si_lock, flags);
942 static void set_run_to_completion(void *send_info, int i_run_to_completion)
944 struct smi_info *smi_info = send_info;
945 enum si_sm_result result;
947 smi_info->run_to_completion = i_run_to_completion;
948 if (i_run_to_completion) {
949 result = smi_event_handler(smi_info, 0);
950 while (result != SI_SM_IDLE) {
951 udelay(SI_SHORT_TIMEOUT_USEC);
952 result = smi_event_handler(smi_info,
953 SI_SHORT_TIMEOUT_USEC);
959 * Use -1 in the nsec value of the busy waiting timespec to tell that
960 * we are spinning in kipmid looking for something and not delaying
963 static inline void ipmi_si_set_not_busy(struct timespec *ts)
967 static inline int ipmi_si_is_busy(struct timespec *ts)
969 return ts->tv_nsec != -1;
972 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
973 const struct smi_info *smi_info,
974 struct timespec *busy_until)
976 unsigned int max_busy_us = 0;
978 if (smi_info->intf_num < num_max_busy_us)
979 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
980 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
981 ipmi_si_set_not_busy(busy_until);
982 else if (!ipmi_si_is_busy(busy_until)) {
983 getnstimeofday(busy_until);
984 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
987 getnstimeofday(&now);
988 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
989 ipmi_si_set_not_busy(busy_until);
998 * A busy-waiting loop for speeding up IPMI operation.
1000 * Lousy hardware makes this hard. This is only enabled for systems
1001 * that are not BT and do not have interrupts. It starts spinning
1002 * when an operation is complete or until max_busy tells it to stop
1003 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1004 * Documentation/IPMI.txt for details.
1006 static int ipmi_thread(void *data)
1008 struct smi_info *smi_info = data;
1009 unsigned long flags;
1010 enum si_sm_result smi_result;
1011 struct timespec busy_until;
1013 ipmi_si_set_not_busy(&busy_until);
1014 set_user_nice(current, 19);
1015 while (!kthread_should_stop()) {
1018 spin_lock_irqsave(&(smi_info->si_lock), flags);
1019 smi_result = smi_event_handler(smi_info, 0);
1020 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1021 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1023 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1025 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1027 else if (smi_result == SI_SM_IDLE)
1028 schedule_timeout_interruptible(100);
1030 schedule_timeout_interruptible(1);
1036 static void poll(void *send_info)
1038 struct smi_info *smi_info = send_info;
1039 unsigned long flags;
1042 * Make sure there is some delay in the poll loop so we can
1043 * drive time forward and timeout things.
1046 spin_lock_irqsave(&smi_info->si_lock, flags);
1047 smi_event_handler(smi_info, 10);
1048 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1051 static void request_events(void *send_info)
1053 struct smi_info *smi_info = send_info;
1055 if (atomic_read(&smi_info->stop_operation) ||
1056 !smi_info->has_event_buffer)
1059 atomic_set(&smi_info->req_events, 1);
1062 static int initialized;
1064 static void smi_timeout(unsigned long data)
1066 struct smi_info *smi_info = (struct smi_info *) data;
1067 enum si_sm_result smi_result;
1068 unsigned long flags;
1069 unsigned long jiffies_now;
1076 spin_lock_irqsave(&(smi_info->si_lock), flags);
1078 do_gettimeofday(&t);
1079 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1081 jiffies_now = jiffies;
1082 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1083 * SI_USEC_PER_JIFFY);
1084 smi_result = smi_event_handler(smi_info, time_diff);
1086 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1088 smi_info->last_timeout_jiffies = jiffies_now;
1090 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1091 /* Running with interrupts, only do long timeouts. */
1092 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093 smi_inc_stat(smi_info, long_timeouts);
1098 * If the state machine asks for a short delay, then shorten
1099 * the timer timeout.
1101 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102 smi_inc_stat(smi_info, short_timeouts);
1103 timeout = jiffies + 1;
1105 smi_inc_stat(smi_info, long_timeouts);
1106 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1110 if (smi_result != SI_SM_IDLE)
1111 mod_timer(&(smi_info->si_timer), timeout);
1114 static irqreturn_t si_irq_handler(int irq, void *data)
1116 struct smi_info *smi_info = data;
1117 unsigned long flags;
1122 spin_lock_irqsave(&(smi_info->si_lock), flags);
1124 smi_inc_stat(smi_info, interrupts);
1127 do_gettimeofday(&t);
1128 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1130 smi_event_handler(smi_info, 0);
1131 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1135 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1137 struct smi_info *smi_info = data;
1138 /* We need to clear the IRQ flag for the BT interface. */
1139 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1140 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1141 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1142 return si_irq_handler(irq, data);
1145 static int smi_start_processing(void *send_info,
1148 struct smi_info *new_smi = send_info;
1151 new_smi->intf = intf;
1153 /* Try to claim any interrupts. */
1154 if (new_smi->irq_setup)
1155 new_smi->irq_setup(new_smi);
1157 /* Set up the timer that drives the interface. */
1158 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1159 new_smi->last_timeout_jiffies = jiffies;
1160 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1163 * Check if the user forcefully enabled the daemon.
1165 if (new_smi->intf_num < num_force_kipmid)
1166 enable = force_kipmid[new_smi->intf_num];
1168 * The BT interface is efficient enough to not need a thread,
1169 * and there is no need for a thread if we have interrupts.
1171 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1175 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1176 "kipmi%d", new_smi->intf_num);
1177 if (IS_ERR(new_smi->thread)) {
1178 dev_notice(new_smi->dev, "Could not start"
1179 " kernel thread due to error %ld, only using"
1180 " timers to drive the interface\n",
1181 PTR_ERR(new_smi->thread));
1182 new_smi->thread = NULL;
1189 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1191 struct smi_info *smi = send_info;
1193 data->addr_src = smi->addr_source;
1194 data->dev = smi->dev;
1195 data->addr_info = smi->addr_info;
1196 get_device(smi->dev);
1201 static void set_maintenance_mode(void *send_info, int enable)
1203 struct smi_info *smi_info = send_info;
1206 atomic_set(&smi_info->req_events, 0);
1209 static struct ipmi_smi_handlers handlers = {
1210 .owner = THIS_MODULE,
1211 .start_processing = smi_start_processing,
1212 .get_smi_info = get_smi_info,
1214 .request_events = request_events,
1215 .set_maintenance_mode = set_maintenance_mode,
1216 .set_run_to_completion = set_run_to_completion,
1221 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1222 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1225 static LIST_HEAD(smi_infos);
1226 static DEFINE_MUTEX(smi_infos_lock);
1227 static int smi_num; /* Used to sequence the SMIs */
1229 #define DEFAULT_REGSPACING 1
1230 #define DEFAULT_REGSIZE 1
1232 static bool si_trydefaults = 1;
1233 static char *si_type[SI_MAX_PARMS];
1234 #define MAX_SI_TYPE_STR 30
1235 static char si_type_str[MAX_SI_TYPE_STR];
1236 static unsigned long addrs[SI_MAX_PARMS];
1237 static unsigned int num_addrs;
1238 static unsigned int ports[SI_MAX_PARMS];
1239 static unsigned int num_ports;
1240 static int irqs[SI_MAX_PARMS];
1241 static unsigned int num_irqs;
1242 static int regspacings[SI_MAX_PARMS];
1243 static unsigned int num_regspacings;
1244 static int regsizes[SI_MAX_PARMS];
1245 static unsigned int num_regsizes;
1246 static int regshifts[SI_MAX_PARMS];
1247 static unsigned int num_regshifts;
1248 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1249 static unsigned int num_slave_addrs;
1251 #define IPMI_IO_ADDR_SPACE 0
1252 #define IPMI_MEM_ADDR_SPACE 1
1253 static char *addr_space_to_str[] = { "i/o", "mem" };
1255 static int hotmod_handler(const char *val, struct kernel_param *kp);
1257 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1258 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1259 " Documentation/IPMI.txt in the kernel sources for the"
1262 module_param_named(trydefaults, si_trydefaults, bool, 0);
1263 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1264 " default scan of the KCS and SMIC interface at the standard"
1266 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1267 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1268 " interface separated by commas. The types are 'kcs',"
1269 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1270 " the first interface to kcs and the second to bt");
1271 module_param_array(addrs, ulong, &num_addrs, 0);
1272 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1273 " addresses separated by commas. Only use if an interface"
1274 " is in memory. Otherwise, set it to zero or leave"
1276 module_param_array(ports, uint, &num_ports, 0);
1277 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1278 " addresses separated by commas. Only use if an interface"
1279 " is a port. Otherwise, set it to zero or leave"
1281 module_param_array(irqs, int, &num_irqs, 0);
1282 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1283 " addresses separated by commas. Only use if an interface"
1284 " has an interrupt. Otherwise, set it to zero or leave"
1286 module_param_array(regspacings, int, &num_regspacings, 0);
1287 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1288 " and each successive register used by the interface. For"
1289 " instance, if the start address is 0xca2 and the spacing"
1290 " is 2, then the second address is at 0xca4. Defaults"
1292 module_param_array(regsizes, int, &num_regsizes, 0);
1293 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1294 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1295 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1296 " the 8-bit IPMI register has to be read from a larger"
1298 module_param_array(regshifts, int, &num_regshifts, 0);
1299 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1300 " IPMI register, in bits. For instance, if the data"
1301 " is read from a 32-bit word and the IPMI data is in"
1302 " bit 8-15, then the shift would be 8");
1303 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1304 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1305 " the controller. Normally this is 0x20, but can be"
1306 " overridden by this parm. This is an array indexed"
1307 " by interface number.");
1308 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1309 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1310 " disabled(0). Normally the IPMI driver auto-detects"
1311 " this, but the value may be overridden by this parm.");
1312 module_param(unload_when_empty, int, 0);
1313 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1314 " specified or found, default is 1. Setting to 0"
1315 " is useful for hot add of devices using hotmod.");
1316 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1317 MODULE_PARM_DESC(kipmid_max_busy_us,
1318 "Max time (in microseconds) to busy-wait for IPMI data before"
1319 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1320 " if kipmid is using up a lot of CPU time.");
1323 static void std_irq_cleanup(struct smi_info *info)
1325 if (info->si_type == SI_BT)
1326 /* Disable the interrupt in the BT interface. */
1327 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1328 free_irq(info->irq, info);
1331 static int std_irq_setup(struct smi_info *info)
1338 if (info->si_type == SI_BT) {
1339 rv = request_irq(info->irq,
1341 IRQF_SHARED | IRQF_DISABLED,
1345 /* Enable the interrupt in the BT interface. */
1346 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1347 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1349 rv = request_irq(info->irq,
1351 IRQF_SHARED | IRQF_DISABLED,
1355 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1356 " running polled\n",
1357 DEVICE_NAME, info->irq);
1360 info->irq_cleanup = std_irq_cleanup;
1361 dev_info(info->dev, "Using irq %d\n", info->irq);
1367 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1369 unsigned int addr = io->addr_data;
1371 return inb(addr + (offset * io->regspacing));
1374 static void port_outb(struct si_sm_io *io, unsigned int offset,
1377 unsigned int addr = io->addr_data;
1379 outb(b, addr + (offset * io->regspacing));
1382 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1384 unsigned int addr = io->addr_data;
1386 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1389 static void port_outw(struct si_sm_io *io, unsigned int offset,
1392 unsigned int addr = io->addr_data;
1394 outw(b << io->regshift, addr + (offset * io->regspacing));
1397 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1399 unsigned int addr = io->addr_data;
1401 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1404 static void port_outl(struct si_sm_io *io, unsigned int offset,
1407 unsigned int addr = io->addr_data;
1409 outl(b << io->regshift, addr+(offset * io->regspacing));
1412 static void port_cleanup(struct smi_info *info)
1414 unsigned int addr = info->io.addr_data;
1418 for (idx = 0; idx < info->io_size; idx++)
1419 release_region(addr + idx * info->io.regspacing,
1424 static int port_setup(struct smi_info *info)
1426 unsigned int addr = info->io.addr_data;
1432 info->io_cleanup = port_cleanup;
1435 * Figure out the actual inb/inw/inl/etc routine to use based
1436 * upon the register size.
1438 switch (info->io.regsize) {
1440 info->io.inputb = port_inb;
1441 info->io.outputb = port_outb;
1444 info->io.inputb = port_inw;
1445 info->io.outputb = port_outw;
1448 info->io.inputb = port_inl;
1449 info->io.outputb = port_outl;
1452 dev_warn(info->dev, "Invalid register size: %d\n",
1458 * Some BIOSes reserve disjoint I/O regions in their ACPI
1459 * tables. This causes problems when trying to register the
1460 * entire I/O region. Therefore we must register each I/O
1463 for (idx = 0; idx < info->io_size; idx++) {
1464 if (request_region(addr + idx * info->io.regspacing,
1465 info->io.regsize, DEVICE_NAME) == NULL) {
1466 /* Undo allocations */
1468 release_region(addr + idx * info->io.regspacing,
1477 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1479 return readb((io->addr)+(offset * io->regspacing));
1482 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1485 writeb(b, (io->addr)+(offset * io->regspacing));
1488 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1490 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1494 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1497 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1500 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1502 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1506 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1509 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1513 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1515 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1519 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1522 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1526 static void mem_cleanup(struct smi_info *info)
1528 unsigned long addr = info->io.addr_data;
1531 if (info->io.addr) {
1532 iounmap(info->io.addr);
1534 mapsize = ((info->io_size * info->io.regspacing)
1535 - (info->io.regspacing - info->io.regsize));
1537 release_mem_region(addr, mapsize);
1541 static int mem_setup(struct smi_info *info)
1543 unsigned long addr = info->io.addr_data;
1549 info->io_cleanup = mem_cleanup;
1552 * Figure out the actual readb/readw/readl/etc routine to use based
1553 * upon the register size.
1555 switch (info->io.regsize) {
1557 info->io.inputb = intf_mem_inb;
1558 info->io.outputb = intf_mem_outb;
1561 info->io.inputb = intf_mem_inw;
1562 info->io.outputb = intf_mem_outw;
1565 info->io.inputb = intf_mem_inl;
1566 info->io.outputb = intf_mem_outl;
1570 info->io.inputb = mem_inq;
1571 info->io.outputb = mem_outq;
1575 dev_warn(info->dev, "Invalid register size: %d\n",
1581 * Calculate the total amount of memory to claim. This is an
1582 * unusual looking calculation, but it avoids claiming any
1583 * more memory than it has to. It will claim everything
1584 * between the first address to the end of the last full
1587 mapsize = ((info->io_size * info->io.regspacing)
1588 - (info->io.regspacing - info->io.regsize));
1590 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1593 info->io.addr = ioremap(addr, mapsize);
1594 if (info->io.addr == NULL) {
1595 release_mem_region(addr, mapsize);
1602 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1603 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1611 enum hotmod_op { HM_ADD, HM_REMOVE };
1612 struct hotmod_vals {
1616 static struct hotmod_vals hotmod_ops[] = {
1618 { "remove", HM_REMOVE },
1621 static struct hotmod_vals hotmod_si[] = {
1623 { "smic", SI_SMIC },
1627 static struct hotmod_vals hotmod_as[] = {
1628 { "mem", IPMI_MEM_ADDR_SPACE },
1629 { "i/o", IPMI_IO_ADDR_SPACE },
1633 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1638 s = strchr(*curr, ',');
1640 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1645 for (i = 0; hotmod_ops[i].name; i++) {
1646 if (strcmp(*curr, v[i].name) == 0) {
1653 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1657 static int check_hotmod_int_op(const char *curr, const char *option,
1658 const char *name, int *val)
1662 if (strcmp(curr, name) == 0) {
1664 printk(KERN_WARNING PFX
1665 "No option given for '%s'\n",
1669 *val = simple_strtoul(option, &n, 0);
1670 if ((*n != '\0') || (*option == '\0')) {
1671 printk(KERN_WARNING PFX
1672 "Bad option given for '%s'\n",
1681 static struct smi_info *smi_info_alloc(void)
1683 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1686 spin_lock_init(&info->si_lock);
1687 spin_lock_init(&info->msg_lock);
1692 static int hotmod_handler(const char *val, struct kernel_param *kp)
1694 char *str = kstrdup(val, GFP_KERNEL);
1696 char *next, *curr, *s, *n, *o;
1698 enum si_type si_type;
1708 struct smi_info *info;
1713 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1716 while ((ival >= 0) && isspace(str[ival])) {
1721 for (curr = str; curr; curr = next) {
1726 ipmb = 0; /* Choose the default if not specified */
1728 next = strchr(curr, ':');
1734 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1739 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1744 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1748 s = strchr(curr, ',');
1753 addr = simple_strtoul(curr, &n, 0);
1754 if ((*n != '\0') || (*curr == '\0')) {
1755 printk(KERN_WARNING PFX "Invalid hotmod address"
1762 s = strchr(curr, ',');
1767 o = strchr(curr, '=');
1772 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing);
1777 rv = check_hotmod_int_op(curr, o, "rsi", ®size);
1782 rv = check_hotmod_int_op(curr, o, "rsh", ®shift);
1787 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1792 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1799 printk(KERN_WARNING PFX
1800 "Invalid hotmod option '%s'\n",
1806 info = smi_info_alloc();
1812 info->addr_source = SI_HOTMOD;
1813 info->si_type = si_type;
1814 info->io.addr_data = addr;
1815 info->io.addr_type = addr_space;
1816 if (addr_space == IPMI_MEM_ADDR_SPACE)
1817 info->io_setup = mem_setup;
1819 info->io_setup = port_setup;
1821 info->io.addr = NULL;
1822 info->io.regspacing = regspacing;
1823 if (!info->io.regspacing)
1824 info->io.regspacing = DEFAULT_REGSPACING;
1825 info->io.regsize = regsize;
1826 if (!info->io.regsize)
1827 info->io.regsize = DEFAULT_REGSPACING;
1828 info->io.regshift = regshift;
1831 info->irq_setup = std_irq_setup;
1832 info->slave_addr = ipmb;
1834 if (!add_smi(info)) {
1835 if (try_smi_init(info))
1836 cleanup_one_si(info);
1842 struct smi_info *e, *tmp_e;
1844 mutex_lock(&smi_infos_lock);
1845 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1846 if (e->io.addr_type != addr_space)
1848 if (e->si_type != si_type)
1850 if (e->io.addr_data == addr)
1853 mutex_unlock(&smi_infos_lock);
1862 static int __devinit hardcode_find_bmc(void)
1866 struct smi_info *info;
1868 for (i = 0; i < SI_MAX_PARMS; i++) {
1869 if (!ports[i] && !addrs[i])
1872 info = smi_info_alloc();
1876 info->addr_source = SI_HARDCODED;
1877 printk(KERN_INFO PFX "probing via hardcoded address\n");
1879 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1880 info->si_type = SI_KCS;
1881 } else if (strcmp(si_type[i], "smic") == 0) {
1882 info->si_type = SI_SMIC;
1883 } else if (strcmp(si_type[i], "bt") == 0) {
1884 info->si_type = SI_BT;
1886 printk(KERN_WARNING PFX "Interface type specified "
1887 "for interface %d, was invalid: %s\n",
1895 info->io_setup = port_setup;
1896 info->io.addr_data = ports[i];
1897 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1898 } else if (addrs[i]) {
1900 info->io_setup = mem_setup;
1901 info->io.addr_data = addrs[i];
1902 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1904 printk(KERN_WARNING PFX "Interface type specified "
1905 "for interface %d, but port and address were "
1906 "not set or set to zero.\n", i);
1911 info->io.addr = NULL;
1912 info->io.regspacing = regspacings[i];
1913 if (!info->io.regspacing)
1914 info->io.regspacing = DEFAULT_REGSPACING;
1915 info->io.regsize = regsizes[i];
1916 if (!info->io.regsize)
1917 info->io.regsize = DEFAULT_REGSPACING;
1918 info->io.regshift = regshifts[i];
1919 info->irq = irqs[i];
1921 info->irq_setup = std_irq_setup;
1922 info->slave_addr = slave_addrs[i];
1924 if (!add_smi(info)) {
1925 if (try_smi_init(info))
1926 cleanup_one_si(info);
1937 #include <linux/acpi.h>
1940 * Once we get an ACPI failure, we don't try any more, because we go
1941 * through the tables sequentially. Once we don't find a table, there
1944 static int acpi_failure;
1946 /* For GPE-type interrupts. */
1947 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1948 u32 gpe_number, void *context)
1950 struct smi_info *smi_info = context;
1951 unsigned long flags;
1956 spin_lock_irqsave(&(smi_info->si_lock), flags);
1958 smi_inc_stat(smi_info, interrupts);
1961 do_gettimeofday(&t);
1962 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1964 smi_event_handler(smi_info, 0);
1965 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1967 return ACPI_INTERRUPT_HANDLED;
1970 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1975 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1978 static int acpi_gpe_irq_setup(struct smi_info *info)
1985 /* FIXME - is level triggered right? */
1986 status = acpi_install_gpe_handler(NULL,
1988 ACPI_GPE_LEVEL_TRIGGERED,
1991 if (status != AE_OK) {
1992 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1993 " running polled\n", DEVICE_NAME, info->irq);
1997 info->irq_cleanup = acpi_gpe_irq_cleanup;
1998 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2005 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2016 s8 CreatorRevision[4];
2019 s16 SpecificationRevision;
2022 * Bit 0 - SCI interrupt supported
2023 * Bit 1 - I/O APIC/SAPIC
2028 * If bit 0 of InterruptType is set, then this is the SCI
2029 * interrupt in the GPEx_STS register.
2036 * If bit 1 of InterruptType is set, then this is the I/O
2037 * APIC/SAPIC interrupt.
2039 u32 GlobalSystemInterrupt;
2041 /* The actual register address. */
2042 struct acpi_generic_address addr;
2046 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2049 static int __devinit try_init_spmi(struct SPMITable *spmi)
2051 struct smi_info *info;
2053 if (spmi->IPMIlegacy != 1) {
2054 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2058 info = smi_info_alloc();
2060 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2064 info->addr_source = SI_SPMI;
2065 printk(KERN_INFO PFX "probing via SPMI\n");
2067 /* Figure out the interface type. */
2068 switch (spmi->InterfaceType) {
2070 info->si_type = SI_KCS;
2073 info->si_type = SI_SMIC;
2076 info->si_type = SI_BT;
2079 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2080 spmi->InterfaceType);
2085 if (spmi->InterruptType & 1) {
2086 /* We've got a GPE interrupt. */
2087 info->irq = spmi->GPE;
2088 info->irq_setup = acpi_gpe_irq_setup;
2089 } else if (spmi->InterruptType & 2) {
2090 /* We've got an APIC/SAPIC interrupt. */
2091 info->irq = spmi->GlobalSystemInterrupt;
2092 info->irq_setup = std_irq_setup;
2094 /* Use the default interrupt setting. */
2096 info->irq_setup = NULL;
2099 if (spmi->addr.bit_width) {
2100 /* A (hopefully) properly formed register bit width. */
2101 info->io.regspacing = spmi->addr.bit_width / 8;
2103 info->io.regspacing = DEFAULT_REGSPACING;
2105 info->io.regsize = info->io.regspacing;
2106 info->io.regshift = spmi->addr.bit_offset;
2108 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2109 info->io_setup = mem_setup;
2110 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2111 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2112 info->io_setup = port_setup;
2113 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2116 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2119 info->io.addr_data = spmi->addr.address;
2121 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2122 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2123 info->io.addr_data, info->io.regsize, info->io.regspacing,
2132 static void __devinit spmi_find_bmc(void)
2135 struct SPMITable *spmi;
2144 for (i = 0; ; i++) {
2145 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2146 (struct acpi_table_header **)&spmi);
2147 if (status != AE_OK)
2150 try_init_spmi(spmi);
2154 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2155 const struct pnp_device_id *dev_id)
2157 struct acpi_device *acpi_dev;
2158 struct smi_info *info;
2159 struct resource *res, *res_second;
2162 unsigned long long tmp;
2164 acpi_dev = pnp_acpi_device(dev);
2168 info = smi_info_alloc();
2172 info->addr_source = SI_ACPI;
2173 printk(KERN_INFO PFX "probing via ACPI\n");
2175 handle = acpi_dev->handle;
2176 info->addr_info.acpi_info.acpi_handle = handle;
2178 /* _IFT tells us the interface type: KCS, BT, etc */
2179 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2180 if (ACPI_FAILURE(status))
2185 info->si_type = SI_KCS;
2188 info->si_type = SI_SMIC;
2191 info->si_type = SI_BT;
2194 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2198 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2200 info->io_setup = port_setup;
2201 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2203 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2205 info->io_setup = mem_setup;
2206 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2210 dev_err(&dev->dev, "no I/O or memory address\n");
2213 info->io.addr_data = res->start;
2215 info->io.regspacing = DEFAULT_REGSPACING;
2216 res_second = pnp_get_resource(dev,
2217 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2218 IORESOURCE_IO : IORESOURCE_MEM,
2221 if (res_second->start > info->io.addr_data)
2222 info->io.regspacing = res_second->start - info->io.addr_data;
2224 info->io.regsize = DEFAULT_REGSPACING;
2225 info->io.regshift = 0;
2227 /* If _GPE exists, use it; otherwise use standard interrupts */
2228 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2229 if (ACPI_SUCCESS(status)) {
2231 info->irq_setup = acpi_gpe_irq_setup;
2232 } else if (pnp_irq_valid(dev, 0)) {
2233 info->irq = pnp_irq(dev, 0);
2234 info->irq_setup = std_irq_setup;
2237 info->dev = &dev->dev;
2238 pnp_set_drvdata(dev, info);
2240 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2241 res, info->io.regsize, info->io.regspacing,
2254 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2256 struct smi_info *info = pnp_get_drvdata(dev);
2258 cleanup_one_si(info);
2261 static const struct pnp_device_id pnp_dev_table[] = {
2266 static struct pnp_driver ipmi_pnp_driver = {
2267 .name = DEVICE_NAME,
2268 .probe = ipmi_pnp_probe,
2269 .remove = __devexit_p(ipmi_pnp_remove),
2270 .id_table = pnp_dev_table,
2275 struct dmi_ipmi_data {
2278 unsigned long base_addr;
2284 static int __devinit decode_dmi(const struct dmi_header *dm,
2285 struct dmi_ipmi_data *dmi)
2287 const u8 *data = (const u8 *)dm;
2288 unsigned long base_addr;
2290 u8 len = dm->length;
2292 dmi->type = data[4];
2294 memcpy(&base_addr, data+8, sizeof(unsigned long));
2296 if (base_addr & 1) {
2298 base_addr &= 0xFFFE;
2299 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2302 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2304 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2306 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2308 dmi->irq = data[0x11];
2310 /* The top two bits of byte 0x10 hold the register spacing. */
2311 reg_spacing = (data[0x10] & 0xC0) >> 6;
2312 switch (reg_spacing) {
2313 case 0x00: /* Byte boundaries */
2316 case 0x01: /* 32-bit boundaries */
2319 case 0x02: /* 16-byte boundaries */
2323 /* Some other interface, just ignore it. */
2329 * Note that technically, the lower bit of the base
2330 * address should be 1 if the address is I/O and 0 if
2331 * the address is in memory. So many systems get that
2332 * wrong (and all that I have seen are I/O) so we just
2333 * ignore that bit and assume I/O. Systems that use
2334 * memory should use the newer spec, anyway.
2336 dmi->base_addr = base_addr & 0xfffe;
2337 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2341 dmi->slave_addr = data[6];
2346 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2348 struct smi_info *info;
2350 info = smi_info_alloc();
2352 printk(KERN_ERR PFX "Could not allocate SI data\n");
2356 info->addr_source = SI_SMBIOS;
2357 printk(KERN_INFO PFX "probing via SMBIOS\n");
2359 switch (ipmi_data->type) {
2360 case 0x01: /* KCS */
2361 info->si_type = SI_KCS;
2363 case 0x02: /* SMIC */
2364 info->si_type = SI_SMIC;
2367 info->si_type = SI_BT;
2374 switch (ipmi_data->addr_space) {
2375 case IPMI_MEM_ADDR_SPACE:
2376 info->io_setup = mem_setup;
2377 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2380 case IPMI_IO_ADDR_SPACE:
2381 info->io_setup = port_setup;
2382 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2387 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2388 ipmi_data->addr_space);
2391 info->io.addr_data = ipmi_data->base_addr;
2393 info->io.regspacing = ipmi_data->offset;
2394 if (!info->io.regspacing)
2395 info->io.regspacing = DEFAULT_REGSPACING;
2396 info->io.regsize = DEFAULT_REGSPACING;
2397 info->io.regshift = 0;
2399 info->slave_addr = ipmi_data->slave_addr;
2401 info->irq = ipmi_data->irq;
2403 info->irq_setup = std_irq_setup;
2405 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2406 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2407 info->io.addr_data, info->io.regsize, info->io.regspacing,
2414 static void __devinit dmi_find_bmc(void)
2416 const struct dmi_device *dev = NULL;
2417 struct dmi_ipmi_data data;
2420 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2421 memset(&data, 0, sizeof(data));
2422 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2425 try_init_dmi(&data);
2428 #endif /* CONFIG_DMI */
2432 #define PCI_ERMC_CLASSCODE 0x0C0700
2433 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2434 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2435 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2436 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2437 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2439 #define PCI_HP_VENDOR_ID 0x103C
2440 #define PCI_MMC_DEVICE_ID 0x121A
2441 #define PCI_MMC_ADDR_CW 0x10
2443 static void ipmi_pci_cleanup(struct smi_info *info)
2445 struct pci_dev *pdev = info->addr_source_data;
2447 pci_disable_device(pdev);
2450 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2451 const struct pci_device_id *ent)
2454 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2455 struct smi_info *info;
2457 info = smi_info_alloc();
2461 info->addr_source = SI_PCI;
2462 dev_info(&pdev->dev, "probing via PCI");
2464 switch (class_type) {
2465 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2466 info->si_type = SI_SMIC;
2469 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2470 info->si_type = SI_KCS;
2473 case PCI_ERMC_CLASSCODE_TYPE_BT:
2474 info->si_type = SI_BT;
2479 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2483 rv = pci_enable_device(pdev);
2485 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2490 info->addr_source_cleanup = ipmi_pci_cleanup;
2491 info->addr_source_data = pdev;
2493 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2494 info->io_setup = port_setup;
2495 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2497 info->io_setup = mem_setup;
2498 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2500 info->io.addr_data = pci_resource_start(pdev, 0);
2502 info->io.regspacing = DEFAULT_REGSPACING;
2503 info->io.regsize = DEFAULT_REGSPACING;
2504 info->io.regshift = 0;
2506 info->irq = pdev->irq;
2508 info->irq_setup = std_irq_setup;
2510 info->dev = &pdev->dev;
2511 pci_set_drvdata(pdev, info);
2513 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2514 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2523 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2525 struct smi_info *info = pci_get_drvdata(pdev);
2526 cleanup_one_si(info);
2530 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2535 static int ipmi_pci_resume(struct pci_dev *pdev)
2541 static struct pci_device_id ipmi_pci_devices[] = {
2542 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2543 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2546 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2548 static struct pci_driver ipmi_pci_driver = {
2549 .name = DEVICE_NAME,
2550 .id_table = ipmi_pci_devices,
2551 .probe = ipmi_pci_probe,
2552 .remove = __devexit_p(ipmi_pci_remove),
2554 .suspend = ipmi_pci_suspend,
2555 .resume = ipmi_pci_resume,
2558 #endif /* CONFIG_PCI */
2560 static struct of_device_id ipmi_match[];
2561 static int __devinit ipmi_probe(struct platform_device *dev)
2564 const struct of_device_id *match;
2565 struct smi_info *info;
2566 struct resource resource;
2567 const __be32 *regsize, *regspacing, *regshift;
2568 struct device_node *np = dev->dev.of_node;
2572 dev_info(&dev->dev, "probing via device tree\n");
2574 match = of_match_device(ipmi_match, &dev->dev);
2578 ret = of_address_to_resource(np, 0, &resource);
2580 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2584 regsize = of_get_property(np, "reg-size", &proplen);
2585 if (regsize && proplen != 4) {
2586 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2590 regspacing = of_get_property(np, "reg-spacing", &proplen);
2591 if (regspacing && proplen != 4) {
2592 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2596 regshift = of_get_property(np, "reg-shift", &proplen);
2597 if (regshift && proplen != 4) {
2598 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2602 info = smi_info_alloc();
2606 "could not allocate memory for OF probe\n");
2610 info->si_type = (enum si_type) match->data;
2611 info->addr_source = SI_DEVICETREE;
2612 info->irq_setup = std_irq_setup;
2614 if (resource.flags & IORESOURCE_IO) {
2615 info->io_setup = port_setup;
2616 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2618 info->io_setup = mem_setup;
2619 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2622 info->io.addr_data = resource.start;
2624 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2625 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2626 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2628 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2629 info->dev = &dev->dev;
2631 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2632 info->io.addr_data, info->io.regsize, info->io.regspacing,
2635 dev_set_drvdata(&dev->dev, info);
2637 if (add_smi(info)) {
2645 static int __devexit ipmi_remove(struct platform_device *dev)
2648 cleanup_one_si(dev_get_drvdata(&dev->dev));
2653 static struct of_device_id ipmi_match[] =
2655 { .type = "ipmi", .compatible = "ipmi-kcs",
2656 .data = (void *)(unsigned long) SI_KCS },
2657 { .type = "ipmi", .compatible = "ipmi-smic",
2658 .data = (void *)(unsigned long) SI_SMIC },
2659 { .type = "ipmi", .compatible = "ipmi-bt",
2660 .data = (void *)(unsigned long) SI_BT },
2664 static struct platform_driver ipmi_driver = {
2666 .name = DEVICE_NAME,
2667 .owner = THIS_MODULE,
2668 .of_match_table = ipmi_match,
2670 .probe = ipmi_probe,
2671 .remove = __devexit_p(ipmi_remove),
2674 static int wait_for_msg_done(struct smi_info *smi_info)
2676 enum si_sm_result smi_result;
2678 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2680 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2681 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2682 schedule_timeout_uninterruptible(1);
2683 smi_result = smi_info->handlers->event(
2684 smi_info->si_sm, 100);
2685 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2686 smi_result = smi_info->handlers->event(
2687 smi_info->si_sm, 0);
2691 if (smi_result == SI_SM_HOSED)
2693 * We couldn't get the state machine to run, so whatever's at
2694 * the port is probably not an IPMI SMI interface.
2701 static int try_get_dev_id(struct smi_info *smi_info)
2703 unsigned char msg[2];
2704 unsigned char *resp;
2705 unsigned long resp_len;
2708 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2713 * Do a Get Device ID command, since it comes back with some
2716 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2717 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2718 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2720 rv = wait_for_msg_done(smi_info);
2724 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2725 resp, IPMI_MAX_MSG_LENGTH);
2727 /* Check and record info from the get device id, in case we need it. */
2728 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2735 static int try_enable_event_buffer(struct smi_info *smi_info)
2737 unsigned char msg[3];
2738 unsigned char *resp;
2739 unsigned long resp_len;
2742 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2746 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2747 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2748 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2750 rv = wait_for_msg_done(smi_info);
2752 printk(KERN_WARNING PFX "Error getting response from get"
2753 " global enables command, the event buffer is not"
2758 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2759 resp, IPMI_MAX_MSG_LENGTH);
2762 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2763 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2765 printk(KERN_WARNING PFX "Invalid return from get global"
2766 " enables command, cannot enable the event buffer.\n");
2771 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2772 /* buffer is already enabled, nothing to do. */
2775 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2776 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2777 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2778 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2780 rv = wait_for_msg_done(smi_info);
2782 printk(KERN_WARNING PFX "Error getting response from set"
2783 " global, enables command, the event buffer is not"
2788 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2789 resp, IPMI_MAX_MSG_LENGTH);
2792 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2793 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2794 printk(KERN_WARNING PFX "Invalid return from get global,"
2795 "enables command, not enable the event buffer.\n");
2802 * An error when setting the event buffer bit means
2803 * that the event buffer is not supported.
2811 static int smi_type_proc_show(struct seq_file *m, void *v)
2813 struct smi_info *smi = m->private;
2815 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2818 static int smi_type_proc_open(struct inode *inode, struct file *file)
2820 return single_open(file, smi_type_proc_show, PDE(inode)->data);
2823 static const struct file_operations smi_type_proc_ops = {
2824 .open = smi_type_proc_open,
2826 .llseek = seq_lseek,
2827 .release = single_release,
2830 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2832 struct smi_info *smi = m->private;
2834 seq_printf(m, "interrupts_enabled: %d\n",
2835 smi->irq && !smi->interrupt_disabled);
2836 seq_printf(m, "short_timeouts: %u\n",
2837 smi_get_stat(smi, short_timeouts));
2838 seq_printf(m, "long_timeouts: %u\n",
2839 smi_get_stat(smi, long_timeouts));
2840 seq_printf(m, "idles: %u\n",
2841 smi_get_stat(smi, idles));
2842 seq_printf(m, "interrupts: %u\n",
2843 smi_get_stat(smi, interrupts));
2844 seq_printf(m, "attentions: %u\n",
2845 smi_get_stat(smi, attentions));
2846 seq_printf(m, "flag_fetches: %u\n",
2847 smi_get_stat(smi, flag_fetches));
2848 seq_printf(m, "hosed_count: %u\n",
2849 smi_get_stat(smi, hosed_count));
2850 seq_printf(m, "complete_transactions: %u\n",
2851 smi_get_stat(smi, complete_transactions));
2852 seq_printf(m, "events: %u\n",
2853 smi_get_stat(smi, events));
2854 seq_printf(m, "watchdog_pretimeouts: %u\n",
2855 smi_get_stat(smi, watchdog_pretimeouts));
2856 seq_printf(m, "incoming_messages: %u\n",
2857 smi_get_stat(smi, incoming_messages));
2861 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2863 return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2866 static const struct file_operations smi_si_stats_proc_ops = {
2867 .open = smi_si_stats_proc_open,
2869 .llseek = seq_lseek,
2870 .release = single_release,
2873 static int smi_params_proc_show(struct seq_file *m, void *v)
2875 struct smi_info *smi = m->private;
2877 return seq_printf(m,
2878 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2879 si_to_str[smi->si_type],
2880 addr_space_to_str[smi->io.addr_type],
2889 static int smi_params_proc_open(struct inode *inode, struct file *file)
2891 return single_open(file, smi_params_proc_show, PDE(inode)->data);
2894 static const struct file_operations smi_params_proc_ops = {
2895 .open = smi_params_proc_open,
2897 .llseek = seq_lseek,
2898 .release = single_release,
2902 * oem_data_avail_to_receive_msg_avail
2903 * @info - smi_info structure with msg_flags set
2905 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2906 * Returns 1 indicating need to re-run handle_flags().
2908 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2910 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2916 * setup_dell_poweredge_oem_data_handler
2917 * @info - smi_info.device_id must be populated
2919 * Systems that match, but have firmware version < 1.40 may assert
2920 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2921 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2922 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2923 * as RECEIVE_MSG_AVAIL instead.
2925 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2926 * assert the OEM[012] bits, and if it did, the driver would have to
2927 * change to handle that properly, we don't actually check for the
2929 * Device ID = 0x20 BMC on PowerEdge 8G servers
2930 * Device Revision = 0x80
2931 * Firmware Revision1 = 0x01 BMC version 1.40
2932 * Firmware Revision2 = 0x40 BCD encoded
2933 * IPMI Version = 0x51 IPMI 1.5
2934 * Manufacturer ID = A2 02 00 Dell IANA
2936 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2937 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2940 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2941 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2942 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2943 #define DELL_IANA_MFR_ID 0x0002a2
2944 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2946 struct ipmi_device_id *id = &smi_info->device_id;
2947 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2948 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2949 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2950 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2951 smi_info->oem_data_avail_handler =
2952 oem_data_avail_to_receive_msg_avail;
2953 } else if (ipmi_version_major(id) < 1 ||
2954 (ipmi_version_major(id) == 1 &&
2955 ipmi_version_minor(id) < 5)) {
2956 smi_info->oem_data_avail_handler =
2957 oem_data_avail_to_receive_msg_avail;
2962 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2963 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2965 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2967 /* Make it a response */
2968 msg->rsp[0] = msg->data[0] | 4;
2969 msg->rsp[1] = msg->data[1];
2970 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2972 smi_info->curr_msg = NULL;
2973 deliver_recv_msg(smi_info, msg);
2977 * dell_poweredge_bt_xaction_handler
2978 * @info - smi_info.device_id must be populated
2980 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2981 * not respond to a Get SDR command if the length of the data
2982 * requested is exactly 0x3A, which leads to command timeouts and no
2983 * data returned. This intercepts such commands, and causes userspace
2984 * callers to try again with a different-sized buffer, which succeeds.
2987 #define STORAGE_NETFN 0x0A
2988 #define STORAGE_CMD_GET_SDR 0x23
2989 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2990 unsigned long unused,
2993 struct smi_info *smi_info = in;
2994 unsigned char *data = smi_info->curr_msg->data;
2995 unsigned int size = smi_info->curr_msg->data_size;
2997 (data[0]>>2) == STORAGE_NETFN &&
2998 data[1] == STORAGE_CMD_GET_SDR &&
3000 return_hosed_msg_badsize(smi_info);
3006 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3007 .notifier_call = dell_poweredge_bt_xaction_handler,
3011 * setup_dell_poweredge_bt_xaction_handler
3012 * @info - smi_info.device_id must be filled in already
3014 * Fills in smi_info.device_id.start_transaction_pre_hook
3015 * when we know what function to use there.
3018 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3020 struct ipmi_device_id *id = &smi_info->device_id;
3021 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3022 smi_info->si_type == SI_BT)
3023 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3027 * setup_oem_data_handler
3028 * @info - smi_info.device_id must be filled in already
3030 * Fills in smi_info.device_id.oem_data_available_handler
3031 * when we know what function to use there.
3034 static void setup_oem_data_handler(struct smi_info *smi_info)
3036 setup_dell_poweredge_oem_data_handler(smi_info);
3039 static void setup_xaction_handlers(struct smi_info *smi_info)
3041 setup_dell_poweredge_bt_xaction_handler(smi_info);
3044 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3046 if (smi_info->intf) {
3048 * The timer and thread are only running if the
3049 * interface has been started up and registered.
3051 if (smi_info->thread != NULL)
3052 kthread_stop(smi_info->thread);
3053 del_timer_sync(&smi_info->si_timer);
3057 static __devinitdata struct ipmi_default_vals
3063 { .type = SI_KCS, .port = 0xca2 },
3064 { .type = SI_SMIC, .port = 0xca9 },
3065 { .type = SI_BT, .port = 0xe4 },
3069 static void __devinit default_find_bmc(void)
3071 struct smi_info *info;
3074 for (i = 0; ; i++) {
3075 if (!ipmi_defaults[i].port)
3078 if (check_legacy_ioport(ipmi_defaults[i].port))
3081 info = smi_info_alloc();
3085 info->addr_source = SI_DEFAULT;
3087 info->si_type = ipmi_defaults[i].type;
3088 info->io_setup = port_setup;
3089 info->io.addr_data = ipmi_defaults[i].port;
3090 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3092 info->io.addr = NULL;
3093 info->io.regspacing = DEFAULT_REGSPACING;
3094 info->io.regsize = DEFAULT_REGSPACING;
3095 info->io.regshift = 0;
3097 if (add_smi(info) == 0) {
3098 if ((try_smi_init(info)) == 0) {
3100 printk(KERN_INFO PFX "Found default %s"
3101 " state machine at %s address 0x%lx\n",
3102 si_to_str[info->si_type],
3103 addr_space_to_str[info->io.addr_type],
3104 info->io.addr_data);
3106 cleanup_one_si(info);
3113 static int is_new_interface(struct smi_info *info)
3117 list_for_each_entry(e, &smi_infos, link) {
3118 if (e->io.addr_type != info->io.addr_type)
3120 if (e->io.addr_data == info->io.addr_data)
3127 static int add_smi(struct smi_info *new_smi)
3131 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3132 ipmi_addr_src_to_str[new_smi->addr_source],
3133 si_to_str[new_smi->si_type]);
3134 mutex_lock(&smi_infos_lock);
3135 if (!is_new_interface(new_smi)) {
3136 printk(KERN_CONT " duplicate interface\n");
3141 printk(KERN_CONT "\n");
3143 /* So we know not to free it unless we have allocated one. */
3144 new_smi->intf = NULL;
3145 new_smi->si_sm = NULL;
3146 new_smi->handlers = NULL;
3148 list_add_tail(&new_smi->link, &smi_infos);
3151 mutex_unlock(&smi_infos_lock);
3155 static int try_smi_init(struct smi_info *new_smi)
3160 printk(KERN_INFO PFX "Trying %s-specified %s state"
3161 " machine at %s address 0x%lx, slave address 0x%x,"
3163 ipmi_addr_src_to_str[new_smi->addr_source],
3164 si_to_str[new_smi->si_type],
3165 addr_space_to_str[new_smi->io.addr_type],
3166 new_smi->io.addr_data,
3167 new_smi->slave_addr, new_smi->irq);
3169 switch (new_smi->si_type) {
3171 new_smi->handlers = &kcs_smi_handlers;
3175 new_smi->handlers = &smic_smi_handlers;
3179 new_smi->handlers = &bt_smi_handlers;
3183 /* No support for anything else yet. */
3188 /* Allocate the state machine's data and initialize it. */
3189 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3190 if (!new_smi->si_sm) {
3192 "Could not allocate state machine memory\n");
3196 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3199 /* Now that we know the I/O size, we can set up the I/O. */
3200 rv = new_smi->io_setup(new_smi);
3202 printk(KERN_ERR PFX "Could not set up I/O space\n");
3206 /* Do low-level detection first. */
3207 if (new_smi->handlers->detect(new_smi->si_sm)) {
3208 if (new_smi->addr_source)
3209 printk(KERN_INFO PFX "Interface detection failed\n");
3215 * Attempt a get device id command. If it fails, we probably
3216 * don't have a BMC here.
3218 rv = try_get_dev_id(new_smi);
3220 if (new_smi->addr_source)
3221 printk(KERN_INFO PFX "There appears to be no BMC"
3222 " at this location\n");
3226 setup_oem_data_handler(new_smi);
3227 setup_xaction_handlers(new_smi);