a58beddb48210e16fc01efcf4f8e0033199254aa
[~shefty/rdma-dev.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111                                         "ACPI", "SMBIOS", "PCI",
112                                         "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122         /*
123          * Number of times the driver requested a timer while an operation
124          * was in progress.
125          */
126         SI_STAT_short_timeouts = 0,
127
128         /*
129          * Number of times the driver requested a timer while nothing was in
130          * progress.
131          */
132         SI_STAT_long_timeouts,
133
134         /* Number of times the interface was idle while being polled. */
135         SI_STAT_idles,
136
137         /* Number of interrupts the driver handled. */
138         SI_STAT_interrupts,
139
140         /* Number of time the driver got an ATTN from the hardware. */
141         SI_STAT_attentions,
142
143         /* Number of times the driver requested flags from the hardware. */
144         SI_STAT_flag_fetches,
145
146         /* Number of times the hardware didn't follow the state machine. */
147         SI_STAT_hosed_count,
148
149         /* Number of completed messages. */
150         SI_STAT_complete_transactions,
151
152         /* Number of IPMI events received from the hardware. */
153         SI_STAT_events,
154
155         /* Number of watchdog pretimeouts. */
156         SI_STAT_watchdog_pretimeouts,
157
158         /* Number of asynchronous messages received. */
159         SI_STAT_incoming_messages,
160
161
162         /* This *must* remain last, add new values above this. */
163         SI_NUM_STATS
164 };
165
166 struct smi_info {
167         int                    intf_num;
168         ipmi_smi_t             intf;
169         struct si_sm_data      *si_sm;
170         struct si_sm_handlers  *handlers;
171         enum si_type           si_type;
172         spinlock_t             si_lock;
173         struct list_head       xmit_msgs;
174         struct list_head       hp_xmit_msgs;
175         struct ipmi_smi_msg    *curr_msg;
176         enum si_intf_state     si_state;
177
178         /*
179          * Used to handle the various types of I/O that can occur with
180          * IPMI
181          */
182         struct si_sm_io io;
183         int (*io_setup)(struct smi_info *info);
184         void (*io_cleanup)(struct smi_info *info);
185         int (*irq_setup)(struct smi_info *info);
186         void (*irq_cleanup)(struct smi_info *info);
187         unsigned int io_size;
188         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189         void (*addr_source_cleanup)(struct smi_info *info);
190         void *addr_source_data;
191
192         /*
193          * Per-OEM handler, called from handle_flags().  Returns 1
194          * when handle_flags() needs to be re-run or 0 indicating it
195          * set si_state itself.
196          */
197         int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
199         /*
200          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201          * is set to hold the flags until we are done handling everything
202          * from the flags.
203          */
204 #define RECEIVE_MSG_AVAIL       0x01
205 #define EVENT_MSG_BUFFER_FULL   0x02
206 #define WDT_PRE_TIMEOUT_INT     0x08
207 #define OEM0_DATA_AVAIL     0x20
208 #define OEM1_DATA_AVAIL     0x40
209 #define OEM2_DATA_AVAIL     0x80
210 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
211                              OEM1_DATA_AVAIL | \
212                              OEM2_DATA_AVAIL)
213         unsigned char       msg_flags;
214
215         /* Does the BMC have an event buffer? */
216         char                has_event_buffer;
217
218         /*
219          * If set to true, this will request events the next time the
220          * state machine is idle.
221          */
222         atomic_t            req_events;
223
224         /*
225          * If true, run the state machine to completion on every send
226          * call.  Generally used after a panic to make sure stuff goes
227          * out.
228          */
229         int                 run_to_completion;
230
231         /* The I/O port of an SI interface. */
232         int                 port;
233
234         /*
235          * The space between start addresses of the two ports.  For
236          * instance, if the first port is 0xca2 and the spacing is 4, then
237          * the second port is 0xca6.
238          */
239         unsigned int        spacing;
240
241         /* zero if no irq; */
242         int                 irq;
243
244         /* The timer for this si. */
245         struct timer_list   si_timer;
246
247         /* The time (in jiffies) the last timeout occurred at. */
248         unsigned long       last_timeout_jiffies;
249
250         /* Used to gracefully stop the timer without race conditions. */
251         atomic_t            stop_operation;
252
253         /*
254          * The driver will disable interrupts when it gets into a
255          * situation where it cannot handle messages due to lack of
256          * memory.  Once that situation clears up, it will re-enable
257          * interrupts.
258          */
259         int interrupt_disabled;
260
261         /* From the get device id response... */
262         struct ipmi_device_id device_id;
263
264         /* Driver model stuff. */
265         struct device *dev;
266         struct platform_device *pdev;
267
268         /*
269          * True if we allocated the device, false if it came from
270          * someplace else (like PCI).
271          */
272         int dev_registered;
273
274         /* Slave address, could be reported from DMI. */
275         unsigned char slave_addr;
276
277         /* Counters and things for the proc filesystem. */
278         atomic_t stats[SI_NUM_STATS];
279
280         struct task_struct *thread;
281
282         struct list_head link;
283         union ipmi_smi_info_union addr_info;
284 };
285
286 #define smi_inc_stat(smi, stat) \
287         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290
291 #define SI_MAX_PARMS 4
292
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304
305 static int unload_when_empty = 1;
306
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317
318 static void deliver_recv_msg(struct smi_info *smi_info,
319                              struct ipmi_smi_msg *msg)
320 {
321         /* Deliver the message to the upper layer. */
322         ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327         struct ipmi_smi_msg *msg = smi_info->curr_msg;
328
329         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330                 cCode = IPMI_ERR_UNSPECIFIED;
331         /* else use it as is */
332
333         /* Make it a response */
334         msg->rsp[0] = msg->data[0] | 4;
335         msg->rsp[1] = msg->data[1];
336         msg->rsp[2] = cCode;
337         msg->rsp_size = 3;
338
339         smi_info->curr_msg = NULL;
340         deliver_recv_msg(smi_info, msg);
341 }
342
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345         int              rv;
346         struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348         struct timeval t;
349 #endif
350
351         /* Pick the high priority queue first. */
352         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353                 entry = smi_info->hp_xmit_msgs.next;
354         } else if (!list_empty(&(smi_info->xmit_msgs))) {
355                 entry = smi_info->xmit_msgs.next;
356         }
357
358         if (!entry) {
359                 smi_info->curr_msg = NULL;
360                 rv = SI_SM_IDLE;
361         } else {
362                 int err;
363
364                 list_del(entry);
365                 smi_info->curr_msg = list_entry(entry,
366                                                 struct ipmi_smi_msg,
367                                                 link);
368 #ifdef DEBUG_TIMING
369                 do_gettimeofday(&t);
370                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372                 err = atomic_notifier_call_chain(&xaction_notifier_list,
373                                 0, smi_info);
374                 if (err & NOTIFY_STOP_MASK) {
375                         rv = SI_SM_CALL_WITHOUT_DELAY;
376                         goto out;
377                 }
378                 err = smi_info->handlers->start_transaction(
379                         smi_info->si_sm,
380                         smi_info->curr_msg->data,
381                         smi_info->curr_msg->data_size);
382                 if (err)
383                         return_hosed_msg(smi_info, err);
384
385                 rv = SI_SM_CALL_WITHOUT_DELAY;
386         }
387  out:
388         return rv;
389 }
390
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393         unsigned char msg[2];
394
395         /*
396          * If we are enabling interrupts, we have to tell the
397          * BMC to use them.
398          */
399         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401
402         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408         unsigned char msg[2];
409
410         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412
413         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419         unsigned char msg[3];
420
421         /* Make sure the watchdog pre-timeout flag is not set at startup. */
422         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424         msg[2] = WDT_PRE_TIMEOUT_INT;
425
426         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427         smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429
430 /*
431  * When we have a situtaion where we run out of memory and cannot
432  * allocate messages, we just leave them in the BMC and run the system
433  * polled until we can allocate some memory.  Once we have some
434  * memory, we will re-enable the interrupt.
435  */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439                 start_disable_irq(smi_info);
440                 smi_info->interrupt_disabled = 1;
441                 if (!atomic_read(&smi_info->stop_operation))
442                         mod_timer(&smi_info->si_timer,
443                                   jiffies + SI_TIMEOUT_JIFFIES);
444         }
445 }
446
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450                 start_enable_irq(smi_info);
451                 smi_info->interrupt_disabled = 0;
452         }
453 }
454
455 static void handle_flags(struct smi_info *smi_info)
456 {
457  retry:
458         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459                 /* Watchdog pre-timeout */
460                 smi_inc_stat(smi_info, watchdog_pretimeouts);
461
462                 start_clear_flags(smi_info);
463                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
465         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466                 /* Messages available. */
467                 smi_info->curr_msg = ipmi_alloc_smi_msg();
468                 if (!smi_info->curr_msg) {
469                         disable_si_irq(smi_info);
470                         smi_info->si_state = SI_NORMAL;
471                         return;
472                 }
473                 enable_si_irq(smi_info);
474
475                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477                 smi_info->curr_msg->data_size = 2;
478
479                 smi_info->handlers->start_transaction(
480                         smi_info->si_sm,
481                         smi_info->curr_msg->data,
482                         smi_info->curr_msg->data_size);
483                 smi_info->si_state = SI_GETTING_MESSAGES;
484         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485                 /* Events available. */
486                 smi_info->curr_msg = ipmi_alloc_smi_msg();
487                 if (!smi_info->curr_msg) {
488                         disable_si_irq(smi_info);
489                         smi_info->si_state = SI_NORMAL;
490                         return;
491                 }
492                 enable_si_irq(smi_info);
493
494                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496                 smi_info->curr_msg->data_size = 2;
497
498                 smi_info->handlers->start_transaction(
499                         smi_info->si_sm,
500                         smi_info->curr_msg->data,
501                         smi_info->curr_msg->data_size);
502                 smi_info->si_state = SI_GETTING_EVENTS;
503         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504                    smi_info->oem_data_avail_handler) {
505                 if (smi_info->oem_data_avail_handler(smi_info))
506                         goto retry;
507         } else
508                 smi_info->si_state = SI_NORMAL;
509 }
510
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513         struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515         struct timeval t;
516
517         do_gettimeofday(&t);
518         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520         switch (smi_info->si_state) {
521         case SI_NORMAL:
522                 if (!smi_info->curr_msg)
523                         break;
524
525                 smi_info->curr_msg->rsp_size
526                         = smi_info->handlers->get_result(
527                                 smi_info->si_sm,
528                                 smi_info->curr_msg->rsp,
529                                 IPMI_MAX_MSG_LENGTH);
530
531                 /*
532                  * Do this here becase deliver_recv_msg() releases the
533                  * lock, and a new message can be put in during the
534                  * time the lock is released.
535                  */
536                 msg = smi_info->curr_msg;
537                 smi_info->curr_msg = NULL;
538                 deliver_recv_msg(smi_info, msg);
539                 break;
540
541         case SI_GETTING_FLAGS:
542         {
543                 unsigned char msg[4];
544                 unsigned int  len;
545
546                 /* We got the flags from the SMI, now handle them. */
547                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548                 if (msg[2] != 0) {
549                         /* Error fetching flags, just give up for now. */
550                         smi_info->si_state = SI_NORMAL;
551                 } else if (len < 4) {
552                         /*
553                          * Hmm, no flags.  That's technically illegal, but
554                          * don't use uninitialized data.
555                          */
556                         smi_info->si_state = SI_NORMAL;
557                 } else {
558                         smi_info->msg_flags = msg[3];
559                         handle_flags(smi_info);
560                 }
561                 break;
562         }
563
564         case SI_CLEARING_FLAGS:
565         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566         {
567                 unsigned char msg[3];
568
569                 /* We cleared the flags. */
570                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571                 if (msg[2] != 0) {
572                         /* Error clearing flags */
573                         dev_warn(smi_info->dev,
574                                  "Error clearing flags: %2.2x\n", msg[2]);
575                 }
576                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577                         start_enable_irq(smi_info);
578                 else
579                         smi_info->si_state = SI_NORMAL;
580                 break;
581         }
582
583         case SI_GETTING_EVENTS:
584         {
585                 smi_info->curr_msg->rsp_size
586                         = smi_info->handlers->get_result(
587                                 smi_info->si_sm,
588                                 smi_info->curr_msg->rsp,
589                                 IPMI_MAX_MSG_LENGTH);
590
591                 /*
592                  * Do this here becase deliver_recv_msg() releases the
593                  * lock, and a new message can be put in during the
594                  * time the lock is released.
595                  */
596                 msg = smi_info->curr_msg;
597                 smi_info->curr_msg = NULL;
598                 if (msg->rsp[2] != 0) {
599                         /* Error getting event, probably done. */
600                         msg->done(msg);
601
602                         /* Take off the event flag. */
603                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604                         handle_flags(smi_info);
605                 } else {
606                         smi_inc_stat(smi_info, events);
607
608                         /*
609                          * Do this before we deliver the message
610                          * because delivering the message releases the
611                          * lock and something else can mess with the
612                          * state.
613                          */
614                         handle_flags(smi_info);
615
616                         deliver_recv_msg(smi_info, msg);
617                 }
618                 break;
619         }
620
621         case SI_GETTING_MESSAGES:
622         {
623                 smi_info->curr_msg->rsp_size
624                         = smi_info->handlers->get_result(
625                                 smi_info->si_sm,
626                                 smi_info->curr_msg->rsp,
627                                 IPMI_MAX_MSG_LENGTH);
628
629                 /*
630                  * Do this here becase deliver_recv_msg() releases the
631                  * lock, and a new message can be put in during the
632                  * time the lock is released.
633                  */
634                 msg = smi_info->curr_msg;
635                 smi_info->curr_msg = NULL;
636                 if (msg->rsp[2] != 0) {
637                         /* Error getting event, probably done. */
638                         msg->done(msg);
639
640                         /* Take off the msg flag. */
641                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642                         handle_flags(smi_info);
643                 } else {
644                         smi_inc_stat(smi_info, incoming_messages);
645
646                         /*
647                          * Do this before we deliver the message
648                          * because delivering the message releases the
649                          * lock and something else can mess with the
650                          * state.
651                          */
652                         handle_flags(smi_info);
653
654                         deliver_recv_msg(smi_info, msg);
655                 }
656                 break;
657         }
658
659         case SI_ENABLE_INTERRUPTS1:
660         {
661                 unsigned char msg[4];
662
663                 /* We got the flags from the SMI, now handle them. */
664                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665                 if (msg[2] != 0) {
666                         dev_warn(smi_info->dev, "Could not enable interrupts"
667                                  ", failed get, using polled mode.\n");
668                         smi_info->si_state = SI_NORMAL;
669                 } else {
670                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
671                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
672                         msg[2] = (msg[3] |
673                                   IPMI_BMC_RCV_MSG_INTR |
674                                   IPMI_BMC_EVT_MSG_INTR);
675                         smi_info->handlers->start_transaction(
676                                 smi_info->si_sm, msg, 3);
677                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
678                 }
679                 break;
680         }
681
682         case SI_ENABLE_INTERRUPTS2:
683         {
684                 unsigned char msg[4];
685
686                 /* We got the flags from the SMI, now handle them. */
687                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688                 if (msg[2] != 0)
689                         dev_warn(smi_info->dev, "Could not enable interrupts"
690                                  ", failed set, using polled mode.\n");
691                 else
692                         smi_info->interrupt_disabled = 0;
693                 smi_info->si_state = SI_NORMAL;
694                 break;
695         }
696
697         case SI_DISABLE_INTERRUPTS1:
698         {
699                 unsigned char msg[4];
700
701                 /* We got the flags from the SMI, now handle them. */
702                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703                 if (msg[2] != 0) {
704                         dev_warn(smi_info->dev, "Could not disable interrupts"
705                                  ", failed get.\n");
706                         smi_info->si_state = SI_NORMAL;
707                 } else {
708                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
709                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
710                         msg[2] = (msg[3] &
711                                   ~(IPMI_BMC_RCV_MSG_INTR |
712                                     IPMI_BMC_EVT_MSG_INTR));
713                         smi_info->handlers->start_transaction(
714                                 smi_info->si_sm, msg, 3);
715                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
716                 }
717                 break;
718         }
719
720         case SI_DISABLE_INTERRUPTS2:
721         {
722                 unsigned char msg[4];
723
724                 /* We got the flags from the SMI, now handle them. */
725                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726                 if (msg[2] != 0) {
727                         dev_warn(smi_info->dev, "Could not disable interrupts"
728                                  ", failed set.\n");
729                 }
730                 smi_info->si_state = SI_NORMAL;
731                 break;
732         }
733         }
734 }
735
736 /*
737  * Called on timeouts and events.  Timeouts should pass the elapsed
738  * time, interrupts should pass in zero.  Must be called with
739  * si_lock held and interrupts disabled.
740  */
741 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
742                                            int time)
743 {
744         enum si_sm_result si_sm_result;
745
746  restart:
747         /*
748          * There used to be a loop here that waited a little while
749          * (around 25us) before giving up.  That turned out to be
750          * pointless, the minimum delays I was seeing were in the 300us
751          * range, which is far too long to wait in an interrupt.  So
752          * we just run until the state machine tells us something
753          * happened or it needs a delay.
754          */
755         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
756         time = 0;
757         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
758                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
759
760         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
761                 smi_inc_stat(smi_info, complete_transactions);
762
763                 handle_transaction_done(smi_info);
764                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765         } else if (si_sm_result == SI_SM_HOSED) {
766                 smi_inc_stat(smi_info, hosed_count);
767
768                 /*
769                  * Do the before return_hosed_msg, because that
770                  * releases the lock.
771                  */
772                 smi_info->si_state = SI_NORMAL;
773                 if (smi_info->curr_msg != NULL) {
774                         /*
775                          * If we were handling a user message, format
776                          * a response to send to the upper layer to
777                          * tell it about the error.
778                          */
779                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
780                 }
781                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782         }
783
784         /*
785          * We prefer handling attn over new messages.  But don't do
786          * this if there is not yet an upper layer to handle anything.
787          */
788         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
789                 unsigned char msg[2];
790
791                 smi_inc_stat(smi_info, attentions);
792
793                 /*
794                  * Got a attn, send down a get message flags to see
795                  * what's causing it.  It would be better to handle
796                  * this in the upper layer, but due to the way
797                  * interrupts work with the SMI, that's not really
798                  * possible.
799                  */
800                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
801                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
802
803                 smi_info->handlers->start_transaction(
804                         smi_info->si_sm, msg, 2);
805                 smi_info->si_state = SI_GETTING_FLAGS;
806                 goto restart;
807         }
808
809         /* If we are currently idle, try to start the next message. */
810         if (si_sm_result == SI_SM_IDLE) {
811                 smi_inc_stat(smi_info, idles);
812
813                 si_sm_result = start_next_msg(smi_info);
814                 if (si_sm_result != SI_SM_IDLE)
815                         goto restart;
816         }
817
818         if ((si_sm_result == SI_SM_IDLE)
819             && (atomic_read(&smi_info->req_events))) {
820                 /*
821                  * We are idle and the upper layer requested that I fetch
822                  * events, so do so.
823                  */
824                 atomic_set(&smi_info->req_events, 0);
825
826                 smi_info->curr_msg = ipmi_alloc_smi_msg();
827                 if (!smi_info->curr_msg)
828                         goto out;
829
830                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
831                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
832                 smi_info->curr_msg->data_size = 2;
833
834                 smi_info->handlers->start_transaction(
835                         smi_info->si_sm,
836                         smi_info->curr_msg->data,
837                         smi_info->curr_msg->data_size);
838                 smi_info->si_state = SI_GETTING_EVENTS;
839                 goto restart;
840         }
841  out:
842         return si_sm_result;
843 }
844
845 static void sender(void                *send_info,
846                    struct ipmi_smi_msg *msg,
847                    int                 priority)
848 {
849         struct smi_info   *smi_info = send_info;
850         enum si_sm_result result;
851         unsigned long     flags;
852 #ifdef DEBUG_TIMING
853         struct timeval    t;
854 #endif
855
856         if (atomic_read(&smi_info->stop_operation)) {
857                 msg->rsp[0] = msg->data[0] | 4;
858                 msg->rsp[1] = msg->data[1];
859                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
860                 msg->rsp_size = 3;
861                 deliver_recv_msg(smi_info, msg);
862                 return;
863         }
864
865 #ifdef DEBUG_TIMING
866         do_gettimeofday(&t);
867         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868 #endif
869
870         if (smi_info->run_to_completion) {
871                 /*
872                  * If we are running to completion, then throw it in
873                  * the list and run transactions until everything is
874                  * clear.  Priority doesn't matter here.
875                  */
876
877                 /*
878                  * Run to completion means we are single-threaded, no
879                  * need for locks.
880                  */
881                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
882
883                 result = smi_event_handler(smi_info, 0);
884                 while (result != SI_SM_IDLE) {
885                         udelay(SI_SHORT_TIMEOUT_USEC);
886                         result = smi_event_handler(smi_info,
887                                                    SI_SHORT_TIMEOUT_USEC);
888                 }
889                 return;
890         }
891
892         spin_lock_irqsave(&smi_info->si_lock, flags);
893         if (priority > 0)
894                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
895         else
896                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
897
898         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
899                 /*
900                  * last_timeout_jiffies is updated here to avoid
901                  * smi_timeout() handler passing very large time_diff
902                  * value to smi_event_handler() that causes
903                  * the send command to abort.
904                  */
905                 smi_info->last_timeout_jiffies = jiffies;
906
907                 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
908
909                 if (smi_info->thread)
910                         wake_up_process(smi_info->thread);
911
912                 start_next_msg(smi_info);
913                 smi_event_handler(smi_info, 0);
914         }
915         spin_unlock_irqrestore(&smi_info->si_lock, flags);
916 }
917
918 static void set_run_to_completion(void *send_info, int i_run_to_completion)
919 {
920         struct smi_info   *smi_info = send_info;
921         enum si_sm_result result;
922
923         smi_info->run_to_completion = i_run_to_completion;
924         if (i_run_to_completion) {
925                 result = smi_event_handler(smi_info, 0);
926                 while (result != SI_SM_IDLE) {
927                         udelay(SI_SHORT_TIMEOUT_USEC);
928                         result = smi_event_handler(smi_info,
929                                                    SI_SHORT_TIMEOUT_USEC);
930                 }
931         }
932 }
933
934 /*
935  * Use -1 in the nsec value of the busy waiting timespec to tell that
936  * we are spinning in kipmid looking for something and not delaying
937  * between checks
938  */
939 static inline void ipmi_si_set_not_busy(struct timespec *ts)
940 {
941         ts->tv_nsec = -1;
942 }
943 static inline int ipmi_si_is_busy(struct timespec *ts)
944 {
945         return ts->tv_nsec != -1;
946 }
947
948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
949                                  const struct smi_info *smi_info,
950                                  struct timespec *busy_until)
951 {
952         unsigned int max_busy_us = 0;
953
954         if (smi_info->intf_num < num_max_busy_us)
955                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
956         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957                 ipmi_si_set_not_busy(busy_until);
958         else if (!ipmi_si_is_busy(busy_until)) {
959                 getnstimeofday(busy_until);
960                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
961         } else {
962                 struct timespec now;
963                 getnstimeofday(&now);
964                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
965                         ipmi_si_set_not_busy(busy_until);
966                         return 0;
967                 }
968         }
969         return 1;
970 }
971
972
973 /*
974  * A busy-waiting loop for speeding up IPMI operation.
975  *
976  * Lousy hardware makes this hard.  This is only enabled for systems
977  * that are not BT and do not have interrupts.  It starts spinning
978  * when an operation is complete or until max_busy tells it to stop
979  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
980  * Documentation/IPMI.txt for details.
981  */
982 static int ipmi_thread(void *data)
983 {
984         struct smi_info *smi_info = data;
985         unsigned long flags;
986         enum si_sm_result smi_result;
987         struct timespec busy_until;
988
989         ipmi_si_set_not_busy(&busy_until);
990         set_user_nice(current, 19);
991         while (!kthread_should_stop()) {
992                 int busy_wait;
993
994                 spin_lock_irqsave(&(smi_info->si_lock), flags);
995                 smi_result = smi_event_handler(smi_info, 0);
996                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
997                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
998                                                   &busy_until);
999                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1000                         ; /* do nothing */
1001                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1002                         schedule();
1003                 else if (smi_result == SI_SM_IDLE)
1004                         schedule_timeout_interruptible(100);
1005                 else
1006                         schedule_timeout_interruptible(1);
1007         }
1008         return 0;
1009 }
1010
1011
1012 static void poll(void *send_info)
1013 {
1014         struct smi_info *smi_info = send_info;
1015         unsigned long flags = 0;
1016         int run_to_completion = smi_info->run_to_completion;
1017
1018         /*
1019          * Make sure there is some delay in the poll loop so we can
1020          * drive time forward and timeout things.
1021          */
1022         udelay(10);
1023         if (!run_to_completion)
1024                 spin_lock_irqsave(&smi_info->si_lock, flags);
1025         smi_event_handler(smi_info, 10);
1026         if (!run_to_completion)
1027                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1028 }
1029
1030 static void request_events(void *send_info)
1031 {
1032         struct smi_info *smi_info = send_info;
1033
1034         if (atomic_read(&smi_info->stop_operation) ||
1035                                 !smi_info->has_event_buffer)
1036                 return;
1037
1038         atomic_set(&smi_info->req_events, 1);
1039 }
1040
1041 static int initialized;
1042
1043 static void smi_timeout(unsigned long data)
1044 {
1045         struct smi_info   *smi_info = (struct smi_info *) data;
1046         enum si_sm_result smi_result;
1047         unsigned long     flags;
1048         unsigned long     jiffies_now;
1049         long              time_diff;
1050         long              timeout;
1051 #ifdef DEBUG_TIMING
1052         struct timeval    t;
1053 #endif
1054
1055         spin_lock_irqsave(&(smi_info->si_lock), flags);
1056 #ifdef DEBUG_TIMING
1057         do_gettimeofday(&t);
1058         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1059 #endif
1060         jiffies_now = jiffies;
1061         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1062                      * SI_USEC_PER_JIFFY);
1063         smi_result = smi_event_handler(smi_info, time_diff);
1064
1065         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066
1067         smi_info->last_timeout_jiffies = jiffies_now;
1068
1069         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1070                 /* Running with interrupts, only do long timeouts. */
1071                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1072                 smi_inc_stat(smi_info, long_timeouts);
1073                 goto do_mod_timer;
1074         }
1075
1076         /*
1077          * If the state machine asks for a short delay, then shorten
1078          * the timer timeout.
1079          */
1080         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1081                 smi_inc_stat(smi_info, short_timeouts);
1082                 timeout = jiffies + 1;
1083         } else {
1084                 smi_inc_stat(smi_info, long_timeouts);
1085                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1086         }
1087
1088  do_mod_timer:
1089         if (smi_result != SI_SM_IDLE)
1090                 mod_timer(&(smi_info->si_timer), timeout);
1091 }
1092
1093 static irqreturn_t si_irq_handler(int irq, void *data)
1094 {
1095         struct smi_info *smi_info = data;
1096         unsigned long   flags;
1097 #ifdef DEBUG_TIMING
1098         struct timeval  t;
1099 #endif
1100
1101         spin_lock_irqsave(&(smi_info->si_lock), flags);
1102
1103         smi_inc_stat(smi_info, interrupts);
1104
1105 #ifdef DEBUG_TIMING
1106         do_gettimeofday(&t);
1107         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1108 #endif
1109         smi_event_handler(smi_info, 0);
1110         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1111         return IRQ_HANDLED;
1112 }
1113
1114 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1115 {
1116         struct smi_info *smi_info = data;
1117         /* We need to clear the IRQ flag for the BT interface. */
1118         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1119                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1120                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1121         return si_irq_handler(irq, data);
1122 }
1123
1124 static int smi_start_processing(void       *send_info,
1125                                 ipmi_smi_t intf)
1126 {
1127         struct smi_info *new_smi = send_info;
1128         int             enable = 0;
1129
1130         new_smi->intf = intf;
1131
1132         /* Try to claim any interrupts. */
1133         if (new_smi->irq_setup)
1134                 new_smi->irq_setup(new_smi);
1135
1136         /* Set up the timer that drives the interface. */
1137         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1138         new_smi->last_timeout_jiffies = jiffies;
1139         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1140
1141         /*
1142          * Check if the user forcefully enabled the daemon.
1143          */
1144         if (new_smi->intf_num < num_force_kipmid)
1145                 enable = force_kipmid[new_smi->intf_num];
1146         /*
1147          * The BT interface is efficient enough to not need a thread,
1148          * and there is no need for a thread if we have interrupts.
1149          */
1150         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1151                 enable = 1;
1152
1153         if (enable) {
1154                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1155                                               "kipmi%d", new_smi->intf_num);
1156                 if (IS_ERR(new_smi->thread)) {
1157                         dev_notice(new_smi->dev, "Could not start"
1158                                    " kernel thread due to error %ld, only using"
1159                                    " timers to drive the interface\n",
1160                                    PTR_ERR(new_smi->thread));
1161                         new_smi->thread = NULL;
1162                 }
1163         }
1164
1165         return 0;
1166 }
1167
1168 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1169 {
1170         struct smi_info *smi = send_info;
1171
1172         data->addr_src = smi->addr_source;
1173         data->dev = smi->dev;
1174         data->addr_info = smi->addr_info;
1175         get_device(smi->dev);
1176
1177         return 0;
1178 }
1179
1180 static void set_maintenance_mode(void *send_info, int enable)
1181 {
1182         struct smi_info   *smi_info = send_info;
1183
1184         if (!enable)
1185                 atomic_set(&smi_info->req_events, 0);
1186 }
1187
1188 static struct ipmi_smi_handlers handlers = {
1189         .owner                  = THIS_MODULE,
1190         .start_processing       = smi_start_processing,
1191         .get_smi_info           = get_smi_info,
1192         .sender                 = sender,
1193         .request_events         = request_events,
1194         .set_maintenance_mode   = set_maintenance_mode,
1195         .set_run_to_completion  = set_run_to_completion,
1196         .poll                   = poll,
1197 };
1198
1199 /*
1200  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1202  */
1203
1204 static LIST_HEAD(smi_infos);
1205 static DEFINE_MUTEX(smi_infos_lock);
1206 static int smi_num; /* Used to sequence the SMIs */
1207
1208 #define DEFAULT_REGSPACING      1
1209 #define DEFAULT_REGSIZE         1
1210
1211 #ifdef CONFIG_ACPI
1212 static bool          si_tryacpi = 1;
1213 #endif
1214 #ifdef CONFIG_DMI
1215 static bool          si_trydmi = 1;
1216 #endif
1217 static bool          si_trydefaults = 1;
1218 static char          *si_type[SI_MAX_PARMS];
1219 #define MAX_SI_TYPE_STR 30
1220 static char          si_type_str[MAX_SI_TYPE_STR];
1221 static unsigned long addrs[SI_MAX_PARMS];
1222 static unsigned int num_addrs;
1223 static unsigned int  ports[SI_MAX_PARMS];
1224 static unsigned int num_ports;
1225 static int           irqs[SI_MAX_PARMS];
1226 static unsigned int num_irqs;
1227 static int           regspacings[SI_MAX_PARMS];
1228 static unsigned int num_regspacings;
1229 static int           regsizes[SI_MAX_PARMS];
1230 static unsigned int num_regsizes;
1231 static int           regshifts[SI_MAX_PARMS];
1232 static unsigned int num_regshifts;
1233 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1234 static unsigned int num_slave_addrs;
1235
1236 #define IPMI_IO_ADDR_SPACE  0
1237 #define IPMI_MEM_ADDR_SPACE 1
1238 static char *addr_space_to_str[] = { "i/o", "mem" };
1239
1240 static int hotmod_handler(const char *val, struct kernel_param *kp);
1241
1242 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1243 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1244                  " Documentation/IPMI.txt in the kernel sources for the"
1245                  " gory details.");
1246
1247 #ifdef CONFIG_ACPI
1248 module_param_named(tryacpi, si_tryacpi, bool, 0);
1249 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1250                  " default scan of the interfaces identified via ACPI");
1251 #endif
1252 #ifdef CONFIG_DMI
1253 module_param_named(trydmi, si_trydmi, bool, 0);
1254 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1255                  " default scan of the interfaces identified via DMI");
1256 #endif
1257 module_param_named(trydefaults, si_trydefaults, bool, 0);
1258 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1259                  " default scan of the KCS and SMIC interface at the standard"
1260                  " address");
1261 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1262 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1263                  " interface separated by commas.  The types are 'kcs',"
1264                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1265                  " the first interface to kcs and the second to bt");
1266 module_param_array(addrs, ulong, &num_addrs, 0);
1267 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1268                  " addresses separated by commas.  Only use if an interface"
1269                  " is in memory.  Otherwise, set it to zero or leave"
1270                  " it blank.");
1271 module_param_array(ports, uint, &num_ports, 0);
1272 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1273                  " addresses separated by commas.  Only use if an interface"
1274                  " is a port.  Otherwise, set it to zero or leave"
1275                  " it blank.");
1276 module_param_array(irqs, int, &num_irqs, 0);
1277 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1278                  " addresses separated by commas.  Only use if an interface"
1279                  " has an interrupt.  Otherwise, set it to zero or leave"
1280                  " it blank.");
1281 module_param_array(regspacings, int, &num_regspacings, 0);
1282 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1283                  " and each successive register used by the interface.  For"
1284                  " instance, if the start address is 0xca2 and the spacing"
1285                  " is 2, then the second address is at 0xca4.  Defaults"
1286                  " to 1.");
1287 module_param_array(regsizes, int, &num_regsizes, 0);
1288 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1289                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1290                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1291                  " the 8-bit IPMI register has to be read from a larger"
1292                  " register.");
1293 module_param_array(regshifts, int, &num_regshifts, 0);
1294 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1295                  " IPMI register, in bits.  For instance, if the data"
1296                  " is read from a 32-bit word and the IPMI data is in"
1297                  " bit 8-15, then the shift would be 8");
1298 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1299 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1300                  " the controller.  Normally this is 0x20, but can be"
1301                  " overridden by this parm.  This is an array indexed"
1302                  " by interface number.");
1303 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1304 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1305                  " disabled(0).  Normally the IPMI driver auto-detects"
1306                  " this, but the value may be overridden by this parm.");
1307 module_param(unload_when_empty, int, 0);
1308 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1309                  " specified or found, default is 1.  Setting to 0"
1310                  " is useful for hot add of devices using hotmod.");
1311 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1312 MODULE_PARM_DESC(kipmid_max_busy_us,
1313                  "Max time (in microseconds) to busy-wait for IPMI data before"
1314                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1315                  " if kipmid is using up a lot of CPU time.");
1316
1317
1318 static void std_irq_cleanup(struct smi_info *info)
1319 {
1320         if (info->si_type == SI_BT)
1321                 /* Disable the interrupt in the BT interface. */
1322                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1323         free_irq(info->irq, info);
1324 }
1325
1326 static int std_irq_setup(struct smi_info *info)
1327 {
1328         int rv;
1329
1330         if (!info->irq)
1331                 return 0;
1332
1333         if (info->si_type == SI_BT) {
1334                 rv = request_irq(info->irq,
1335                                  si_bt_irq_handler,
1336                                  IRQF_SHARED | IRQF_DISABLED,
1337                                  DEVICE_NAME,
1338                                  info);
1339                 if (!rv)
1340                         /* Enable the interrupt in the BT interface. */
1341                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1342                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1343         } else
1344                 rv = request_irq(info->irq,
1345                                  si_irq_handler,
1346                                  IRQF_SHARED | IRQF_DISABLED,
1347                                  DEVICE_NAME,
1348                                  info);
1349         if (rv) {
1350                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1351                          " running polled\n",
1352                          DEVICE_NAME, info->irq);
1353                 info->irq = 0;
1354         } else {
1355                 info->irq_cleanup = std_irq_cleanup;
1356                 dev_info(info->dev, "Using irq %d\n", info->irq);
1357         }
1358
1359         return rv;
1360 }
1361
1362 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1363 {
1364         unsigned int addr = io->addr_data;
1365
1366         return inb(addr + (offset * io->regspacing));
1367 }
1368
1369 static void port_outb(struct si_sm_io *io, unsigned int offset,
1370                       unsigned char b)
1371 {
1372         unsigned int addr = io->addr_data;
1373
1374         outb(b, addr + (offset * io->regspacing));
1375 }
1376
1377 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1378 {
1379         unsigned int addr = io->addr_data;
1380
1381         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1382 }
1383
1384 static void port_outw(struct si_sm_io *io, unsigned int offset,
1385                       unsigned char b)
1386 {
1387         unsigned int addr = io->addr_data;
1388
1389         outw(b << io->regshift, addr + (offset * io->regspacing));
1390 }
1391
1392 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1393 {
1394         unsigned int addr = io->addr_data;
1395
1396         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1397 }
1398
1399 static void port_outl(struct si_sm_io *io, unsigned int offset,
1400                       unsigned char b)
1401 {
1402         unsigned int addr = io->addr_data;
1403
1404         outl(b << io->regshift, addr+(offset * io->regspacing));
1405 }
1406
1407 static void port_cleanup(struct smi_info *info)
1408 {
1409         unsigned int addr = info->io.addr_data;
1410         int          idx;
1411
1412         if (addr) {
1413                 for (idx = 0; idx < info->io_size; idx++)
1414                         release_region(addr + idx * info->io.regspacing,
1415                                        info->io.regsize);
1416         }
1417 }
1418
1419 static int port_setup(struct smi_info *info)
1420 {
1421         unsigned int addr = info->io.addr_data;
1422         int          idx;
1423
1424         if (!addr)
1425                 return -ENODEV;
1426
1427         info->io_cleanup = port_cleanup;
1428
1429         /*
1430          * Figure out the actual inb/inw/inl/etc routine to use based
1431          * upon the register size.
1432          */
1433         switch (info->io.regsize) {
1434         case 1:
1435                 info->io.inputb = port_inb;
1436                 info->io.outputb = port_outb;
1437                 break;
1438         case 2:
1439                 info->io.inputb = port_inw;
1440                 info->io.outputb = port_outw;
1441                 break;
1442         case 4:
1443                 info->io.inputb = port_inl;
1444                 info->io.outputb = port_outl;
1445                 break;
1446         default:
1447                 dev_warn(info->dev, "Invalid register size: %d\n",
1448                          info->io.regsize);
1449                 return -EINVAL;
1450         }
1451
1452         /*
1453          * Some BIOSes reserve disjoint I/O regions in their ACPI
1454          * tables.  This causes problems when trying to register the
1455          * entire I/O region.  Therefore we must register each I/O
1456          * port separately.
1457          */
1458         for (idx = 0; idx < info->io_size; idx++) {
1459                 if (request_region(addr + idx * info->io.regspacing,
1460                                    info->io.regsize, DEVICE_NAME) == NULL) {
1461                         /* Undo allocations */
1462                         while (idx--) {
1463                                 release_region(addr + idx * info->io.regspacing,
1464                                                info->io.regsize);
1465                         }
1466                         return -EIO;
1467                 }
1468         }
1469         return 0;
1470 }
1471
1472 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1473 {
1474         return readb((io->addr)+(offset * io->regspacing));
1475 }
1476
1477 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1478                      unsigned char b)
1479 {
1480         writeb(b, (io->addr)+(offset * io->regspacing));
1481 }
1482
1483 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1484 {
1485         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1486                 & 0xff;
1487 }
1488
1489 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1490                      unsigned char b)
1491 {
1492         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1493 }
1494
1495 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1496 {
1497         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1498                 & 0xff;
1499 }
1500
1501 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1502                      unsigned char b)
1503 {
1504         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1505 }
1506
1507 #ifdef readq
1508 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1509 {
1510         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1511                 & 0xff;
1512 }
1513
1514 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1515                      unsigned char b)
1516 {
1517         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1518 }
1519 #endif
1520
1521 static void mem_cleanup(struct smi_info *info)
1522 {
1523         unsigned long addr = info->io.addr_data;
1524         int           mapsize;
1525
1526         if (info->io.addr) {
1527                 iounmap(info->io.addr);
1528
1529                 mapsize = ((info->io_size * info->io.regspacing)
1530                            - (info->io.regspacing - info->io.regsize));
1531
1532                 release_mem_region(addr, mapsize);
1533         }
1534 }
1535
1536 static int mem_setup(struct smi_info *info)
1537 {
1538         unsigned long addr = info->io.addr_data;
1539         int           mapsize;
1540
1541         if (!addr)
1542                 return -ENODEV;
1543
1544         info->io_cleanup = mem_cleanup;
1545
1546         /*
1547          * Figure out the actual readb/readw/readl/etc routine to use based
1548          * upon the register size.
1549          */
1550         switch (info->io.regsize) {
1551         case 1:
1552                 info->io.inputb = intf_mem_inb;
1553                 info->io.outputb = intf_mem_outb;
1554                 break;
1555         case 2:
1556                 info->io.inputb = intf_mem_inw;
1557                 info->io.outputb = intf_mem_outw;
1558                 break;
1559         case 4:
1560                 info->io.inputb = intf_mem_inl;
1561                 info->io.outputb = intf_mem_outl;
1562                 break;
1563 #ifdef readq
1564         case 8:
1565                 info->io.inputb = mem_inq;
1566                 info->io.outputb = mem_outq;
1567                 break;
1568 #endif
1569         default:
1570                 dev_warn(info->dev, "Invalid register size: %d\n",
1571                          info->io.regsize);
1572                 return -EINVAL;
1573         }
1574
1575         /*
1576          * Calculate the total amount of memory to claim.  This is an
1577          * unusual looking calculation, but it avoids claiming any
1578          * more memory than it has to.  It will claim everything
1579          * between the first address to the end of the last full
1580          * register.
1581          */
1582         mapsize = ((info->io_size * info->io.regspacing)
1583                    - (info->io.regspacing - info->io.regsize));
1584
1585         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1586                 return -EIO;
1587
1588         info->io.addr = ioremap(addr, mapsize);
1589         if (info->io.addr == NULL) {
1590                 release_mem_region(addr, mapsize);
1591                 return -EIO;
1592         }
1593         return 0;
1594 }
1595
1596 /*
1597  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1598  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1599  * Options are:
1600  *   rsp=<regspacing>
1601  *   rsi=<regsize>
1602  *   rsh=<regshift>
1603  *   irq=<irq>
1604  *   ipmb=<ipmb addr>
1605  */
1606 enum hotmod_op { HM_ADD, HM_REMOVE };
1607 struct hotmod_vals {
1608         char *name;
1609         int  val;
1610 };
1611 static struct hotmod_vals hotmod_ops[] = {
1612         { "add",        HM_ADD },
1613         { "remove",     HM_REMOVE },
1614         { NULL }
1615 };
1616 static struct hotmod_vals hotmod_si[] = {
1617         { "kcs",        SI_KCS },
1618         { "smic",       SI_SMIC },
1619         { "bt",         SI_BT },
1620         { NULL }
1621 };
1622 static struct hotmod_vals hotmod_as[] = {
1623         { "mem",        IPMI_MEM_ADDR_SPACE },
1624         { "i/o",        IPMI_IO_ADDR_SPACE },
1625         { NULL }
1626 };
1627
1628 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1629 {
1630         char *s;
1631         int  i;
1632
1633         s = strchr(*curr, ',');
1634         if (!s) {
1635                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1636                 return -EINVAL;
1637         }
1638         *s = '\0';
1639         s++;
1640         for (i = 0; hotmod_ops[i].name; i++) {
1641                 if (strcmp(*curr, v[i].name) == 0) {
1642                         *val = v[i].val;
1643                         *curr = s;
1644                         return 0;
1645                 }
1646         }
1647
1648         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1649         return -EINVAL;
1650 }
1651
1652 static int check_hotmod_int_op(const char *curr, const char *option,
1653                                const char *name, int *val)
1654 {
1655         char *n;
1656
1657         if (strcmp(curr, name) == 0) {
1658                 if (!option) {
1659                         printk(KERN_WARNING PFX
1660                                "No option given for '%s'\n",
1661                                curr);
1662                         return -EINVAL;
1663                 }
1664                 *val = simple_strtoul(option, &n, 0);
1665                 if ((*n != '\0') || (*option == '\0')) {
1666                         printk(KERN_WARNING PFX
1667                                "Bad option given for '%s'\n",
1668                                curr);
1669                         return -EINVAL;
1670                 }
1671                 return 1;
1672         }
1673         return 0;
1674 }
1675
1676 static struct smi_info *smi_info_alloc(void)
1677 {
1678         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1679
1680         if (info)
1681                 spin_lock_init(&info->si_lock);
1682         return info;
1683 }
1684
1685 static int hotmod_handler(const char *val, struct kernel_param *kp)
1686 {
1687         char *str = kstrdup(val, GFP_KERNEL);
1688         int  rv;
1689         char *next, *curr, *s, *n, *o;
1690         enum hotmod_op op;
1691         enum si_type si_type;
1692         int  addr_space;
1693         unsigned long addr;
1694         int regspacing;
1695         int regsize;
1696         int regshift;
1697         int irq;
1698         int ipmb;
1699         int ival;
1700         int len;
1701         struct smi_info *info;
1702
1703         if (!str)
1704                 return -ENOMEM;
1705
1706         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1707         len = strlen(str);
1708         ival = len - 1;
1709         while ((ival >= 0) && isspace(str[ival])) {
1710                 str[ival] = '\0';
1711                 ival--;
1712         }
1713
1714         for (curr = str; curr; curr = next) {
1715                 regspacing = 1;
1716                 regsize = 1;
1717                 regshift = 0;
1718                 irq = 0;
1719                 ipmb = 0; /* Choose the default if not specified */
1720
1721                 next = strchr(curr, ':');
1722                 if (next) {
1723                         *next = '\0';
1724                         next++;
1725                 }
1726
1727                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1728                 if (rv)
1729                         break;
1730                 op = ival;
1731
1732                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1733                 if (rv)
1734                         break;
1735                 si_type = ival;
1736
1737                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1738                 if (rv)
1739                         break;
1740
1741                 s = strchr(curr, ',');
1742                 if (s) {
1743                         *s = '\0';
1744                         s++;
1745                 }
1746                 addr = simple_strtoul(curr, &n, 0);
1747                 if ((*n != '\0') || (*curr == '\0')) {
1748                         printk(KERN_WARNING PFX "Invalid hotmod address"
1749                                " '%s'\n", curr);
1750                         break;
1751                 }
1752
1753                 while (s) {
1754                         curr = s;
1755                         s = strchr(curr, ',');
1756                         if (s) {
1757                                 *s = '\0';
1758                                 s++;
1759                         }
1760                         o = strchr(curr, '=');
1761                         if (o) {
1762                                 *o = '\0';
1763                                 o++;
1764                         }
1765                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1766                         if (rv < 0)
1767                                 goto out;
1768                         else if (rv)
1769                                 continue;
1770                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1771                         if (rv < 0)
1772                                 goto out;
1773                         else if (rv)
1774                                 continue;
1775                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1776                         if (rv < 0)
1777                                 goto out;
1778                         else if (rv)
1779                                 continue;
1780                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1781                         if (rv < 0)
1782                                 goto out;
1783                         else if (rv)
1784                                 continue;
1785                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1786                         if (rv < 0)
1787                                 goto out;
1788                         else if (rv)
1789                                 continue;
1790
1791                         rv = -EINVAL;
1792                         printk(KERN_WARNING PFX
1793                                "Invalid hotmod option '%s'\n",
1794                                curr);
1795                         goto out;
1796                 }
1797
1798                 if (op == HM_ADD) {
1799                         info = smi_info_alloc();
1800                         if (!info) {
1801                                 rv = -ENOMEM;
1802                                 goto out;
1803                         }
1804
1805                         info->addr_source = SI_HOTMOD;
1806                         info->si_type = si_type;
1807                         info->io.addr_data = addr;
1808                         info->io.addr_type = addr_space;
1809                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1810                                 info->io_setup = mem_setup;
1811                         else
1812                                 info->io_setup = port_setup;
1813
1814                         info->io.addr = NULL;
1815                         info->io.regspacing = regspacing;
1816                         if (!info->io.regspacing)
1817                                 info->io.regspacing = DEFAULT_REGSPACING;
1818                         info->io.regsize = regsize;
1819                         if (!info->io.regsize)
1820                                 info->io.regsize = DEFAULT_REGSPACING;
1821                         info->io.regshift = regshift;
1822                         info->irq = irq;
1823                         if (info->irq)
1824                                 info->irq_setup = std_irq_setup;
1825                         info->slave_addr = ipmb;
1826
1827                         if (!add_smi(info)) {
1828                                 if (try_smi_init(info))
1829                                         cleanup_one_si(info);
1830                         } else {
1831                                 kfree(info);
1832                         }
1833                 } else {
1834                         /* remove */
1835                         struct smi_info *e, *tmp_e;
1836
1837                         mutex_lock(&smi_infos_lock);
1838                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1839                                 if (e->io.addr_type != addr_space)
1840                                         continue;
1841                                 if (e->si_type != si_type)
1842                                         continue;
1843                                 if (e->io.addr_data == addr)
1844                                         cleanup_one_si(e);
1845                         }
1846                         mutex_unlock(&smi_infos_lock);
1847                 }
1848         }
1849         rv = len;
1850  out:
1851         kfree(str);
1852         return rv;
1853 }
1854
1855 static int hardcode_find_bmc(void)
1856 {
1857         int ret = -ENODEV;
1858         int             i;
1859         struct smi_info *info;
1860
1861         for (i = 0; i < SI_MAX_PARMS; i++) {
1862                 if (!ports[i] && !addrs[i])
1863                         continue;
1864
1865                 info = smi_info_alloc();
1866                 if (!info)
1867                         return -ENOMEM;
1868
1869                 info->addr_source = SI_HARDCODED;
1870                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1871
1872                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1873                         info->si_type = SI_KCS;
1874                 } else if (strcmp(si_type[i], "smic") == 0) {
1875                         info->si_type = SI_SMIC;
1876                 } else if (strcmp(si_type[i], "bt") == 0) {
1877                         info->si_type = SI_BT;
1878                 } else {
1879                         printk(KERN_WARNING PFX "Interface type specified "
1880                                "for interface %d, was invalid: %s\n",
1881                                i, si_type[i]);
1882                         kfree(info);
1883                         continue;
1884                 }
1885
1886                 if (ports[i]) {
1887                         /* An I/O port */
1888                         info->io_setup = port_setup;
1889                         info->io.addr_data = ports[i];
1890                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1891                 } else if (addrs[i]) {
1892                         /* A memory port */
1893                         info->io_setup = mem_setup;
1894                         info->io.addr_data = addrs[i];
1895                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1896                 } else {
1897                         printk(KERN_WARNING PFX "Interface type specified "
1898                                "for interface %d, but port and address were "
1899                                "not set or set to zero.\n", i);
1900                         kfree(info);
1901                         continue;
1902                 }
1903
1904                 info->io.addr = NULL;
1905                 info->io.regspacing = regspacings[i];
1906                 if (!info->io.regspacing)
1907                         info->io.regspacing = DEFAULT_REGSPACING;
1908                 info->io.regsize = regsizes[i];
1909                 if (!info->io.regsize)
1910                         info->io.regsize = DEFAULT_REGSPACING;
1911                 info->io.regshift = regshifts[i];
1912                 info->irq = irqs[i];
1913                 if (info->irq)
1914                         info->irq_setup = std_irq_setup;
1915                 info->slave_addr = slave_addrs[i];
1916
1917                 if (!add_smi(info)) {
1918                         if (try_smi_init(info))
1919                                 cleanup_one_si(info);
1920                         ret = 0;
1921                 } else {
1922                         kfree(info);
1923                 }
1924         }
1925         return ret;
1926 }
1927
1928 #ifdef CONFIG_ACPI
1929
1930 #include <linux/acpi.h>
1931
1932 /*
1933  * Once we get an ACPI failure, we don't try any more, because we go
1934  * through the tables sequentially.  Once we don't find a table, there
1935  * are no more.
1936  */
1937 static int acpi_failure;
1938
1939 /* For GPE-type interrupts. */
1940 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1941         u32 gpe_number, void *context)
1942 {
1943         struct smi_info *smi_info = context;
1944         unsigned long   flags;
1945 #ifdef DEBUG_TIMING
1946         struct timeval t;
1947 #endif
1948
1949         spin_lock_irqsave(&(smi_info->si_lock), flags);
1950
1951         smi_inc_stat(smi_info, interrupts);
1952
1953 #ifdef DEBUG_TIMING
1954         do_gettimeofday(&t);
1955         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1956 #endif
1957         smi_event_handler(smi_info, 0);
1958         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1959
1960         return ACPI_INTERRUPT_HANDLED;
1961 }
1962
1963 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1964 {
1965         if (!info->irq)
1966                 return;
1967
1968         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1969 }
1970
1971 static int acpi_gpe_irq_setup(struct smi_info *info)
1972 {
1973         acpi_status status;
1974
1975         if (!info->irq)
1976                 return 0;
1977
1978         /* FIXME - is level triggered right? */
1979         status = acpi_install_gpe_handler(NULL,
1980                                           info->irq,
1981                                           ACPI_GPE_LEVEL_TRIGGERED,
1982                                           &ipmi_acpi_gpe,
1983                                           info);
1984         if (status != AE_OK) {
1985                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1986                          " running polled\n", DEVICE_NAME, info->irq);
1987                 info->irq = 0;
1988                 return -EINVAL;
1989         } else {
1990                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1991                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1992                 return 0;
1993         }
1994 }
1995
1996 /*
1997  * Defined at
1998  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1999  */
2000 struct SPMITable {
2001         s8      Signature[4];
2002         u32     Length;
2003         u8      Revision;
2004         u8      Checksum;
2005         s8      OEMID[6];
2006         s8      OEMTableID[8];
2007         s8      OEMRevision[4];
2008         s8      CreatorID[4];
2009         s8      CreatorRevision[4];
2010         u8      InterfaceType;
2011         u8      IPMIlegacy;
2012         s16     SpecificationRevision;
2013
2014         /*
2015          * Bit 0 - SCI interrupt supported
2016          * Bit 1 - I/O APIC/SAPIC
2017          */
2018         u8      InterruptType;
2019
2020         /*
2021          * If bit 0 of InterruptType is set, then this is the SCI
2022          * interrupt in the GPEx_STS register.
2023          */
2024         u8      GPE;
2025
2026         s16     Reserved;
2027
2028         /*
2029          * If bit 1 of InterruptType is set, then this is the I/O
2030          * APIC/SAPIC interrupt.
2031          */
2032         u32     GlobalSystemInterrupt;
2033
2034         /* The actual register address. */
2035         struct acpi_generic_address addr;
2036
2037         u8      UID[4];
2038
2039         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2040 };
2041
2042 static int try_init_spmi(struct SPMITable *spmi)
2043 {
2044         struct smi_info  *info;
2045
2046         if (spmi->IPMIlegacy != 1) {
2047                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2048                 return -ENODEV;
2049         }
2050
2051         info = smi_info_alloc();
2052         if (!info) {
2053                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2054                 return -ENOMEM;
2055         }
2056
2057         info->addr_source = SI_SPMI;
2058         printk(KERN_INFO PFX "probing via SPMI\n");
2059
2060         /* Figure out the interface type. */
2061         switch (spmi->InterfaceType) {
2062         case 1: /* KCS */
2063                 info->si_type = SI_KCS;
2064                 break;
2065         case 2: /* SMIC */
2066                 info->si_type = SI_SMIC;
2067                 break;
2068         case 3: /* BT */
2069                 info->si_type = SI_BT;
2070                 break;
2071         default:
2072                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2073                        spmi->InterfaceType);
2074                 kfree(info);
2075                 return -EIO;
2076         }
2077
2078         if (spmi->InterruptType & 1) {
2079                 /* We've got a GPE interrupt. */
2080                 info->irq = spmi->GPE;
2081                 info->irq_setup = acpi_gpe_irq_setup;
2082         } else if (spmi->InterruptType & 2) {
2083                 /* We've got an APIC/SAPIC interrupt. */
2084                 info->irq = spmi->GlobalSystemInterrupt;
2085                 info->irq_setup = std_irq_setup;
2086         } else {
2087                 /* Use the default interrupt setting. */
2088                 info->irq = 0;
2089                 info->irq_setup = NULL;
2090         }
2091
2092         if (spmi->addr.bit_width) {
2093                 /* A (hopefully) properly formed register bit width. */
2094                 info->io.regspacing = spmi->addr.bit_width / 8;
2095         } else {
2096                 info->io.regspacing = DEFAULT_REGSPACING;
2097         }
2098         info->io.regsize = info->io.regspacing;
2099         info->io.regshift = spmi->addr.bit_offset;
2100
2101         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2102                 info->io_setup = mem_setup;
2103                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2104         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2105                 info->io_setup = port_setup;
2106                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2107         } else {
2108                 kfree(info);
2109                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2110                 return -EIO;
2111         }
2112         info->io.addr_data = spmi->addr.address;
2113
2114         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2115                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2116                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2117                  info->irq);
2118
2119         if (add_smi(info))
2120                 kfree(info);
2121
2122         return 0;
2123 }
2124
2125 static void spmi_find_bmc(void)
2126 {
2127         acpi_status      status;
2128         struct SPMITable *spmi;
2129         int              i;
2130
2131         if (acpi_disabled)
2132                 return;
2133
2134         if (acpi_failure)
2135                 return;
2136
2137         for (i = 0; ; i++) {
2138                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2139                                         (struct acpi_table_header **)&spmi);
2140                 if (status != AE_OK)
2141                         return;
2142
2143                 try_init_spmi(spmi);
2144         }
2145 }
2146
2147 static int ipmi_pnp_probe(struct pnp_dev *dev,
2148                                     const struct pnp_device_id *dev_id)
2149 {
2150         struct acpi_device *acpi_dev;
2151         struct smi_info *info;
2152         struct resource *res, *res_second;
2153         acpi_handle handle;
2154         acpi_status status;
2155         unsigned long long tmp;
2156
2157         acpi_dev = pnp_acpi_device(dev);
2158         if (!acpi_dev)
2159                 return -ENODEV;
2160
2161         info = smi_info_alloc();
2162         if (!info)
2163                 return -ENOMEM;
2164
2165         info->addr_source = SI_ACPI;
2166         printk(KERN_INFO PFX "probing via ACPI\n");
2167
2168         handle = acpi_dev->handle;
2169         info->addr_info.acpi_info.acpi_handle = handle;
2170
2171         /* _IFT tells us the interface type: KCS, BT, etc */
2172         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2173         if (ACPI_FAILURE(status))
2174                 goto err_free;
2175
2176         switch (tmp) {
2177         case 1:
2178                 info->si_type = SI_KCS;
2179                 break;
2180         case 2:
2181                 info->si_type = SI_SMIC;
2182                 break;
2183         case 3:
2184                 info->si_type = SI_BT;
2185                 break;
2186         default:
2187                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2188                 goto err_free;
2189         }
2190
2191         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2192         if (res) {
2193                 info->io_setup = port_setup;
2194                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2195         } else {
2196                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2197                 if (res) {
2198                         info->io_setup = mem_setup;
2199                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2200                 }
2201         }
2202         if (!res) {
2203                 dev_err(&dev->dev, "no I/O or memory address\n");
2204                 goto err_free;
2205         }
2206         info->io.addr_data = res->start;
2207
2208         info->io.regspacing = DEFAULT_REGSPACING;
2209         res_second = pnp_get_resource(dev,
2210                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2211                                         IORESOURCE_IO : IORESOURCE_MEM,
2212                                1);
2213         if (res_second) {
2214                 if (res_second->start > info->io.addr_data)
2215                         info->io.regspacing = res_second->start - info->io.addr_data;
2216         }
2217         info->io.regsize = DEFAULT_REGSPACING;
2218         info->io.regshift = 0;
2219
2220         /* If _GPE exists, use it; otherwise use standard interrupts */
2221         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2222         if (ACPI_SUCCESS(status)) {
2223                 info->irq = tmp;
2224                 info->irq_setup = acpi_gpe_irq_setup;
2225         } else if (pnp_irq_valid(dev, 0)) {
2226                 info->irq = pnp_irq(dev, 0);
2227                 info->irq_setup = std_irq_setup;
2228         }
2229
2230         info->dev = &dev->dev;
2231         pnp_set_drvdata(dev, info);
2232
2233         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2234                  res, info->io.regsize, info->io.regspacing,
2235                  info->irq);
2236
2237         if (add_smi(info))
2238                 goto err_free;
2239
2240         return 0;
2241
2242 err_free:
2243         kfree(info);
2244         return -EINVAL;
2245 }
2246
2247 static void ipmi_pnp_remove(struct pnp_dev *dev)
2248 {
2249         struct smi_info *info = pnp_get_drvdata(dev);
2250
2251         cleanup_one_si(info);
2252 }
2253
2254 static const struct pnp_device_id pnp_dev_table[] = {
2255         {"IPI0001", 0},
2256         {"", 0},
2257 };
2258
2259 static struct pnp_driver ipmi_pnp_driver = {
2260         .name           = DEVICE_NAME,
2261         .probe          = ipmi_pnp_probe,
2262         .remove         = ipmi_pnp_remove,
2263         .id_table       = pnp_dev_table,
2264 };
2265 #endif
2266
2267 #ifdef CONFIG_DMI
2268 struct dmi_ipmi_data {
2269         u8              type;
2270         u8              addr_space;
2271         unsigned long   base_addr;
2272         u8              irq;
2273         u8              offset;
2274         u8              slave_addr;
2275 };
2276
2277 static int decode_dmi(const struct dmi_header *dm,
2278                                 struct dmi_ipmi_data *dmi)
2279 {
2280         const u8        *data = (const u8 *)dm;
2281         unsigned long   base_addr;
2282         u8              reg_spacing;
2283         u8              len = dm->length;
2284
2285         dmi->type = data[4];
2286
2287         memcpy(&base_addr, data+8, sizeof(unsigned long));
2288         if (len >= 0x11) {
2289                 if (base_addr & 1) {
2290                         /* I/O */
2291                         base_addr &= 0xFFFE;
2292                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2293                 } else
2294                         /* Memory */
2295                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2296
2297                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2298                    is odd. */
2299                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2300
2301                 dmi->irq = data[0x11];
2302
2303                 /* The top two bits of byte 0x10 hold the register spacing. */
2304                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2305                 switch (reg_spacing) {
2306                 case 0x00: /* Byte boundaries */
2307                     dmi->offset = 1;
2308                     break;
2309                 case 0x01: /* 32-bit boundaries */
2310                     dmi->offset = 4;
2311                     break;
2312                 case 0x02: /* 16-byte boundaries */
2313                     dmi->offset = 16;
2314                     break;
2315                 default:
2316                     /* Some other interface, just ignore it. */
2317                     return -EIO;
2318                 }
2319         } else {
2320                 /* Old DMI spec. */
2321                 /*
2322                  * Note that technically, the lower bit of the base
2323                  * address should be 1 if the address is I/O and 0 if
2324                  * the address is in memory.  So many systems get that
2325                  * wrong (and all that I have seen are I/O) so we just
2326                  * ignore that bit and assume I/O.  Systems that use
2327                  * memory should use the newer spec, anyway.
2328                  */
2329                 dmi->base_addr = base_addr & 0xfffe;
2330                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2331                 dmi->offset = 1;
2332         }
2333
2334         dmi->slave_addr = data[6];
2335
2336         return 0;
2337 }
2338
2339 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2340 {
2341         struct smi_info *info;
2342
2343         info = smi_info_alloc();
2344         if (!info) {
2345                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2346                 return;
2347         }
2348
2349         info->addr_source = SI_SMBIOS;
2350         printk(KERN_INFO PFX "probing via SMBIOS\n");
2351
2352         switch (ipmi_data->type) {
2353         case 0x01: /* KCS */
2354                 info->si_type = SI_KCS;
2355                 break;
2356         case 0x02: /* SMIC */
2357                 info->si_type = SI_SMIC;
2358                 break;
2359         case 0x03: /* BT */
2360                 info->si_type = SI_BT;
2361                 break;
2362         default:
2363                 kfree(info);
2364                 return;
2365         }
2366
2367         switch (ipmi_data->addr_space) {
2368         case IPMI_MEM_ADDR_SPACE:
2369                 info->io_setup = mem_setup;
2370                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2371                 break;
2372
2373         case IPMI_IO_ADDR_SPACE:
2374                 info->io_setup = port_setup;
2375                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2376                 break;
2377
2378         default:
2379                 kfree(info);
2380                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2381                        ipmi_data->addr_space);
2382                 return;
2383         }
2384         info->io.addr_data = ipmi_data->base_addr;
2385
2386         info->io.regspacing = ipmi_data->offset;
2387         if (!info->io.regspacing)
2388                 info->io.regspacing = DEFAULT_REGSPACING;
2389         info->io.regsize = DEFAULT_REGSPACING;
2390         info->io.regshift = 0;
2391
2392         info->slave_addr = ipmi_data->slave_addr;
2393
2394         info->irq = ipmi_data->irq;
2395         if (info->irq)
2396                 info->irq_setup = std_irq_setup;
2397
2398         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2399                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2400                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2401                  info->irq);
2402
2403         if (add_smi(info))
2404                 kfree(info);
2405 }
2406
2407 static void dmi_find_bmc(void)
2408 {
2409         const struct dmi_device *dev = NULL;
2410         struct dmi_ipmi_data data;
2411         int                  rv;
2412
2413         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2414                 memset(&data, 0, sizeof(data));
2415                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2416                                 &data);
2417                 if (!rv)
2418                         try_init_dmi(&data);
2419         }
2420 }
2421 #endif /* CONFIG_DMI */
2422
2423 #ifdef CONFIG_PCI
2424
2425 #define PCI_ERMC_CLASSCODE              0x0C0700
2426 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2427 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2428 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2429 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2430 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2431
2432 #define PCI_HP_VENDOR_ID    0x103C
2433 #define PCI_MMC_DEVICE_ID   0x121A
2434 #define PCI_MMC_ADDR_CW     0x10
2435
2436 static void ipmi_pci_cleanup(struct smi_info *info)
2437 {
2438         struct pci_dev *pdev = info->addr_source_data;
2439
2440         pci_disable_device(pdev);
2441 }
2442
2443 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2444 {
2445         if (info->si_type == SI_KCS) {
2446                 unsigned char   status;
2447                 int             regspacing;
2448
2449                 info->io.regsize = DEFAULT_REGSIZE;
2450                 info->io.regshift = 0;
2451                 info->io_size = 2;
2452                 info->handlers = &kcs_smi_handlers;
2453
2454                 /* detect 1, 4, 16byte spacing */
2455                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2456                         info->io.regspacing = regspacing;
2457                         if (info->io_setup(info)) {
2458                                 dev_err(info->dev,
2459                                         "Could not setup I/O space\n");
2460                                 return DEFAULT_REGSPACING;
2461                         }
2462                         /* write invalid cmd */
2463                         info->io.outputb(&info->io, 1, 0x10);
2464                         /* read status back */
2465                         status = info->io.inputb(&info->io, 1);
2466                         info->io_cleanup(info);
2467                         if (status)
2468                                 return regspacing;
2469                         regspacing *= 4;
2470                 }
2471         }
2472         return DEFAULT_REGSPACING;
2473 }
2474
2475 static int ipmi_pci_probe(struct pci_dev *pdev,
2476                                     const struct pci_device_id *ent)
2477 {
2478         int rv;
2479         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2480         struct smi_info *info;
2481
2482         info = smi_info_alloc();
2483         if (!info)
2484                 return -ENOMEM;
2485
2486         info->addr_source = SI_PCI;
2487         dev_info(&pdev->dev, "probing via PCI");
2488
2489         switch (class_type) {
2490         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2491                 info->si_type = SI_SMIC;
2492                 break;
2493
2494         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2495                 info->si_type = SI_KCS;
2496                 break;
2497
2498         case PCI_ERMC_CLASSCODE_TYPE_BT:
2499                 info->si_type = SI_BT;
2500                 break;
2501
2502         default:
2503                 kfree(info);
2504                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2505                 return -ENOMEM;
2506         }
2507
2508         rv = pci_enable_device(pdev);
2509         if (rv) {
2510                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2511                 kfree(info);
2512                 return rv;
2513         }
2514
2515         info->addr_source_cleanup = ipmi_pci_cleanup;
2516         info->addr_source_data = pdev;
2517
2518         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2519                 info->io_setup = port_setup;
2520                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2521         } else {
2522                 info->io_setup = mem_setup;
2523                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2524         }
2525         info->io.addr_data = pci_resource_start(pdev, 0);
2526
2527         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2528         info->io.regsize = DEFAULT_REGSIZE;
2529         info->io.regshift = 0;
2530
2531         info->irq = pdev->irq;
2532         if (info->irq)
2533                 info->irq_setup = std_irq_setup;
2534
2535         info->dev = &pdev->dev;
2536         pci_set_drvdata(pdev, info);
2537
2538         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2539                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2540                 info->irq);
2541
2542         if (add_smi(info))
2543                 kfree(info);
2544
2545         return 0;
2546 }
2547
2548 static void ipmi_pci_remove(struct pci_dev *pdev)
2549 {
2550         struct smi_info *info = pci_get_drvdata(pdev);
2551         cleanup_one_si(info);
2552 }
2553
2554 static struct pci_device_id ipmi_pci_devices[] = {
2555         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2556         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2557         { 0, }
2558 };
2559 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2560
2561 static struct pci_driver ipmi_pci_driver = {
2562         .name =         DEVICE_NAME,
2563         .id_table =     ipmi_pci_devices,
2564         .probe =        ipmi_pci_probe,
2565         .remove =       ipmi_pci_remove,
2566 };
2567 #endif /* CONFIG_PCI */
2568
2569 static struct of_device_id ipmi_match[];
2570 static int ipmi_probe(struct platform_device *dev)
2571 {
2572 #ifdef CONFIG_OF
2573         const struct of_device_id *match;
2574         struct smi_info *info;
2575         struct resource resource;
2576         const __be32 *regsize, *regspacing, *regshift;
2577         struct device_node *np = dev->dev.of_node;
2578         int ret;
2579         int proplen;
2580
2581         dev_info(&dev->dev, "probing via device tree\n");
2582
2583         match = of_match_device(ipmi_match, &dev->dev);
2584         if (!match)
2585                 return -EINVAL;
2586
2587         ret = of_address_to_resource(np, 0, &resource);
2588         if (ret) {
2589                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2590                 return ret;
2591         }
2592
2593         regsize = of_get_property(np, "reg-size", &proplen);
2594         if (regsize && proplen != 4) {
2595                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2596                 return -EINVAL;
2597         }
2598
2599         regspacing = of_get_property(np, "reg-spacing", &proplen);
2600         if (regspacing && proplen != 4) {
2601                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2602                 return -EINVAL;
2603         }
2604
2605         regshift = of_get_property(np, "reg-shift", &proplen);
2606         if (regshift && proplen != 4) {
2607                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2608                 return -EINVAL;
2609         }
2610
2611         info = smi_info_alloc();
2612
2613         if (!info) {
2614                 dev_err(&dev->dev,
2615                         "could not allocate memory for OF probe\n");
2616                 return -ENOMEM;
2617         }
2618
2619         info->si_type           = (enum si_type) match->data;
2620         info->addr_source       = SI_DEVICETREE;
2621         info->irq_setup         = std_irq_setup;
2622
2623         if (resource.flags & IORESOURCE_IO) {
2624                 info->io_setup          = port_setup;
2625                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2626         } else {
2627                 info->io_setup          = mem_setup;
2628                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2629         }
2630
2631         info->io.addr_data      = resource.start;
2632
2633         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2634         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2635         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2636
2637         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2638         info->dev               = &dev->dev;
2639
2640         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2641                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2642                 info->irq);
2643
2644         dev_set_drvdata(&dev->dev, info);
2645
2646         if (add_smi(info)) {
2647                 kfree(info);
2648                 return -EBUSY;
2649         }
2650 #endif
2651         return 0;
2652 }
2653
2654 static int ipmi_remove(struct platform_device *dev)
2655 {
2656 #ifdef CONFIG_OF
2657         cleanup_one_si(dev_get_drvdata(&dev->dev));
2658 #endif
2659         return 0;
2660 }
2661
2662 static struct of_device_id ipmi_match[] =
2663 {
2664         { .type = "ipmi", .compatible = "ipmi-kcs",
2665           .data = (void *)(unsigned long) SI_KCS },
2666         { .type = "ipmi", .compatible = "ipmi-smic",
2667           .data = (void *)(unsigned long) SI_SMIC },
2668         { .type = "ipmi", .compatible = "ipmi-bt",
2669           .data = (void *)(unsigned long) SI_BT },
2670         {},
2671 };
2672
2673 static struct platform_driver ipmi_driver = {
2674         .driver = {
2675                 .name = DEVICE_NAME,
2676                 .owner = THIS_MODULE,
2677                 .of_match_table = ipmi_match,
2678         },
2679         .probe          = ipmi_probe,
2680         .remove         = ipmi_remove,
2681 };
2682
2683 static int wait_for_msg_done(struct smi_info *smi_info)
2684 {
2685         enum si_sm_result     smi_result;
2686
2687         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2688         for (;;) {
2689                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2690                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2691                         schedule_timeout_uninterruptible(1);
2692                         smi_result = smi_info->handlers->event(
2693                                 smi_info->si_sm, 100);
2694                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2695                         smi_result = smi_info->handlers->event(
2696                                 smi_info->si_sm, 0);
2697                 } else
2698                         break;
2699         }
2700         if (smi_result == SI_SM_HOSED)
2701                 /*
2702                  * We couldn't get the state machine to run, so whatever's at
2703                  * the port is probably not an IPMI SMI interface.
2704                  */
2705                 return -ENODEV;
2706
2707         return 0;
2708 }
2709
2710 static int try_get_dev_id(struct smi_info *smi_info)
2711 {
2712         unsigned char         msg[2];
2713         unsigned char         *resp;
2714         unsigned long         resp_len;
2715         int                   rv = 0;
2716
2717         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2718         if (!resp)
2719                 return -ENOMEM;
2720
2721         /*
2722          * Do a Get Device ID command, since it comes back with some
2723          * useful info.
2724          */
2725         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2726         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2727         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2728
2729         rv = wait_for_msg_done(smi_info);
2730         if (rv)
2731                 goto out;
2732
2733         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2734                                                   resp, IPMI_MAX_MSG_LENGTH);
2735
2736         /* Check and record info from the get device id, in case we need it. */
2737         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2738
2739  out:
2740         kfree(resp);
2741         return rv;
2742 }
2743
2744 static int try_enable_event_buffer(struct smi_info *smi_info)
2745 {
2746         unsigned char         msg[3];
2747         unsigned char         *resp;
2748         unsigned long         resp_len;
2749         int                   rv = 0;
2750
2751         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2752         if (!resp)
2753                 return -ENOMEM;
2754
2755         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2756         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2757         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2758
2759         rv = wait_for_msg_done(smi_info);
2760         if (rv) {
2761                 printk(KERN_WARNING PFX "Error getting response from get"
2762                        " global enables command, the event buffer is not"
2763                        " enabled.\n");
2764                 goto out;
2765         }
2766
2767         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2768                                                   resp, IPMI_MAX_MSG_LENGTH);
2769
2770         if (resp_len < 4 ||
2771                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2772                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2773                         resp[2] != 0) {
2774                 printk(KERN_WARNING PFX "Invalid return from get global"
2775                        " enables command, cannot enable the event buffer.\n");
2776                 rv = -EINVAL;
2777                 goto out;
2778         }
2779
2780         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2781                 /* buffer is already enabled, nothing to do. */
2782                 goto out;
2783
2784         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2785         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2786         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2787         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2788
2789         rv = wait_for_msg_done(smi_info);
2790         if (rv) {
2791                 printk(KERN_WARNING PFX "Error getting response from set"
2792                        " global, enables command, the event buffer is not"
2793                        " enabled.\n");
2794                 goto out;
2795         }
2796
2797         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2798                                                   resp, IPMI_MAX_MSG_LENGTH);
2799
2800         if (resp_len < 3 ||
2801                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2802                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2803                 printk(KERN_WARNING PFX "Invalid return from get global,"
2804                        "enables command, not enable the event buffer.\n");
2805                 rv = -EINVAL;
2806                 goto out;
2807         }
2808
2809         if (resp[2] != 0)
2810                 /*
2811                  * An error when setting the event buffer bit means
2812                  * that the event buffer is not supported.
2813                  */
2814                 rv = -ENOENT;
2815  out:
2816         kfree(resp);
2817         return rv;
2818 }
2819
2820 static int smi_type_proc_show(struct seq_file *m, void *v)
2821 {
2822         struct smi_info *smi = m->private;
2823
2824         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2825 }
2826
2827 static int smi_type_proc_open(struct inode *inode, struct file *file)
2828 {
2829         return single_open(file, smi_type_proc_show, PDE(inode)->data);
2830 }
2831
2832 static const struct file_operations smi_type_proc_ops = {
2833         .open           = smi_type_proc_open,
2834         .read           = seq_read,
2835         .llseek         = seq_lseek,
2836         .release        = single_release,
2837 };
2838
2839 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2840 {
2841         struct smi_info *smi = m->private;
2842
2843         seq_printf(m, "interrupts_enabled:    %d\n",
2844                        smi->irq && !smi->interrupt_disabled);
2845         seq_printf(m, "short_timeouts:        %u\n",
2846                        smi_get_stat(smi, short_timeouts));
2847         seq_printf(m, "long_timeouts:         %u\n",
2848                        smi_get_stat(smi, long_timeouts));
2849         seq_printf(m, "idles:                 %u\n",
2850                        smi_get_stat(smi, idles));
2851         seq_printf(m, "interrupts:            %u\n",
2852                        smi_get_stat(smi, interrupts));
2853         seq_printf(m, "attentions:            %u\n",
2854                        smi_get_stat(smi, attentions));
2855         seq_printf(m, "flag_fetches:          %u\n",
2856                        smi_get_stat(smi, flag_fetches));
2857         seq_printf(m, "hosed_count:           %u\n",
2858                        smi_get_stat(smi, hosed_count));
2859         seq_printf(m, "complete_transactions: %u\n",
2860                        smi_get_stat(smi, complete_transactions));
2861         seq_printf(m, "events:                %u\n",
2862                        smi_get_stat(smi, events));
2863         seq_printf(m, "watchdog_pretimeouts:  %u\n",
2864                        smi_get_stat(smi, watchdog_pretimeouts));
2865         seq_printf(m, "incoming_messages:     %u\n",
2866                        smi_get_stat(smi, incoming_messages));
2867         return 0;
2868 }
2869
2870 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2871 {
2872         return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2873 }
2874
2875 static const struct file_operations smi_si_stats_proc_ops = {
2876         .open           = smi_si_stats_proc_open,
2877         .read           = seq_read,
2878         .llseek         = seq_lseek,
2879         .release        = single_release,
2880 };
2881
2882 static int smi_params_proc_show(struct seq_file *m, void *v)
2883 {
2884         struct smi_info *smi = m->private;
2885
2886         return seq_printf(m,
2887                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2888                        si_to_str[smi->si_type],
2889                        addr_space_to_str[smi->io.addr_type],
2890                        smi->io.addr_data,
2891                        smi->io.regspacing,
2892                        smi->io.regsize,
2893                        smi->io.regshift,
2894                        smi->irq,
2895                        smi->slave_addr);
2896 }
2897
2898 static int smi_params_proc_open(struct inode *inode, struct file *file)
2899 {
2900         return single_open(file, smi_params_proc_show, PDE(inode)->data);
2901 }
2902
2903 static const struct file_operations smi_params_proc_ops = {
2904         .open           = smi_params_proc_open,
2905         .read           = seq_read,
2906         .llseek         = seq_lseek,
2907         .release        = single_release,
2908 };
2909
2910 /*
2911  * oem_data_avail_to_receive_msg_avail
2912  * @info - smi_info structure with msg_flags set
2913  *
2914  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2915  * Returns 1 indicating need to re-run handle_flags().
2916  */
2917 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2918 {
2919         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2920                                RECEIVE_MSG_AVAIL);
2921         return 1;
2922 }
2923
2924 /*
2925  * setup_dell_poweredge_oem_data_handler
2926  * @info - smi_info.device_id must be populated
2927  *
2928  * Systems that match, but have firmware version < 1.40 may assert
2929  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2930  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2931  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2932  * as RECEIVE_MSG_AVAIL instead.
2933  *
2934  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2935  * assert the OEM[012] bits, and if it did, the driver would have to
2936  * change to handle that properly, we don't actually check for the
2937  * firmware version.
2938  * Device ID = 0x20                BMC on PowerEdge 8G servers
2939  * Device Revision = 0x80
2940  * Firmware Revision1 = 0x01       BMC version 1.40
2941  * Firmware Revision2 = 0x40       BCD encoded
2942  * IPMI Version = 0x51             IPMI 1.5
2943  * Manufacturer ID = A2 02 00      Dell IANA
2944  *
2945  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2946  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2947  *
2948  */
2949 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2950 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2951 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2952 #define DELL_IANA_MFR_ID 0x0002a2
2953 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2954 {
2955         struct ipmi_device_id *id = &smi_info->device_id;
2956         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2957                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2958                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2959                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2960                         smi_info->oem_data_avail_handler =
2961                                 oem_data_avail_to_receive_msg_avail;
2962                 } else if (ipmi_version_major(id) < 1 ||
2963                            (ipmi_version_major(id) == 1 &&
2964                             ipmi_version_minor(id) < 5)) {
2965                         smi_info->oem_data_avail_handler =
2966                                 oem_data_avail_to_receive_msg_avail;
2967                 }
2968         }
2969 }
2970
2971 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2972 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2973 {
2974         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2975
2976         /* Make it a response */
2977         msg->rsp[0] = msg->data[0] | 4;
2978         msg->rsp[1] = msg->data[1];
2979         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2980         msg->rsp_size = 3;
2981         smi_info->curr_msg = NULL;
2982         deliver_recv_msg(smi_info, msg);
2983 }
2984
2985 /*
2986  * dell_poweredge_bt_xaction_handler
2987  * @info - smi_info.device_id must be populated
2988  *
2989  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2990  * not respond to a Get SDR command if the length of the data
2991  * requested is exactly 0x3A, which leads to command timeouts and no
2992  * data returned.  This intercepts such commands, and causes userspace
2993  * callers to try again with a different-sized buffer, which succeeds.
2994  */
2995
2996 #define STORAGE_NETFN 0x0A
2997 #define STORAGE_CMD_GET_SDR 0x23
2998 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2999                                              unsigned long unused,
3000                                              void *in)
3001 {
3002         struct smi_info *smi_info = in;
3003         unsigned char *data = smi_info->curr_msg->data;
3004         unsigned int size   = smi_info->curr_msg->data_size;
3005         if (size >= 8 &&
3006             (data[0]>>2) == STORAGE_NETFN &&
3007             data[1] == STORAGE_CMD_GET_SDR &&
3008             data[7] == 0x3A) {
3009                 return_hosed_msg_badsize(smi_info);
3010                 return NOTIFY_STOP;
3011         }
3012         return NOTIFY_DONE;
3013 }
3014
3015 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3016         .notifier_call  = dell_poweredge_bt_xaction_handler,
3017 };
3018
3019 /*
3020  * setup_dell_poweredge_bt_xaction_handler
3021  * @info - smi_info.device_id must be filled in already
3022  *
3023  * Fills in smi_info.device_id.start_transaction_pre_hook
3024  * when we know what function to use there.
3025  */
3026 static void
3027 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3028 {
3029         struct ipmi_device_id *id = &smi_info->device_id;
3030         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3031             smi_info->si_type == SI_BT)
3032                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3033 }
3034
3035 /*
3036  * setup_oem_data_handler
3037  * @info - smi_info.device_id must be filled in already
3038  *
3039  * Fills in smi_info.device_id.oem_data_available_handler
3040  * when we know what function to use there.
3041  */
3042
3043 static void setup_oem_data_handler(struct smi_info *smi_info)
3044 {
3045         setup_dell_poweredge_oem_data_handler(smi_info);
3046 }
3047
3048 static void setup_xaction_handlers(struct smi_info *smi_info)
3049 {
3050         setup_dell_poweredge_bt_xaction_handler(smi_info);
3051 }
3052
3053 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3054 {
3055         if (smi_info->intf) {
3056                 /*
3057                  * The timer and thread are only running if the
3058                  * interface has been started up and registered.
3059                  */
3060                 if (smi_info->thread != NULL)
3061                         kthread_stop(smi_info->thread);
3062                 del_timer_sync(&smi_info->si_timer);
3063         }
3064 }
3065
3066 static struct ipmi_default_vals
3067 {
3068         int type;
3069         int port;
3070 } ipmi_defaults[] =
3071 {
3072         { .type = SI_KCS, .port = 0xca2 },
3073         { .type = SI_SMIC, .port = 0xca9 },
3074         { .type = SI_BT, .port = 0xe4 },
3075         { .port = 0 }
3076 };
3077
3078 static void default_find_bmc(void)
3079 {
3080         struct smi_info *info;
3081         int             i;
3082
3083         for (i = 0; ; i++) {
3084                 if (!ipmi_defaults[i].port)
3085                         break;
3086 #ifdef CONFIG_PPC
3087                 if (check_legacy_ioport(ipmi_defaults[i].port))
3088                         continue;
3089 #endif
3090                 info = smi_info_alloc();
3091                 if (!info)
3092                         return;
3093
3094                 info->addr_source = SI_DEFAULT;
3095
3096                 info->si_type = ipmi_defaults[i].type;
3097                 info->io_setup = port_setup;
3098                 info->io.addr_data = ipmi_defaults[i].port;
3099                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3100
3101                 info->io.addr = NULL;
3102                 info->io.regspacing = DEFAULT_REGSPACING;
3103                 info->io.regsize = DEFAULT_REGSPACING;
3104                 info->io.regshift = 0;
3105
3106                 if (add_smi(info) == 0) {
3107                         if ((try_smi_init(info)) == 0) {
3108                                 /* Found one... */
3109                                 printk(KERN_INFO PFX "Found default %s"
3110                                 " state machine at %s address 0x%lx\n",
3111                                 si_to_str[info->si_type],
3112                                 addr_space_to_str[info->io.addr_type],
3113                                 info->io.addr_data);
3114                         } else
3115                                 cleanup_one_si(info);
3116                 } else {
3117                         kfree(info);
3118                 }
3119         }
3120 }
3121
3122 static int is_new_interface(struct smi_info *info)
3123 {
3124         struct smi_info *e;
3125
3126         list_for_each_entry(e, &smi_infos, link) {
3127                 if (e->io.addr_type != info->io.addr_type)
3128                         continue;
3129                 if (e->io.addr_data == info->io.addr_data)
3130                         return 0;
3131         }
3132
3133         return 1;
3134 }
3135
3136 static int add_smi(struct smi_info *new_smi)
3137 {
3138         int rv = 0;
3139
3140         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3141                         ipmi_addr_src_to_str[new_smi->addr_source],
3142                         si_to_str[new_smi->si_type]);
3143         mutex_lock(&smi_infos_lock);
3144         if (!is_new_interface(new_smi)) {
3145                 printk(KERN_CONT " duplicate interface\n");
3146                 rv = -EBUSY;
3147                 goto out_err;
3148         }
3149
3150         printk(KERN_CONT "\n");
3151
3152         /* So we know not to free it unless we have allocated one. */
3153         new_smi->intf = NULL;
3154         new_smi->si_sm = NULL;
3155         new_smi->handlers = NULL;
3156
3157         list_add_tail(&new_smi->link, &smi_infos);
3158
3159 out_err:
3160         mutex_unlock(&smi_infos_lock);
3161         return rv;
3162 }
3163
3164 static int try_smi_init(struct smi_info *new_smi)
3165 {
3166         int rv = 0;
3167         int i;
3168
3169         printk(KERN_INFO PFX "Trying %s-specified %s state"
3170                " machine at %s address 0x%lx, slave address 0x%x,"
3171                " irq %d\n",
3172                ipmi_addr_src_to_str[new_smi->addr_source],
3173                si_to_str[new_smi->si_type],
3174                addr_space_to_str[new_smi->io.addr_type],
3175                new_smi->io.addr_data,
3176                new_smi->slave_addr, new_smi->irq);
3177
3178         switch (new_smi->si_type) {
3179         case SI_KCS:
3180                 new_smi->handlers = &kcs_smi_handlers;
3181                 break;
3182
3183         case SI_SMIC:
3184                 new_smi->handlers = &smic_smi_handlers;
3185                 break;
3186
3187         case SI_BT:
3188                 new_smi->handlers = &bt_smi_handlers;
3189                 break;
3190
3191         default:
3192                 /* No support for anything else yet. */
3193                 rv = -EIO;
3194                 goto out_err;
3195         }
3196
3197         /* Allocate the state machine's data and initialize it. */
3198         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3199         if (!new_smi->si_sm) {
3200                 printk(KERN_ERR PFX
3201                        "Could not allocate state machine memory\n");
3202                 rv = -ENOMEM;
3203                 goto out_err;
3204         }
3205         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3206                                                         &new_smi->io);
3207
3208         /* Now that we know the I/O size, we can set up the I/O. */
3209         rv = new_smi->io_setup(new_smi);
3210         if (rv) {
3211                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3212                 goto out_err;
3213         }
3214
3215         /* Do low-level detection first. */
3216         if (new_smi->handlers->detect(new_smi->si_sm)) {
3217                 if (new_smi->addr_source)
3218                         printk(KERN_INFO PFX "Interface detection failed\n");
3219                 rv = -ENODEV;
3220                 goto out_err;
3221         }
3222