IMA: update ima_counts_put
[~shefty/rdma-dev.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41                                              int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43                                                      uint64_t offset,
44                                                      uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48                                            unsigned alignment);
49 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
50 static int i915_gem_evict_something(struct drm_device *dev);
51 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
52                                 struct drm_i915_gem_pwrite *args,
53                                 struct drm_file *file_priv);
54
55 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
56                      unsigned long end)
57 {
58         drm_i915_private_t *dev_priv = dev->dev_private;
59
60         if (start >= end ||
61             (start & (PAGE_SIZE - 1)) != 0 ||
62             (end & (PAGE_SIZE - 1)) != 0) {
63                 return -EINVAL;
64         }
65
66         drm_mm_init(&dev_priv->mm.gtt_space, start,
67                     end - start);
68
69         dev->gtt_total = (uint32_t) (end - start);
70
71         return 0;
72 }
73
74 int
75 i915_gem_init_ioctl(struct drm_device *dev, void *data,
76                     struct drm_file *file_priv)
77 {
78         struct drm_i915_gem_init *args = data;
79         int ret;
80
81         mutex_lock(&dev->struct_mutex);
82         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
83         mutex_unlock(&dev->struct_mutex);
84
85         return ret;
86 }
87
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90                             struct drm_file *file_priv)
91 {
92         struct drm_i915_gem_get_aperture *args = data;
93
94         if (!(dev->driver->driver_features & DRIVER_GEM))
95                 return -ENODEV;
96
97         args->aper_size = dev->gtt_total;
98         args->aper_available_size = (args->aper_size -
99                                      atomic_read(&dev->pin_memory));
100
101         return 0;
102 }
103
104
105 /**
106  * Creates a new mm object and returns a handle to it.
107  */
108 int
109 i915_gem_create_ioctl(struct drm_device *dev, void *data,
110                       struct drm_file *file_priv)
111 {
112         struct drm_i915_gem_create *args = data;
113         struct drm_gem_object *obj;
114         int handle, ret;
115
116         args->size = roundup(args->size, PAGE_SIZE);
117
118         /* Allocate the new object */
119         obj = drm_gem_object_alloc(dev, args->size);
120         if (obj == NULL)
121                 return -ENOMEM;
122
123         ret = drm_gem_handle_create(file_priv, obj, &handle);
124         mutex_lock(&dev->struct_mutex);
125         drm_gem_object_handle_unreference(obj);
126         mutex_unlock(&dev->struct_mutex);
127
128         if (ret)
129                 return ret;
130
131         args->handle = handle;
132
133         return 0;
134 }
135
136 static inline int
137 fast_shmem_read(struct page **pages,
138                 loff_t page_base, int page_offset,
139                 char __user *data,
140                 int length)
141 {
142         char __iomem *vaddr;
143         int unwritten;
144
145         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
146         if (vaddr == NULL)
147                 return -ENOMEM;
148         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
149         kunmap_atomic(vaddr, KM_USER0);
150
151         if (unwritten)
152                 return -EFAULT;
153
154         return 0;
155 }
156
157 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
158 {
159         drm_i915_private_t *dev_priv = obj->dev->dev_private;
160         struct drm_i915_gem_object *obj_priv = obj->driver_private;
161
162         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
163                 obj_priv->tiling_mode != I915_TILING_NONE;
164 }
165
166 static inline int
167 slow_shmem_copy(struct page *dst_page,
168                 int dst_offset,
169                 struct page *src_page,
170                 int src_offset,
171                 int length)
172 {
173         char *dst_vaddr, *src_vaddr;
174
175         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
176         if (dst_vaddr == NULL)
177                 return -ENOMEM;
178
179         src_vaddr = kmap_atomic(src_page, KM_USER1);
180         if (src_vaddr == NULL) {
181                 kunmap_atomic(dst_vaddr, KM_USER0);
182                 return -ENOMEM;
183         }
184
185         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
186
187         kunmap_atomic(src_vaddr, KM_USER1);
188         kunmap_atomic(dst_vaddr, KM_USER0);
189
190         return 0;
191 }
192
193 static inline int
194 slow_shmem_bit17_copy(struct page *gpu_page,
195                       int gpu_offset,
196                       struct page *cpu_page,
197                       int cpu_offset,
198                       int length,
199                       int is_read)
200 {
201         char *gpu_vaddr, *cpu_vaddr;
202
203         /* Use the unswizzled path if this page isn't affected. */
204         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
205                 if (is_read)
206                         return slow_shmem_copy(cpu_page, cpu_offset,
207                                                gpu_page, gpu_offset, length);
208                 else
209                         return slow_shmem_copy(gpu_page, gpu_offset,
210                                                cpu_page, cpu_offset, length);
211         }
212
213         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
214         if (gpu_vaddr == NULL)
215                 return -ENOMEM;
216
217         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
218         if (cpu_vaddr == NULL) {
219                 kunmap_atomic(gpu_vaddr, KM_USER0);
220                 return -ENOMEM;
221         }
222
223         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
224          * XORing with the other bits (A9 for Y, A9 and A10 for X)
225          */
226         while (length > 0) {
227                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
228                 int this_length = min(cacheline_end - gpu_offset, length);
229                 int swizzled_gpu_offset = gpu_offset ^ 64;
230
231                 if (is_read) {
232                         memcpy(cpu_vaddr + cpu_offset,
233                                gpu_vaddr + swizzled_gpu_offset,
234                                this_length);
235                 } else {
236                         memcpy(gpu_vaddr + swizzled_gpu_offset,
237                                cpu_vaddr + cpu_offset,
238                                this_length);
239                 }
240                 cpu_offset += this_length;
241                 gpu_offset += this_length;
242                 length -= this_length;
243         }
244
245         kunmap_atomic(cpu_vaddr, KM_USER1);
246         kunmap_atomic(gpu_vaddr, KM_USER0);
247
248         return 0;
249 }
250
251 /**
252  * This is the fast shmem pread path, which attempts to copy_from_user directly
253  * from the backing pages of the object to the user's address space.  On a
254  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255  */
256 static int
257 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258                           struct drm_i915_gem_pread *args,
259                           struct drm_file *file_priv)
260 {
261         struct drm_i915_gem_object *obj_priv = obj->driver_private;
262         ssize_t remain;
263         loff_t offset, page_base;
264         char __user *user_data;
265         int page_offset, page_length;
266         int ret;
267
268         user_data = (char __user *) (uintptr_t) args->data_ptr;
269         remain = args->size;
270
271         mutex_lock(&dev->struct_mutex);
272
273         ret = i915_gem_object_get_pages(obj);
274         if (ret != 0)
275                 goto fail_unlock;
276
277         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278                                                         args->size);
279         if (ret != 0)
280                 goto fail_put_pages;
281
282         obj_priv = obj->driver_private;
283         offset = args->offset;
284
285         while (remain > 0) {
286                 /* Operation in this page
287                  *
288                  * page_base = page offset within aperture
289                  * page_offset = offset within page
290                  * page_length = bytes to copy for this page
291                  */
292                 page_base = (offset & ~(PAGE_SIZE-1));
293                 page_offset = offset & (PAGE_SIZE-1);
294                 page_length = remain;
295                 if ((page_offset + remain) > PAGE_SIZE)
296                         page_length = PAGE_SIZE - page_offset;
297
298                 ret = fast_shmem_read(obj_priv->pages,
299                                       page_base, page_offset,
300                                       user_data, page_length);
301                 if (ret)
302                         goto fail_put_pages;
303
304                 remain -= page_length;
305                 user_data += page_length;
306                 offset += page_length;
307         }
308
309 fail_put_pages:
310         i915_gem_object_put_pages(obj);
311 fail_unlock:
312         mutex_unlock(&dev->struct_mutex);
313
314         return ret;
315 }
316
317 /**
318  * This is the fallback shmem pread path, which allocates temporary storage
319  * in kernel space to copy_to_user into outside of the struct_mutex, so we
320  * can copy out of the object's backing pages while holding the struct mutex
321  * and not take page faults.
322  */
323 static int
324 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
325                           struct drm_i915_gem_pread *args,
326                           struct drm_file *file_priv)
327 {
328         struct drm_i915_gem_object *obj_priv = obj->driver_private;
329         struct mm_struct *mm = current->mm;
330         struct page **user_pages;
331         ssize_t remain;
332         loff_t offset, pinned_pages, i;
333         loff_t first_data_page, last_data_page, num_pages;
334         int shmem_page_index, shmem_page_offset;
335         int data_page_index,  data_page_offset;
336         int page_length;
337         int ret;
338         uint64_t data_ptr = args->data_ptr;
339         int do_bit17_swizzling;
340
341         remain = args->size;
342
343         /* Pin the user pages containing the data.  We can't fault while
344          * holding the struct mutex, yet we want to hold it while
345          * dereferencing the user data.
346          */
347         first_data_page = data_ptr / PAGE_SIZE;
348         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
349         num_pages = last_data_page - first_data_page + 1;
350
351         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
352         if (user_pages == NULL)
353                 return -ENOMEM;
354
355         down_read(&mm->mmap_sem);
356         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
357                                       num_pages, 1, 0, user_pages, NULL);
358         up_read(&mm->mmap_sem);
359         if (pinned_pages < num_pages) {
360                 ret = -EFAULT;
361                 goto fail_put_user_pages;
362         }
363
364         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
365
366         mutex_lock(&dev->struct_mutex);
367
368         ret = i915_gem_object_get_pages(obj);
369         if (ret != 0)
370                 goto fail_unlock;
371
372         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
373                                                         args->size);
374         if (ret != 0)
375                 goto fail_put_pages;
376
377         obj_priv = obj->driver_private;
378         offset = args->offset;
379
380         while (remain > 0) {
381                 /* Operation in this page
382                  *
383                  * shmem_page_index = page number within shmem file
384                  * shmem_page_offset = offset within page in shmem file
385                  * data_page_index = page number in get_user_pages return
386                  * data_page_offset = offset with data_page_index page.
387                  * page_length = bytes to copy for this page
388                  */
389                 shmem_page_index = offset / PAGE_SIZE;
390                 shmem_page_offset = offset & ~PAGE_MASK;
391                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
392                 data_page_offset = data_ptr & ~PAGE_MASK;
393
394                 page_length = remain;
395                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
396                         page_length = PAGE_SIZE - shmem_page_offset;
397                 if ((data_page_offset + page_length) > PAGE_SIZE)
398                         page_length = PAGE_SIZE - data_page_offset;
399
400                 if (do_bit17_swizzling) {
401                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
402                                                     shmem_page_offset,
403                                                     user_pages[data_page_index],
404                                                     data_page_offset,
405                                                     page_length,
406                                                     1);
407                 } else {
408                         ret = slow_shmem_copy(user_pages[data_page_index],
409                                               data_page_offset,
410                                               obj_priv->pages[shmem_page_index],
411                                               shmem_page_offset,
412                                               page_length);
413                 }
414                 if (ret)
415                         goto fail_put_pages;
416
417                 remain -= page_length;
418                 data_ptr += page_length;
419                 offset += page_length;
420         }
421
422 fail_put_pages:
423         i915_gem_object_put_pages(obj);
424 fail_unlock:
425         mutex_unlock(&dev->struct_mutex);
426 fail_put_user_pages:
427         for (i = 0; i < pinned_pages; i++) {
428                 SetPageDirty(user_pages[i]);
429                 page_cache_release(user_pages[i]);
430         }
431         drm_free_large(user_pages);
432
433         return ret;
434 }
435
436 /**
437  * Reads data from the object referenced by handle.
438  *
439  * On error, the contents of *data are undefined.
440  */
441 int
442 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
443                      struct drm_file *file_priv)
444 {
445         struct drm_i915_gem_pread *args = data;
446         struct drm_gem_object *obj;
447         struct drm_i915_gem_object *obj_priv;
448         int ret;
449
450         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
451         if (obj == NULL)
452                 return -EBADF;
453         obj_priv = obj->driver_private;
454
455         /* Bounds check source.
456          *
457          * XXX: This could use review for overflow issues...
458          */
459         if (args->offset > obj->size || args->size > obj->size ||
460             args->offset + args->size > obj->size) {
461                 drm_gem_object_unreference(obj);
462                 return -EINVAL;
463         }
464
465         if (i915_gem_object_needs_bit17_swizzle(obj)) {
466                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
467         } else {
468                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
469                 if (ret != 0)
470                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
471                                                         file_priv);
472         }
473
474         drm_gem_object_unreference(obj);
475
476         return ret;
477 }
478
479 /* This is the fast write path which cannot handle
480  * page faults in the source data
481  */
482
483 static inline int
484 fast_user_write(struct io_mapping *mapping,
485                 loff_t page_base, int page_offset,
486                 char __user *user_data,
487                 int length)
488 {
489         char *vaddr_atomic;
490         unsigned long unwritten;
491
492         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
493         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
494                                                       user_data, length);
495         io_mapping_unmap_atomic(vaddr_atomic);
496         if (unwritten)
497                 return -EFAULT;
498         return 0;
499 }
500
501 /* Here's the write path which can sleep for
502  * page faults
503  */
504
505 static inline int
506 slow_kernel_write(struct io_mapping *mapping,
507                   loff_t gtt_base, int gtt_offset,
508                   struct page *user_page, int user_offset,
509                   int length)
510 {
511         char *src_vaddr, *dst_vaddr;
512         unsigned long unwritten;
513
514         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
515         src_vaddr = kmap_atomic(user_page, KM_USER1);
516         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
517                                                       src_vaddr + user_offset,
518                                                       length);
519         kunmap_atomic(src_vaddr, KM_USER1);
520         io_mapping_unmap_atomic(dst_vaddr);
521         if (unwritten)
522                 return -EFAULT;
523         return 0;
524 }
525
526 static inline int
527 fast_shmem_write(struct page **pages,
528                  loff_t page_base, int page_offset,
529                  char __user *data,
530                  int length)
531 {
532         char __iomem *vaddr;
533         unsigned long unwritten;
534
535         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
536         if (vaddr == NULL)
537                 return -ENOMEM;
538         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
539         kunmap_atomic(vaddr, KM_USER0);
540
541         if (unwritten)
542                 return -EFAULT;
543         return 0;
544 }
545
546 /**
547  * This is the fast pwrite path, where we copy the data directly from the
548  * user into the GTT, uncached.
549  */
550 static int
551 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
552                          struct drm_i915_gem_pwrite *args,
553                          struct drm_file *file_priv)
554 {
555         struct drm_i915_gem_object *obj_priv = obj->driver_private;
556         drm_i915_private_t *dev_priv = dev->dev_private;
557         ssize_t remain;
558         loff_t offset, page_base;
559         char __user *user_data;
560         int page_offset, page_length;
561         int ret;
562
563         user_data = (char __user *) (uintptr_t) args->data_ptr;
564         remain = args->size;
565         if (!access_ok(VERIFY_READ, user_data, remain))
566                 return -EFAULT;
567
568
569         mutex_lock(&dev->struct_mutex);
570         ret = i915_gem_object_pin(obj, 0);
571         if (ret) {
572                 mutex_unlock(&dev->struct_mutex);
573                 return ret;
574         }
575         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
576         if (ret)
577                 goto fail;
578
579         obj_priv = obj->driver_private;
580         offset = obj_priv->gtt_offset + args->offset;
581
582         while (remain > 0) {
583                 /* Operation in this page
584                  *
585                  * page_base = page offset within aperture
586                  * page_offset = offset within page
587                  * page_length = bytes to copy for this page
588                  */
589                 page_base = (offset & ~(PAGE_SIZE-1));
590                 page_offset = offset & (PAGE_SIZE-1);
591                 page_length = remain;
592                 if ((page_offset + remain) > PAGE_SIZE)
593                         page_length = PAGE_SIZE - page_offset;
594
595                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
596                                        page_offset, user_data, page_length);
597
598                 /* If we get a fault while copying data, then (presumably) our
599                  * source page isn't available.  Return the error and we'll
600                  * retry in the slow path.
601                  */
602                 if (ret)
603                         goto fail;
604
605                 remain -= page_length;
606                 user_data += page_length;
607                 offset += page_length;
608         }
609
610 fail:
611         i915_gem_object_unpin(obj);
612         mutex_unlock(&dev->struct_mutex);
613
614         return ret;
615 }
616
617 /**
618  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
619  * the memory and maps it using kmap_atomic for copying.
620  *
621  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
622  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
623  */
624 static int
625 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
626                          struct drm_i915_gem_pwrite *args,
627                          struct drm_file *file_priv)
628 {
629         struct drm_i915_gem_object *obj_priv = obj->driver_private;
630         drm_i915_private_t *dev_priv = dev->dev_private;
631         ssize_t remain;
632         loff_t gtt_page_base, offset;
633         loff_t first_data_page, last_data_page, num_pages;
634         loff_t pinned_pages, i;
635         struct page **user_pages;
636         struct mm_struct *mm = current->mm;
637         int gtt_page_offset, data_page_offset, data_page_index, page_length;
638         int ret;
639         uint64_t data_ptr = args->data_ptr;
640
641         remain = args->size;
642
643         /* Pin the user pages containing the data.  We can't fault while
644          * holding the struct mutex, and all of the pwrite implementations
645          * want to hold it while dereferencing the user data.
646          */
647         first_data_page = data_ptr / PAGE_SIZE;
648         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
649         num_pages = last_data_page - first_data_page + 1;
650
651         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
652         if (user_pages == NULL)
653                 return -ENOMEM;
654
655         down_read(&mm->mmap_sem);
656         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657                                       num_pages, 0, 0, user_pages, NULL);
658         up_read(&mm->mmap_sem);
659         if (pinned_pages < num_pages) {
660                 ret = -EFAULT;
661                 goto out_unpin_pages;
662         }
663
664         mutex_lock(&dev->struct_mutex);
665         ret = i915_gem_object_pin(obj, 0);
666         if (ret)
667                 goto out_unlock;
668
669         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
670         if (ret)
671                 goto out_unpin_object;
672
673         obj_priv = obj->driver_private;
674         offset = obj_priv->gtt_offset + args->offset;
675
676         while (remain > 0) {
677                 /* Operation in this page
678                  *
679                  * gtt_page_base = page offset within aperture
680                  * gtt_page_offset = offset within page in aperture
681                  * data_page_index = page number in get_user_pages return
682                  * data_page_offset = offset with data_page_index page.
683                  * page_length = bytes to copy for this page
684                  */
685                 gtt_page_base = offset & PAGE_MASK;
686                 gtt_page_offset = offset & ~PAGE_MASK;
687                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
688                 data_page_offset = data_ptr & ~PAGE_MASK;
689
690                 page_length = remain;
691                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
692                         page_length = PAGE_SIZE - gtt_page_offset;
693                 if ((data_page_offset + page_length) > PAGE_SIZE)
694                         page_length = PAGE_SIZE - data_page_offset;
695
696                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
697                                         gtt_page_base, gtt_page_offset,
698                                         user_pages[data_page_index],
699                                         data_page_offset,
700                                         page_length);
701
702                 /* If we get a fault while copying data, then (presumably) our
703                  * source page isn't available.  Return the error and we'll
704                  * retry in the slow path.
705                  */
706                 if (ret)
707                         goto out_unpin_object;
708
709                 remain -= page_length;
710                 offset += page_length;
711                 data_ptr += page_length;
712         }
713
714 out_unpin_object:
715         i915_gem_object_unpin(obj);
716 out_unlock:
717         mutex_unlock(&dev->struct_mutex);
718 out_unpin_pages:
719         for (i = 0; i < pinned_pages; i++)
720                 page_cache_release(user_pages[i]);
721         drm_free_large(user_pages);
722
723         return ret;
724 }
725
726 /**
727  * This is the fast shmem pwrite path, which attempts to directly
728  * copy_from_user into the kmapped pages backing the object.
729  */
730 static int
731 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
732                            struct drm_i915_gem_pwrite *args,
733                            struct drm_file *file_priv)
734 {
735         struct drm_i915_gem_object *obj_priv = obj->driver_private;
736         ssize_t remain;
737         loff_t offset, page_base;
738         char __user *user_data;
739         int page_offset, page_length;
740         int ret;
741
742         user_data = (char __user *) (uintptr_t) args->data_ptr;
743         remain = args->size;
744
745         mutex_lock(&dev->struct_mutex);
746
747         ret = i915_gem_object_get_pages(obj);
748         if (ret != 0)
749                 goto fail_unlock;
750
751         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
752         if (ret != 0)
753                 goto fail_put_pages;
754
755         obj_priv = obj->driver_private;
756         offset = args->offset;
757         obj_priv->dirty = 1;
758
759         while (remain > 0) {
760                 /* Operation in this page
761                  *
762                  * page_base = page offset within aperture
763                  * page_offset = offset within page
764                  * page_length = bytes to copy for this page
765                  */
766                 page_base = (offset & ~(PAGE_SIZE-1));
767                 page_offset = offset & (PAGE_SIZE-1);
768                 page_length = remain;
769                 if ((page_offset + remain) > PAGE_SIZE)
770                         page_length = PAGE_SIZE - page_offset;
771
772                 ret = fast_shmem_write(obj_priv->pages,
773                                        page_base, page_offset,
774                                        user_data, page_length);
775                 if (ret)
776                         goto fail_put_pages;
777
778                 remain -= page_length;
779                 user_data += page_length;
780                 offset += page_length;
781         }
782
783 fail_put_pages:
784         i915_gem_object_put_pages(obj);
785 fail_unlock:
786         mutex_unlock(&dev->struct_mutex);
787
788         return ret;
789 }
790
791 /**
792  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
793  * the memory and maps it using kmap_atomic for copying.
794  *
795  * This avoids taking mmap_sem for faulting on the user's address while the
796  * struct_mutex is held.
797  */
798 static int
799 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
800                            struct drm_i915_gem_pwrite *args,
801                            struct drm_file *file_priv)
802 {
803         struct drm_i915_gem_object *obj_priv = obj->driver_private;
804         struct mm_struct *mm = current->mm;
805         struct page **user_pages;
806         ssize_t remain;
807         loff_t offset, pinned_pages, i;
808         loff_t first_data_page, last_data_page, num_pages;
809         int shmem_page_index, shmem_page_offset;
810         int data_page_index,  data_page_offset;
811         int page_length;
812         int ret;
813         uint64_t data_ptr = args->data_ptr;
814         int do_bit17_swizzling;
815
816         remain = args->size;
817
818         /* Pin the user pages containing the data.  We can't fault while
819          * holding the struct mutex, and all of the pwrite implementations
820          * want to hold it while dereferencing the user data.
821          */
822         first_data_page = data_ptr / PAGE_SIZE;
823         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
824         num_pages = last_data_page - first_data_page + 1;
825
826         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
827         if (user_pages == NULL)
828                 return -ENOMEM;
829
830         down_read(&mm->mmap_sem);
831         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
832                                       num_pages, 0, 0, user_pages, NULL);
833         up_read(&mm->mmap_sem);
834         if (pinned_pages < num_pages) {
835                 ret = -EFAULT;
836                 goto fail_put_user_pages;
837         }
838
839         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
840
841         mutex_lock(&dev->struct_mutex);
842
843         ret = i915_gem_object_get_pages(obj);
844         if (ret != 0)
845                 goto fail_unlock;
846
847         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
848         if (ret != 0)
849                 goto fail_put_pages;
850
851         obj_priv = obj->driver_private;
852         offset = args->offset;
853         obj_priv->dirty = 1;
854
855         while (remain > 0) {
856                 /* Operation in this page
857                  *
858                  * shmem_page_index = page number within shmem file
859                  * shmem_page_offset = offset within page in shmem file
860                  * data_page_index = page number in get_user_pages return
861                  * data_page_offset = offset with data_page_index page.
862                  * page_length = bytes to copy for this page
863                  */
864                 shmem_page_index = offset / PAGE_SIZE;
865                 shmem_page_offset = offset & ~PAGE_MASK;
866                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
867                 data_page_offset = data_ptr & ~PAGE_MASK;
868
869                 page_length = remain;
870                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
871                         page_length = PAGE_SIZE - shmem_page_offset;
872                 if ((data_page_offset + page_length) > PAGE_SIZE)
873                         page_length = PAGE_SIZE - data_page_offset;
874
875                 if (do_bit17_swizzling) {
876                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
877                                                     shmem_page_offset,
878                                                     user_pages[data_page_index],
879                                                     data_page_offset,
880                                                     page_length,
881                                                     0);
882                 } else {
883                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
884                                               shmem_page_offset,
885                                               user_pages[data_page_index],
886                                               data_page_offset,
887                                               page_length);
888                 }
889                 if (ret)
890                         goto fail_put_pages;
891
892                 remain -= page_length;
893                 data_ptr += page_length;
894                 offset += page_length;
895         }
896
897 fail_put_pages:
898         i915_gem_object_put_pages(obj);
899 fail_unlock:
900         mutex_unlock(&dev->struct_mutex);
901 fail_put_user_pages:
902         for (i = 0; i < pinned_pages; i++)
903                 page_cache_release(user_pages[i]);
904         drm_free_large(user_pages);
905
906         return ret;
907 }
908
909 /**
910  * Writes data to the object referenced by handle.
911  *
912  * On error, the contents of the buffer that were to be modified are undefined.
913  */
914 int
915 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
916                       struct drm_file *file_priv)
917 {
918         struct drm_i915_gem_pwrite *args = data;
919         struct drm_gem_object *obj;
920         struct drm_i915_gem_object *obj_priv;
921         int ret = 0;
922
923         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
924         if (obj == NULL)
925                 return -EBADF;
926         obj_priv = obj->driver_private;
927
928         /* Bounds check destination.
929          *
930          * XXX: This could use review for overflow issues...
931          */
932         if (args->offset > obj->size || args->size > obj->size ||
933             args->offset + args->size > obj->size) {
934                 drm_gem_object_unreference(obj);
935                 return -EINVAL;
936         }
937
938         /* We can only do the GTT pwrite on untiled buffers, as otherwise
939          * it would end up going through the fenced access, and we'll get
940          * different detiling behavior between reading and writing.
941          * pread/pwrite currently are reading and writing from the CPU
942          * perspective, requiring manual detiling by the client.
943          */
944         if (obj_priv->phys_obj)
945                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
946         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
947                  dev->gtt_total != 0) {
948                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
949                 if (ret == -EFAULT) {
950                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
951                                                        file_priv);
952                 }
953         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
954                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
955         } else {
956                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
957                 if (ret == -EFAULT) {
958                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
959                                                          file_priv);
960                 }
961         }
962
963 #if WATCH_PWRITE
964         if (ret)
965                 DRM_INFO("pwrite failed %d\n", ret);
966 #endif
967
968         drm_gem_object_unreference(obj);
969
970         return ret;
971 }
972
973 /**
974  * Called when user space prepares to use an object with the CPU, either
975  * through the mmap ioctl's mapping or a GTT mapping.
976  */
977 int
978 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
979                           struct drm_file *file_priv)
980 {
981         struct drm_i915_private *dev_priv = dev->dev_private;
982         struct drm_i915_gem_set_domain *args = data;
983         struct drm_gem_object *obj;
984         uint32_t read_domains = args->read_domains;
985         uint32_t write_domain = args->write_domain;
986         int ret;
987
988         if (!(dev->driver->driver_features & DRIVER_GEM))
989                 return -ENODEV;
990
991         /* Only handle setting domains to types used by the CPU. */
992         if (write_domain & I915_GEM_GPU_DOMAINS)
993                 return -EINVAL;
994
995         if (read_domains & I915_GEM_GPU_DOMAINS)
996                 return -EINVAL;
997
998         /* Having something in the write domain implies it's in the read
999          * domain, and only that read domain.  Enforce that in the request.
1000          */
1001         if (write_domain != 0 && read_domains != write_domain)
1002                 return -EINVAL;
1003
1004         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005         if (obj == NULL)
1006                 return -EBADF;
1007
1008         mutex_lock(&dev->struct_mutex);
1009 #if WATCH_BUF
1010         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1011                  obj, obj->size, read_domains, write_domain);
1012 #endif
1013         if (read_domains & I915_GEM_DOMAIN_GTT) {
1014                 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1015
1016                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1017
1018                 /* Update the LRU on the fence for the CPU access that's
1019                  * about to occur.
1020                  */
1021                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1022                         list_move_tail(&obj_priv->fence_list,
1023                                        &dev_priv->mm.fence_list);
1024                 }
1025
1026                 /* Silently promote "you're not bound, there was nothing to do"
1027                  * to success, since the client was just asking us to
1028                  * make sure everything was done.
1029                  */
1030                 if (ret == -EINVAL)
1031                         ret = 0;
1032         } else {
1033                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1034         }
1035
1036         drm_gem_object_unreference(obj);
1037         mutex_unlock(&dev->struct_mutex);
1038         return ret;
1039 }
1040
1041 /**
1042  * Called when user space has done writes to this buffer
1043  */
1044 int
1045 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1046                       struct drm_file *file_priv)
1047 {
1048         struct drm_i915_gem_sw_finish *args = data;
1049         struct drm_gem_object *obj;
1050         struct drm_i915_gem_object *obj_priv;
1051         int ret = 0;
1052
1053         if (!(dev->driver->driver_features & DRIVER_GEM))
1054                 return -ENODEV;
1055
1056         mutex_lock(&dev->struct_mutex);
1057         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1058         if (obj == NULL) {
1059                 mutex_unlock(&dev->struct_mutex);
1060                 return -EBADF;
1061         }
1062
1063 #if WATCH_BUF
1064         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1065                  __func__, args->handle, obj, obj->size);
1066 #endif
1067         obj_priv = obj->driver_private;
1068
1069         /* Pinned buffers may be scanout, so flush the cache */
1070         if (obj_priv->pin_count)
1071                 i915_gem_object_flush_cpu_write_domain(obj);
1072
1073         drm_gem_object_unreference(obj);
1074         mutex_unlock(&dev->struct_mutex);
1075         return ret;
1076 }
1077
1078 /**
1079  * Maps the contents of an object, returning the address it is mapped
1080  * into.
1081  *
1082  * While the mapping holds a reference on the contents of the object, it doesn't
1083  * imply a ref on the object itself.
1084  */
1085 int
1086 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1087                    struct drm_file *file_priv)
1088 {
1089         struct drm_i915_gem_mmap *args = data;
1090         struct drm_gem_object *obj;
1091         loff_t offset;
1092         unsigned long addr;
1093
1094         if (!(dev->driver->driver_features & DRIVER_GEM))
1095                 return -ENODEV;
1096
1097         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1098         if (obj == NULL)
1099                 return -EBADF;
1100
1101         offset = args->offset;
1102
1103         down_write(&current->mm->mmap_sem);
1104         addr = do_mmap(obj->filp, 0, args->size,
1105                        PROT_READ | PROT_WRITE, MAP_SHARED,
1106                        args->offset);
1107         up_write(&current->mm->mmap_sem);
1108         mutex_lock(&dev->struct_mutex);
1109         drm_gem_object_unreference(obj);
1110         mutex_unlock(&dev->struct_mutex);
1111         if (IS_ERR((void *)addr))
1112                 return addr;
1113
1114         args->addr_ptr = (uint64_t) addr;
1115
1116         return 0;
1117 }
1118
1119 /**
1120  * i915_gem_fault - fault a page into the GTT
1121  * vma: VMA in question
1122  * vmf: fault info
1123  *
1124  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1125  * from userspace.  The fault handler takes care of binding the object to
1126  * the GTT (if needed), allocating and programming a fence register (again,
1127  * only if needed based on whether the old reg is still valid or the object
1128  * is tiled) and inserting a new PTE into the faulting process.
1129  *
1130  * Note that the faulting process may involve evicting existing objects
1131  * from the GTT and/or fence registers to make room.  So performance may
1132  * suffer if the GTT working set is large or there are few fence registers
1133  * left.
1134  */
1135 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1136 {
1137         struct drm_gem_object *obj = vma->vm_private_data;
1138         struct drm_device *dev = obj->dev;
1139         struct drm_i915_private *dev_priv = dev->dev_private;
1140         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1141         pgoff_t page_offset;
1142         unsigned long pfn;
1143         int ret = 0;
1144         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1145
1146         /* We don't use vmf->pgoff since that has the fake offset */
1147         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1148                 PAGE_SHIFT;
1149
1150         /* Now bind it into the GTT if needed */
1151         mutex_lock(&dev->struct_mutex);
1152         if (!obj_priv->gtt_space) {
1153                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1154                 if (ret) {
1155                         mutex_unlock(&dev->struct_mutex);
1156                         return VM_FAULT_SIGBUS;
1157                 }
1158
1159                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1160                 if (ret) {
1161                         mutex_unlock(&dev->struct_mutex);
1162                         return VM_FAULT_SIGBUS;
1163                 }
1164
1165                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1166         }
1167
1168         /* Need a new fence register? */
1169         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1170                 ret = i915_gem_object_get_fence_reg(obj);
1171                 if (ret) {
1172                         mutex_unlock(&dev->struct_mutex);
1173                         return VM_FAULT_SIGBUS;
1174                 }
1175         }
1176
1177         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1178                 page_offset;
1179
1180         /* Finally, remap it using the new GTT offset */
1181         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1182
1183         mutex_unlock(&dev->struct_mutex);
1184
1185         switch (ret) {
1186         case -ENOMEM:
1187         case -EAGAIN:
1188                 return VM_FAULT_OOM;
1189         case -EFAULT:
1190         case -EINVAL:
1191                 return VM_FAULT_SIGBUS;
1192         default:
1193                 return VM_FAULT_NOPAGE;
1194         }
1195 }
1196
1197 /**
1198  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1199  * @obj: obj in question
1200  *
1201  * GEM memory mapping works by handing back to userspace a fake mmap offset
1202  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1203  * up the object based on the offset and sets up the various memory mapping
1204  * structures.
1205  *
1206  * This routine allocates and attaches a fake offset for @obj.
1207  */
1208 static int
1209 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1210 {
1211         struct drm_device *dev = obj->dev;
1212         struct drm_gem_mm *mm = dev->mm_private;
1213         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1214         struct drm_map_list *list;
1215         struct drm_local_map *map;
1216         int ret = 0;
1217
1218         /* Set the object up for mmap'ing */
1219         list = &obj->map_list;
1220         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1221         if (!list->map)
1222                 return -ENOMEM;
1223
1224         map = list->map;
1225         map->type = _DRM_GEM;
1226         map->size = obj->size;
1227         map->handle = obj;
1228
1229         /* Get a DRM GEM mmap offset allocated... */
1230         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1231                                                     obj->size / PAGE_SIZE, 0, 0);
1232         if (!list->file_offset_node) {
1233                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1234                 ret = -ENOMEM;
1235                 goto out_free_list;
1236         }
1237
1238         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1239                                                   obj->size / PAGE_SIZE, 0);
1240         if (!list->file_offset_node) {
1241                 ret = -ENOMEM;
1242                 goto out_free_list;
1243         }
1244
1245         list->hash.key = list->file_offset_node->start;
1246         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1247                 DRM_ERROR("failed to add to map hash\n");
1248                 goto out_free_mm;
1249         }
1250
1251         /* By now we should be all set, any drm_mmap request on the offset
1252          * below will get to our mmap & fault handler */
1253         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1254
1255         return 0;
1256
1257 out_free_mm:
1258         drm_mm_put_block(list->file_offset_node);
1259 out_free_list:
1260         kfree(list->map);
1261
1262         return ret;
1263 }
1264
1265 /**
1266  * i915_gem_release_mmap - remove physical page mappings
1267  * @obj: obj in question
1268  *
1269  * Preserve the reservation of the mmaping with the DRM core code, but
1270  * relinquish ownership of the pages back to the system.
1271  *
1272  * It is vital that we remove the page mapping if we have mapped a tiled
1273  * object through the GTT and then lose the fence register due to
1274  * resource pressure. Similarly if the object has been moved out of the
1275  * aperture, than pages mapped into userspace must be revoked. Removing the
1276  * mapping will then trigger a page fault on the next user access, allowing
1277  * fixup by i915_gem_fault().
1278  */
1279 void
1280 i915_gem_release_mmap(struct drm_gem_object *obj)
1281 {
1282         struct drm_device *dev = obj->dev;
1283         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1284
1285         if (dev->dev_mapping)
1286                 unmap_mapping_range(dev->dev_mapping,
1287                                     obj_priv->mmap_offset, obj->size, 1);
1288 }
1289
1290 static void
1291 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1292 {
1293         struct drm_device *dev = obj->dev;
1294         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1295         struct drm_gem_mm *mm = dev->mm_private;
1296         struct drm_map_list *list;
1297
1298         list = &obj->map_list;
1299         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1300
1301         if (list->file_offset_node) {
1302                 drm_mm_put_block(list->file_offset_node);
1303                 list->file_offset_node = NULL;
1304         }
1305
1306         if (list->map) {
1307                 kfree(list->map);
1308                 list->map = NULL;
1309         }
1310
1311         obj_priv->mmap_offset = 0;
1312 }
1313
1314 /**
1315  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1316  * @obj: object to check
1317  *
1318  * Return the required GTT alignment for an object, taking into account
1319  * potential fence register mapping if needed.
1320  */
1321 static uint32_t
1322 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1323 {
1324         struct drm_device *dev = obj->dev;
1325         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1326         int start, i;
1327
1328         /*
1329          * Minimum alignment is 4k (GTT page size), but might be greater
1330          * if a fence register is needed for the object.
1331          */
1332         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1333                 return 4096;
1334
1335         /*
1336          * Previous chips need to be aligned to the size of the smallest
1337          * fence register that can contain the object.
1338          */
1339         if (IS_I9XX(dev))
1340                 start = 1024*1024;
1341         else
1342                 start = 512*1024;
1343
1344         for (i = start; i < obj->size; i <<= 1)
1345                 ;
1346
1347         return i;
1348 }
1349
1350 /**
1351  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1352  * @dev: DRM device
1353  * @data: GTT mapping ioctl data
1354  * @file_priv: GEM object info
1355  *
1356  * Simply returns the fake offset to userspace so it can mmap it.
1357  * The mmap call will end up in drm_gem_mmap(), which will set things
1358  * up so we can get faults in the handler above.
1359  *
1360  * The fault handler will take care of binding the object into the GTT
1361  * (since it may have been evicted to make room for something), allocating
1362  * a fence register, and mapping the appropriate aperture address into
1363  * userspace.
1364  */
1365 int
1366 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1367                         struct drm_file *file_priv)
1368 {
1369         struct drm_i915_gem_mmap_gtt *args = data;
1370         struct drm_i915_private *dev_priv = dev->dev_private;
1371         struct drm_gem_object *obj;
1372         struct drm_i915_gem_object *obj_priv;
1373         int ret;
1374
1375         if (!(dev->driver->driver_features & DRIVER_GEM))
1376                 return -ENODEV;
1377
1378         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1379         if (obj == NULL)
1380                 return -EBADF;
1381
1382         mutex_lock(&dev->struct_mutex);
1383
1384         obj_priv = obj->driver_private;
1385
1386         if (!obj_priv->mmap_offset) {
1387                 ret = i915_gem_create_mmap_offset(obj);
1388                 if (ret) {
1389                         drm_gem_object_unreference(obj);
1390                         mutex_unlock(&dev->struct_mutex);
1391                         return ret;
1392                 }
1393         }
1394
1395         args->offset = obj_priv->mmap_offset;
1396
1397         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1398
1399         /* Make sure the alignment is correct for fence regs etc */
1400         if (obj_priv->agp_mem &&
1401             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1402                 drm_gem_object_unreference(obj);
1403                 mutex_unlock(&dev->struct_mutex);
1404                 return -EINVAL;
1405         }
1406
1407         /*
1408          * Pull it into the GTT so that we have a page list (makes the
1409          * initial fault faster and any subsequent flushing possible).
1410          */
1411         if (!obj_priv->agp_mem) {
1412                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1413                 if (ret) {
1414                         drm_gem_object_unreference(obj);
1415                         mutex_unlock(&dev->struct_mutex);
1416                         return ret;
1417                 }
1418                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1419         }
1420
1421         drm_gem_object_unreference(obj);
1422         mutex_unlock(&dev->struct_mutex);
1423
1424         return 0;
1425 }
1426
1427 void
1428 i915_gem_object_put_pages(struct drm_gem_object *obj)
1429 {
1430         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1431         int page_count = obj->size / PAGE_SIZE;
1432         int i;
1433
1434         BUG_ON(obj_priv->pages_refcount == 0);
1435
1436         if (--obj_priv->pages_refcount != 0)
1437                 return;
1438
1439         if (obj_priv->tiling_mode != I915_TILING_NONE)
1440                 i915_gem_object_save_bit_17_swizzle(obj);
1441
1442         for (i = 0; i < page_count; i++)
1443                 if (obj_priv->pages[i] != NULL) {
1444                         if (obj_priv->dirty)
1445                                 set_page_dirty(obj_priv->pages[i]);
1446                         mark_page_accessed(obj_priv->pages[i]);
1447                         page_cache_release(obj_priv->pages[i]);
1448                 }
1449         obj_priv->dirty = 0;
1450
1451         drm_free_large(obj_priv->pages);
1452         obj_priv->pages = NULL;
1453 }
1454
1455 static void
1456 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1457 {
1458         struct drm_device *dev = obj->dev;
1459         drm_i915_private_t *dev_priv = dev->dev_private;
1460         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1461
1462         /* Add a reference if we're newly entering the active list. */
1463         if (!obj_priv->active) {
1464                 drm_gem_object_reference(obj);
1465                 obj_priv->active = 1;
1466         }
1467         /* Move from whatever list we were on to the tail of execution. */
1468         spin_lock(&dev_priv->mm.active_list_lock);
1469         list_move_tail(&obj_priv->list,
1470                        &dev_priv->mm.active_list);
1471         spin_unlock(&dev_priv->mm.active_list_lock);
1472         obj_priv->last_rendering_seqno = seqno;
1473 }
1474
1475 static void
1476 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1477 {
1478         struct drm_device *dev = obj->dev;
1479         drm_i915_private_t *dev_priv = dev->dev_private;
1480         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1481
1482         BUG_ON(!obj_priv->active);
1483         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1484         obj_priv->last_rendering_seqno = 0;
1485 }
1486
1487 static void
1488 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1489 {
1490         struct drm_device *dev = obj->dev;
1491         drm_i915_private_t *dev_priv = dev->dev_private;
1492         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1493
1494         i915_verify_inactive(dev, __FILE__, __LINE__);
1495         if (obj_priv->pin_count != 0)
1496                 list_del_init(&obj_priv->list);
1497         else
1498                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1499
1500         obj_priv->last_rendering_seqno = 0;
1501         if (obj_priv->active) {
1502                 obj_priv->active = 0;
1503                 drm_gem_object_unreference(obj);
1504         }
1505         i915_verify_inactive(dev, __FILE__, __LINE__);
1506 }
1507
1508 /**
1509  * Creates a new sequence number, emitting a write of it to the status page
1510  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1511  *
1512  * Must be called with struct_lock held.
1513  *
1514  * Returned sequence numbers are nonzero on success.
1515  */
1516 static uint32_t
1517 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1518                  uint32_t flush_domains)
1519 {
1520         drm_i915_private_t *dev_priv = dev->dev_private;
1521         struct drm_i915_file_private *i915_file_priv = NULL;
1522         struct drm_i915_gem_request *request;
1523         uint32_t seqno;
1524         int was_empty;
1525         RING_LOCALS;
1526
1527         if (file_priv != NULL)
1528                 i915_file_priv = file_priv->driver_priv;
1529
1530         request = kzalloc(sizeof(*request), GFP_KERNEL);
1531         if (request == NULL)
1532                 return 0;
1533
1534         /* Grab the seqno we're going to make this request be, and bump the
1535          * next (skipping 0 so it can be the reserved no-seqno value).
1536          */
1537         seqno = dev_priv->mm.next_gem_seqno;
1538         dev_priv->mm.next_gem_seqno++;
1539         if (dev_priv->mm.next_gem_seqno == 0)
1540                 dev_priv->mm.next_gem_seqno++;
1541
1542         BEGIN_LP_RING(4);
1543         OUT_RING(MI_STORE_DWORD_INDEX);
1544         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1545         OUT_RING(seqno);
1546
1547         OUT_RING(MI_USER_INTERRUPT);
1548         ADVANCE_LP_RING();
1549
1550         DRM_DEBUG("%d\n", seqno);
1551
1552         request->seqno = seqno;
1553         request->emitted_jiffies = jiffies;
1554         was_empty = list_empty(&dev_priv->mm.request_list);
1555         list_add_tail(&request->list, &dev_priv->mm.request_list);
1556         if (i915_file_priv) {
1557                 list_add_tail(&request->client_list,
1558                               &i915_file_priv->mm.request_list);
1559         } else {
1560                 INIT_LIST_HEAD(&request->client_list);
1561         }
1562
1563         /* Associate any objects on the flushing list matching the write
1564          * domain we're flushing with our flush.
1565          */
1566         if (flush_domains != 0) {
1567                 struct drm_i915_gem_object *obj_priv, *next;
1568
1569                 list_for_each_entry_safe(obj_priv, next,
1570                                          &dev_priv->mm.flushing_list, list) {
1571                         struct drm_gem_object *obj = obj_priv->obj;
1572
1573                         if ((obj->write_domain & flush_domains) ==
1574                             obj->write_domain) {
1575                                 obj->write_domain = 0;
1576                                 i915_gem_object_move_to_active(obj, seqno);
1577                         }
1578                 }
1579
1580         }
1581
1582         if (was_empty && !dev_priv->mm.suspended)
1583                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1584         return seqno;
1585 }
1586
1587 /**
1588  * Command execution barrier
1589  *
1590  * Ensures that all commands in the ring are finished
1591  * before signalling the CPU
1592  */
1593 static uint32_t
1594 i915_retire_commands(struct drm_device *dev)
1595 {
1596         drm_i915_private_t *dev_priv = dev->dev_private;
1597         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1598         uint32_t flush_domains = 0;
1599         RING_LOCALS;
1600
1601         /* The sampler always gets flushed on i965 (sigh) */
1602         if (IS_I965G(dev))
1603                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1604         BEGIN_LP_RING(2);
1605         OUT_RING(cmd);
1606         OUT_RING(0); /* noop */
1607         ADVANCE_LP_RING();
1608         return flush_domains;
1609 }
1610
1611 /**
1612  * Moves buffers associated only with the given active seqno from the active
1613  * to inactive list, potentially freeing them.
1614  */
1615 static void
1616 i915_gem_retire_request(struct drm_device *dev,
1617                         struct drm_i915_gem_request *request)
1618 {
1619         drm_i915_private_t *dev_priv = dev->dev_private;
1620
1621         /* Move any buffers on the active list that are no longer referenced
1622          * by the ringbuffer to the flushing/inactive lists as appropriate.
1623          */
1624         spin_lock(&dev_priv->mm.active_list_lock);
1625         while (!list_empty(&dev_priv->mm.active_list)) {
1626                 struct drm_gem_object *obj;
1627                 struct drm_i915_gem_object *obj_priv;
1628
1629                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1630                                             struct drm_i915_gem_object,
1631                                             list);
1632                 obj = obj_priv->obj;
1633
1634                 /* If the seqno being retired doesn't match the oldest in the
1635                  * list, then the oldest in the list must still be newer than
1636                  * this seqno.
1637                  */
1638                 if (obj_priv->last_rendering_seqno != request->seqno)
1639                         goto out;
1640
1641 #if WATCH_LRU
1642                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1643                          __func__, request->seqno, obj);
1644 #endif
1645
1646                 if (obj->write_domain != 0)
1647                         i915_gem_object_move_to_flushing(obj);
1648                 else {
1649                         /* Take a reference on the object so it won't be
1650                          * freed while the spinlock is held.  The list
1651                          * protection for this spinlock is safe when breaking
1652                          * the lock like this since the next thing we do
1653                          * is just get the head of the list again.
1654                          */
1655                         drm_gem_object_reference(obj);
1656                         i915_gem_object_move_to_inactive(obj);
1657                         spin_unlock(&dev_priv->mm.active_list_lock);
1658                         drm_gem_object_unreference(obj);
1659                         spin_lock(&dev_priv->mm.active_list_lock);
1660                 }
1661         }
1662 out:
1663         spin_unlock(&dev_priv->mm.active_list_lock);
1664 }
1665
1666 /**
1667  * Returns true if seq1 is later than seq2.
1668  */
1669 static int
1670 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1671 {
1672         return (int32_t)(seq1 - seq2) >= 0;
1673 }
1674
1675 uint32_t
1676 i915_get_gem_seqno(struct drm_device *dev)
1677 {
1678         drm_i915_private_t *dev_priv = dev->dev_private;
1679
1680         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1681 }
1682
1683 /**
1684  * This function clears the request list as sequence numbers are passed.
1685  */
1686 void
1687 i915_gem_retire_requests(struct drm_device *dev)
1688 {
1689         drm_i915_private_t *dev_priv = dev->dev_private;
1690         uint32_t seqno;
1691
1692         if (!dev_priv->hw_status_page)
1693                 return;
1694
1695         seqno = i915_get_gem_seqno(dev);
1696
1697         while (!list_empty(&dev_priv->mm.request_list)) {
1698                 struct drm_i915_gem_request *request;
1699                 uint32_t retiring_seqno;
1700
1701                 request = list_first_entry(&dev_priv->mm.request_list,
1702                                            struct drm_i915_gem_request,
1703                                            list);
1704                 retiring_seqno = request->seqno;
1705
1706                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1707                     dev_priv->mm.wedged) {
1708                         i915_gem_retire_request(dev, request);
1709
1710                         list_del(&request->list);
1711                         list_del(&request->client_list);
1712                         kfree(request);
1713                 } else
1714                         break;
1715         }
1716 }
1717
1718 void
1719 i915_gem_retire_work_handler(struct work_struct *work)
1720 {
1721         drm_i915_private_t *dev_priv;
1722         struct drm_device *dev;
1723
1724         dev_priv = container_of(work, drm_i915_private_t,
1725                                 mm.retire_work.work);
1726         dev = dev_priv->dev;
1727
1728         mutex_lock(&dev->struct_mutex);
1729         i915_gem_retire_requests(dev);
1730         if (!dev_priv->mm.suspended &&
1731             !list_empty(&dev_priv->mm.request_list))
1732                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1733         mutex_unlock(&dev->struct_mutex);
1734 }
1735
1736 /**
1737  * Waits for a sequence number to be signaled, and cleans up the
1738  * request and object lists appropriately for that event.
1739  */
1740 static int
1741 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1742 {
1743         drm_i915_private_t *dev_priv = dev->dev_private;
1744         u32 ier;
1745         int ret = 0;
1746
1747         BUG_ON(seqno == 0);
1748
1749         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1750                 if (IS_IGDNG(dev))
1751                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1752                 else
1753                         ier = I915_READ(IER);
1754                 if (!ier) {
1755                         DRM_ERROR("something (likely vbetool) disabled "
1756                                   "interrupts, re-enabling\n");
1757                         i915_driver_irq_preinstall(dev);
1758                         i915_driver_irq_postinstall(dev);
1759                 }
1760
1761                 dev_priv->mm.waiting_gem_seqno = seqno;
1762                 i915_user_irq_get(dev);
1763                 ret = wait_event_interruptible(dev_priv->irq_queue,
1764                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1765                                                                  seqno) ||
1766                                                dev_priv->mm.wedged);
1767                 i915_user_irq_put(dev);
1768                 dev_priv->mm.waiting_gem_seqno = 0;
1769         }
1770         if (dev_priv->mm.wedged)
1771                 ret = -EIO;
1772
1773         if (ret && ret != -ERESTARTSYS)
1774                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1775                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1776
1777         /* Directly dispatch request retiring.  While we have the work queue
1778          * to handle this, the waiter on a request often wants an associated
1779          * buffer to have made it to the inactive list, and we would need
1780          * a separate wait queue to handle that.
1781          */
1782         if (ret == 0)
1783                 i915_gem_retire_requests(dev);
1784
1785         return ret;
1786 }
1787
1788 static void
1789 i915_gem_flush(struct drm_device *dev,
1790                uint32_t invalidate_domains,
1791                uint32_t flush_domains)
1792 {
1793         drm_i915_private_t *dev_priv = dev->dev_private;
1794         uint32_t cmd;
1795         RING_LOCALS;
1796
1797 #if WATCH_EXEC
1798         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1799                   invalidate_domains, flush_domains);
1800 #endif
1801
1802         if (flush_domains & I915_GEM_DOMAIN_CPU)
1803                 drm_agp_chipset_flush(dev);
1804
1805         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1806                 /*
1807                  * read/write caches:
1808                  *
1809                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1810                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1811                  * also flushed at 2d versus 3d pipeline switches.
1812                  *
1813                  * read-only caches:
1814                  *
1815                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1816                  * MI_READ_FLUSH is set, and is always flushed on 965.
1817                  *
1818                  * I915_GEM_DOMAIN_COMMAND may not exist?
1819                  *
1820                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1821                  * invalidated when MI_EXE_FLUSH is set.
1822                  *
1823                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1824                  * invalidated with every MI_FLUSH.
1825                  *
1826                  * TLBs:
1827                  *
1828                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1829                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1830                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1831                  * are flushed at any MI_FLUSH.
1832                  */
1833
1834                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1835                 if ((invalidate_domains|flush_domains) &
1836                     I915_GEM_DOMAIN_RENDER)
1837                         cmd &= ~MI_NO_WRITE_FLUSH;
1838                 if (!IS_I965G(dev)) {
1839                         /*
1840                          * On the 965, the sampler cache always gets flushed
1841                          * and this bit is reserved.
1842                          */
1843                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1844                                 cmd |= MI_READ_FLUSH;
1845                 }
1846                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1847                         cmd |= MI_EXE_FLUSH;
1848
1849 #if WATCH_EXEC
1850                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1851 #endif
1852                 BEGIN_LP_RING(2);
1853                 OUT_RING(cmd);
1854                 OUT_RING(0); /* noop */
1855                 ADVANCE_LP_RING();
1856         }
1857 }
1858
1859 /**
1860  * Ensures that all rendering to the object has completed and the object is
1861  * safe to unbind from the GTT or access from the CPU.
1862  */
1863 static int
1864 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1865 {
1866         struct drm_device *dev = obj->dev;
1867         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1868         int ret;
1869
1870         /* This function only exists to support waiting for existing rendering,
1871          * not for emitting required flushes.
1872          */
1873         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1874
1875         /* If there is rendering queued on the buffer being evicted, wait for
1876          * it.
1877          */
1878         if (obj_priv->active) {
1879 #if WATCH_BUF
1880                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1881                           __func__, obj, obj_priv->last_rendering_seqno);
1882 #endif
1883                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1884                 if (ret != 0)
1885                         return ret;
1886         }
1887
1888         return 0;
1889 }
1890
1891 /**
1892  * Unbinds an object from the GTT aperture.
1893  */
1894 int
1895 i915_gem_object_unbind(struct drm_gem_object *obj)
1896 {
1897         struct drm_device *dev = obj->dev;
1898         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1899         int ret = 0;
1900
1901 #if WATCH_BUF
1902         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1903         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1904 #endif
1905         if (obj_priv->gtt_space == NULL)
1906                 return 0;
1907
1908         if (obj_priv->pin_count != 0) {
1909                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1910                 return -EINVAL;
1911         }
1912
1913         /* Move the object to the CPU domain to ensure that
1914          * any possible CPU writes while it's not in the GTT
1915          * are flushed when we go to remap it. This will
1916          * also ensure that all pending GPU writes are finished
1917          * before we unbind.
1918          */
1919         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1920         if (ret) {
1921                 if (ret != -ERESTARTSYS)
1922                         DRM_ERROR("set_domain failed: %d\n", ret);
1923                 return ret;
1924         }
1925
1926         if (obj_priv->agp_mem != NULL) {
1927                 drm_unbind_agp(obj_priv->agp_mem);
1928                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1929                 obj_priv->agp_mem = NULL;
1930         }
1931
1932         BUG_ON(obj_priv->active);
1933
1934         /* blow away mappings if mapped through GTT */
1935         i915_gem_release_mmap(obj);
1936
1937         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1938                 i915_gem_clear_fence_reg(obj);
1939
1940         i915_gem_object_put_pages(obj);
1941
1942         if (obj_priv->gtt_space) {
1943                 atomic_dec(&dev->gtt_count);
1944                 atomic_sub(obj->size, &dev->gtt_memory);
1945
1946                 drm_mm_put_block(obj_priv->gtt_space);
1947                 obj_priv->gtt_space = NULL;
1948         }
1949
1950         /* Remove ourselves from the LRU list if present. */
1951         if (!list_empty(&obj_priv->list))
1952                 list_del_init(&obj_priv->list);
1953
1954         return 0;
1955 }
1956
1957 static int
1958 i915_gem_evict_something(struct drm_device *dev)
1959 {
1960         drm_i915_private_t *dev_priv = dev->dev_private;
1961         struct drm_gem_object *obj;
1962         struct drm_i915_gem_object *obj_priv;
1963         int ret = 0;
1964
1965         for (;;) {
1966                 /* If there's an inactive buffer available now, grab it
1967                  * and be done.
1968                  */
1969                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1970                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1971                                                     struct drm_i915_gem_object,
1972                                                     list);
1973                         obj = obj_priv->obj;
1974                         BUG_ON(obj_priv->pin_count != 0);
1975 #if WATCH_LRU
1976                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1977 #endif
1978                         BUG_ON(obj_priv->active);
1979
1980                         /* Wait on the rendering and unbind the buffer. */
1981                         ret = i915_gem_object_unbind(obj);
1982                         break;
1983                 }
1984
1985                 /* If we didn't get anything, but the ring is still processing
1986                  * things, wait for one of those things to finish and hopefully
1987                  * leave us a buffer to evict.
1988                  */
1989                 if (!list_empty(&dev_priv->mm.request_list)) {
1990                         struct drm_i915_gem_request *request;
1991
1992                         request = list_first_entry(&dev_priv->mm.request_list,
1993                                                    struct drm_i915_gem_request,
1994                                                    list);
1995
1996                         ret = i915_wait_request(dev, request->seqno);
1997                         if (ret)
1998                                 break;
1999
2000                         /* if waiting caused an object to become inactive,
2001                          * then loop around and wait for it. Otherwise, we
2002                          * assume that waiting freed and unbound something,
2003                          * so there should now be some space in the GTT
2004                          */
2005                         if (!list_empty(&dev_priv->mm.inactive_list))
2006                                 continue;
2007                         break;
2008                 }
2009
2010                 /* If we didn't have anything on the request list but there
2011                  * are buffers awaiting a flush, emit one and try again.
2012                  * When we wait on it, those buffers waiting for that flush
2013                  * will get moved to inactive.
2014                  */
2015                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2016                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2017                                                     struct drm_i915_gem_object,
2018                                                     list);
2019                         obj = obj_priv->obj;
2020
2021                         i915_gem_flush(dev,
2022                                        obj->write_domain,
2023                                        obj->write_domain);
2024                         i915_add_request(dev, NULL, obj->write_domain);
2025
2026                         obj = NULL;
2027                         continue;
2028                 }
2029
2030                 DRM_ERROR("inactive empty %d request empty %d "
2031                           "flushing empty %d\n",
2032                           list_empty(&dev_priv->mm.inactive_list),
2033                           list_empty(&dev_priv->mm.request_list),
2034                           list_empty(&dev_priv->mm.flushing_list));
2035                 /* If we didn't do any of the above, there's nothing to be done
2036                  * and we just can't fit it in.
2037                  */
2038                 return -ENOSPC;
2039         }
2040         return ret;
2041 }
2042
2043 static int
2044 i915_gem_evict_everything(struct drm_device *dev)
2045 {
2046         int ret;
2047
2048         for (;;) {
2049                 ret = i915_gem_evict_something(dev);
2050                 if (ret != 0)
2051                         break;
2052         }
2053         if (ret == -ENOSPC)
2054                 return 0;
2055         return ret;
2056 }
2057
2058 int
2059 i915_gem_object_get_pages(struct drm_gem_object *obj)
2060 {
2061         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2062         int page_count, i;
2063         struct address_space *mapping;
2064         struct inode *inode;
2065         struct page *page;
2066         int ret;
2067
2068         if (obj_priv->pages_refcount++ != 0)
2069                 return 0;
2070
2071         /* Get the list of pages out of our struct file.  They'll be pinned
2072          * at this point until we release them.
2073          */
2074         page_count = obj->size / PAGE_SIZE;
2075         BUG_ON(obj_priv->pages != NULL);
2076         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2077         if (obj_priv->pages == NULL) {
2078                 DRM_ERROR("Faled to allocate page list\n");
2079                 obj_priv->pages_refcount--;
2080                 return -ENOMEM;
2081         }
2082
2083         inode = obj->filp->f_path.dentry->d_inode;
2084         mapping = inode->i_mapping;
2085         for (i = 0; i < page_count; i++) {
2086                 page = read_mapping_page(mapping, i, NULL);
2087                 if (IS_ERR(page)) {
2088                         ret = PTR_ERR(page);
2089                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2090                         i915_gem_object_put_pages(obj);
2091                         return ret;
2092                 }
2093                 obj_priv->pages[i] = page;
2094         }
2095
2096         if (obj_priv->tiling_mode != I915_TILING_NONE)
2097                 i915_gem_object_do_bit_17_swizzle(obj);
2098
2099         return 0;
2100 }
2101
2102 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2103 {
2104         struct drm_gem_object *obj = reg->obj;
2105         struct drm_device *dev = obj->dev;
2106         drm_i915_private_t *dev_priv = dev->dev_private;
2107         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2108         int regnum = obj_priv->fence_reg;
2109         uint64_t val;
2110
2111         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2112                     0xfffff000) << 32;
2113         val |= obj_priv->gtt_offset & 0xfffff000;
2114         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2115         if (obj_priv->tiling_mode == I915_TILING_Y)
2116                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2117         val |= I965_FENCE_REG_VALID;
2118
2119         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2120 }
2121
2122 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2123 {
2124         struct drm_gem_object *obj = reg->obj;
2125         struct drm_device *dev = obj->dev;
2126         drm_i915_private_t *dev_priv = dev->dev_private;
2127         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2128         int regnum = obj_priv->fence_reg;
2129         int tile_width;
2130         uint32_t fence_reg, val;
2131         uint32_t pitch_val;
2132
2133         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2134             (obj_priv->gtt_offset & (obj->size - 1))) {
2135                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2136                      __func__, obj_priv->gtt_offset, obj->size);
2137                 return;
2138         }
2139
2140         if (obj_priv->tiling_mode == I915_TILING_Y &&
2141             HAS_128_BYTE_Y_TILING(dev))
2142                 tile_width = 128;
2143         else
2144                 tile_width = 512;
2145
2146         /* Note: pitch better be a power of two tile widths */
2147         pitch_val = obj_priv->stride / tile_width;
2148         pitch_val = ffs(pitch_val) - 1;
2149
2150         val = obj_priv->gtt_offset;
2151         if (obj_priv->tiling_mode == I915_TILING_Y)
2152                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2153         val |= I915_FENCE_SIZE_BITS(obj->size);
2154         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2155         val |= I830_FENCE_REG_VALID;
2156
2157         if (regnum < 8)
2158                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2159         else
2160                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2161         I915_WRITE(fence_reg, val);
2162 }
2163
2164 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2165 {
2166         struct drm_gem_object *obj = reg->obj;
2167         struct drm_device *dev = obj->dev;
2168         drm_i915_private_t *dev_priv = dev->dev_private;
2169         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2170         int regnum = obj_priv->fence_reg;
2171         uint32_t val;
2172         uint32_t pitch_val;
2173         uint32_t fence_size_bits;
2174
2175         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2176             (obj_priv->gtt_offset & (obj->size - 1))) {
2177                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2178                      __func__, obj_priv->gtt_offset);
2179                 return;
2180         }
2181
2182         pitch_val = obj_priv->stride / 128;
2183         pitch_val = ffs(pitch_val) - 1;
2184         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2185
2186         val = obj_priv->gtt_offset;
2187         if (obj_priv->tiling_mode == I915_TILING_Y)
2188                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2189         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2190         WARN_ON(fence_size_bits & ~0x00000f00);
2191         val |= fence_size_bits;
2192         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2193         val |= I830_FENCE_REG_VALID;
2194
2195         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2196 }
2197
2198 /**
2199  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2200  * @obj: object to map through a fence reg
2201  *
2202  * When mapping objects through the GTT, userspace wants to be able to write
2203  * to them without having to worry about swizzling if the object is tiled.
2204  *
2205  * This function walks the fence regs looking for a free one for @obj,
2206  * stealing one if it can't find any.
2207  *
2208  * It then sets up the reg based on the object's properties: address, pitch
2209  * and tiling format.
2210  */
2211 int
2212 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2213 {
2214         struct drm_device *dev = obj->dev;
2215         struct drm_i915_private *dev_priv = dev->dev_private;
2216         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2217         struct drm_i915_fence_reg *reg = NULL;
2218         struct drm_i915_gem_object *old_obj_priv = NULL;
2219         int i, ret, avail;
2220
2221         /* Just update our place in the LRU if our fence is getting used. */
2222         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2223                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2224                 return 0;
2225         }
2226
2227         switch (obj_priv->tiling_mode) {
2228         case I915_TILING_NONE:
2229                 WARN(1, "allocating a fence for non-tiled object?\n");
2230                 break;
2231         case I915_TILING_X:
2232                 if (!obj_priv->stride)
2233                         return -EINVAL;
2234                 WARN((obj_priv->stride & (512 - 1)),
2235                      "object 0x%08x is X tiled but has non-512B pitch\n",
2236                      obj_priv->gtt_offset);
2237                 break;
2238         case I915_TILING_Y:
2239                 if (!obj_priv->stride)
2240                         return -EINVAL;
2241                 WARN((obj_priv->stride & (128 - 1)),
2242                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2243                      obj_priv->gtt_offset);
2244                 break;
2245         }
2246
2247         /* First try to find a free reg */
2248         avail = 0;
2249         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2250                 reg = &dev_priv->fence_regs[i];
2251                 if (!reg->obj)
2252                         break;
2253
2254                 old_obj_priv = reg->obj->driver_private;
2255                 if (!old_obj_priv->pin_count)
2256                     avail++;
2257         }
2258
2259         /* None available, try to steal one or wait for a user to finish */
2260         if (i == dev_priv->num_fence_regs) {
2261                 struct drm_gem_object *old_obj = NULL;
2262
2263                 if (avail == 0)
2264                         return -ENOSPC;
2265
2266                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2267                                     fence_list) {
2268                         old_obj = old_obj_priv->obj;
2269
2270                         reg = &dev_priv->fence_regs[old_obj_priv->fence_reg];
2271
2272                         if (old_obj_priv->pin_count)
2273                                 continue;
2274
2275                         /* Take a reference, as otherwise the wait_rendering
2276                          * below may cause the object to get freed out from
2277                          * under us.
2278                          */
2279                         drm_gem_object_reference(old_obj);
2280
2281                         /* i915 uses fences for GPU access to tiled buffers */
2282                         if (IS_I965G(dev) || !old_obj_priv->active)
2283                                 break;
2284
2285                         /* This brings the object to the head of the LRU if it
2286                          * had been written to.  The only way this should
2287                          * result in us waiting longer than the expected
2288                          * optimal amount of time is if there was a
2289                          * fence-using buffer later that was read-only.
2290                          */
2291                         i915_gem_object_flush_gpu_write_domain(old_obj);
2292                         ret = i915_gem_object_wait_rendering(old_obj);
2293                         if (ret != 0)
2294                                 return ret;
2295                         break;
2296                 }
2297
2298                 /*
2299                  * Zap this virtual mapping so we can set up a fence again
2300                  * for this object next time we need it.
2301                  */
2302                 i915_gem_release_mmap(reg->obj);
2303                 i = old_obj_priv->fence_reg;
2304                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2305                 list_del_init(&old_obj_priv->fence_list);
2306                 drm_gem_object_unreference(old_obj);
2307         }
2308
2309         obj_priv->fence_reg = i;
2310         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2311
2312         reg->obj = obj;
2313
2314         if (IS_I965G(dev))
2315                 i965_write_fence_reg(reg);
2316         else if (IS_I9XX(dev))
2317                 i915_write_fence_reg(reg);
2318         else
2319                 i830_write_fence_reg(reg);
2320
2321         return 0;
2322 }
2323
2324 /**
2325  * i915_gem_clear_fence_reg - clear out fence register info
2326  * @obj: object to clear
2327  *
2328  * Zeroes out the fence register itself and clears out the associated
2329  * data structures in dev_priv and obj_priv.
2330  */
2331 static void
2332 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2333 {
2334         struct drm_device *dev = obj->dev;
2335         drm_i915_private_t *dev_priv = dev->dev_private;
2336         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2337
2338         if (IS_I965G(dev))
2339                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2340         else {
2341                 uint32_t fence_reg;
2342
2343                 if (obj_priv->fence_reg < 8)
2344                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2345                 else
2346                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2347                                                        8) * 4;
2348
2349                 I915_WRITE(fence_reg, 0);
2350         }
2351
2352         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2353         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2354         list_del_init(&obj_priv->fence_list);
2355 }
2356
2357 /**
2358  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2359  * to the buffer to finish, and then resets the fence register.
2360  * @obj: tiled object holding a fence register.
2361  *
2362  * Zeroes out the fence register itself and clears out the associated
2363  * data structures in dev_priv and obj_priv.
2364  */
2365 int
2366 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2367 {
2368         struct drm_device *dev = obj->dev;
2369         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2370
2371         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2372                 return 0;
2373
2374         /* On the i915, GPU access to tiled buffers is via a fence,
2375          * therefore we must wait for any outstanding access to complete
2376          * before clearing the fence.
2377          */
2378         if (!IS_I965G(dev)) {
2379                 int ret;
2380
2381                 i915_gem_object_flush_gpu_write_domain(obj);
2382                 i915_gem_object_flush_gtt_write_domain(obj);
2383                 ret = i915_gem_object_wait_rendering(obj);
2384                 if (ret != 0)
2385                         return ret;
2386         }
2387
2388         i915_gem_clear_fence_reg (obj);
2389
2390         return 0;
2391 }
2392
2393 /**
2394  * Finds free space in the GTT aperture and binds the object there.
2395  */
2396 static int
2397 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2398 {
2399         struct drm_device *dev = obj->dev;
2400         drm_i915_private_t *dev_priv = dev->dev_private;
2401         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2402         struct drm_mm_node *free_space;
2403         int page_count, ret;
2404
2405         if (dev_priv->mm.suspended)
2406                 return -EBUSY;
2407         if (alignment == 0)
2408                 alignment = i915_gem_get_gtt_alignment(obj);
2409         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2410                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2411                 return -EINVAL;
2412         }
2413
2414  search_free:
2415         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2416                                         obj->size, alignment, 0);
2417         if (free_space != NULL) {
2418                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2419                                                        alignment);
2420                 if (obj_priv->gtt_space != NULL) {
2421                         obj_priv->gtt_space->private = obj;
2422                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2423                 }
2424         }
2425         if (obj_priv->gtt_space == NULL) {
2426                 bool lists_empty;
2427
2428                 /* If the gtt is empty and we're still having trouble
2429                  * fitting our object in, we're out of memory.
2430                  */
2431 #if WATCH_LRU
2432                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2433 #endif
2434                 spin_lock(&dev_priv->mm.active_list_lock);
2435                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2436                                list_empty(&dev_priv->mm.flushing_list) &&
2437                                list_empty(&dev_priv->mm.active_list));
2438                 spin_unlock(&dev_priv->mm.active_list_lock);
2439                 if (lists_empty) {
2440                         DRM_ERROR("GTT full, but LRU list empty\n");
2441                         return -ENOSPC;
2442                 }
2443
2444                 ret = i915_gem_evict_something(dev);
2445                 if (ret != 0) {
2446                         if (ret != -ERESTARTSYS)
2447                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2448                         return ret;
2449                 }
2450                 goto search_free;
2451         }
2452
2453 #if WATCH_BUF
2454         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2455                  obj->size, obj_priv->gtt_offset);
2456 #endif
2457         ret = i915_gem_object_get_pages(obj);
2458         if (ret) {
2459                 drm_mm_put_block(obj_priv->gtt_space);
2460                 obj_priv->gtt_space = NULL;
2461                 return ret;
2462         }
2463
2464         page_count = obj->size / PAGE_SIZE;
2465         /* Create an AGP memory structure pointing at our pages, and bind it
2466          * into the GTT.
2467          */
2468         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2469                                                obj_priv->pages,
2470                                                page_count,
2471                                                obj_priv->gtt_offset,
2472                                                obj_priv->agp_type);
2473         if (obj_priv->agp_mem == NULL) {
2474                 i915_gem_object_put_pages(obj);
2475                 drm_mm_put_block(obj_priv->gtt_space);
2476                 obj_priv->gtt_space = NULL;
2477                 return -ENOMEM;
2478         }
2479         atomic_inc(&dev->gtt_count);
2480         atomic_add(obj->size, &dev->gtt_memory);
2481
2482         /* Assert that the object is not currently in any GPU domain. As it
2483          * wasn't in the GTT, there shouldn't be any way it could have been in
2484          * a GPU cache
2485          */
2486         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2487         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2488
2489         return 0;
2490 }
2491
2492 void
2493 i915_gem_clflush_object(struct drm_gem_object *obj)
2494 {
2495         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2496
2497         /* If we don't have a page list set up, then we're not pinned
2498          * to GPU, and we can ignore the cache flush because it'll happen
2499          * again at bind time.
2500          */
2501         if (obj_priv->pages == NULL)
2502                 return;
2503
2504         /* XXX: The 865 in particular appears to be weird in how it handles
2505          * cache flushing.  We haven't figured it out, but the
2506          * clflush+agp_chipset_flush doesn't appear to successfully get the
2507          * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2508          */
2509         if (IS_I865G(obj->dev)) {
2510                 wbinvd();
2511                 return;
2512         }
2513
2514         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2515 }
2516
2517 /** Flushes any GPU write domain for the object if it's dirty. */
2518 static void
2519 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2520 {
2521         struct drm_device *dev = obj->dev;
2522         uint32_t seqno;
2523
2524         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2525                 return;
2526
2527         /* Queue the GPU write cache flushing we need. */
2528         i915_gem_flush(dev, 0, obj->write_domain);
2529         seqno = i915_add_request(dev, NULL, obj->write_domain);
2530         obj->write_domain = 0;
2531         i915_gem_object_move_to_active(obj, seqno);
2532 }
2533
2534 /** Flushes the GTT write domain for the object if it's dirty. */
2535 static void
2536 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2537 {
2538         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2539                 return;
2540
2541         /* No actual flushing is required for the GTT write domain.   Writes
2542          * to it immediately go to main memory as far as we know, so there's
2543          * no chipset flush.  It also doesn't land in render cache.
2544          */
2545         obj->write_domain = 0;
2546 }
2547
2548 /** Flushes the CPU write domain for the object if it's dirty. */
2549 static void
2550 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2551 {
2552         struct drm_device *dev = obj->dev;
2553
2554         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2555                 return;
2556
2557         i915_gem_clflush_object(obj);
2558         drm_agp_chipset_flush(dev);
2559         obj->write_domain = 0;
2560 }
2561
2562 /**
2563  * Moves a single object to the GTT read, and possibly write domain.
2564  *
2565  * This function returns when the move is complete, including waiting on
2566  * flushes to occur.
2567  */
2568 int
2569 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2570 {
2571         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2572         int ret;
2573
2574         /* Not valid to be called on unbound objects. */
2575         if (obj_priv->gtt_space == NULL)
2576                 return -EINVAL;
2577
2578         i915_gem_object_flush_gpu_write_domain(obj);
2579         /* Wait on any GPU rendering and flushing to occur. */
2580         ret = i915_gem_object_wait_rendering(obj);
2581         if (ret != 0)
2582                 return ret;
2583
2584         /* If we're writing through the GTT domain, then CPU and GPU caches
2585          * will need to be invalidated at next use.
2586          */
2587         if (write)
2588                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2589
2590         i915_gem_object_flush_cpu_write_domain(obj);
2591
2592         /* It should now be out of any other write domains, and we can update
2593          * the domain values for our changes.
2594          */
2595         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2596         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2597         if (write) {
2598                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2599                 obj_priv->dirty = 1;
2600         }
2601
2602         return 0;
2603 }
2604
2605 /**
2606  * Moves a single object to the CPU read, and possibly write domain.
2607  *
2608  * This function returns when the move is complete, including waiting on
2609  * flushes to occur.
2610  */
2611 static int
2612 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2613 {
2614         int ret;
2615
2616         i915_gem_object_flush_gpu_write_domain(obj);
2617         /* Wait on any GPU rendering and flushing to occur. */
2618         ret = i915_gem_object_wait_rendering(obj);
2619         if (ret != 0)
2620                 return ret;
2621
2622         i915_gem_object_flush_gtt_write_domain(obj);
2623
2624         /* If we have a partially-valid cache of the object in the CPU,
2625          * finish invalidating it and free the per-page flags.
2626          */
2627         i915_gem_object_set_to_full_cpu_read_domain(obj);
2628
2629         /* Flush the CPU cache if it's still invalid. */
2630         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2631                 i915_gem_clflush_object(obj);
2632
2633                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2634         }
2635
2636         /* It should now be out of any other write domains, and we can update
2637          * the domain values for our changes.
2638          */
2639         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2640
2641         /* If we're writing through the CPU, then the GPU read domains will
2642          * need to be invalidated at next use.
2643          */
2644         if (write) {
2645                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2646                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2647         }
2648
2649         return 0;
2650 }
2651
2652 /*
2653  * Set the next domain for the specified object. This
2654  * may not actually perform the necessary flushing/invaliding though,
2655  * as that may want to be batched with other set_domain operations
2656  *
2657  * This is (we hope) the only really tricky part of gem. The goal
2658  * is fairly simple -- track which caches hold bits of the object
2659  * and make sure they remain coherent. A few concrete examples may
2660  * help to explain how it works. For shorthand, we use the notation
2661  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2662  * a pair of read and write domain masks.
2663  *
2664  * Case 1: the batch buffer
2665  *
2666  *      1. Allocated
2667  *      2. Written by CPU
2668  *      3. Mapped to GTT
2669  *      4. Read by GPU
2670  *      5. Unmapped from GTT
2671  *      6. Freed
2672  *
2673  *      Let's take these a step at a time
2674  *
2675  *      1. Allocated
2676  *              Pages allocated from the kernel may still have
2677  *              cache contents, so we set them to (CPU, CPU) always.
2678  *      2. Written by CPU (using pwrite)
2679  *              The pwrite function calls set_domain (CPU, CPU) and
2680  *              this function does nothing (as nothing changes)
2681  *      3. Mapped by GTT
2682  *              This function asserts that the object is not
2683  *              currently in any GPU-based read or write domains
2684  *      4. Read by GPU
2685  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2686  *              As write_domain is zero, this function adds in the
2687  *              current read domains (CPU+COMMAND, 0).
2688  *              flush_domains is set to CPU.
2689  *              invalidate_domains is set to COMMAND
2690  *              clflush is run to get data out of the CPU caches
2691  *              then i915_dev_set_domain calls i915_gem_flush to
2692  *              emit an MI_FLUSH and drm_agp_chipset_flush
2693  *      5. Unmapped from GTT
2694  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2695  *              flush_domains and invalidate_domains end up both zero
2696  *              so no flushing/invalidating happens
2697  *      6. Freed
2698  *              yay, done
2699  *
2700  * Case 2: The shared render buffer
2701  *
2702  *      1. Allocated
2703  *      2. Mapped to GTT
2704  *      3. Read/written by GPU
2705  *      4. set_domain to (CPU,CPU)
2706  *      5. Read/written by CPU
2707  *      6. Read/written by GPU
2708  *
2709  *      1. Allocated
2710  *              Same as last example, (CPU, CPU)
2711  *      2. Mapped to GTT
2712  *              Nothing changes (assertions find that it is not in the GPU)
2713  *      3. Read/written by GPU
2714  *              execbuffer calls set_domain (RENDER, RENDER)
2715  *              flush_domains gets CPU
2716  *              invalidate_domains gets GPU
2717  *              clflush (obj)
2718  *              MI_FLUSH and drm_agp_chipset_flush
2719  *      4. set_domain (CPU, CPU)
2720  *              flush_domains gets GPU
2721  *              invalidate_domains gets CPU
2722  *              wait_rendering (obj) to make sure all drawing is complete.
2723  *              This will include an MI_FLUSH to get the data from GPU
2724  *              to memory
2725  *              clflush (obj) to invalidate the CPU cache
2726  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2727  *      5. Read/written by CPU
2728  *              cache lines are loaded and dirtied
2729  *      6. Read written by GPU
2730  *              Same as last GPU access
2731  *
2732  * Case 3: The constant buffer
2733  *
2734  *      1. Allocated
2735  *      2. Written by CPU
2736  *      3. Read by GPU
2737  *      4. Updated (written) by CPU again
2738  *      5. Read by GPU
2739  *
2740  *      1. Allocated
2741  *              (CPU, CPU)
2742  *      2. Written by CPU
2743  *              (CPU, CPU)
2744  *      3. Read by GPU
2745  *              (CPU+RENDER, 0)
2746  *              flush_domains = CPU
2747  *              invalidate_domains = RENDER
2748  *              clflush (obj)
2749  *              MI_FLUSH
2750  *              drm_agp_chipset_flush
2751  *      4. Updated (written) by CPU again
2752  *              (CPU, CPU)
2753  *              flush_domains = 0 (no previous write domain)
2754  *              invalidate_domains = 0 (no new read domains)
2755  *      5. Read by GPU
2756  *              (CPU+RENDER, 0)
2757  *              flush_domains = CPU
2758  *              invalidate_domains = RENDER
2759  *              clflush (obj)
2760  *              MI_FLUSH
2761  *              drm_agp_chipset_flush
2762  */
2763 static void
2764 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2765 {
2766         struct drm_device               *dev = obj->dev;
2767         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2768         uint32_t                        invalidate_domains = 0;
2769         uint32_t                        flush_domains = 0;
2770
2771         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2772         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2773
2774 #if WATCH_BUF
2775         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2776                  __func__, obj,
2777                  obj->read_domains, obj->pending_read_domains,
2778                  obj->write_domain, obj->pending_write_domain);
2779 #endif
2780         /*
2781          * If the object isn't moving to a new write domain,
2782          * let the object stay in multiple read domains
2783          */
2784         if (obj->pending_write_domain == 0)
2785                 obj->pending_read_domains |= obj->read_domains;
2786         else
2787                 obj_priv->dirty = 1;
2788
2789         /*
2790          * Flush the current write domain if
2791          * the new read domains don't match. Invalidate
2792          * any read domains which differ from the old
2793          * write domain
2794          */
2795         if (obj->write_domain &&
2796             obj->write_domain != obj->pending_read_domains) {
2797                 flush_domains |= obj->write_domain;
2798                 invalidate_domains |=
2799                         obj->pending_read_domains & ~obj->write_domain;
2800         }
2801         /*
2802          * Invalidate any read caches which may have
2803          * stale data. That is, any new read domains.
2804          */
2805         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2806         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2807 #if WATCH_BUF
2808                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2809                          __func__, flush_domains, invalidate_domains);
2810 #endif
2811                 i915_gem_clflush_object(obj);
2812         }
2813
2814         /* The actual obj->write_domain will be updated with
2815          * pending_write_domain after we emit the accumulated flush for all
2816          * of our domain changes in execbuffers (which clears objects'
2817          * write_domains).  So if we have a current write domain that we
2818          * aren't changing, set pending_write_domain to that.
2819          */
2820         if (flush_domains == 0 && obj->pending_write_domain == 0)
2821                 obj->pending_write_domain = obj->write_domain;
2822         obj->read_domains = obj->pending_read_domains;
2823
2824         dev->invalidate_domains |= invalidate_domains;
2825         dev->flush_domains |= flush_domains;
2826 #if WATCH_BUF
2827         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2828                  __func__,
2829                  obj->read_domains, obj->write_domain,
2830                  dev->invalidate_domains, dev->flush_domains);
2831 #endif
2832 }
2833
2834 /**
2835  * Moves the object from a partially CPU read to a full one.
2836  *
2837  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2838  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2839  */
2840 static void
2841 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2842 {
2843         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2844
2845         if (!obj_priv->page_cpu_valid)
2846                 return;
2847
2848         /* If we're partially in the CPU read domain, finish moving it in.
2849          */
2850         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2851                 int i;
2852
2853                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2854                         if (obj_priv->page_cpu_valid[i])
2855                                 continue;
2856                         drm_clflush_pages(obj_priv->pages + i, 1);
2857                 }
2858         }
2859
2860         /* Free the page_cpu_valid mappings which are now stale, whether
2861          * or not we've got I915_GEM_DOMAIN_CPU.
2862          */
2863         kfree(obj_priv->page_cpu_valid);
2864         obj_priv->page_cpu_valid = NULL;
2865 }
2866
2867 /**
2868  * Set the CPU read domain on a range of the object.
2869  *
2870  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2871  * not entirely valid.  The page_cpu_valid member of the object flags which
2872  * pages have been flushed, and will be respected by
2873  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2874  * of the whole object.
2875  *
2876  * This function returns when the move is complete, including waiting on
2877  * flushes to occur.
2878  */
2879 static int
2880 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2881                                           uint64_t offset, uint64_t size)
2882 {
2883         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2884         int i, ret;
2885
2886         if (offset == 0 && size == obj->size)
2887                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2888
2889         i915_gem_object_flush_gpu_write_domain(obj);
2890         /* Wait on any GPU rendering and flushing to occur. */
2891         ret = i915_gem_object_wait_rendering(obj);
2892         if (ret != 0)
2893                 return ret;
2894         i915_gem_object_flush_gtt_write_domain(obj);
2895
2896         /* If we're already fully in the CPU read domain, we're done. */
2897         if (obj_priv->page_cpu_valid == NULL &&
2898             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2899                 return 0;
2900
2901         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2902          * newly adding I915_GEM_DOMAIN_CPU
2903          */
2904         if (obj_priv->page_cpu_valid == NULL) {
2905                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2906                                                    GFP_KERNEL);
2907                 if (obj_priv->page_cpu_valid == NULL)
2908                         return -ENOMEM;
2909         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2910                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2911
2912         /* Flush the cache on any pages that are still invalid from the CPU's
2913          * perspective.
2914          */
2915         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2916              i++) {
2917                 if (obj_priv->page_cpu_valid[i])
2918                         continue;
2919
2920                 drm_clflush_pages(obj_priv->pages + i, 1);
2921
2922                 obj_priv->page_cpu_valid[i] = 1;
2923         }
2924
2925         /* It should now be out of any other write domains, and we can update
2926          * the domain values for our changes.
2927          */
2928         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2929
2930         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2931
2932         return 0;
2933 }
2934
2935 /**
2936  * Pin an object to the GTT and evaluate the relocations landing in it.
2937  */
2938 static int
2939 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2940                                  struct drm_file *file_priv,
2941                                  struct drm_i915_gem_exec_object *entry,
2942                                  struct drm_i915_gem_relocation_entry *relocs)
2943 {
2944         struct drm_device *dev = obj->dev;
2945         drm_i915_private_t *dev_priv = dev->dev_private;
2946         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2947         int i, ret;
2948         void __iomem *reloc_page;
2949
2950         /* Choose the GTT offset for our buffer and put it there. */
2951         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2952         if (ret)
2953                 return ret;
2954
2955         entry->offset = obj_priv->gtt_offset;
2956
2957         /* Apply the relocations, using the GTT aperture to avoid cache
2958          * flushing requirements.
2959          */
2960         for (i = 0; i < entry->relocation_count; i++) {
2961                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2962                 struct drm_gem_object *target_obj;
2963                 struct drm_i915_gem_object *target_obj_priv;
2964                 uint32_t reloc_val, reloc_offset;
2965                 uint32_t __iomem *reloc_entry;
2966
2967                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2968                                                    reloc->target_handle);
2969                 if (target_obj == NULL) {
2970                         i915_gem_object_unpin(obj);
2971                         return -EBADF;
2972                 }
2973                 target_obj_priv = target_obj->driver_private;
2974
2975                 /* The target buffer should have appeared before us in the
2976                  * exec_object list, so it should have a GTT space bound by now.
2977                  */
2978                 if (target_obj_priv->gtt_space == NULL) {
2979                         DRM_ERROR("No GTT space found for object %d\n",
2980                                   reloc->target_handle);
2981                         drm_gem_object_unreference(target_obj);
2982                         i915_gem_object_unpin(obj);
2983                         return -EINVAL;
2984                 }
2985
2986                 if (reloc->offset > obj->size - 4) {
2987                         DRM_ERROR("Relocation beyond object bounds: "
2988                                   "obj %p target %d offset %d size %d.\n",
2989                                   obj, reloc->target_handle,
2990                                   (int) reloc->offset, (int) obj->size);
2991                         drm_gem_object_unreference(target_obj);
2992                         i915_gem_object_unpin(obj);
2993                         return -EINVAL;
2994                 }
2995                 if (reloc->offset & 3) {
2996                         DRM_ERROR("Relocation not 4-byte aligned: "
2997                                   "obj %p target %d offset %d.\n",
2998                                   obj, reloc->target_handle,
2999                                   (int) reloc->offset);
3000                         drm_gem_object_unreference(target_obj);
3001                         i915_gem_object_unpin(obj);
3002                         return -EINVAL;
3003                 }
3004
3005                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3006                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3007                         DRM_ERROR("reloc with read/write CPU domains: "
3008                                   "obj %p target %d offset %d "
3009                                   "read %08x write %08x",
3010                                   obj, reloc->target_handle,
3011                                   (int) reloc->offset,
3012                                   reloc->read_domains,
3013                                   reloc->write_domain);
3014                         drm_gem_object_unreference(target_obj);
3015                         i915_gem_object_unpin(obj);
3016                         return -EINVAL;
3017                 }
3018
3019                 if (reloc->write_domain && target_obj->pending_write_domain &&
3020                     reloc->write_domain != target_obj->pending_write_domain) {
3021                         DRM_ERROR("Write domain conflict: "
3022                                   "obj %p target %d offset %d "
3023                                   "new %08x old %08x\n",
3024                                   obj, reloc->target_handle,
3025                                   (int) reloc->offset,
3026                                   reloc->write_domain,
3027                                   target_obj->pending_write_domain);
3028                         drm_gem_object_unreference(target_obj);
3029                         i915_gem_object_unpin(obj);
3030                         return -EINVAL;
3031                 }
3032
3033 #if WATCH_RELOC
3034                 DRM_INFO("%s: obj %p offset %08x target %d "
3035                          "read %08x write %08x gtt %08x "
3036                          "presumed %08x delta %08x\n",
3037                          __func__,
3038                          obj,
3039                          (int) reloc->offset,
3040                          (int) reloc->target_handle,
3041                          (int) reloc->read_domains,
3042                          (int) reloc->write_domain,
3043                          (int) target_obj_priv->gtt_offset,
3044                          (int) reloc->presumed_offset,
3045                          reloc->delta);
3046 #endif
3047
3048                 target_obj->pending_read_domains |= reloc->read_domains;
3049                 target_obj->pending_write_domain |= reloc->write_domain;
3050
3051                 /* If the relocation already has the right value in it, no
3052                  * more work needs to be done.
3053                  */
3054                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3055                         drm_gem_object_unreference(target_obj);
3056                         continue;
3057                 }
3058
3059                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3060                 if (ret != 0) {
3061                         drm_gem_object_unreference(target_obj);
3062                         i915_gem_object_unpin(obj);
3063                         return -EINVAL;
3064                 }
3065
3066                 /* Map the page containing the relocation we're going to
3067                  * perform.
3068                  */
3069                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3070                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3071                                                       (reloc_offset &
3072                                                        ~(PAGE_SIZE - 1)));
3073                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3074                                                    (reloc_offset & (PAGE_SIZE - 1)));
3075                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3076
3077 #if WATCH_BUF
3078                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3079                           obj, (unsigned int) reloc->offset,
3080                           readl(reloc_entry), reloc_val);
3081 #endif
3082                 writel(reloc_val, reloc_entry);
3083                 io_mapping_unmap_atomic(reloc_page);
3084
3085                 /* The updated presumed offset for this entry will be
3086                  * copied back out to the user.
3087                  */
3088                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3089
3090                 drm_gem_object_unreference(target_obj);
3091         }
3092
3093 #if WATCH_BUF
3094         if (0)
3095                 i915_gem_dump_object(obj, 128, __func__, ~0);
3096 #endif
3097         return 0;
3098 }
3099
3100 /** Dispatch a batchbuffer to the ring
3101  */
3102 static int
3103 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3104                               struct drm_i915_gem_execbuffer *exec,
3105                               struct drm_clip_rect *cliprects,
3106                               uint64_t exec_offset)
3107 {
3108         drm_i915_private_t *dev_priv = dev->dev_private;
3109         int nbox = exec->num_cliprects;
3110         int i = 0, count;
3111         uint32_t exec_start, exec_len;
3112         RING_LOCALS;
3113
3114         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3115         exec_len = (uint32_t) exec->batch_len;
3116
3117         count = nbox ? nbox : 1;
3118
3119         for (i = 0; i < count; i++) {
3120                 if (i < nbox) {
3121                         int ret = i915_emit_box(dev, cliprects, i,
3122                                                 exec->DR1, exec->DR4);
3123                         if (ret)
3124                                 return ret;
3125                 }
3126
3127                 if (IS_I830(dev) || IS_845G(dev)) {
3128                         BEGIN_LP_RING(4);
3129                         OUT_RING(MI_BATCH_BUFFER);
3130                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3131                         OUT_RING(exec_start + exec_len - 4);
3132                         OUT_RING(0);
3133                         ADVANCE_LP_RING();
3134                 } else {
3135                         BEGIN_LP_RING(2);
3136                         if (IS_I965G(dev)) {
3137                                 OUT_RING(MI_BATCH_BUFFER_START |
3138                                          (2 << 6) |
3139                                          MI_BATCH_NON_SECURE_I965);
3140                                 OUT_RING(exec_start);
3141                         } else {
3142                                 OUT_RING(MI_BATCH_BUFFER_START |
3143                                          (2 << 6));
3144                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3145                         }
3146                         ADVANCE_LP_RING();
3147                 }
3148         }
3149
3150         /* XXX breadcrumb */
3151         return 0;
3152 }
3153
3154 /* Throttle our rendering by waiting until the ring has completed our requests
3155  * emitted over 20 msec ago.
3156  *
3157  * Note that if we were to use the current jiffies each time around the loop,
3158  * we wouldn't escape the function with any frames outstanding if the time to
3159  * render a frame was over 20ms.
3160  *
3161  * This should get us reasonable parallelism between CPU and GPU but also
3162  * relatively low latency when blocking on a particular request to finish.
3163  */
3164 static int
3165 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3166 {
3167         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3168         int ret = 0;
3169         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3170
3171         mutex_lock(&dev->struct_mutex);
3172         while (!list_empty(&i915_file_priv->mm.request_list)) {
3173                 struct drm_i915_gem_request *request;
3174
3175                 request = list_first_entry(&i915_file_priv->mm.request_list,
3176                                            struct drm_i915_gem_request,
3177                                            client_list);
3178
3179                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3180                         break;
3181
3182                 ret = i915_wait_request(dev, request->seqno);
3183                 if (ret != 0)
3184                         break;
3185         }
3186         mutex_unlock(&dev->struct_mutex);
3187
3188         return ret;
3189 }
3190
3191 static int
3192 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3193                               uint32_t buffer_count,
3194                               struct drm_i915_gem_relocation_entry **relocs)
3195 {
3196         uint32_t reloc_count = 0, reloc_index = 0, i;
3197         int ret;
3198
3199         *relocs = NULL;
3200         for (i = 0; i < buffer_count; i++) {
3201                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3202                         return -EINVAL;
3203                 reloc_count += exec_list[i].relocation_count;
3204         }
3205
3206         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3207         if (*relocs == NULL)
3208                 return -ENOMEM;
3209
3210         for (i = 0; i < buffer_count; i++) {
3211                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3212
3213                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3214