2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
34 #include "intel_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
40 #include "drm_crtc_helper.h"
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
90 #define I8XX_M2_MAX 16
92 #define I8XX_P_MAX 128
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
253 /* We have parameter ranges for different type of outputs. */
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
357 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
358 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
359 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
360 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
361 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
362 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
363 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
364 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
366 .find_pll = intel_find_best_PLL,
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
371 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
372 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
373 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
374 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
375 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
376 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
377 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
378 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
380 .find_pll = intel_find_best_PLL,
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
385 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
386 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
387 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
388 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
389 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
390 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
391 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
392 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394 .find_pll = intel_find_best_PLL,
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
399 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
400 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
401 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
402 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
403 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
404 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
405 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
406 /* The single-channel range is 25-112Mhz, and dual-channel
407 * is 80-224Mhz. Prefer single channel as much as possible.
409 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
411 .find_pll = intel_find_best_PLL,
414 /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
417 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
418 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
419 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
420 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
421 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
422 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
423 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
424 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
425 .p2_slow = G4X_P2_SDVO_SLOW,
426 .p2_fast = G4X_P2_SDVO_FAST
428 .find_pll = intel_g4x_find_best_PLL,
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
433 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
434 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
435 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
436 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
437 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
438 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
439 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
440 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442 .p2_fast = G4X_P2_HDMI_DAC_FAST
444 .find_pll = intel_g4x_find_best_PLL,
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450 .vco = { .min = G4X_VCO_MIN,
451 .max = G4X_VCO_MAX },
452 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
468 .find_pll = intel_g4x_find_best_PLL,
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474 .vco = { .min = G4X_VCO_MIN,
475 .max = G4X_VCO_MAX },
476 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
492 .find_pll = intel_g4x_find_best_PLL,
495 static const intel_limit_t intel_limits_g4x_display_port = {
496 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497 .max = G4X_DOT_DISPLAY_PORT_MAX },
498 .vco = { .min = G4X_VCO_MIN,
500 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
501 .max = G4X_N_DISPLAY_PORT_MAX },
502 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
503 .max = G4X_M_DISPLAY_PORT_MAX },
504 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
505 .max = G4X_M1_DISPLAY_PORT_MAX },
506 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
507 .max = G4X_M2_DISPLAY_PORT_MAX },
508 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
509 .max = G4X_P_DISPLAY_PORT_MAX },
510 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
511 .max = G4X_P1_DISPLAY_PORT_MAX},
512 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515 .find_pll = intel_find_pll_g4x_dp,
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
520 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
521 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
522 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
523 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
524 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
525 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
526 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
527 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529 .find_pll = intel_find_best_PLL,
532 static const intel_limit_t intel_limits_pineview_lvds = {
533 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
534 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
535 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
536 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
537 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
538 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
539 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
540 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
541 /* Pineview only supports single-channel mode. */
542 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
544 .find_pll = intel_find_best_PLL,
547 static const intel_limit_t intel_limits_ironlake_dac = {
548 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
549 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
550 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
551 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
552 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
553 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
554 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
555 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
556 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557 .p2_slow = IRONLAKE_DAC_P2_SLOW,
558 .p2_fast = IRONLAKE_DAC_P2_FAST },
559 .find_pll = intel_g4x_find_best_PLL,
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
564 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
565 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
566 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
567 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
568 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
569 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
570 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
571 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574 .find_pll = intel_g4x_find_best_PLL,
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
579 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
580 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
581 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
582 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
583 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
584 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
585 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
586 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589 .find_pll = intel_g4x_find_best_PLL,
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
594 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
595 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
598 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
599 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604 .find_pll = intel_g4x_find_best_PLL,
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
609 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
610 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
613 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
614 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619 .find_pll = intel_g4x_find_best_PLL,
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623 .dot = { .min = IRONLAKE_DOT_MIN,
624 .max = IRONLAKE_DOT_MAX },
625 .vco = { .min = IRONLAKE_VCO_MIN,
626 .max = IRONLAKE_VCO_MAX},
627 .n = { .min = IRONLAKE_DP_N_MIN,
628 .max = IRONLAKE_DP_N_MAX },
629 .m = { .min = IRONLAKE_DP_M_MIN,
630 .max = IRONLAKE_DP_M_MAX },
631 .m1 = { .min = IRONLAKE_M1_MIN,
632 .max = IRONLAKE_M1_MAX },
633 .m2 = { .min = IRONLAKE_M2_MIN,
634 .max = IRONLAKE_M2_MAX },
635 .p = { .min = IRONLAKE_DP_P_MIN,
636 .max = IRONLAKE_DP_P_MAX },
637 .p1 = { .min = IRONLAKE_DP_P1_MIN,
638 .max = IRONLAKE_DP_P1_MAX},
639 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640 .p2_slow = IRONLAKE_DP_P2_SLOW,
641 .p2_fast = IRONLAKE_DP_P2_FAST },
642 .find_pll = intel_find_pll_ironlake_dp,
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
647 struct drm_device *dev = crtc->dev;
648 struct drm_i915_private *dev_priv = dev->dev_private;
649 const intel_limit_t *limit;
652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
656 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
657 LVDS_CLKB_POWER_UP) {
658 /* LVDS dual channel */
660 limit = &intel_limits_ironlake_dual_lvds_100m;
662 limit = &intel_limits_ironlake_dual_lvds;
665 limit = &intel_limits_ironlake_single_lvds_100m;
667 limit = &intel_limits_ironlake_single_lvds;
669 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
671 limit = &intel_limits_ironlake_display_port;
673 limit = &intel_limits_ironlake_dac;
678 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 const intel_limit_t *limit;
684 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
685 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_dual_channel_lvds;
690 /* LVDS with dual channel */
691 limit = &intel_limits_g4x_single_channel_lvds;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
693 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
694 limit = &intel_limits_g4x_hdmi;
695 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
696 limit = &intel_limits_g4x_sdvo;
697 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
698 limit = &intel_limits_g4x_display_port;
699 } else /* The option is for other outputs */
700 limit = &intel_limits_i9xx_sdvo;
705 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
707 struct drm_device *dev = crtc->dev;
708 const intel_limit_t *limit;
710 if (HAS_PCH_SPLIT(dev))
711 limit = intel_ironlake_limit(crtc);
712 else if (IS_G4X(dev)) {
713 limit = intel_g4x_limit(crtc);
714 } else if (IS_PINEVIEW(dev)) {
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716 limit = &intel_limits_pineview_lvds;
718 limit = &intel_limits_pineview_sdvo;
719 } else if (!IS_GEN2(dev)) {
720 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
721 limit = &intel_limits_i9xx_lvds;
723 limit = &intel_limits_i9xx_sdvo;
725 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
726 limit = &intel_limits_i8xx_lvds;
728 limit = &intel_limits_i8xx_dvo;
733 /* m1 is reserved as 0 in Pineview, n is a ring counter */
734 static void pineview_clock(int refclk, intel_clock_t *clock)
736 clock->m = clock->m2 + 2;
737 clock->p = clock->p1 * clock->p2;
738 clock->vco = refclk * clock->m / clock->n;
739 clock->dot = clock->vco / clock->p;
742 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
744 if (IS_PINEVIEW(dev)) {
745 pineview_clock(refclk, clock);
748 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
749 clock->p = clock->p1 * clock->p2;
750 clock->vco = refclk * clock->m / (clock->n + 2);
751 clock->dot = clock->vco / clock->p;
755 * Returns whether any output on the specified pipe is of the specified type
757 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
759 struct drm_device *dev = crtc->dev;
760 struct drm_mode_config *mode_config = &dev->mode_config;
761 struct intel_encoder *encoder;
763 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
764 if (encoder->base.crtc == crtc && encoder->type == type)
770 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
772 * Returns whether the given set of divisors are valid for a given refclk with
773 * the given connectors.
776 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
778 const intel_limit_t *limit = intel_limit (crtc);
779 struct drm_device *dev = crtc->dev;
781 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
782 INTELPllInvalid ("p1 out of range\n");
783 if (clock->p < limit->p.min || limit->p.max < clock->p)
784 INTELPllInvalid ("p out of range\n");
785 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
786 INTELPllInvalid ("m2 out of range\n");
787 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
788 INTELPllInvalid ("m1 out of range\n");
789 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
790 INTELPllInvalid ("m1 <= m2\n");
791 if (clock->m < limit->m.min || limit->m.max < clock->m)
792 INTELPllInvalid ("m out of range\n");
793 if (clock->n < limit->n.min || limit->n.max < clock->n)
794 INTELPllInvalid ("n out of range\n");
795 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
796 INTELPllInvalid ("vco out of range\n");
797 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
798 * connector, etc., rather than just a single range.
800 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
801 INTELPllInvalid ("dot out of range\n");
807 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
808 int target, int refclk, intel_clock_t *best_clock)
811 struct drm_device *dev = crtc->dev;
812 struct drm_i915_private *dev_priv = dev->dev_private;
816 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
817 (I915_READ(LVDS)) != 0) {
819 * For LVDS, if the panel is on, just rely on its current
820 * settings for dual-channel. We haven't figured out how to
821 * reliably set up different single/dual channel state, if we
824 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
826 clock.p2 = limit->p2.p2_fast;
828 clock.p2 = limit->p2.p2_slow;
830 if (target < limit->p2.dot_limit)
831 clock.p2 = limit->p2.p2_slow;
833 clock.p2 = limit->p2.p2_fast;
836 memset (best_clock, 0, sizeof (*best_clock));
838 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
840 for (clock.m2 = limit->m2.min;
841 clock.m2 <= limit->m2.max; clock.m2++) {
842 /* m1 is always 0 in Pineview */
843 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
845 for (clock.n = limit->n.min;
846 clock.n <= limit->n.max; clock.n++) {
847 for (clock.p1 = limit->p1.min;
848 clock.p1 <= limit->p1.max; clock.p1++) {
851 intel_clock(dev, refclk, &clock);
853 if (!intel_PLL_is_valid(crtc, &clock))
856 this_err = abs(clock.dot - target);
857 if (this_err < err) {
866 return (err != target);
870 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
871 int target, int refclk, intel_clock_t *best_clock)
873 struct drm_device *dev = crtc->dev;
874 struct drm_i915_private *dev_priv = dev->dev_private;
878 /* approximately equals target * 0.00585 */
879 int err_most = (target >> 8) + (target >> 9);
882 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
885 if (HAS_PCH_SPLIT(dev))
889 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
891 clock.p2 = limit->p2.p2_fast;
893 clock.p2 = limit->p2.p2_slow;
895 if (target < limit->p2.dot_limit)
896 clock.p2 = limit->p2.p2_slow;
898 clock.p2 = limit->p2.p2_fast;
901 memset(best_clock, 0, sizeof(*best_clock));
902 max_n = limit->n.max;
903 /* based on hardware requirement, prefer smaller n to precision */
904 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
905 /* based on hardware requirement, prefere larger m1,m2 */
906 for (clock.m1 = limit->m1.max;
907 clock.m1 >= limit->m1.min; clock.m1--) {
908 for (clock.m2 = limit->m2.max;
909 clock.m2 >= limit->m2.min; clock.m2--) {
910 for (clock.p1 = limit->p1.max;
911 clock.p1 >= limit->p1.min; clock.p1--) {
914 intel_clock(dev, refclk, &clock);
915 if (!intel_PLL_is_valid(crtc, &clock))
917 this_err = abs(clock.dot - target) ;
918 if (this_err < err_most) {
932 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
933 int target, int refclk, intel_clock_t *best_clock)
935 struct drm_device *dev = crtc->dev;
938 if (target < 200000) {
951 intel_clock(dev, refclk, &clock);
952 memcpy(best_clock, &clock, sizeof(intel_clock_t));
956 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
958 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
959 int target, int refclk, intel_clock_t *best_clock)
962 if (target < 200000) {
975 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
976 clock.p = (clock.p1 * clock.p2);
977 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
979 memcpy(best_clock, &clock, sizeof(intel_clock_t));
984 * intel_wait_for_vblank - wait for vblank on a given pipe
986 * @pipe: pipe to wait for
988 * Wait for vblank to occur on a given pipe. Needed for various bits of
991 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
993 struct drm_i915_private *dev_priv = dev->dev_private;
994 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
996 /* Clear existing vblank status. Note this will clear any other
997 * sticky status fields as well.
999 * This races with i915_driver_irq_handler() with the result
1000 * that either function could miss a vblank event. Here it is not
1001 * fatal, as we will either wait upon the next vblank interrupt or
1002 * timeout. Generally speaking intel_wait_for_vblank() is only
1003 * called during modeset at which time the GPU should be idle and
1004 * should *not* be performing page flips and thus not waiting on
1006 * Currently, the result of us stealing a vblank from the irq
1007 * handler is that a single frame will be skipped during swapbuffers.
1009 I915_WRITE(pipestat_reg,
1010 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1012 /* Wait for vblank interrupt bit to set */
1013 if (wait_for(I915_READ(pipestat_reg) &
1014 PIPE_VBLANK_INTERRUPT_STATUS,
1016 DRM_DEBUG_KMS("vblank wait timed out\n");
1020 * intel_wait_for_pipe_off - wait for pipe to turn off
1022 * @pipe: pipe to wait for
1024 * After disabling a pipe, we can't wait for vblank in the usual way,
1025 * spinning on the vblank interrupt status bit, since we won't actually
1026 * see an interrupt when the pipe is disabled.
1028 * On Gen4 and above:
1029 * wait for the pipe register state bit to turn off
1032 * wait for the display line value to settle (it usually
1033 * ends up stopping at the start of the next frame).
1036 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1038 struct drm_i915_private *dev_priv = dev->dev_private;
1040 if (INTEL_INFO(dev)->gen >= 4) {
1041 int reg = PIPECONF(pipe);
1043 /* Wait for the Pipe State to go off */
1044 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1046 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1049 int reg = PIPEDSL(pipe);
1050 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1052 /* Wait for the display line to settle */
1054 last_line = I915_READ(reg) & DSL_LINEMASK;
1056 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1057 time_after(timeout, jiffies));
1058 if (time_after(jiffies, timeout))
1059 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1063 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1065 struct drm_device *dev = crtc->dev;
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1067 struct drm_framebuffer *fb = crtc->fb;
1068 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1069 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1072 u32 fbc_ctl, fbc_ctl2;
1074 if (fb->pitch == dev_priv->cfb_pitch &&
1075 obj_priv->fence_reg == dev_priv->cfb_fence &&
1076 intel_crtc->plane == dev_priv->cfb_plane &&
1077 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1080 i8xx_disable_fbc(dev);
1082 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1084 if (fb->pitch < dev_priv->cfb_pitch)
1085 dev_priv->cfb_pitch = fb->pitch;
1087 /* FBC_CTL wants 64B units */
1088 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1089 dev_priv->cfb_fence = obj_priv->fence_reg;
1090 dev_priv->cfb_plane = intel_crtc->plane;
1091 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1093 /* Clear old tags */
1094 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1095 I915_WRITE(FBC_TAG + (i * 4), 0);
1098 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1099 if (obj_priv->tiling_mode != I915_TILING_NONE)
1100 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1101 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1102 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1105 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1107 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1108 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1109 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1110 if (obj_priv->tiling_mode != I915_TILING_NONE)
1111 fbc_ctl |= dev_priv->cfb_fence;
1112 I915_WRITE(FBC_CONTROL, fbc_ctl);
1114 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1115 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1118 void i8xx_disable_fbc(struct drm_device *dev)
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1123 /* Disable compression */
1124 fbc_ctl = I915_READ(FBC_CONTROL);
1125 if ((fbc_ctl & FBC_CTL_EN) == 0)
1128 fbc_ctl &= ~FBC_CTL_EN;
1129 I915_WRITE(FBC_CONTROL, fbc_ctl);
1131 /* Wait for compressing bit to clear */
1132 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1133 DRM_DEBUG_KMS("FBC idle timed out\n");
1137 DRM_DEBUG_KMS("disabled FBC\n");
1140 static bool i8xx_fbc_enabled(struct drm_device *dev)
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1144 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1147 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1149 struct drm_device *dev = crtc->dev;
1150 struct drm_i915_private *dev_priv = dev->dev_private;
1151 struct drm_framebuffer *fb = crtc->fb;
1152 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1153 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1155 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1156 unsigned long stall_watermark = 200;
1159 dpfc_ctl = I915_READ(DPFC_CONTROL);
1160 if (dpfc_ctl & DPFC_CTL_EN) {
1161 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1162 dev_priv->cfb_fence == obj_priv->fence_reg &&
1163 dev_priv->cfb_plane == intel_crtc->plane &&
1164 dev_priv->cfb_y == crtc->y)
1167 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1168 POSTING_READ(DPFC_CONTROL);
1169 intel_wait_for_vblank(dev, intel_crtc->pipe);
1172 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1173 dev_priv->cfb_fence = obj_priv->fence_reg;
1174 dev_priv->cfb_plane = intel_crtc->plane;
1175 dev_priv->cfb_y = crtc->y;
1177 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1178 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1179 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1180 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1182 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1185 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1186 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1187 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1188 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1191 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1193 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1196 void g4x_disable_fbc(struct drm_device *dev)
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1201 /* Disable compression */
1202 dpfc_ctl = I915_READ(DPFC_CONTROL);
1203 if (dpfc_ctl & DPFC_CTL_EN) {
1204 dpfc_ctl &= ~DPFC_CTL_EN;
1205 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1207 DRM_DEBUG_KMS("disabled FBC\n");
1211 static bool g4x_fbc_enabled(struct drm_device *dev)
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1215 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1218 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1220 struct drm_device *dev = crtc->dev;
1221 struct drm_i915_private *dev_priv = dev->dev_private;
1222 struct drm_framebuffer *fb = crtc->fb;
1223 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1224 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1226 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1227 unsigned long stall_watermark = 200;
1230 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1231 if (dpfc_ctl & DPFC_CTL_EN) {
1232 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1233 dev_priv->cfb_fence == obj_priv->fence_reg &&
1234 dev_priv->cfb_plane == intel_crtc->plane &&
1235 dev_priv->cfb_offset == obj_priv->gtt_offset &&
1236 dev_priv->cfb_y == crtc->y)
1239 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1240 POSTING_READ(ILK_DPFC_CONTROL);
1241 intel_wait_for_vblank(dev, intel_crtc->pipe);
1244 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1245 dev_priv->cfb_fence = obj_priv->fence_reg;
1246 dev_priv->cfb_plane = intel_crtc->plane;
1247 dev_priv->cfb_offset = obj_priv->gtt_offset;
1248 dev_priv->cfb_y = crtc->y;
1250 dpfc_ctl &= DPFC_RESERVED;
1251 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1252 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1253 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1254 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1256 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1259 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1260 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1261 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1262 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1263 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1265 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1267 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1270 void ironlake_disable_fbc(struct drm_device *dev)
1272 struct drm_i915_private *dev_priv = dev->dev_private;
1275 /* Disable compression */
1276 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1277 if (dpfc_ctl & DPFC_CTL_EN) {
1278 dpfc_ctl &= ~DPFC_CTL_EN;
1279 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1281 DRM_DEBUG_KMS("disabled FBC\n");
1285 static bool ironlake_fbc_enabled(struct drm_device *dev)
1287 struct drm_i915_private *dev_priv = dev->dev_private;
1289 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1292 bool intel_fbc_enabled(struct drm_device *dev)
1294 struct drm_i915_private *dev_priv = dev->dev_private;
1296 if (!dev_priv->display.fbc_enabled)
1299 return dev_priv->display.fbc_enabled(dev);
1302 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1304 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1306 if (!dev_priv->display.enable_fbc)
1309 dev_priv->display.enable_fbc(crtc, interval);
1312 void intel_disable_fbc(struct drm_device *dev)
1314 struct drm_i915_private *dev_priv = dev->dev_private;
1316 if (!dev_priv->display.disable_fbc)
1319 dev_priv->display.disable_fbc(dev);
1323 * intel_update_fbc - enable/disable FBC as needed
1324 * @dev: the drm_device
1326 * Set up the framebuffer compression hardware at mode set time. We
1327 * enable it if possible:
1328 * - plane A only (on pre-965)
1329 * - no pixel mulitply/line duplication
1330 * - no alpha buffer discard
1332 * - framebuffer <= 2048 in width, 1536 in height
1334 * We can't assume that any compression will take place (worst case),
1335 * so the compressed buffer has to be the same size as the uncompressed
1336 * one. It also must reside (along with the line length buffer) in
1339 * We need to enable/disable FBC on a global basis.
1341 static void intel_update_fbc(struct drm_device *dev)
1343 struct drm_i915_private *dev_priv = dev->dev_private;
1344 struct drm_crtc *crtc = NULL, *tmp_crtc;
1345 struct intel_crtc *intel_crtc;
1346 struct drm_framebuffer *fb;
1347 struct intel_framebuffer *intel_fb;
1348 struct drm_i915_gem_object *obj_priv;
1350 DRM_DEBUG_KMS("\n");
1352 if (!i915_powersave)
1355 if (!I915_HAS_FBC(dev))
1359 * If FBC is already on, we just have to verify that we can
1360 * keep it that way...
1361 * Need to disable if:
1362 * - more than one pipe is active
1363 * - changing FBC params (stride, fence, mode)
1364 * - new fb is too large to fit in compressed buffer
1365 * - going to an unsupported config (interlace, pixel multiply, etc.)
1367 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1368 if (tmp_crtc->enabled) {
1370 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1371 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1378 if (!crtc || crtc->fb == NULL) {
1379 DRM_DEBUG_KMS("no output, disabling\n");
1380 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1384 intel_crtc = to_intel_crtc(crtc);
1386 intel_fb = to_intel_framebuffer(fb);
1387 obj_priv = to_intel_bo(intel_fb->obj);
1389 if (intel_fb->obj->size > dev_priv->cfb_size) {
1390 DRM_DEBUG_KMS("framebuffer too large, disabling "
1392 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1395 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1396 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1397 DRM_DEBUG_KMS("mode incompatible with compression, "
1399 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1402 if ((crtc->mode.hdisplay > 2048) ||
1403 (crtc->mode.vdisplay > 1536)) {
1404 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1405 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1408 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1409 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1410 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1413 if (obj_priv->tiling_mode != I915_TILING_X) {
1414 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1415 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1419 /* If the kernel debugger is active, always disable compression */
1420 if (in_dbg_master())
1423 intel_enable_fbc(crtc, 500);
1427 /* Multiple disables should be harmless */
1428 if (intel_fbc_enabled(dev)) {
1429 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1430 intel_disable_fbc(dev);
1435 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1436 struct drm_gem_object *obj,
1439 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1443 switch (obj_priv->tiling_mode) {
1444 case I915_TILING_NONE:
1445 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1446 alignment = 128 * 1024;
1447 else if (INTEL_INFO(dev)->gen >= 4)
1448 alignment = 4 * 1024;
1450 alignment = 64 * 1024;
1453 /* pin() will align the object as required by fence */
1457 /* FIXME: Is this true? */
1458 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1464 ret = i915_gem_object_pin(obj, alignment);
1468 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1472 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1473 * fence, whereas 965+ only requires a fence if using
1474 * framebuffer compression. For simplicity, we always install
1475 * a fence as the cost is not that onerous.
1477 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1478 obj_priv->tiling_mode != I915_TILING_NONE) {
1479 ret = i915_gem_object_get_fence_reg(obj, false);
1487 i915_gem_object_unpin(obj);
1491 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1493 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1494 int x, int y, enum mode_set_atomic state)
1496 struct drm_device *dev = crtc->dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
1498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1499 struct intel_framebuffer *intel_fb;
1500 struct drm_i915_gem_object *obj_priv;
1501 struct drm_gem_object *obj;
1502 int plane = intel_crtc->plane;
1503 unsigned long Start, Offset;
1512 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1516 intel_fb = to_intel_framebuffer(fb);
1517 obj = intel_fb->obj;
1518 obj_priv = to_intel_bo(obj);
1520 reg = DSPCNTR(plane);
1521 dspcntr = I915_READ(reg);
1522 /* Mask out pixel format bits in case we change it */
1523 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1524 switch (fb->bits_per_pixel) {
1526 dspcntr |= DISPPLANE_8BPP;
1529 if (fb->depth == 15)
1530 dspcntr |= DISPPLANE_15_16BPP;
1532 dspcntr |= DISPPLANE_16BPP;
1536 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1539 DRM_ERROR("Unknown color depth\n");
1542 if (INTEL_INFO(dev)->gen >= 4) {
1543 if (obj_priv->tiling_mode != I915_TILING_NONE)
1544 dspcntr |= DISPPLANE_TILED;
1546 dspcntr &= ~DISPPLANE_TILED;
1549 if (HAS_PCH_SPLIT(dev))
1551 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1553 I915_WRITE(reg, dspcntr);
1555 Start = obj_priv->gtt_offset;
1556 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1558 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1559 Start, Offset, x, y, fb->pitch);
1560 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1561 if (INTEL_INFO(dev)->gen >= 4) {
1562 I915_WRITE(DSPSURF(plane), Start);
1563 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1564 I915_WRITE(DSPADDR(plane), Offset);
1566 I915_WRITE(DSPADDR(plane), Start + Offset);
1569 intel_update_fbc(dev);
1570 intel_increase_pllclock(crtc);
1576 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1577 struct drm_framebuffer *old_fb)
1579 struct drm_device *dev = crtc->dev;
1580 struct drm_i915_master_private *master_priv;
1581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1586 DRM_DEBUG_KMS("No FB bound\n");
1590 switch (intel_crtc->plane) {
1598 mutex_lock(&dev->struct_mutex);
1599 ret = intel_pin_and_fence_fb_obj(dev,
1600 to_intel_framebuffer(crtc->fb)->obj,
1603 mutex_unlock(&dev->struct_mutex);
1608 struct drm_i915_private *dev_priv = dev->dev_private;
1609 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1610 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1612 wait_event(dev_priv->pending_flip_queue,
1613 atomic_read(&obj_priv->pending_flip) == 0);
1615 /* Big Hammer, we also need to ensure that any pending
1616 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1617 * current scanout is retired before unpinning the old
1620 ret = i915_gem_object_flush_gpu(obj_priv, false);
1622 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1623 mutex_unlock(&dev->struct_mutex);
1628 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1629 LEAVE_ATOMIC_MODE_SET);
1631 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1632 mutex_unlock(&dev->struct_mutex);
1637 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1639 mutex_unlock(&dev->struct_mutex);
1641 if (!dev->primary->master)
1644 master_priv = dev->primary->master->driver_priv;
1645 if (!master_priv->sarea_priv)
1648 if (intel_crtc->pipe) {
1649 master_priv->sarea_priv->pipeB_x = x;
1650 master_priv->sarea_priv->pipeB_y = y;
1652 master_priv->sarea_priv->pipeA_x = x;
1653 master_priv->sarea_priv->pipeA_y = y;
1659 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1661 struct drm_device *dev = crtc->dev;
1662 struct drm_i915_private *dev_priv = dev->dev_private;
1665 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1666 dpa_ctl = I915_READ(DP_A);
1667 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1669 if (clock < 200000) {
1671 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1672 /* workaround for 160Mhz:
1673 1) program 0x4600c bits 15:0 = 0x8124
1674 2) program 0x46010 bit 0 = 1
1675 3) program 0x46034 bit 24 = 1
1676 4) program 0x64000 bit 14 = 1
1678 temp = I915_READ(0x4600c);
1680 I915_WRITE(0x4600c, temp | 0x8124);
1682 temp = I915_READ(0x46010);
1683 I915_WRITE(0x46010, temp | 1);
1685 temp = I915_READ(0x46034);
1686 I915_WRITE(0x46034, temp | (1 << 24));
1688 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1690 I915_WRITE(DP_A, dpa_ctl);
1696 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1698 struct drm_device *dev = crtc->dev;
1699 struct drm_i915_private *dev_priv = dev->dev_private;
1700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1701 int pipe = intel_crtc->pipe;
1704 /* enable normal train */
1705 reg = FDI_TX_CTL(pipe);
1706 temp = I915_READ(reg);
1707 temp &= ~FDI_LINK_TRAIN_NONE;
1708 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1709 I915_WRITE(reg, temp);
1711 reg = FDI_RX_CTL(pipe);
1712 temp = I915_READ(reg);
1713 if (HAS_PCH_CPT(dev)) {
1714 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1715 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1717 temp &= ~FDI_LINK_TRAIN_NONE;
1718 temp |= FDI_LINK_TRAIN_NONE;
1720 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1722 /* wait one idle pattern time */
1727 /* The FDI link training functions for ILK/Ibexpeak. */
1728 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1730 struct drm_device *dev = crtc->dev;
1731 struct drm_i915_private *dev_priv = dev->dev_private;
1732 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1733 int pipe = intel_crtc->pipe;
1734 u32 reg, temp, tries;
1736 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1738 reg = FDI_RX_IMR(pipe);
1739 temp = I915_READ(reg);
1740 temp &= ~FDI_RX_SYMBOL_LOCK;
1741 temp &= ~FDI_RX_BIT_LOCK;
1742 I915_WRITE(reg, temp);
1746 /* enable CPU FDI TX and PCH FDI RX */
1747 reg = FDI_TX_CTL(pipe);
1748 temp = I915_READ(reg);
1750 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1751 temp &= ~FDI_LINK_TRAIN_NONE;
1752 temp |= FDI_LINK_TRAIN_PATTERN_1;
1753 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1755 reg = FDI_RX_CTL(pipe);
1756 temp = I915_READ(reg);
1757 temp &= ~FDI_LINK_TRAIN_NONE;
1758 temp |= FDI_LINK_TRAIN_PATTERN_1;
1759 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1764 /* Ironlake workaround, enable clock pointer after FDI enable*/
1765 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1767 reg = FDI_RX_IIR(pipe);
1768 for (tries = 0; tries < 5; tries++) {
1769 temp = I915_READ(reg);
1770 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1772 if ((temp & FDI_RX_BIT_LOCK)) {
1773 DRM_DEBUG_KMS("FDI train 1 done.\n");
1774 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1779 DRM_ERROR("FDI train 1 fail!\n");
1782 reg = FDI_TX_CTL(pipe);
1783 temp = I915_READ(reg);
1784 temp &= ~FDI_LINK_TRAIN_NONE;
1785 temp |= FDI_LINK_TRAIN_PATTERN_2;
1786 I915_WRITE(reg, temp);
1788 reg = FDI_RX_CTL(pipe);
1789 temp = I915_READ(reg);
1790 temp &= ~FDI_LINK_TRAIN_NONE;
1791 temp |= FDI_LINK_TRAIN_PATTERN_2;
1792 I915_WRITE(reg, temp);
1797 reg = FDI_RX_IIR(pipe);
1798 for (tries = 0; tries < 5; tries++) {
1799 temp = I915_READ(reg);
1800 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1802 if (temp & FDI_RX_SYMBOL_LOCK) {
1803 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1804 DRM_DEBUG_KMS("FDI train 2 done.\n");
1809 DRM_ERROR("FDI train 2 fail!\n");
1811 DRM_DEBUG_KMS("FDI train done\n");
1815 static const int const snb_b_fdi_train_param [] = {
1816 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1817 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1818 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1819 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1822 /* The FDI link training functions for SNB/Cougarpoint. */
1823 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1825 struct drm_device *dev = crtc->dev;
1826 struct drm_i915_private *dev_priv = dev->dev_private;
1827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1828 int pipe = intel_crtc->pipe;
1831 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1833 reg = FDI_RX_IMR(pipe);
1834 temp = I915_READ(reg);
1835 temp &= ~FDI_RX_SYMBOL_LOCK;
1836 temp &= ~FDI_RX_BIT_LOCK;
1837 I915_WRITE(reg, temp);
1842 /* enable CPU FDI TX and PCH FDI RX */
1843 reg = FDI_TX_CTL(pipe);
1844 temp = I915_READ(reg);
1846 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1847 temp &= ~FDI_LINK_TRAIN_NONE;
1848 temp |= FDI_LINK_TRAIN_PATTERN_1;
1849 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1851 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1852 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1854 reg = FDI_RX_CTL(pipe);
1855 temp = I915_READ(reg);
1856 if (HAS_PCH_CPT(dev)) {
1857 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1858 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1860 temp &= ~FDI_LINK_TRAIN_NONE;
1861 temp |= FDI_LINK_TRAIN_PATTERN_1;
1863 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1868 for (i = 0; i < 4; i++ ) {
1869 reg = FDI_TX_CTL(pipe);
1870 temp = I915_READ(reg);
1871 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1872 temp |= snb_b_fdi_train_param[i];
1873 I915_WRITE(reg, temp);
1878 reg = FDI_RX_IIR(pipe);
1879 temp = I915_READ(reg);
1880 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1882 if (temp & FDI_RX_BIT_LOCK) {
1883 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1884 DRM_DEBUG_KMS("FDI train 1 done.\n");
1889 DRM_ERROR("FDI train 1 fail!\n");
1892 reg = FDI_TX_CTL(pipe);
1893 temp = I915_READ(reg);
1894 temp &= ~FDI_LINK_TRAIN_NONE;
1895 temp |= FDI_LINK_TRAIN_PATTERN_2;
1897 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1899 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1901 I915_WRITE(reg, temp);
1903 reg = FDI_RX_CTL(pipe);
1904 temp = I915_READ(reg);
1905 if (HAS_PCH_CPT(dev)) {
1906 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1907 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1909 temp &= ~FDI_LINK_TRAIN_NONE;
1910 temp |= FDI_LINK_TRAIN_PATTERN_2;
1912 I915_WRITE(reg, temp);
1917 for (i = 0; i < 4; i++ ) {
1918 reg = FDI_TX_CTL(pipe);
1919 temp = I915_READ(reg);
1920 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1921 temp |= snb_b_fdi_train_param[i];
1922 I915_WRITE(reg, temp);
1927 reg = FDI_RX_IIR(pipe);
1928 temp = I915_READ(reg);
1929 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1931 if (temp & FDI_RX_SYMBOL_LOCK) {
1932 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1933 DRM_DEBUG_KMS("FDI train 2 done.\n");
1938 DRM_ERROR("FDI train 2 fail!\n");
1940 DRM_DEBUG_KMS("FDI train done.\n");
1943 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1945 struct drm_device *dev = crtc->dev;
1946 struct drm_i915_private *dev_priv = dev->dev_private;
1947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1948 int pipe = intel_crtc->pipe;
1951 /* Write the TU size bits so error detection works */
1952 I915_WRITE(FDI_RX_TUSIZE1(pipe),
1953 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1955 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1956 reg = FDI_RX_CTL(pipe);
1957 temp = I915_READ(reg);
1958 temp &= ~((0x7 << 19) | (0x7 << 16));
1959 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1960 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1961 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1966 /* Switch from Rawclk to PCDclk */
1967 temp = I915_READ(reg);
1968 I915_WRITE(reg, temp | FDI_PCDCLK);
1973 /* Enable CPU FDI TX PLL, always on for Ironlake */
1974 reg = FDI_TX_CTL(pipe);
1975 temp = I915_READ(reg);
1976 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1977 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1984 static void intel_flush_display_plane(struct drm_device *dev,
1987 struct drm_i915_private *dev_priv = dev->dev_private;
1988 u32 reg = DSPADDR(plane);
1989 I915_WRITE(reg, I915_READ(reg));
1993 * When we disable a pipe, we need to clear any pending scanline wait events
1994 * to avoid hanging the ring, which we assume we are waiting on.
1996 static void intel_clear_scanline_wait(struct drm_device *dev)
1998 struct drm_i915_private *dev_priv = dev->dev_private;
2002 /* Can't break the hang on i8xx */
2005 tmp = I915_READ(PRB0_CTL);
2006 if (tmp & RING_WAIT) {
2007 I915_WRITE(PRB0_CTL, tmp);
2008 POSTING_READ(PRB0_CTL);
2012 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2014 struct drm_i915_gem_object *obj_priv;
2015 struct drm_i915_private *dev_priv;
2017 if (crtc->fb == NULL)
2020 obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
2021 dev_priv = crtc->dev->dev_private;
2022 wait_event(dev_priv->pending_flip_queue,
2023 atomic_read(&obj_priv->pending_flip) == 0);
2026 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2028 struct drm_device *dev = crtc->dev;
2029 struct drm_i915_private *dev_priv = dev->dev_private;
2030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2031 int pipe = intel_crtc->pipe;
2032 int plane = intel_crtc->plane;
2035 if (intel_crtc->active)
2038 intel_crtc->active = true;
2039 intel_update_watermarks(dev);
2041 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2042 temp = I915_READ(PCH_LVDS);
2043 if ((temp & LVDS_PORT_EN) == 0)
2044 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2047 ironlake_fdi_enable(crtc);
2049 /* Enable panel fitting for LVDS */
2050 if (dev_priv->pch_pf_size &&
2051 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2052 /* Force use of hard-coded filter coefficients
2053 * as some pre-programmed values are broken,
2056 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2057 PF_ENABLE | PF_FILTER_MED_3x3);
2058 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2059 dev_priv->pch_pf_pos);
2060 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2061 dev_priv->pch_pf_size);
2064 /* Enable CPU pipe */
2065 reg = PIPECONF(pipe);
2066 temp = I915_READ(reg);
2067 if ((temp & PIPECONF_ENABLE) == 0) {
2068 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2070 intel_wait_for_vblank(dev, intel_crtc->pipe);
2073 /* configure and enable CPU plane */
2074 reg = DSPCNTR(plane);
2075 temp = I915_READ(reg);
2076 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2077 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2078 intel_flush_display_plane(dev, plane);
2081 /* For PCH output, training FDI link */
2083 gen6_fdi_link_train(crtc);
2085 ironlake_fdi_link_train(crtc);
2087 /* enable PCH DPLL */
2088 reg = PCH_DPLL(pipe);
2089 temp = I915_READ(reg);
2090 if ((temp & DPLL_VCO_ENABLE) == 0) {
2091 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2096 if (HAS_PCH_CPT(dev)) {
2097 /* Be sure PCH DPLL SEL is set */
2098 temp = I915_READ(PCH_DPLL_SEL);
2099 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2100 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2101 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2102 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2103 I915_WRITE(PCH_DPLL_SEL, temp);
2106 /* set transcoder timing */
2107 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2108 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2109 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2111 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2112 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2113 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2115 intel_fdi_normal_train(crtc);
2117 /* For PCH DP, enable TRANS_DP_CTL */
2118 if (HAS_PCH_CPT(dev) &&
2119 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2120 reg = TRANS_DP_CTL(pipe);
2121 temp = I915_READ(reg);
2122 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2123 TRANS_DP_SYNC_MASK |
2125 temp |= (TRANS_DP_OUTPUT_ENABLE |
2126 TRANS_DP_ENH_FRAMING);
2127 temp |= TRANS_DP_8BPC;
2129 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2130 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2131 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2132 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2134 switch (intel_trans_dp_port_sel(crtc)) {
2136 temp |= TRANS_DP_PORT_SEL_B;
2139 temp |= TRANS_DP_PORT_SEL_C;
2142 temp |= TRANS_DP_PORT_SEL_D;
2145 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2146 temp |= TRANS_DP_PORT_SEL_B;
2150 I915_WRITE(reg, temp);
2153 /* enable PCH transcoder */
2154 reg = TRANSCONF(pipe);
2155 temp = I915_READ(reg);
2157 * make the BPC in transcoder be consistent with
2158 * that in pipeconf reg.
2160 temp &= ~PIPE_BPC_MASK;
2161 temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2162 I915_WRITE(reg, temp | TRANS_ENABLE);
2163 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2164 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2166 intel_crtc_load_lut(crtc);
2167 intel_update_fbc(dev);
2168 intel_crtc_update_cursor(crtc, true);
2171 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2173 struct drm_device *dev = crtc->dev;
2174 struct drm_i915_private *dev_priv = dev->dev_private;
2175 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2176 int pipe = intel_crtc->pipe;
2177 int plane = intel_crtc->plane;
2180 if (!intel_crtc->active)
2183 intel_crtc_wait_for_pending_flips(crtc);
2184 drm_vblank_off(dev, pipe);
2185 intel_crtc_update_cursor(crtc, false);
2187 /* Disable display plane */
2188 reg = DSPCNTR(plane);
2189 temp = I915_READ(reg);
2190 if (temp & DISPLAY_PLANE_ENABLE) {
2191 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2192 intel_flush_display_plane(dev, plane);
2195 if (dev_priv->cfb_plane == plane &&
2196 dev_priv->display.disable_fbc)
2197 dev_priv->display.disable_fbc(dev);
2199 /* disable cpu pipe, disable after all planes disabled */
2200 reg = PIPECONF(pipe);
2201 temp = I915_READ(reg);
2202 if (temp & PIPECONF_ENABLE) {
2203 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2205 /* wait for cpu pipe off, pipe state */
2206 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2210 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2211 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2213 /* disable CPU FDI tx and PCH FDI rx */
2214 reg = FDI_TX_CTL(pipe);
2215 temp = I915_READ(reg);
2216 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2219 reg = FDI_RX_CTL(pipe);
2220 temp = I915_READ(reg);
2221 temp &= ~(0x7 << 16);
2222 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2223 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2228 /* Ironlake workaround, disable clock pointer after downing FDI */
2229 if (HAS_PCH_IBX(dev))
2230 I915_WRITE(FDI_RX_CHICKEN(pipe),
2231 I915_READ(FDI_RX_CHICKEN(pipe) &
2232 ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2234 /* still set train pattern 1 */
2235 reg = FDI_TX_CTL(pipe);
2236 temp = I915_READ(reg);
2237 temp &= ~FDI_LINK_TRAIN_NONE;
2238 temp |= FDI_LINK_TRAIN_PATTERN_1;
2239 I915_WRITE(reg, temp);
2241 reg = FDI_RX_CTL(pipe);
2242 temp = I915_READ(reg);
2243 if (HAS_PCH_CPT(dev)) {
2244 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2245 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2247 temp &= ~FDI_LINK_TRAIN_NONE;
2248 temp |= FDI_LINK_TRAIN_PATTERN_1;
2250 /* BPC in FDI rx is consistent with that in PIPECONF */
2251 temp &= ~(0x07 << 16);
2252 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2253 I915_WRITE(reg, temp);
2258 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2259 temp = I915_READ(PCH_LVDS);
2260 if (temp & LVDS_PORT_EN) {
2261 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2262 POSTING_READ(PCH_LVDS);
2267 /* disable PCH transcoder */
2268 reg = TRANSCONF(plane);
2269 temp = I915_READ(reg);
2270 if (temp & TRANS_ENABLE) {
2271 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2272 /* wait for PCH transcoder off, transcoder state */
2273 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2274 DRM_ERROR("failed to disable transcoder\n");
2277 if (HAS_PCH_CPT(dev)) {
2278 /* disable TRANS_DP_CTL */
2279 reg = TRANS_DP_CTL(pipe);
2280 temp = I915_READ(reg);
2281 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2282 I915_WRITE(reg, temp);
2284 /* disable DPLL_SEL */
2285 temp = I915_READ(PCH_DPLL_SEL);
2287 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2289 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2290 I915_WRITE(PCH_DPLL_SEL, temp);
2293 /* disable PCH DPLL */
2294 reg = PCH_DPLL(pipe);
2295 temp = I915_READ(reg);
2296 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2298 /* Switch from PCDclk to Rawclk */
2299 reg = FDI_RX_CTL(pipe);
2300 temp = I915_READ(reg);
2301 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2303 /* Disable CPU FDI TX PLL */
2304 reg = FDI_TX_CTL(pipe);
2305 temp = I915_READ(reg);
2306 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2311 reg = FDI_RX_CTL(pipe);
2312 temp = I915_READ(reg);
2313 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2315 /* Wait for the clocks to turn off. */
2319 intel_crtc->active = false;
2320 intel_update_watermarks(dev);
2321 intel_update_fbc(dev);
2322 intel_clear_scanline_wait(dev);
2325 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2327 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2328 int pipe = intel_crtc->pipe;
2329 int plane = intel_crtc->plane;
2331 /* XXX: When our outputs are all unaware of DPMS modes other than off
2332 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2335 case DRM_MODE_DPMS_ON:
2336 case DRM_MODE_DPMS_STANDBY:
2337 case DRM_MODE_DPMS_SUSPEND:
2338 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2339 ironlake_crtc_enable(crtc);
2342 case DRM_MODE_DPMS_OFF:
2343 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2344 ironlake_crtc_disable(crtc);
2349 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2351 if (!enable && intel_crtc->overlay) {
2352 struct drm_device *dev = intel_crtc->base.dev;
2354 mutex_lock(&dev->struct_mutex);
2355 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2356 mutex_unlock(&dev->struct_mutex);
2359 /* Let userspace switch the overlay on again. In most cases userspace
2360 * has to recompute where to put it anyway.
2364 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2366 struct drm_device *dev = crtc->dev;
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2369 int pipe = intel_crtc->pipe;
2370 int plane = intel_crtc->plane;
2373 if (intel_crtc->active)
2376 intel_crtc->active = true;
2377 intel_update_watermarks(dev);
2379 /* Enable the DPLL */
2381 temp = I915_READ(reg);
2382 if ((temp & DPLL_VCO_ENABLE) == 0) {
2383 I915_WRITE(reg, temp);
2385 /* Wait for the clocks to stabilize. */
2389 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2391 /* Wait for the clocks to stabilize. */
2395 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2397 /* Wait for the clocks to stabilize. */
2402 /* Enable the pipe */
2403 reg = PIPECONF(pipe);
2404 temp = I915_READ(reg);
2405 if ((temp & PIPECONF_ENABLE) == 0)
2406 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2408 /* Enable the plane */
2409 reg = DSPCNTR(plane);
2410 temp = I915_READ(reg);
2411 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2412 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2413 intel_flush_display_plane(dev, plane);
2416 intel_crtc_load_lut(crtc);
2417 intel_update_fbc(dev);
2419 /* Give the overlay scaler a chance to enable if it's on this pipe */
2420 intel_crtc_dpms_overlay(intel_crtc, true);
2421 intel_crtc_update_cursor(crtc, true);
2424 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2426 struct drm_device *dev = crtc->dev;
2427 struct drm_i915_private *dev_priv = dev->dev_private;
2428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2429 int pipe = intel_crtc->pipe;
2430 int plane = intel_crtc->plane;
2433 if (!intel_crtc->active)
2436 /* Give the overlay scaler a chance to disable if it's on this pipe */
2437 intel_crtc_wait_for_pending_flips(crtc);
2438 drm_vblank_off(dev, pipe);
2439 intel_crtc_dpms_overlay(intel_crtc, false);
2440 intel_crtc_update_cursor(crtc, false);
2442 if (dev_priv->cfb_plane == plane &&
2443 dev_priv->display.disable_fbc)
2444 dev_priv->display.disable_fbc(dev);
2446 /* Disable display plane */
2447 reg = DSPCNTR(plane);
2448 temp = I915_READ(reg);
2449 if (temp & DISPLAY_PLANE_ENABLE) {
2450 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2451 /* Flush the plane changes */
2452 intel_flush_display_plane(dev, plane);
2454 /* Wait for vblank for the disable to take effect */
2456 intel_wait_for_vblank(dev, pipe);
2459 /* Don't disable pipe A or pipe A PLLs if needed */
2460 if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2463 /* Next, disable display pipes */
2464 reg = PIPECONF(pipe);
2465 temp = I915_READ(reg);
2466 if (temp & PIPECONF_ENABLE) {
2467 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2469 /* Wait for the pipe to turn off */
2471 intel_wait_for_pipe_off(dev, pipe);
2475 temp = I915_READ(reg);
2476 if (temp & DPLL_VCO_ENABLE) {
2477 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2479 /* Wait for the clocks to turn off. */
2485 intel_crtc->active = false;
2486 intel_update_fbc(dev);
2487 intel_update_watermarks(dev);
2488 intel_clear_scanline_wait(dev);
2491 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2493 /* XXX: When our outputs are all unaware of DPMS modes other than off
2494 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2497 case DRM_MODE_DPMS_ON:
2498 case DRM_MODE_DPMS_STANDBY:
2499 case DRM_MODE_DPMS_SUSPEND:
2500 i9xx_crtc_enable(crtc);
2502 case DRM_MODE_DPMS_OFF:
2503 i9xx_crtc_disable(crtc);
2509 * Sets the power management mode of the pipe and plane.
2511 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2513 struct drm_device *dev = crtc->dev;
2514 struct drm_i915_private *dev_priv = dev->dev_private;
2515 struct drm_i915_master_private *master_priv;
2516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2517 int pipe = intel_crtc->pipe;
2520 if (intel_crtc->dpms_mode == mode)
2523 intel_crtc->dpms_mode = mode;
2525 dev_priv->display.dpms(crtc, mode);
2527 if (!dev->primary->master)
2530 master_priv = dev->primary->master->driver_priv;
2531 if (!master_priv->sarea_priv)
2534 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2538 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2539 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2542 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2543 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2546 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2551 static void intel_crtc_disable(struct drm_crtc *crtc)
2553 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2554 struct drm_device *dev = crtc->dev;
2556 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2559 mutex_lock(&dev->struct_mutex);
2560 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2561 mutex_unlock(&dev->struct_mutex);
2565 /* Prepare for a mode set.
2567 * Note we could be a lot smarter here. We need to figure out which outputs
2568 * will be enabled, which disabled (in short, how the config will changes)
2569 * and perform the minimum necessary steps to accomplish that, e.g. updating
2570 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2571 * panel fitting is in the proper state, etc.
2573 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2575 i9xx_crtc_disable(crtc);
2578 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2580 i9xx_crtc_enable(crtc);
2583 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2585 ironlake_crtc_disable(crtc);
2588 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2590 ironlake_crtc_enable(crtc);
2593 void intel_encoder_prepare (struct drm_encoder *encoder)
2595 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2596 /* lvds has its own version of prepare see intel_lvds_prepare */
2597 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2600 void intel_encoder_commit (struct drm_encoder *encoder)
2602 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2603 /* lvds has its own version of commit see intel_lvds_commit */
2604 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2607 void intel_encoder_destroy(struct drm_encoder *encoder)
2609 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2611 drm_encoder_cleanup(encoder);
2612 kfree(intel_encoder);
2615 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2616 struct drm_display_mode *mode,
2617 struct drm_display_mode *adjusted_mode)
2619 struct drm_device *dev = crtc->dev;
2621 if (HAS_PCH_SPLIT(dev)) {
2622 /* FDI link clock is fixed at 2.7G */
2623 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2627 /* XXX some encoders set the crtcinfo, others don't.
2628 * Obviously we need some form of conflict resolution here...
2630 if (adjusted_mode->crtc_htotal == 0)
2631 drm_mode_set_crtcinfo(adjusted_mode, 0);
2636 static int i945_get_display_clock_speed(struct drm_device *dev)
2641 static int i915_get_display_clock_speed(struct drm_device *dev)
2646 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2651 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2655 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2657 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2660 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2661 case GC_DISPLAY_CLOCK_333_MHZ:
2664 case GC_DISPLAY_CLOCK_190_200_MHZ:
2670 static int i865_get_display_clock_speed(struct drm_device *dev)
2675 static int i855_get_display_clock_speed(struct drm_device *dev)
2678 /* Assume that the hardware is in the high speed state. This
2679 * should be the default.
2681 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2682 case GC_CLOCK_133_200:
2683 case GC_CLOCK_100_200:
2685 case GC_CLOCK_166_250:
2687 case GC_CLOCK_100_133:
2691 /* Shouldn't happen */
2695 static int i830_get_display_clock_speed(struct drm_device *dev)
2709 fdi_reduce_ratio(u32 *num, u32 *den)
2711 while (*num > 0xffffff || *den > 0xffffff) {
2718 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2719 int link_clock, struct fdi_m_n *m_n)
2721 m_n->tu = 64; /* default size */
2723 /* BUG_ON(pixel_clock > INT_MAX / 36); */
2724 m_n->gmch_m = bits_per_pixel * pixel_clock;
2725 m_n->gmch_n = link_clock * nlanes * 8;
2726 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2728 m_n->link_m = pixel_clock;
2729 m_n->link_n = link_clock;
2730 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2734 struct intel_watermark_params {
2735 unsigned long fifo_size;
2736 unsigned long max_wm;
2737 unsigned long default_wm;
2738 unsigned long guard_size;
2739 unsigned long cacheline_size;
2742 /* Pineview has different values for various configs */
2743 static struct intel_watermark_params pineview_display_wm = {
2744 PINEVIEW_DISPLAY_FIFO,
2748 PINEVIEW_FIFO_LINE_SIZE
2750 static struct intel_watermark_params pineview_display_hplloff_wm = {
2751 PINEVIEW_DISPLAY_FIFO,
2753 PINEVIEW_DFT_HPLLOFF_WM,
2755 PINEVIEW_FIFO_LINE_SIZE
2757 static struct intel_watermark_params pineview_cursor_wm = {
2758 PINEVIEW_CURSOR_FIFO,
2759 PINEVIEW_CURSOR_MAX_WM,
2760 PINEVIEW_CURSOR_DFT_WM,
2761 PINEVIEW_CURSOR_GUARD_WM,
2762 PINEVIEW_FIFO_LINE_SIZE,
2764 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2765 PINEVIEW_CURSOR_FIFO,
2766 PINEVIEW_CURSOR_MAX_WM,
2767 PINEVIEW_CURSOR_DFT_WM,
2768 PINEVIEW_CURSOR_GUARD_WM,
2769 PINEVIEW_FIFO_LINE_SIZE
2771 static struct intel_watermark_params g4x_wm_info = {
2778 static struct intel_watermark_params g4x_cursor_wm_info = {
2785 static struct intel_watermark_params i965_cursor_wm_info = {
2790 I915_FIFO_LINE_SIZE,
2792 static struct intel_watermark_params i945_wm_info = {
2799 static struct intel_watermark_params i915_wm_info = {
2806 static struct intel_watermark_params i855_wm_info = {
2813 static struct intel_watermark_params i830_wm_info = {
2821 static struct intel_watermark_params ironlake_display_wm_info = {
2829 static struct intel_watermark_params ironlake_cursor_wm_info = {
2837 static struct intel_watermark_params ironlake_display_srwm_info = {
2838 ILK_DISPLAY_SR_FIFO,
2839 ILK_DISPLAY_MAX_SRWM,
2840 ILK_DISPLAY_DFT_SRWM,
2845 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2847 ILK_CURSOR_MAX_SRWM,
2848 ILK_CURSOR_DFT_SRWM,
2854 * intel_calculate_wm - calculate watermark level
2855 * @clock_in_khz: pixel clock
2856 * @wm: chip FIFO params
2857 * @pixel_size: display pixel size
2858 * @latency_ns: memory latency for the platform
2860 * Calculate the watermark level (the level at which the display plane will
2861 * start fetching from memory again). Each chip has a different display
2862 * FIFO size and allocation, so the caller needs to figure that out and pass
2863 * in the correct intel_watermark_params structure.
2865 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2866 * on the pixel size. When it reaches the watermark level, it'll start
2867 * fetching FIFO line sized based chunks from memory until the FIFO fills
2868 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2869 * will occur, and a display engine hang could result.
2871 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2872 struct intel_watermark_params *wm,
2874 unsigned long latency_ns)
2876 long entries_required, wm_size;
2879 * Note: we need to make sure we don't overflow for various clock &
2881 * clocks go from a few thousand to several hundred thousand.
2882 * latency is usually a few thousand
2884 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2886 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2888 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2890 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2892 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2894 /* Don't promote wm_size to unsigned... */
2895 if (wm_size > (long)wm->max_wm)
2896 wm_size = wm->max_wm;
2898 wm_size = wm->default_wm;
2902 struct cxsr_latency {
2905 unsigned long fsb_freq;
2906 unsigned long mem_freq;
2907 unsigned long display_sr;
2908 unsigned long display_hpll_disable;
2909 unsigned long cursor_sr;
2910 unsigned long cursor_hpll_disable;
2913 static const struct cxsr_latency cxsr_latency_table[] = {
2914 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2915 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2916 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2917 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2918 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2920 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2921 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2922 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2923 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2924 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2926 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2927 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2928 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2929 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2930 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2932 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2933 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2934 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2935 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2936 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2938 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2939 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2940 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2941 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2942 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2944 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2945 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2946 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2947 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2948 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2951 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2956 const struct cxsr_latency *latency;
2959 if (fsb == 0 || mem == 0)
2962 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2963 latency = &cxsr_latency_table[i];
2964 if (is_desktop == latency->is_desktop &&
2965 is_ddr3 == latency->is_ddr3 &&
2966 fsb == latency->fsb_freq && mem == latency->mem_freq)
2970 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2975 static void pineview_disable_cxsr(struct drm_device *dev)
2977 struct drm_i915_private *dev_priv = dev->dev_private;
2979 /* deactivate cxsr */
2980 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2984 * Latency for FIFO fetches is dependent on several factors:
2985 * - memory configuration (speed, channels)
2987 * - current MCH state
2988 * It can be fairly high in some situations, so here we assume a fairly
2989 * pessimal value. It's a tradeoff between extra memory fetches (if we
2990 * set this value too high, the FIFO will fetch frequently to stay full)
2991 * and power consumption (set it too low to save power and we might see
2992 * FIFO underruns and display "flicker").
2994 * A value of 5us seems to be a good balance; safe for very low end
2995 * platforms but not overly aggressive on lower latency configs.
2997 static const int latency_ns = 5000;
2999 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3001 struct drm_i915_private *dev_priv = dev->dev_private;
3002 uint32_t dsparb = I915_READ(DSPARB);
3005 size = dsparb & 0x7f;
3007 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3009 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3010 plane ? "B" : "A", size);
3015 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3017 struct drm_i915_private *dev_priv = dev->dev_private;
3018 uint32_t dsparb = I915_READ(DSPARB);
3021 size = dsparb & 0x1ff;
3023 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3024 size >>= 1; /* Convert to cachelines */
3026 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3027 plane ? "B" : "A", size);
3032 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3034 struct drm_i915_private *dev_priv = dev->dev_private;
3035 uint32_t dsparb = I915_READ(DSPARB);
3038 size = dsparb & 0x7f;
3039 size >>= 2; /* Convert to cachelines */
3041 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3048 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3050 struct drm_i915_private *dev_priv = dev->dev_private;
3051 uint32_t dsparb = I915_READ(DSPARB);
3054 size = dsparb & 0x7f;
3055 size >>= 1; /* Convert to cachelines */
3057 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3058 plane ? "B" : "A", size);
3063 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3064 int planeb_clock, int sr_hdisplay, int unused,
3067 struct drm_i915_private *dev_priv = dev->dev_private;
3068 const struct cxsr_latency *latency;
3073 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3074 dev_priv->fsb_freq, dev_priv->mem_freq);
3076 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3077 pineview_disable_cxsr(dev);
3081 if (!planea_clock || !planeb_clock) {
3082 sr_clock = planea_clock ? planea_clock : planeb_clock;
3085 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3086 pixel_size, latency->display_sr);
3087 reg = I915_READ(DSPFW1);
3088 reg &= ~DSPFW_SR_MASK;
3089 reg |= wm << DSPFW_SR_SHIFT;
3090 I915_WRITE(DSPFW1, reg);
3091 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3094 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3095 pixel_size, latency->cursor_sr);
3096 reg = I915_READ(DSPFW3);
3097 reg &= ~DSPFW_CURSOR_SR_MASK;
3098 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3099 I915_WRITE(DSPFW3, reg);
3101 /* Display HPLL off SR */
3102 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3103 pixel_size, latency->display_hpll_disable);
3104 reg = I915_READ(DSPFW3);
3105 reg &= ~DSPFW_HPLL_SR_MASK;
3106 reg |= wm & DSPFW_HPLL_SR_MASK;
3107 I915_WRITE(DSPFW3, reg);
3109 /* cursor HPLL off SR */
3110 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3111 pixel_size, latency->cursor_hpll_disable);
3112 reg = I915_READ(DSPFW3);
3113 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3114 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3115 I915_WRITE(DSPFW3, reg);
3116 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3120 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3121 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3123 pineview_disable_cxsr(dev);
3124 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3128 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3129 int planeb_clock, int sr_hdisplay, int sr_htotal,
3132 struct drm_i915_private *dev_priv = dev->dev_private;
3133 int total_size, cacheline_size;
3134 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3135 struct intel_watermark_params planea_params, planeb_params;
3136 unsigned long line_time_us;
3137 int sr_clock, sr_entries = 0, entries_required;
3139 /* Create copies of the base settings for each pipe */
3140 planea_params = planeb_params = g4x_wm_info;
3142 /* Grab a couple of global values before we overwrite them */
3143 total_size = planea_params.fifo_size;
3144 cacheline_size = planea_params.cacheline_size;
3147 * Note: we need to make sure we don't overflow for various clock &
3149 * clocks go from a few thousand to several hundred thousand.
3150 * latency is usually a few thousand
3152 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3154 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3155 planea_wm = entries_required + planea_params.guard_size;
3157 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3159 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3160 planeb_wm = entries_required + planeb_params.guard_size;
3162 cursora_wm = cursorb_wm = 16;
3165 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3167 /* Calc sr entries for one plane configs */
3168 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3169 /* self-refresh has much higher latency */
3170 static const int sr_latency_ns = 12000;
3172 sr_clock = planea_clock ? planea_clock : planeb_clock;
3173 line_time_us = ((sr_htotal * 1000) / sr_clock);
3175 /* Use ns/us then divide to preserve precision */
3176 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3177 pixel_size * sr_hdisplay;
3178 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3180 entries_required = (((sr_latency_ns / line_time_us) +
3181 1000) / 1000) * pixel_size * 64;
3182 entries_required = DIV_ROUND_UP(entries_required,
3183 g4x_cursor_wm_info.cacheline_size);
3184 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3186 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3187 cursor_sr = g4x_cursor_wm_info.max_wm;
3188 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3189 "cursor %d\n", sr_entries, cursor_sr);
3191 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3193 /* Turn off self refresh if both pipes are enabled */
3194 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3198 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3199 planea_wm, planeb_wm, sr_entries);
3204 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3205 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3206 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3207 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3208 (cursora_wm << DSPFW_CURSORA_SHIFT));
3209 /* HPLL off in SR has some issues on G4x... disable it */
3210 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3211 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3214 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3215 int planeb_clock, int sr_hdisplay, int sr_htotal,
3218 struct drm_i915_private *dev_priv = dev->dev_private;
3219 unsigned long line_time_us;
3220 int sr_clock, sr_entries, srwm = 1;
3223 /* Calc sr entries for one plane configs */
3224 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3225 /* self-refresh has much higher latency */
3226 static const int sr_latency_ns = 12000;
3228 sr_clock = planea_clock ? planea_clock : planeb_clock;
3229 line_time_us = ((sr_htotal * 1000) / sr_clock);
3231 /* Use ns/us then divide to preserve precision */
3232 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3233 pixel_size * sr_hdisplay;
3234 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3235 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3236 srwm = I965_FIFO_SIZE - sr_entries;
3241 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3243 sr_entries = DIV_ROUND_UP(sr_entries,
3244 i965_cursor_wm_info.cacheline_size);
3245 cursor_sr = i965_cursor_wm_info.fifo_size -
3246 (sr_entries + i965_cursor_wm_info.guard_size);
3248 if (cursor_sr > i965_cursor_wm_info.max_wm)
3249 cursor_sr = i965_cursor_wm_info.max_wm;
3251 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3252 "cursor %d\n", srwm, cursor_sr);
3254 if (IS_CRESTLINE(dev))
3255 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3257 /* Turn off self refresh if both pipes are enabled */
3258 if (IS_CRESTLINE(dev))
3259 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3263 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3266 /* 965 has limitations... */
3267 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3269 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3270 /* update cursor SR watermark */
3271 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3274 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3275 int planeb_clock, int sr_hdisplay, int sr_htotal,
3278 struct drm_i915_private *dev_priv = dev->dev_private;
3281 int total_size, cacheline_size, cwm, srwm = 1;
3282 int planea_wm, planeb_wm;
3283 struct intel_watermark_params planea_params, planeb_params;
3284 unsigned long line_time_us;
3285 int sr_clock, sr_entries = 0;
3287 /* Create copies of the base settings for each pipe */
3288 if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3289 planea_params = planeb_params = i945_wm_info;
3290 else if (!IS_GEN2(dev))
3291 planea_params = planeb_params = i915_wm_info;
3293 planea_params = planeb_params = i855_wm_info;
3295 /* Grab a couple of global values before we overwrite them */
3296 total_size = planea_params.fifo_size;
3297 cacheline_size = planea_params.cacheline_size;
3299 /* Update per-plane FIFO sizes */
3300 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3301 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3303 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3304 pixel_size, latency_ns);
3305 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3306 pixel_size, latency_ns);
3307 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3310 * Overlay gets an aggressive default since video jitter is bad.
3314 /* Calc sr entries for one plane configs */
3315 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3316 (!planea_clock || !planeb_clock)) {
3317 /* self-refresh has much higher latency */
3318 static const int sr_latency_ns = 6000;
3320 sr_clock = planea_clock ? planea_clock : planeb_clock;
3321 line_time_us = ((sr_htotal * 1000) / sr_clock);
3323 /* Use ns/us then divide to preserve precision */
3324 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3325 pixel_size * sr_hdisplay;
3326 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3327 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3328 srwm = total_size - sr_entries;
3332 if (IS_I945G(dev) || IS_I945GM(dev))
3333 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3334 else if (IS_I915GM(dev)) {
3335 /* 915M has a smaller SRWM field */
3336 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3337 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3340 /* Turn off self refresh if both pipes are enabled */
3341 if (IS_I945G(dev) || IS_I945GM(dev)) {
3342 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3344 } else if (IS_I915GM(dev)) {
3345 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3349 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3350 planea_wm, planeb_wm, cwm, srwm);
3352 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3353 fwater_hi = (cwm & 0x1f);
3355 /* Set request length to 8 cachelines per fetch */
3356 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3357 fwater_hi = fwater_hi | (1 << 8);
3359 I915_WRITE(FW_BLC, fwater_lo);
3360 I915_WRITE(FW_BLC2, fwater_hi);
3363 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3364 int unused2, int unused3, int pixel_size)
3366 struct drm_i915_private *dev_priv = dev->dev_private;
3367 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3370 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3372 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3373 pixel_size, latency_ns);
3374 fwater_lo |= (3<<8) | planea_wm;
3376 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3378 I915_WRITE(FW_BLC, fwater_lo);
3381 #define ILK_LP0_PLANE_LATENCY 700
3382 #define ILK_LP0_CURSOR_LATENCY 1300
3384 static bool ironlake_compute_wm0(struct drm_device *dev,
3389 struct drm_crtc *crtc;
3390 int htotal, hdisplay, clock, pixel_size = 0;
3391 int line_time_us, line_count, entries;
3393 crtc = intel_get_crtc_for_pipe(dev, pipe);
3394 if (crtc->fb == NULL || !crtc->enabled)
3397 htotal = crtc->mode.htotal;
3398 hdisplay = crtc->mode.hdisplay;
3399 clock = crtc->mode.clock;
3400 pixel_size = crtc->fb->bits_per_pixel / 8;
3402 /* Use the small buffer method to calculate plane watermark */
3403 entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3404 entries = DIV_ROUND_UP(entries,
3405 ironlake_display_wm_info.cacheline_size);
3406 *plane_wm = entries + ironlake_display_wm_info.guard_size;
3407 if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3408 *plane_wm = ironlake_display_wm_info.max_wm;
3410 /* Use the large buffer method to calculate cursor watermark */
3411 line_time_us = ((htotal * 1000) / clock);
3412 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3413 entries = line_count * 64 * pixel_size;
3414 entries = DIV_ROUND_UP(entries,
3415 ironlake_cursor_wm_info.cacheline_size);
3416 *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3417 if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3418 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3423 static void ironlake_update_wm(struct drm_device *dev,
3424 int planea_clock, int planeb_clock,
3425 int sr_hdisplay, int sr_htotal,
3428 struct drm_i915_private *dev_priv = dev->dev_private;
3429 int plane_wm, cursor_wm, enabled;
3433 if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3434 I915_WRITE(WM0_PIPEA_ILK,
3435 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3436 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3437 " plane %d, " "cursor: %d\n",
3438 plane_wm, cursor_wm);
3442 if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3443 I915_WRITE(WM0_PIPEB_ILK,
3444 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3445 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3446 " plane %d, cursor: %d\n",
3447 plane_wm, cursor_wm);
3452 * Calculate and update the self-refresh watermark only when one
3453 * display plane is used.
3456 if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3457 unsigned long line_time_us;
3458 int small, large, plane_fbc;
3459 int sr_clock, entries;
3460 int line_count, line_size;
3461 /* Read the self-refresh latency. The unit is 0.5us */
3462 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3464 sr_clock = planea_clock ? planea_clock : planeb_clock;
3465 line_time_us = (sr_htotal * 1000) / sr_clock;
3467 /* Use ns/us then divide to preserve precision */
3468 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3470 line_size = sr_hdisplay * pixel_size;
3472 /* Use the minimum of the small and large buffer method for primary */
3473 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3474 large = line_count * line_size;
3476 entries = DIV_ROUND_UP(min(small, large),
3477 ironlake_display_srwm_info.cacheline_size);
3479 plane_fbc = entries * 64;
3480 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3482 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3483 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3484 plane_wm = ironlake_display_srwm_info.max_wm;
3486 /* calculate the self-refresh watermark for display cursor */
3487 entries = line_count * pixel_size * 64;
3488 entries = DIV_ROUND_UP(entries,
3489 ironlake_cursor_srwm_info.cacheline_size);
3491 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3492 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3493 cursor_wm = ironlake_cursor_srwm_info.max_wm;
3495 /* configure watermark and enable self-refresh */
3496 tmp = (WM1_LP_SR_EN |
3497 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3498 (plane_fbc << WM1_LP_FBC_SHIFT) |
3499 (plane_wm << WM1_LP_SR_SHIFT) |
3501 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3502 " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3504 I915_WRITE(WM1_LP_ILK, tmp);
3505 /* XXX setup WM2 and WM3 */
3509 * intel_update_watermarks - update FIFO watermark values based on current modes
3511 * Calculate watermark values for the various WM regs based on current mode
3512 * and plane configuration.
3514 * There are several cases to deal with here:
3515 * - normal (i.e. non-self-refresh)
3516 * - self-refresh (SR) mode
3517 * - lines are large relative to FIFO size (buffer can hold up to 2)
3518 * - lines are small relative to FIFO size (buffer can hold more than 2
3519 * lines), so need to account for TLB latency
3521 * The normal calculation is:
3522 * watermark = dotclock * bytes per pixel * latency
3523 * where latency is platform & configuration dependent (we assume pessimal
3526 * The SR calculation is:
3527 * watermark = (trunc(latency/line time)+1) * surface width *
3530 * line time = htotal / dotclock
3531 * surface width = hdisplay for normal plane and 64 for cursor
3532 * and latency is assumed to be high, as above.
3534 * The final value programmed to the register should always be rounded up,
3535 * and include an extra 2 entries to account for clock crossings.
3537 * We don't use the sprite, so we can ignore that. And on Crestline we have
3538 * to set the non-SR watermarks to 8.
3540 static void intel_update_watermarks(struct drm_device *dev)
3542 struct drm_i915_private *dev_priv = dev->dev_private;
3543 struct drm_crtc *crtc;
3544 int sr_hdisplay = 0;
3545 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3546 int enabled = 0, pixel_size = 0;
3549 if (!dev_priv->display.update_wm)
3552 /* Get the clock config from both planes */
3553 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3554 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3555 if (intel_crtc->active) {
3557 if (intel_crtc->plane == 0) {
3558 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3559 intel_crtc->pipe, crtc->mode.clock);
3560 planea_clock = crtc->mode.clock;
3562 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3563 intel_crtc->pipe, crtc->mode.clock);
3564 planeb_clock = crtc->mode.clock;
3566 sr_hdisplay = crtc->mode.hdisplay;
3567 sr_clock = crtc->mode.clock;
3568 sr_htotal = crtc->mode.htotal;
3570 pixel_size = crtc->fb->bits_per_pixel / 8;
3572 pixel_size = 4; /* by default */
3579 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3580 sr_hdisplay, sr_htotal, pixel_size);
3583 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3584 struct drm_display_mode *mode,
3585 struct drm_display_mode *adjusted_mode,
3587 struct drm_framebuffer *old_fb)
3589 struct drm_device *dev = crtc->dev;
3590 struct drm_i915_private *dev_priv = dev->dev_private;
3591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3592 int pipe = intel_crtc->pipe;
3593 int plane = intel_crtc->plane;
3594 u32 fp_reg, dpll_reg;
3595 int refclk, num_connectors = 0;
3596 intel_clock_t clock, reduced_clock;
3597 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3598 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3599 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3600 struct intel_encoder *has_edp_encoder = NULL;
3601 struct drm_mode_config *mode_config = &dev->mode_config;
3602 struct intel_encoder *encoder;
3603 const intel_limit_t *limit;
3605 struct fdi_m_n m_n = {0};
3609 drm_vblank_pre_modeset(dev, pipe);
3611 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3612 if (encoder->base.crtc != crtc)
3615 switch (encoder->type) {
3616 case INTEL_OUTPUT_LVDS:
3619 case INTEL_OUTPUT_SDVO:
3620 case INTEL_OUTPUT_HDMI:
3622 if (encoder->needs_tv_clock)
3625 case INTEL_OUTPUT_DVO:
3628 case INTEL_OUTPUT_TVOUT:
3631 case INTEL_OUTPUT_ANALOG:
3634 case INTEL_OUTPUT_DISPLAYPORT:
3637 case INTEL_OUTPUT_EDP:
3638 has_edp_encoder = encoder;
3645 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3646 refclk = dev_priv->lvds_ssc_freq * 1000;