Merge branch 'sh/cachetlb' into sh-fixes-for-linus
[~shefty/rdma-dev.git] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/highmem.h>
15 #include <linux/in.h>
16 #include <linux/ip.h>
17 #include <linux/jiffies.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/mutex.h>
22 #include <linux/netdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include <asm/unaligned.h>
28 #include <net/arp.h>
29
30 /* rx limits */
31 #define FWNET_MAX_FRAGMENTS             30 /* arbitrary, > TX queue depth */
32 #define FWNET_ISO_PAGE_COUNT            (PAGE_SIZE < 16*1024 ? 4 : 2)
33
34 /* tx limits */
35 #define FWNET_MAX_QUEUED_DATAGRAMS      20 /* < 64 = number of tlabels */
36 #define FWNET_MIN_QUEUED_DATAGRAMS      10 /* should keep AT DMA busy enough */
37 #define FWNET_TX_QUEUE_LEN              FWNET_MAX_QUEUED_DATAGRAMS /* ? */
38
39 #define IEEE1394_BROADCAST_CHANNEL      31
40 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
41 #define IEEE1394_MAX_PAYLOAD_S100       512
42 #define FWNET_NO_FIFO_ADDR              (~0ULL)
43
44 #define IANA_SPECIFIER_ID               0x00005eU
45 #define RFC2734_SW_VERSION              0x000001U
46
47 #define IEEE1394_GASP_HDR_SIZE  8
48
49 #define RFC2374_UNFRAG_HDR_SIZE 4
50 #define RFC2374_FRAG_HDR_SIZE   8
51 #define RFC2374_FRAG_OVERHEAD   4
52
53 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
54 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
55 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
56 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
57
58 #define RFC2734_HW_ADDR_LEN     16
59
60 struct rfc2734_arp {
61         __be16 hw_type;         /* 0x0018       */
62         __be16 proto_type;      /* 0x0806       */
63         u8 hw_addr_len;         /* 16           */
64         u8 ip_addr_len;         /* 4            */
65         __be16 opcode;          /* ARP Opcode   */
66         /* Above is exactly the same format as struct arphdr */
67
68         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
69         u8 max_rec;             /* Sender's max packet size             */
70         u8 sspd;                /* Sender's max speed                   */
71         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
72         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
73         __be32 sip;             /* Sender's IP Address                  */
74         __be32 tip;             /* IP Address of requested hw addr      */
75 } __attribute__((packed));
76
77 /* This header format is specific to this driver implementation. */
78 #define FWNET_ALEN      8
79 #define FWNET_HLEN      10
80 struct fwnet_header {
81         u8 h_dest[FWNET_ALEN];  /* destination address */
82         __be16 h_proto;         /* packet type ID field */
83 } __attribute__((packed));
84
85 /* IPv4 and IPv6 encapsulation header */
86 struct rfc2734_header {
87         u32 w0;
88         u32 w1;
89 };
90
91 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
92 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
93 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
94 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
95 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
96
97 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
98 #define fwnet_set_hdr_ether_type(et)    (et)
99 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
100 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
101
102 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
103
104 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
105                 unsigned ether_type)
106 {
107         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
108                   | fwnet_set_hdr_ether_type(ether_type);
109 }
110
111 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
112                 unsigned ether_type, unsigned dg_size, unsigned dgl)
113 {
114         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
115                   | fwnet_set_hdr_dg_size(dg_size)
116                   | fwnet_set_hdr_ether_type(ether_type);
117         hdr->w1 = fwnet_set_hdr_dgl(dgl);
118 }
119
120 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
121                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
122 {
123         hdr->w0 = fwnet_set_hdr_lf(lf)
124                   | fwnet_set_hdr_dg_size(dg_size)
125                   | fwnet_set_hdr_fg_off(fg_off);
126         hdr->w1 = fwnet_set_hdr_dgl(dgl);
127 }
128
129 /* This list keeps track of what parts of the datagram have been filled in */
130 struct fwnet_fragment_info {
131         struct list_head fi_link;
132         u16 offset;
133         u16 len;
134 };
135
136 struct fwnet_partial_datagram {
137         struct list_head pd_link;
138         struct list_head fi_list;
139         struct sk_buff *skb;
140         /* FIXME Why not use skb->data? */
141         char *pbuf;
142         u16 datagram_label;
143         u16 ether_type;
144         u16 datagram_size;
145 };
146
147 static DEFINE_MUTEX(fwnet_device_mutex);
148 static LIST_HEAD(fwnet_device_list);
149
150 struct fwnet_device {
151         struct list_head dev_link;
152         spinlock_t lock;
153         enum {
154                 FWNET_BROADCAST_ERROR,
155                 FWNET_BROADCAST_RUNNING,
156                 FWNET_BROADCAST_STOPPED,
157         } broadcast_state;
158         struct fw_iso_context *broadcast_rcv_context;
159         struct fw_iso_buffer broadcast_rcv_buffer;
160         void **broadcast_rcv_buffer_ptrs;
161         unsigned broadcast_rcv_next_ptr;
162         unsigned num_broadcast_rcv_ptrs;
163         unsigned rcv_buffer_size;
164         /*
165          * This value is the maximum unfragmented datagram size that can be
166          * sent by the hardware.  It already has the GASP overhead and the
167          * unfragmented datagram header overhead calculated into it.
168          */
169         unsigned broadcast_xmt_max_payload;
170         u16 broadcast_xmt_datagramlabel;
171
172         /*
173          * The CSR address that remote nodes must send datagrams to for us to
174          * receive them.
175          */
176         struct fw_address_handler handler;
177         u64 local_fifo;
178
179         /* Number of tx datagrams that have been queued but not yet acked */
180         int queued_datagrams;
181
182         struct list_head peer_list;
183         struct fw_card *card;
184         struct net_device *netdev;
185 };
186
187 struct fwnet_peer {
188         struct list_head peer_link;
189         struct fwnet_device *dev;
190         u64 guid;
191         u64 fifo;
192
193         /* guarded by dev->lock */
194         struct list_head pd_list; /* received partial datagrams */
195         unsigned pdg_size;        /* pd_list size */
196
197         u16 datagram_label;       /* outgoing datagram label */
198         u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
199         int node_id;
200         int generation;
201         unsigned speed;
202 };
203
204 /* This is our task struct. It's used for the packet complete callback.  */
205 struct fwnet_packet_task {
206         struct fw_transaction transaction;
207         struct rfc2734_header hdr;
208         struct sk_buff *skb;
209         struct fwnet_device *dev;
210
211         int outstanding_pkts;
212         u64 fifo_addr;
213         u16 dest_node;
214         u16 max_payload;
215         u8 generation;
216         u8 speed;
217         u8 enqueued;
218 };
219
220 /*
221  * saddr == NULL means use device source address.
222  * daddr == NULL means leave destination address (eg unresolved arp).
223  */
224 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
225                         unsigned short type, const void *daddr,
226                         const void *saddr, unsigned len)
227 {
228         struct fwnet_header *h;
229
230         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
231         put_unaligned_be16(type, &h->h_proto);
232
233         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
234                 memset(h->h_dest, 0, net->addr_len);
235
236                 return net->hard_header_len;
237         }
238
239         if (daddr) {
240                 memcpy(h->h_dest, daddr, net->addr_len);
241
242                 return net->hard_header_len;
243         }
244
245         return -net->hard_header_len;
246 }
247
248 static int fwnet_header_rebuild(struct sk_buff *skb)
249 {
250         struct fwnet_header *h = (struct fwnet_header *)skb->data;
251
252         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
253                 return arp_find((unsigned char *)&h->h_dest, skb);
254
255         fw_notify("%s: unable to resolve type %04x addresses\n",
256                   skb->dev->name, be16_to_cpu(h->h_proto));
257         return 0;
258 }
259
260 static int fwnet_header_cache(const struct neighbour *neigh,
261                               struct hh_cache *hh)
262 {
263         struct net_device *net;
264         struct fwnet_header *h;
265
266         if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
267                 return -1;
268         net = neigh->dev;
269         h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
270         h->h_proto = hh->hh_type;
271         memcpy(h->h_dest, neigh->ha, net->addr_len);
272         hh->hh_len = FWNET_HLEN;
273
274         return 0;
275 }
276
277 /* Called by Address Resolution module to notify changes in address. */
278 static void fwnet_header_cache_update(struct hh_cache *hh,
279                 const struct net_device *net, const unsigned char *haddr)
280 {
281         memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
282 }
283
284 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
285 {
286         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
287
288         return FWNET_ALEN;
289 }
290
291 static const struct header_ops fwnet_header_ops = {
292         .create         = fwnet_header_create,
293         .rebuild        = fwnet_header_rebuild,
294         .cache          = fwnet_header_cache,
295         .cache_update   = fwnet_header_cache_update,
296         .parse          = fwnet_header_parse,
297 };
298
299 /* FIXME: is this correct for all cases? */
300 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
301                                unsigned offset, unsigned len)
302 {
303         struct fwnet_fragment_info *fi;
304         unsigned end = offset + len;
305
306         list_for_each_entry(fi, &pd->fi_list, fi_link)
307                 if (offset < fi->offset + fi->len && end > fi->offset)
308                         return true;
309
310         return false;
311 }
312
313 /* Assumes that new fragment does not overlap any existing fragments */
314 static struct fwnet_fragment_info *fwnet_frag_new(
315         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
316 {
317         struct fwnet_fragment_info *fi, *fi2, *new;
318         struct list_head *list;
319
320         list = &pd->fi_list;
321         list_for_each_entry(fi, &pd->fi_list, fi_link) {
322                 if (fi->offset + fi->len == offset) {
323                         /* The new fragment can be tacked on to the end */
324                         /* Did the new fragment plug a hole? */
325                         fi2 = list_entry(fi->fi_link.next,
326                                          struct fwnet_fragment_info, fi_link);
327                         if (fi->offset + fi->len == fi2->offset) {
328                                 /* glue fragments together */
329                                 fi->len += len + fi2->len;
330                                 list_del(&fi2->fi_link);
331                                 kfree(fi2);
332                         } else {
333                                 fi->len += len;
334                         }
335
336                         return fi;
337                 }
338                 if (offset + len == fi->offset) {
339                         /* The new fragment can be tacked on to the beginning */
340                         /* Did the new fragment plug a hole? */
341                         fi2 = list_entry(fi->fi_link.prev,
342                                          struct fwnet_fragment_info, fi_link);
343                         if (fi2->offset + fi2->len == fi->offset) {
344                                 /* glue fragments together */
345                                 fi2->len += fi->len + len;
346                                 list_del(&fi->fi_link);
347                                 kfree(fi);
348
349                                 return fi2;
350                         }
351                         fi->offset = offset;
352                         fi->len += len;
353
354                         return fi;
355                 }
356                 if (offset > fi->offset + fi->len) {
357                         list = &fi->fi_link;
358                         break;
359                 }
360                 if (offset + len < fi->offset) {
361                         list = fi->fi_link.prev;
362                         break;
363                 }
364         }
365
366         new = kmalloc(sizeof(*new), GFP_ATOMIC);
367         if (!new) {
368                 fw_error("out of memory\n");
369                 return NULL;
370         }
371
372         new->offset = offset;
373         new->len = len;
374         list_add(&new->fi_link, list);
375
376         return new;
377 }
378
379 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
380                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
381                 void *frag_buf, unsigned frag_off, unsigned frag_len)
382 {
383         struct fwnet_partial_datagram *new;
384         struct fwnet_fragment_info *fi;
385
386         new = kmalloc(sizeof(*new), GFP_ATOMIC);
387         if (!new)
388                 goto fail;
389
390         INIT_LIST_HEAD(&new->fi_list);
391         fi = fwnet_frag_new(new, frag_off, frag_len);
392         if (fi == NULL)
393                 goto fail_w_new;
394
395         new->datagram_label = datagram_label;
396         new->datagram_size = dg_size;
397         new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
398         if (new->skb == NULL)
399                 goto fail_w_fi;
400
401         skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
402         new->pbuf = skb_put(new->skb, dg_size);
403         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
404         list_add_tail(&new->pd_link, &peer->pd_list);
405
406         return new;
407
408 fail_w_fi:
409         kfree(fi);
410 fail_w_new:
411         kfree(new);
412 fail:
413         fw_error("out of memory\n");
414
415         return NULL;
416 }
417
418 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
419                                                     u16 datagram_label)
420 {
421         struct fwnet_partial_datagram *pd;
422
423         list_for_each_entry(pd, &peer->pd_list, pd_link)
424                 if (pd->datagram_label == datagram_label)
425                         return pd;
426
427         return NULL;
428 }
429
430
431 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
432 {
433         struct fwnet_fragment_info *fi, *n;
434
435         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
436                 kfree(fi);
437
438         list_del(&old->pd_link);
439         dev_kfree_skb_any(old->skb);
440         kfree(old);
441 }
442
443 static bool fwnet_pd_update(struct fwnet_peer *peer,
444                 struct fwnet_partial_datagram *pd, void *frag_buf,
445                 unsigned frag_off, unsigned frag_len)
446 {
447         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
448                 return false;
449
450         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
451
452         /*
453          * Move list entry to beginnig of list so that oldest partial
454          * datagrams percolate to the end of the list
455          */
456         list_move_tail(&pd->pd_link, &peer->pd_list);
457
458         return true;
459 }
460
461 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
462 {
463         struct fwnet_fragment_info *fi;
464
465         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
466
467         return fi->len == pd->datagram_size;
468 }
469
470 /* caller must hold dev->lock */
471 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
472                                                   u64 guid)
473 {
474         struct fwnet_peer *peer;
475
476         list_for_each_entry(peer, &dev->peer_list, peer_link)
477                 if (peer->guid == guid)
478                         return peer;
479
480         return NULL;
481 }
482
483 /* caller must hold dev->lock */
484 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
485                                                 int node_id, int generation)
486 {
487         struct fwnet_peer *peer;
488
489         list_for_each_entry(peer, &dev->peer_list, peer_link)
490                 if (peer->node_id    == node_id &&
491                     peer->generation == generation)
492                         return peer;
493
494         return NULL;
495 }
496
497 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
498 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
499 {
500         max_rec = min(max_rec, speed + 8);
501         max_rec = min(max_rec, 0xbU); /* <= 4096 */
502         if (max_rec < 8) {
503                 fw_notify("max_rec %x out of range\n", max_rec);
504                 max_rec = 8;
505         }
506
507         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
508 }
509
510
511 static int fwnet_finish_incoming_packet(struct net_device *net,
512                                         struct sk_buff *skb, u16 source_node_id,
513                                         bool is_broadcast, u16 ether_type)
514 {
515         struct fwnet_device *dev;
516         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
517         int status;
518         __be64 guid;
519
520         dev = netdev_priv(net);
521         /* Write metadata, and then pass to the receive level */
522         skb->dev = net;
523         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
524
525         /*
526          * Parse the encapsulation header. This actually does the job of
527          * converting to an ethernet frame header, as well as arp
528          * conversion if needed. ARP conversion is easier in this
529          * direction, since we are using ethernet as our backend.
530          */
531         /*
532          * If this is an ARP packet, convert it. First, we want to make
533          * use of some of the fields, since they tell us a little bit
534          * about the sending machine.
535          */
536         if (ether_type == ETH_P_ARP) {
537                 struct rfc2734_arp *arp1394;
538                 struct arphdr *arp;
539                 unsigned char *arp_ptr;
540                 u64 fifo_addr;
541                 u64 peer_guid;
542                 unsigned sspd;
543                 u16 max_payload;
544                 struct fwnet_peer *peer;
545                 unsigned long flags;
546
547                 arp1394   = (struct rfc2734_arp *)skb->data;
548                 arp       = (struct arphdr *)skb->data;
549                 arp_ptr   = (unsigned char *)(arp + 1);
550                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
551                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
552                                 | get_unaligned_be32(&arp1394->fifo_lo);
553
554                 sspd = arp1394->sspd;
555                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
556                 if (sspd > SCODE_3200) {
557                         fw_notify("sspd %x out of range\n", sspd);
558                         sspd = SCODE_3200;
559                 }
560                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
561
562                 spin_lock_irqsave(&dev->lock, flags);
563                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
564                 if (peer) {
565                         peer->fifo = fifo_addr;
566
567                         if (peer->speed > sspd)
568                                 peer->speed = sspd;
569                         if (peer->max_payload > max_payload)
570                                 peer->max_payload = max_payload;
571                 }
572                 spin_unlock_irqrestore(&dev->lock, flags);
573
574                 if (!peer) {
575                         fw_notify("No peer for ARP packet from %016llx\n",
576                                   (unsigned long long)peer_guid);
577                         goto no_peer;
578                 }
579
580                 /*
581                  * Now that we're done with the 1394 specific stuff, we'll
582                  * need to alter some of the data.  Believe it or not, all
583                  * that needs to be done is sender_IP_address needs to be
584                  * moved, the destination hardware address get stuffed
585                  * in and the hardware address length set to 8.
586                  *
587                  * IMPORTANT: The code below overwrites 1394 specific data
588                  * needed above so keep the munging of the data for the
589                  * higher level IP stack last.
590                  */
591
592                 arp->ar_hln = 8;
593                 /* skip over sender unique id */
594                 arp_ptr += arp->ar_hln;
595                 /* move sender IP addr */
596                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
597                 /* skip over sender IP addr */
598                 arp_ptr += arp->ar_pln;
599
600                 if (arp->ar_op == htons(ARPOP_REQUEST))
601                         memset(arp_ptr, 0, sizeof(u64));
602                 else
603                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
604         }
605
606         /* Now add the ethernet header. */
607         guid = cpu_to_be64(dev->card->guid);
608         if (dev_hard_header(skb, net, ether_type,
609                            is_broadcast ? &broadcast_hw : &guid,
610                            NULL, skb->len) >= 0) {
611                 struct fwnet_header *eth;
612                 u16 *rawp;
613                 __be16 protocol;
614
615                 skb_reset_mac_header(skb);
616                 skb_pull(skb, sizeof(*eth));
617                 eth = (struct fwnet_header *)skb_mac_header(skb);
618                 if (*eth->h_dest & 1) {
619                         if (memcmp(eth->h_dest, net->broadcast,
620                                    net->addr_len) == 0)
621                                 skb->pkt_type = PACKET_BROADCAST;
622 #if 0
623                         else
624                                 skb->pkt_type = PACKET_MULTICAST;
625 #endif
626                 } else {
627                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
628                                 skb->pkt_type = PACKET_OTHERHOST;
629                 }
630                 if (ntohs(eth->h_proto) >= 1536) {
631                         protocol = eth->h_proto;
632                 } else {
633                         rawp = (u16 *)skb->data;
634                         if (*rawp == 0xffff)
635                                 protocol = htons(ETH_P_802_3);
636                         else
637                                 protocol = htons(ETH_P_802_2);
638                 }
639                 skb->protocol = protocol;
640         }
641         status = netif_rx(skb);
642         if (status == NET_RX_DROP) {
643                 net->stats.rx_errors++;
644                 net->stats.rx_dropped++;
645         } else {
646                 net->stats.rx_packets++;
647                 net->stats.rx_bytes += skb->len;
648         }
649
650         return 0;
651
652  no_peer:
653         net->stats.rx_errors++;
654         net->stats.rx_dropped++;
655
656         dev_kfree_skb_any(skb);
657
658         return -ENOENT;
659 }
660
661 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
662                                  int source_node_id, int generation,
663                                  bool is_broadcast)
664 {
665         struct sk_buff *skb;
666         struct net_device *net = dev->netdev;
667         struct rfc2734_header hdr;
668         unsigned lf;
669         unsigned long flags;
670         struct fwnet_peer *peer;
671         struct fwnet_partial_datagram *pd;
672         int fg_off;
673         int dg_size;
674         u16 datagram_label;
675         int retval;
676         u16 ether_type;
677
678         hdr.w0 = be32_to_cpu(buf[0]);
679         lf = fwnet_get_hdr_lf(&hdr);
680         if (lf == RFC2374_HDR_UNFRAG) {
681                 /*
682                  * An unfragmented datagram has been received by the ieee1394
683                  * bus. Build an skbuff around it so we can pass it to the
684                  * high level network layer.
685                  */
686                 ether_type = fwnet_get_hdr_ether_type(&hdr);
687                 buf++;
688                 len -= RFC2374_UNFRAG_HDR_SIZE;
689
690                 skb = dev_alloc_skb(len + net->hard_header_len + 15);
691                 if (unlikely(!skb)) {
692                         fw_error("out of memory\n");
693                         net->stats.rx_dropped++;
694
695                         return -ENOMEM;
696                 }
697                 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
698                 memcpy(skb_put(skb, len), buf, len);
699
700                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
701                                                     is_broadcast, ether_type);
702         }
703         /* A datagram fragment has been received, now the fun begins. */
704         hdr.w1 = ntohl(buf[1]);
705         buf += 2;
706         len -= RFC2374_FRAG_HDR_SIZE;
707         if (lf == RFC2374_HDR_FIRSTFRAG) {
708                 ether_type = fwnet_get_hdr_ether_type(&hdr);
709                 fg_off = 0;
710         } else {
711                 ether_type = 0;
712                 fg_off = fwnet_get_hdr_fg_off(&hdr);
713         }
714         datagram_label = fwnet_get_hdr_dgl(&hdr);
715         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
716
717         spin_lock_irqsave(&dev->lock, flags);
718
719         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
720         if (!peer) {
721                 retval = -ENOENT;
722                 goto fail;
723         }
724
725         pd = fwnet_pd_find(peer, datagram_label);
726         if (pd == NULL) {
727                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
728                         /* remove the oldest */
729                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
730                                 struct fwnet_partial_datagram, pd_link));
731                         peer->pdg_size--;
732                 }
733                 pd = fwnet_pd_new(net, peer, datagram_label,
734                                   dg_size, buf, fg_off, len);
735                 if (pd == NULL) {
736                         retval = -ENOMEM;
737                         goto fail;
738                 }
739                 peer->pdg_size++;
740         } else {
741                 if (fwnet_frag_overlap(pd, fg_off, len) ||
742                     pd->datagram_size != dg_size) {
743                         /*
744                          * Differing datagram sizes or overlapping fragments,
745                          * discard old datagram and start a new one.
746                          */
747                         fwnet_pd_delete(pd);
748                         pd = fwnet_pd_new(net, peer, datagram_label,
749                                           dg_size, buf, fg_off, len);
750                         if (pd == NULL) {
751                                 peer->pdg_size--;
752                                 retval = -ENOMEM;
753                                 goto fail;
754                         }
755                 } else {
756                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
757                                 /*
758                                  * Couldn't save off fragment anyway
759                                  * so might as well obliterate the
760                                  * datagram now.
761                                  */
762                                 fwnet_pd_delete(pd);
763                                 peer->pdg_size--;
764                                 retval = -ENOMEM;
765                                 goto fail;
766                         }
767                 }
768         } /* new datagram or add to existing one */
769
770         if (lf == RFC2374_HDR_FIRSTFRAG)
771                 pd->ether_type = ether_type;
772
773         if (fwnet_pd_is_complete(pd)) {
774                 ether_type = pd->ether_type;
775                 peer->pdg_size--;
776                 skb = skb_get(pd->skb);
777                 fwnet_pd_delete(pd);
778
779                 spin_unlock_irqrestore(&dev->lock, flags);
780
781                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
782                                                     false, ether_type);
783         }
784         /*
785          * Datagram is not complete, we're done for the
786          * moment.
787          */
788         retval = 0;
789  fail:
790         spin_unlock_irqrestore(&dev->lock, flags);
791
792         return retval;
793 }
794
795 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
796                 int tcode, int destination, int source, int generation,
797                 unsigned long long offset, void *payload, size_t length,
798                 void *callback_data)
799 {
800         struct fwnet_device *dev = callback_data;
801         int rcode;
802
803         if (destination == IEEE1394_ALL_NODES) {
804                 kfree(r);
805
806                 return;
807         }
808
809         if (offset != dev->handler.offset)
810                 rcode = RCODE_ADDRESS_ERROR;
811         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
812                 rcode = RCODE_TYPE_ERROR;
813         else if (fwnet_incoming_packet(dev, payload, length,
814                                        source, generation, false) != 0) {
815                 fw_error("Incoming packet failure\n");
816                 rcode = RCODE_CONFLICT_ERROR;
817         } else
818                 rcode = RCODE_COMPLETE;
819
820         fw_send_response(card, r, rcode);
821 }
822
823 static void fwnet_receive_broadcast(struct fw_iso_context *context,
824                 u32 cycle, size_t header_length, void *header, void *data)
825 {
826         struct fwnet_device *dev;
827         struct fw_iso_packet packet;
828         struct fw_card *card;
829         __be16 *hdr_ptr;
830         __be32 *buf_ptr;
831         int retval;
832         u32 length;
833         u16 source_node_id;
834         u32 specifier_id;
835         u32 ver;
836         unsigned long offset;
837         unsigned long flags;
838
839         dev = data;
840         card = dev->card;
841         hdr_ptr = header;
842         length = be16_to_cpup(hdr_ptr);
843
844         spin_lock_irqsave(&dev->lock, flags);
845
846         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
847         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
848         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
849                 dev->broadcast_rcv_next_ptr = 0;
850
851         spin_unlock_irqrestore(&dev->lock, flags);
852
853         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
854                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
855         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
856         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
857
858         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
859                 buf_ptr += 2;
860                 length -= IEEE1394_GASP_HDR_SIZE;
861                 fwnet_incoming_packet(dev, buf_ptr, length,
862                                       source_node_id, -1, true);
863         }
864
865         packet.payload_length = dev->rcv_buffer_size;
866         packet.interrupt = 1;
867         packet.skip = 0;
868         packet.tag = 3;
869         packet.sy = 0;
870         packet.header_length = IEEE1394_GASP_HDR_SIZE;
871
872         spin_lock_irqsave(&dev->lock, flags);
873
874         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
875                                       &dev->broadcast_rcv_buffer, offset);
876
877         spin_unlock_irqrestore(&dev->lock, flags);
878
879         if (retval < 0)
880                 fw_error("requeue failed\n");
881 }
882
883 static struct kmem_cache *fwnet_packet_task_cache;
884
885 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
886 {
887         dev_kfree_skb_any(ptask->skb);
888         kmem_cache_free(fwnet_packet_task_cache, ptask);
889 }
890
891 /* Caller must hold dev->lock. */
892 static void dec_queued_datagrams(struct fwnet_device *dev)
893 {
894         if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
895                 netif_wake_queue(dev->netdev);
896 }
897
898 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
899
900 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
901 {
902         struct fwnet_device *dev = ptask->dev;
903         struct sk_buff *skb = ptask->skb;
904         unsigned long flags;
905         bool free;
906
907         spin_lock_irqsave(&dev->lock, flags);
908
909         ptask->outstanding_pkts--;
910
911         /* Check whether we or the networking TX soft-IRQ is last user. */
912         free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
913         if (free)
914                 dec_queued_datagrams(dev);
915
916         if (ptask->outstanding_pkts == 0) {
917                 dev->netdev->stats.tx_packets++;
918                 dev->netdev->stats.tx_bytes += skb->len;
919         }
920
921         spin_unlock_irqrestore(&dev->lock, flags);
922
923         if (ptask->outstanding_pkts > 0) {
924                 u16 dg_size;
925                 u16 fg_off;
926                 u16 datagram_label;
927                 u16 lf;
928
929                 /* Update the ptask to point to the next fragment and send it */
930                 lf = fwnet_get_hdr_lf(&ptask->hdr);
931                 switch (lf) {
932                 case RFC2374_HDR_LASTFRAG:
933                 case RFC2374_HDR_UNFRAG:
934                 default:
935                         fw_error("Outstanding packet %x lf %x, header %x,%x\n",
936                                  ptask->outstanding_pkts, lf, ptask->hdr.w0,
937                                  ptask->hdr.w1);
938                         BUG();
939
940                 case RFC2374_HDR_FIRSTFRAG:
941                         /* Set frag type here for future interior fragments */
942                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
943                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
944                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
945                         break;
946
947                 case RFC2374_HDR_INTFRAG:
948                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
949                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
950                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
951                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
952                         break;
953                 }
954
955                 skb_pull(skb, ptask->max_payload);
956                 if (ptask->outstanding_pkts > 1) {
957                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
958                                           dg_size, fg_off, datagram_label);
959                 } else {
960                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
961                                           dg_size, fg_off, datagram_label);
962                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
963                 }
964                 fwnet_send_packet(ptask);
965         }
966
967         if (free)
968                 fwnet_free_ptask(ptask);
969 }
970
971 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
972 {
973         struct fwnet_device *dev = ptask->dev;
974         unsigned long flags;
975         bool free;
976
977         spin_lock_irqsave(&dev->lock, flags);
978
979         /* One fragment failed; don't try to send remaining fragments. */
980         ptask->outstanding_pkts = 0;
981
982         /* Check whether we or the networking TX soft-IRQ is last user. */
983         free = ptask->enqueued;
984         if (free)
985                 dec_queued_datagrams(dev);
986
987         dev->netdev->stats.tx_dropped++;
988         dev->netdev->stats.tx_errors++;
989
990         spin_unlock_irqrestore(&dev->lock, flags);
991
992         if (free)
993                 fwnet_free_ptask(ptask);
994 }
995
996 static void fwnet_write_complete(struct fw_card *card, int rcode,
997                                  void *payload, size_t length, void *data)
998 {
999         struct fwnet_packet_task *ptask;
1000
1001         ptask = data;
1002
1003         if (rcode == RCODE_COMPLETE) {
1004                 fwnet_transmit_packet_done(ptask);
1005         } else {
1006                 fw_error("fwnet_write_complete: failed: %x\n", rcode);
1007                 fwnet_transmit_packet_failed(ptask);
1008         }
1009 }
1010
1011 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1012 {
1013         struct fwnet_device *dev;
1014         unsigned tx_len;
1015         struct rfc2734_header *bufhdr;
1016         unsigned long flags;
1017         bool free;
1018
1019         dev = ptask->dev;
1020         tx_len = ptask->max_payload;
1021         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1022         case RFC2374_HDR_UNFRAG:
1023                 bufhdr = (struct rfc2734_header *)
1024                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1025                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1026                 break;
1027
1028         case RFC2374_HDR_FIRSTFRAG:
1029         case RFC2374_HDR_INTFRAG:
1030         case RFC2374_HDR_LASTFRAG:
1031                 bufhdr = (struct rfc2734_header *)
1032                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1033                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1034                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1035                 break;
1036
1037         default:
1038                 BUG();
1039         }
1040         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1041                 u8 *p;
1042                 int generation;
1043                 int node_id;
1044
1045                 /* ptask->generation may not have been set yet */
1046                 generation = dev->card->generation;
1047                 smp_rmb();
1048                 node_id = dev->card->node_id;
1049
1050                 p = skb_push(ptask->skb, 8);
1051                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1052                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1053                                                 | RFC2734_SW_VERSION, &p[4]);
1054
1055                 /* We should not transmit if broadcast_channel.valid == 0. */
1056                 fw_send_request(dev->card, &ptask->transaction,
1057                                 TCODE_STREAM_DATA,
1058                                 fw_stream_packet_destination_id(3,
1059                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1060                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1061                                 tx_len + 8, fwnet_write_complete, ptask);
1062
1063                 spin_lock_irqsave(&dev->lock, flags);
1064
1065                 /* If the AT tasklet already ran, we may be last user. */
1066                 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1067                 if (!free)
1068                         ptask->enqueued = true;
1069                 else
1070                         dec_queued_datagrams(dev);
1071
1072                 spin_unlock_irqrestore(&dev->lock, flags);
1073
1074                 goto out;
1075         }
1076
1077         fw_send_request(dev->card, &ptask->transaction,
1078                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1079                         ptask->generation, ptask->speed, ptask->fifo_addr,
1080                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1081
1082         spin_lock_irqsave(&dev->lock, flags);
1083
1084         /* If the AT tasklet already ran, we may be last user. */
1085         free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1086         if (!free)
1087                 ptask->enqueued = true;
1088         else
1089                 dec_queued_datagrams(dev);
1090
1091         spin_unlock_irqrestore(&dev->lock, flags);
1092
1093         dev->netdev->trans_start = jiffies;
1094  out:
1095         if (free)
1096                 fwnet_free_ptask(ptask);
1097
1098         return 0;
1099 }
1100
1101 static int fwnet_broadcast_start(struct fwnet_device *dev)
1102 {
1103         struct fw_iso_context *context;
1104         int retval;
1105         unsigned num_packets;
1106         unsigned max_receive;
1107         struct fw_iso_packet packet;
1108         unsigned long offset;
1109         unsigned u;
1110
1111         if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1112                 /* outside OHCI posted write area? */
1113                 static const struct fw_address_region region = {
1114                         .start = 0xffff00000000ULL,
1115                         .end   = CSR_REGISTER_BASE,
1116                 };
1117
1118                 dev->handler.length = 4096;
1119                 dev->handler.address_callback = fwnet_receive_packet;
1120                 dev->handler.callback_data = dev;
1121
1122                 retval = fw_core_add_address_handler(&dev->handler, &region);
1123                 if (retval < 0)
1124                         goto failed_initial;
1125
1126                 dev->local_fifo = dev->handler.offset;
1127         }
1128
1129         max_receive = 1U << (dev->card->max_receive + 1);
1130         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1131
1132         if (!dev->broadcast_rcv_context) {
1133                 void **ptrptr;
1134
1135                 context = fw_iso_context_create(dev->card,
1136                     FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1137                     dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1138                 if (IS_ERR(context)) {
1139                         retval = PTR_ERR(context);
1140                         goto failed_context_create;
1141                 }
1142
1143                 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1144                     dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1145                 if (retval < 0)
1146                         goto failed_buffer_init;
1147
1148                 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1149                 if (!ptrptr) {
1150                         retval = -ENOMEM;
1151                         goto failed_ptrs_alloc;
1152                 }
1153
1154                 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1155                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1156                         void *ptr;
1157                         unsigned v;
1158
1159                         ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1160                         for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1161                                 *ptrptr++ = (void *)
1162                                                 ((char *)ptr + v * max_receive);
1163                 }
1164                 dev->broadcast_rcv_context = context;
1165         } else {
1166                 context = dev->broadcast_rcv_context;
1167         }
1168
1169         packet.payload_length = max_receive;
1170         packet.interrupt = 1;
1171         packet.skip = 0;
1172         packet.tag = 3;
1173         packet.sy = 0;
1174         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1175         offset = 0;
1176
1177         for (u = 0; u < num_packets; u++) {
1178                 retval = fw_iso_context_queue(context, &packet,
1179                                 &dev->broadcast_rcv_buffer, offset);
1180                 if (retval < 0)
1181                         goto failed_rcv_queue;
1182
1183                 offset += max_receive;
1184         }
1185         dev->num_broadcast_rcv_ptrs = num_packets;
1186         dev->rcv_buffer_size = max_receive;
1187         dev->broadcast_rcv_next_ptr = 0U;
1188         retval = fw_iso_context_start(context, -1, 0,
1189                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1190         if (retval < 0)
1191                 goto failed_rcv_queue;
1192
1193         /* FIXME: adjust it according to the min. speed of all known peers? */
1194         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1195                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1196         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1197
1198         return 0;
1199
1200  failed_rcv_queue:
1201         kfree(dev->broadcast_rcv_buffer_ptrs);
1202         dev->broadcast_rcv_buffer_ptrs = NULL;
1203  failed_ptrs_alloc:
1204         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1205  failed_buffer_init:
1206         fw_iso_context_destroy(context);
1207         dev->broadcast_rcv_context = NULL;
1208  failed_context_create:
1209         fw_core_remove_address_handler(&dev->handler);
1210  failed_initial:
1211         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1212
1213         return retval;
1214 }
1215
1216 /* ifup */
1217 static int fwnet_open(struct net_device *net)
1218 {
1219         struct fwnet_device *dev = netdev_priv(net);
1220         int ret;
1221
1222         if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1223                 ret = fwnet_broadcast_start(dev);
1224                 if (ret)
1225                         return ret;
1226         }
1227         netif_start_queue(net);
1228
1229         return 0;
1230 }
1231
1232 /* ifdown */
1233 static int fwnet_stop(struct net_device *net)
1234 {
1235         netif_stop_queue(net);
1236
1237         /* Deallocate iso context for use by other applications? */
1238
1239         return 0;
1240 }
1241
1242 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1243 {
1244         struct fwnet_header hdr_buf;
1245         struct fwnet_device *dev = netdev_priv(net);
1246         __be16 proto;
1247         u16 dest_node;
1248         unsigned max_payload;
1249         u16 dg_size;
1250         u16 *datagram_label_ptr;
1251         struct fwnet_packet_task *ptask;
1252         struct fwnet_peer *peer;
1253         unsigned long flags;
1254
1255         spin_lock_irqsave(&dev->lock, flags);
1256
1257         /* Can this happen? */
1258         if (netif_queue_stopped(dev->netdev)) {
1259                 spin_unlock_irqrestore(&dev->lock, flags);
1260
1261                 return NETDEV_TX_BUSY;
1262         }
1263
1264         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1265         if (ptask == NULL)
1266                 goto fail;
1267
1268         skb = skb_share_check(skb, GFP_ATOMIC);
1269         if (!skb)
1270                 goto fail;
1271
1272         /*
1273          * Make a copy of the driver-specific header.
1274          * We might need to rebuild the header on tx failure.
1275          */
1276         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1277         skb_pull(skb, sizeof(hdr_buf));
1278
1279         proto = hdr_buf.h_proto;
1280         dg_size = skb->len;
1281
1282         /*
1283          * Set the transmission type for the packet.  ARP packets and IP
1284          * broadcast packets are sent via GASP.
1285          */
1286         if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1287             || proto == htons(ETH_P_ARP)
1288             || (proto == htons(ETH_P_IP)
1289                 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1290                 max_payload        = dev->broadcast_xmt_max_payload;
1291                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1292
1293                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1294                 ptask->generation  = 0;
1295                 ptask->dest_node   = IEEE1394_ALL_NODES;
1296                 ptask->speed       = SCODE_100;
1297         } else {
1298                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1299                 u8 generation;
1300
1301                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1302                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1303                         goto fail;
1304
1305                 generation         = peer->generation;
1306                 dest_node          = peer->node_id;
1307                 max_payload        = peer->max_payload;
1308                 datagram_label_ptr = &peer->datagram_label;
1309
1310                 ptask->fifo_addr   = peer->fifo;
1311                 ptask->generation  = generation;
1312                 ptask->dest_node   = dest_node;
1313                 ptask->speed       = peer->speed;
1314         }
1315
1316         /* If this is an ARP packet, convert it */
1317         if (proto == htons(ETH_P_ARP)) {
1318                 struct arphdr *arp = (struct arphdr *)skb->data;
1319                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1320                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1321                 __be32 ipaddr;
1322
1323                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1324
1325                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1326                 arp1394->max_rec        = dev->card->max_receive;
1327                 arp1394->sspd           = dev->card->link_speed;
1328
1329                 put_unaligned_be16(dev->local_fifo >> 32,
1330                                    &arp1394->fifo_hi);
1331                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1332                                    &arp1394->fifo_lo);
1333                 put_unaligned(ipaddr, &arp1394->sip);
1334         }
1335
1336         ptask->hdr.w0 = 0;
1337         ptask->hdr.w1 = 0;
1338         ptask->skb = skb;
1339         ptask->dev = dev;
1340
1341         /* Does it all fit in one packet? */
1342         if (dg_size <= max_payload) {
1343                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1344                 ptask->outstanding_pkts = 1;
1345                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1346         } else {
1347                 u16 datagram_label;
1348
1349                 max_payload -= RFC2374_FRAG_OVERHEAD;
1350                 datagram_label = (*datagram_label_ptr)++;
1351                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1352                                   datagram_label);
1353                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1354                 max_payload += RFC2374_FRAG_HDR_SIZE;
1355         }
1356
1357         if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1358                 netif_stop_queue(dev->netdev);
1359
1360         spin_unlock_irqrestore(&dev->lock, flags);
1361
1362         ptask->max_payload = max_payload;
1363         ptask->enqueued    = 0;
1364
1365         fwnet_send_packet(ptask);
1366
1367         return NETDEV_TX_OK;
1368
1369  fail:
1370         spin_unlock_irqrestore(&dev->lock, flags);
1371
1372         if (ptask)
1373                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1374
1375         if (skb != NULL)
1376                 dev_kfree_skb(skb);
1377
1378         net->stats.tx_dropped++;
1379         net->stats.tx_errors++;
1380
1381         /*
1382          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1383          * causes serious problems" here, allegedly.  Before that patch,
1384          * -ERRNO was returned which is not appropriate under Linux 2.6.
1385          * Perhaps more needs to be done?  Stop the queue in serious
1386          * conditions and restart it elsewhere?
1387          */
1388         return NETDEV_TX_OK;
1389 }
1390
1391 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1392 {
1393         if (new_mtu < 68)
1394                 return -EINVAL;
1395
1396         net->mtu = new_mtu;
1397         return 0;
1398 }
1399
1400 static const struct net_device_ops fwnet_netdev_ops = {
1401         .ndo_open       = fwnet_open,
1402         .ndo_stop       = fwnet_stop,
1403         .ndo_start_xmit = fwnet_tx,
1404         .ndo_change_mtu = fwnet_change_mtu,
1405 };
1406
1407 static void fwnet_init_dev(struct net_device *net)
1408 {
1409         net->header_ops         = &fwnet_header_ops;
1410         net->netdev_ops         = &fwnet_netdev_ops;
1411         net->watchdog_timeo     = 2 * HZ;
1412         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1413         net->features           = NETIF_F_HIGHDMA;
1414         net->addr_len           = FWNET_ALEN;
1415         net->hard_header_len    = FWNET_HLEN;
1416         net->type               = ARPHRD_IEEE1394;
1417         net->tx_queue_len       = FWNET_TX_QUEUE_LEN;
1418 }
1419
1420 /* caller must hold fwnet_device_mutex */
1421 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1422 {
1423         struct fwnet_device *dev;
1424
1425         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1426                 if (dev->card == card)
1427                         return dev;
1428
1429         return NULL;
1430 }
1431
1432 static int fwnet_add_peer(struct fwnet_device *dev,
1433                           struct fw_unit *unit, struct fw_device *device)
1434 {
1435         struct fwnet_peer *peer;
1436
1437         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1438         if (!peer)
1439                 return -ENOMEM;
1440
1441         dev_set_drvdata(&unit->device, peer);
1442
1443         peer->dev = dev;
1444         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1445         peer->fifo = FWNET_NO_FIFO_ADDR;
1446         INIT_LIST_HEAD(&peer->pd_list);
1447         peer->pdg_size = 0;
1448         peer->datagram_label = 0;
1449         peer->speed = device->max_speed;
1450         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1451
1452         peer->generation = device->generation;
1453         smp_rmb();
1454         peer->node_id = device->node_id;
1455
1456         spin_lock_irq(&dev->lock);
1457         list_add_tail(&peer->peer_link, &dev->peer_list);
1458         spin_unlock_irq(&dev->lock);
1459
1460         return 0;
1461 }
1462
1463 static int fwnet_probe(struct device *_dev)
1464 {
1465         struct fw_unit *unit = fw_unit(_dev);
1466         struct fw_device *device = fw_parent_device(unit);
1467         struct fw_card *card = device->card;
1468         struct net_device *net;
1469         bool allocated_netdev = false;
1470         struct fwnet_device *dev;
1471         unsigned max_mtu;
1472         int ret;
1473
1474         mutex_lock(&fwnet_device_mutex);
1475
1476         dev = fwnet_dev_find(card);
1477         if (dev) {
1478                 net = dev->netdev;
1479                 goto have_dev;
1480         }
1481
1482         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1483         if (net == NULL) {
1484                 ret = -ENOMEM;
1485                 goto out;
1486         }
1487
1488         allocated_netdev = true;
1489         SET_NETDEV_DEV(net, card->device);
1490         dev = netdev_priv(net);
1491
1492         spin_lock_init(&dev->lock);
1493         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1494         dev->broadcast_rcv_context = NULL;
1495         dev->broadcast_xmt_max_payload = 0;
1496         dev->broadcast_xmt_datagramlabel = 0;
1497         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1498         dev->queued_datagrams = 0;
1499         INIT_LIST_HEAD(&dev->peer_list);
1500         dev->card = card;
1501         dev->netdev = net;
1502
1503         /*
1504          * Use the RFC 2734 default 1500 octets or the maximum payload
1505          * as initial MTU
1506          */
1507         max_mtu = (1 << (card->max_receive + 1))
1508                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1509         net->mtu = min(1500U, max_mtu);
1510
1511         /* Set our hardware address while we're at it */
1512         put_unaligned_be64(card->guid, net->dev_addr);
1513         put_unaligned_be64(~0ULL, net->broadcast);
1514         ret = register_netdev(net);
1515         if (ret) {
1516                 fw_error("Cannot register the driver\n");
1517                 goto out;
1518         }
1519
1520         list_add_tail(&dev->dev_link, &fwnet_device_list);
1521         fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1522                   net->name, (unsigned long long)card->guid);
1523  have_dev:
1524         ret = fwnet_add_peer(dev, unit, device);
1525         if (ret && allocated_netdev) {
1526                 unregister_netdev(net);
1527                 list_del(&dev->dev_link);
1528         }
1529  out:
1530         if (ret && allocated_netdev)
1531                 free_netdev(net);
1532
1533         mutex_unlock(&fwnet_device_mutex);
1534
1535         return ret;
1536 }
1537
1538 static void fwnet_remove_peer(struct fwnet_peer *peer)
1539 {
1540         struct fwnet_partial_datagram *pd, *pd_next;
1541
1542         spin_lock_irq(&peer->dev->lock);
1543         list_del(&peer->peer_link);
1544         spin_unlock_irq(&peer->dev->lock);
1545
1546         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1547                 fwnet_pd_delete(pd);
1548
1549         kfree(peer);
1550 }
1551
1552 static int fwnet_remove(struct device *_dev)
1553 {
1554         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1555         struct fwnet_device *dev = peer->dev;
1556         struct net_device *net;
1557         int i;
1558
1559         mutex_lock(&fwnet_device_mutex);
1560
1561         fwnet_remove_peer(peer);
1562
1563         if (list_empty(&dev->peer_list)) {
1564                 net = dev->netdev;
1565                 unregister_netdev(net);
1566
1567                 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1568                         fw_core_remove_address_handler(&dev->handler);
1569                 if (dev->broadcast_rcv_context) {
1570                         fw_iso_context_stop(dev->broadcast_rcv_context);
1571                         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1572                                               dev->card);
1573                         fw_iso_context_destroy(dev->broadcast_rcv_context);
1574                 }
1575                 for (i = 0; dev->queued_datagrams && i < 5; i++)
1576                         ssleep(1);
1577                 WARN_ON(dev->queued_datagrams);
1578                 list_del(&dev->dev_link);
1579
1580                 free_netdev(net);
1581         }
1582
1583         mutex_unlock(&fwnet_device_mutex);
1584
1585         return 0;
1586 }
1587
1588 /*
1589  * FIXME abort partially sent fragmented datagrams,
1590  * discard partially received fragmented datagrams
1591  */
1592 static void fwnet_update(struct fw_unit *unit)
1593 {
1594         struct fw_device *device = fw_parent_device(unit);
1595         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1596         int generation;
1597
1598         generation = device->generation;
1599
1600         spin_lock_irq(&peer->dev->lock);
1601         peer->node_id    = device->node_id;
1602         peer->generation = generation;
1603         spin_unlock_irq(&peer->dev->lock);
1604 }
1605
1606 static const struct ieee1394_device_id fwnet_id_table[] = {
1607         {
1608                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1609                                 IEEE1394_MATCH_VERSION,
1610                 .specifier_id = IANA_SPECIFIER_ID,
1611                 .version      = RFC2734_SW_VERSION,
1612         },
1613         { }
1614 };
1615
1616 static struct fw_driver fwnet_driver = {
1617         .driver = {
1618                 .owner  = THIS_MODULE,
1619                 .name   = "net",
1620                 .bus    = &fw_bus_type,
1621                 .probe  = fwnet_probe,
1622                 .remove = fwnet_remove,
1623         },
1624         .update   = fwnet_update,
1625         .id_table = fwnet_id_table,
1626 };
1627
1628 static const u32 rfc2374_unit_directory_data[] = {
1629         0x00040000,     /* directory_length             */
1630         0x1200005e,     /* unit_specifier_id: IANA      */
1631         0x81000003,     /* textual descriptor offset    */
1632         0x13000001,     /* unit_sw_version: RFC 2734    */
1633         0x81000005,     /* textual descriptor offset    */
1634         0x00030000,     /* descriptor_length            */
1635         0x00000000,     /* text                         */
1636         0x00000000,     /* minimal ASCII, en            */
1637         0x49414e41,     /* I A N A                      */
1638         0x00030000,     /* descriptor_length            */
1639         0x00000000,     /* text                         */
1640         0x00000000,     /* minimal ASCII, en            */
1641         0x49507634,     /* I P v 4                      */
1642 };
1643
1644 static struct fw_descriptor rfc2374_unit_directory = {
1645         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1646         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1647         .data   = rfc2374_unit_directory_data
1648 };
1649
1650 static int __init fwnet_init(void)
1651 {
1652         int err;
1653
1654         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1655         if (err)
1656                 return err;
1657
1658         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1659                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1660         if (!fwnet_packet_task_cache) {
1661                 err = -ENOMEM;
1662                 goto out;
1663         }
1664
1665         err = driver_register(&fwnet_driver.driver);
1666         if (!err)
1667                 return 0;
1668
1669         kmem_cache_destroy(fwnet_packet_task_cache);
1670 out:
1671         fw_core_remove_descriptor(&rfc2374_unit_directory);
1672
1673         return err;
1674 }
1675 module_init(fwnet_init);
1676
1677 static void __exit fwnet_cleanup(void)
1678 {
1679         driver_unregister(&fwnet_driver.driver);
1680         kmem_cache_destroy(fwnet_packet_task_cache);
1681         fw_core_remove_descriptor(&rfc2374_unit_directory);
1682 }
1683 module_exit(fwnet_cleanup);
1684
1685 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1686 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1687 MODULE_LICENSE("GPL");
1688 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);