2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
59 static void autostart_arrays(int part);
62 /* pers_list is a list of registered personalities protected
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
70 static void md_print_devices(void);
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 * Default number of read corrections we'll attempt on an rdev
80 * before ejecting it from the array. We divide the read error
81 * count by 2 for every hour elapsed between read errors.
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
85 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86 * is 1000 KB/sec, so the extra system load does not show up that much.
87 * Increase it if you want to have more _guaranteed_ speed. Note that
88 * the RAID driver will use the maximum available bandwidth if the IO
89 * subsystem is idle. There is also an 'absolute maximum' reconstruction
90 * speed limit - in case reconstruction slows down your system despite
93 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94 * or /sys/block/mdX/md/sync_speed_{min,max}
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
101 return mddev->sync_speed_min ?
102 mddev->sync_speed_min : sysctl_speed_limit_min;
105 static inline int speed_max(struct mddev *mddev)
107 return mddev->sync_speed_max ?
108 mddev->sync_speed_max : sysctl_speed_limit_max;
111 static struct ctl_table_header *raid_table_header;
113 static ctl_table raid_table[] = {
115 .procname = "speed_limit_min",
116 .data = &sysctl_speed_limit_min,
117 .maxlen = sizeof(int),
118 .mode = S_IRUGO|S_IWUSR,
119 .proc_handler = proc_dointvec,
122 .procname = "speed_limit_max",
123 .data = &sysctl_speed_limit_max,
124 .maxlen = sizeof(int),
125 .mode = S_IRUGO|S_IWUSR,
126 .proc_handler = proc_dointvec,
131 static ctl_table raid_dir_table[] = {
135 .mode = S_IRUGO|S_IXUGO,
141 static ctl_table raid_root_table[] = {
146 .child = raid_dir_table,
151 static const struct block_device_operations md_fops;
153 static int start_readonly;
156 * like bio_clone, but with a local bio set
159 static void mddev_bio_destructor(struct bio *bio)
161 struct mddev *mddev, **mddevp;
166 bio_free(bio, mddev->bio_set);
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
173 struct mddev **mddevp;
175 if (!mddev || !mddev->bio_set)
176 return bio_alloc(gfp_mask, nr_iovecs);
178 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
184 b->bi_destructor = mddev_bio_destructor;
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
193 struct mddev **mddevp;
195 if (!mddev || !mddev->bio_set)
196 return bio_clone(bio, gfp_mask);
198 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
204 b->bi_destructor = mddev_bio_destructor;
206 if (bio_integrity(bio)) {
209 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
221 void md_trim_bio(struct bio *bio, int offset, int size)
223 /* 'bio' is a cloned bio which we need to trim to match
224 * the given offset and size.
225 * This requires adjusting bi_sector, bi_size, and bi_io_vec
228 struct bio_vec *bvec;
232 if (offset == 0 && size == bio->bi_size)
235 bio->bi_sector += offset;
238 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
240 while (bio->bi_idx < bio->bi_vcnt &&
241 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242 /* remove this whole bio_vec */
243 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
246 if (bio->bi_idx < bio->bi_vcnt) {
247 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
250 /* avoid any complications with bi_idx being non-zero*/
252 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254 bio->bi_vcnt -= bio->bi_idx;
257 /* Make sure vcnt and last bv are not too big */
258 bio_for_each_segment(bvec, bio, i) {
259 if (sofar + bvec->bv_len > size)
260 bvec->bv_len = size - sofar;
261 if (bvec->bv_len == 0) {
265 sofar += bvec->bv_len;
268 EXPORT_SYMBOL_GPL(md_trim_bio);
271 * We have a system wide 'event count' that is incremented
272 * on any 'interesting' event, and readers of /proc/mdstat
273 * can use 'poll' or 'select' to find out when the event
277 * start array, stop array, error, add device, remove device,
278 * start build, activate spare
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
284 atomic_inc(&md_event_count);
285 wake_up(&md_event_waiters);
287 EXPORT_SYMBOL_GPL(md_new_event);
289 /* Alternate version that can be called from interrupts
290 * when calling sysfs_notify isn't needed.
292 static void md_new_event_inintr(struct mddev *mddev)
294 atomic_inc(&md_event_count);
295 wake_up(&md_event_waiters);
299 * Enables to iterate over all existing md arrays
300 * all_mddevs_lock protects this list.
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
307 * iterates through all used mddevs in the system.
308 * We take care to grab the all_mddevs_lock whenever navigating
309 * the list, and to always hold a refcount when unlocked.
310 * Any code which breaks out of this loop while own
311 * a reference to the current mddev and must mddev_put it.
313 #define for_each_mddev(_mddev,_tmp) \
315 for (({ spin_lock(&all_mddevs_lock); \
316 _tmp = all_mddevs.next; \
318 ({ if (_tmp != &all_mddevs) \
319 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320 spin_unlock(&all_mddevs_lock); \
321 if (_mddev) mddev_put(_mddev); \
322 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
323 _tmp != &all_mddevs;}); \
324 ({ spin_lock(&all_mddevs_lock); \
325 _tmp = _tmp->next;}) \
329 /* Rather than calling directly into the personality make_request function,
330 * IO requests come here first so that we can check if the device is
331 * being suspended pending a reconfiguration.
332 * We hold a refcount over the call to ->make_request. By the time that
333 * call has finished, the bio has been linked into some internal structure
334 * and so is visible to ->quiesce(), so we don't need the refcount any more.
336 static void md_make_request(struct request_queue *q, struct bio *bio)
338 const int rw = bio_data_dir(bio);
339 struct mddev *mddev = q->queuedata;
341 unsigned int sectors;
343 if (mddev == NULL || mddev->pers == NULL
348 smp_rmb(); /* Ensure implications of 'active' are visible */
350 if (mddev->suspended) {
353 prepare_to_wait(&mddev->sb_wait, &__wait,
354 TASK_UNINTERRUPTIBLE);
355 if (!mddev->suspended)
361 finish_wait(&mddev->sb_wait, &__wait);
363 atomic_inc(&mddev->active_io);
367 * save the sectors now since our bio can
368 * go away inside make_request
370 sectors = bio_sectors(bio);
371 mddev->pers->make_request(mddev, bio);
373 cpu = part_stat_lock();
374 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
378 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379 wake_up(&mddev->sb_wait);
382 /* mddev_suspend makes sure no new requests are submitted
383 * to the device, and that any requests that have been submitted
384 * are completely handled.
385 * Once ->stop is called and completes, the module will be completely
388 void mddev_suspend(struct mddev *mddev)
390 BUG_ON(mddev->suspended);
391 mddev->suspended = 1;
393 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394 mddev->pers->quiesce(mddev, 1);
396 EXPORT_SYMBOL_GPL(mddev_suspend);
398 void mddev_resume(struct mddev *mddev)
400 mddev->suspended = 0;
401 wake_up(&mddev->sb_wait);
402 mddev->pers->quiesce(mddev, 0);
404 md_wakeup_thread(mddev->thread);
405 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
407 EXPORT_SYMBOL_GPL(mddev_resume);
409 int mddev_congested(struct mddev *mddev, int bits)
411 return mddev->suspended;
413 EXPORT_SYMBOL(mddev_congested);
416 * Generic flush handling for md
419 static void md_end_flush(struct bio *bio, int err)
421 struct md_rdev *rdev = bio->bi_private;
422 struct mddev *mddev = rdev->mddev;
424 rdev_dec_pending(rdev, mddev);
426 if (atomic_dec_and_test(&mddev->flush_pending)) {
427 /* The pre-request flush has finished */
428 queue_work(md_wq, &mddev->flush_work);
433 static void md_submit_flush_data(struct work_struct *ws);
435 static void submit_flushes(struct work_struct *ws)
437 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
438 struct md_rdev *rdev;
440 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441 atomic_set(&mddev->flush_pending, 1);
443 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444 if (rdev->raid_disk >= 0 &&
445 !test_bit(Faulty, &rdev->flags)) {
446 /* Take two references, one is dropped
447 * when request finishes, one after
448 * we reclaim rcu_read_lock
451 atomic_inc(&rdev->nr_pending);
452 atomic_inc(&rdev->nr_pending);
454 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455 bi->bi_end_io = md_end_flush;
456 bi->bi_private = rdev;
457 bi->bi_bdev = rdev->bdev;
458 atomic_inc(&mddev->flush_pending);
459 submit_bio(WRITE_FLUSH, bi);
461 rdev_dec_pending(rdev, mddev);
464 if (atomic_dec_and_test(&mddev->flush_pending))
465 queue_work(md_wq, &mddev->flush_work);
468 static void md_submit_flush_data(struct work_struct *ws)
470 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
471 struct bio *bio = mddev->flush_bio;
473 if (bio->bi_size == 0)
474 /* an empty barrier - all done */
477 bio->bi_rw &= ~REQ_FLUSH;
478 mddev->pers->make_request(mddev, bio);
481 mddev->flush_bio = NULL;
482 wake_up(&mddev->sb_wait);
485 void md_flush_request(struct mddev *mddev, struct bio *bio)
487 spin_lock_irq(&mddev->write_lock);
488 wait_event_lock_irq(mddev->sb_wait,
490 mddev->write_lock, /*nothing*/);
491 mddev->flush_bio = bio;
492 spin_unlock_irq(&mddev->write_lock);
494 INIT_WORK(&mddev->flush_work, submit_flushes);
495 queue_work(md_wq, &mddev->flush_work);
497 EXPORT_SYMBOL(md_flush_request);
499 /* Support for plugging.
500 * This mirrors the plugging support in request_queue, but does not
501 * require having a whole queue or request structures.
502 * We allocate an md_plug_cb for each md device and each thread it gets
503 * plugged on. This links tot the private plug_handle structure in the
504 * personality data where we keep a count of the number of outstanding
505 * plugs so other code can see if a plug is active.
508 struct blk_plug_cb cb;
512 static void plugger_unplug(struct blk_plug_cb *cb)
514 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
515 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
516 md_wakeup_thread(mdcb->mddev->thread);
520 /* Check that an unplug wakeup will come shortly.
521 * If not, wakeup the md thread immediately
523 int mddev_check_plugged(struct mddev *mddev)
525 struct blk_plug *plug = current->plug;
526 struct md_plug_cb *mdcb;
531 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
532 if (mdcb->cb.callback == plugger_unplug &&
533 mdcb->mddev == mddev) {
534 /* Already on the list, move to top */
535 if (mdcb != list_first_entry(&plug->cb_list,
538 list_move(&mdcb->cb.list, &plug->cb_list);
542 /* Not currently on the callback list */
543 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
548 mdcb->cb.callback = plugger_unplug;
549 atomic_inc(&mddev->plug_cnt);
550 list_add(&mdcb->cb.list, &plug->cb_list);
553 EXPORT_SYMBOL_GPL(mddev_check_plugged);
555 static inline struct mddev *mddev_get(struct mddev *mddev)
557 atomic_inc(&mddev->active);
561 static void mddev_delayed_delete(struct work_struct *ws);
563 static void mddev_put(struct mddev *mddev)
565 struct bio_set *bs = NULL;
567 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
569 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
570 mddev->ctime == 0 && !mddev->hold_active) {
571 /* Array is not configured at all, and not held active,
573 list_del_init(&mddev->all_mddevs);
575 mddev->bio_set = NULL;
576 if (mddev->gendisk) {
577 /* We did a probe so need to clean up. Call
578 * queue_work inside the spinlock so that
579 * flush_workqueue() after mddev_find will
580 * succeed in waiting for the work to be done.
582 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
583 queue_work(md_misc_wq, &mddev->del_work);
587 spin_unlock(&all_mddevs_lock);
592 void mddev_init(struct mddev *mddev)
594 mutex_init(&mddev->open_mutex);
595 mutex_init(&mddev->reconfig_mutex);
596 mutex_init(&mddev->bitmap_info.mutex);
597 INIT_LIST_HEAD(&mddev->disks);
598 INIT_LIST_HEAD(&mddev->all_mddevs);
599 init_timer(&mddev->safemode_timer);
600 atomic_set(&mddev->active, 1);
601 atomic_set(&mddev->openers, 0);
602 atomic_set(&mddev->active_io, 0);
603 atomic_set(&mddev->plug_cnt, 0);
604 spin_lock_init(&mddev->write_lock);
605 atomic_set(&mddev->flush_pending, 0);
606 init_waitqueue_head(&mddev->sb_wait);
607 init_waitqueue_head(&mddev->recovery_wait);
608 mddev->reshape_position = MaxSector;
609 mddev->resync_min = 0;
610 mddev->resync_max = MaxSector;
611 mddev->level = LEVEL_NONE;
613 EXPORT_SYMBOL_GPL(mddev_init);
615 static struct mddev * mddev_find(dev_t unit)
617 struct mddev *mddev, *new = NULL;
619 if (unit && MAJOR(unit) != MD_MAJOR)
620 unit &= ~((1<<MdpMinorShift)-1);
623 spin_lock(&all_mddevs_lock);
626 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
627 if (mddev->unit == unit) {
629 spin_unlock(&all_mddevs_lock);
635 list_add(&new->all_mddevs, &all_mddevs);
636 spin_unlock(&all_mddevs_lock);
637 new->hold_active = UNTIL_IOCTL;
641 /* find an unused unit number */
642 static int next_minor = 512;
643 int start = next_minor;
647 dev = MKDEV(MD_MAJOR, next_minor);
649 if (next_minor > MINORMASK)
651 if (next_minor == start) {
652 /* Oh dear, all in use. */
653 spin_unlock(&all_mddevs_lock);
659 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
660 if (mddev->unit == dev) {
666 new->md_minor = MINOR(dev);
667 new->hold_active = UNTIL_STOP;
668 list_add(&new->all_mddevs, &all_mddevs);
669 spin_unlock(&all_mddevs_lock);
672 spin_unlock(&all_mddevs_lock);
674 new = kzalloc(sizeof(*new), GFP_KERNEL);
679 if (MAJOR(unit) == MD_MAJOR)
680 new->md_minor = MINOR(unit);
682 new->md_minor = MINOR(unit) >> MdpMinorShift;
689 static inline int mddev_lock(struct mddev * mddev)
691 return mutex_lock_interruptible(&mddev->reconfig_mutex);
694 static inline int mddev_is_locked(struct mddev *mddev)
696 return mutex_is_locked(&mddev->reconfig_mutex);
699 static inline int mddev_trylock(struct mddev * mddev)
701 return mutex_trylock(&mddev->reconfig_mutex);
704 static struct attribute_group md_redundancy_group;
706 static void mddev_unlock(struct mddev * mddev)
708 if (mddev->to_remove) {
709 /* These cannot be removed under reconfig_mutex as
710 * an access to the files will try to take reconfig_mutex
711 * while holding the file unremovable, which leads to
713 * So hold set sysfs_active while the remove in happeing,
714 * and anything else which might set ->to_remove or my
715 * otherwise change the sysfs namespace will fail with
716 * -EBUSY if sysfs_active is still set.
717 * We set sysfs_active under reconfig_mutex and elsewhere
718 * test it under the same mutex to ensure its correct value
721 struct attribute_group *to_remove = mddev->to_remove;
722 mddev->to_remove = NULL;
723 mddev->sysfs_active = 1;
724 mutex_unlock(&mddev->reconfig_mutex);
726 if (mddev->kobj.sd) {
727 if (to_remove != &md_redundancy_group)
728 sysfs_remove_group(&mddev->kobj, to_remove);
729 if (mddev->pers == NULL ||
730 mddev->pers->sync_request == NULL) {
731 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
732 if (mddev->sysfs_action)
733 sysfs_put(mddev->sysfs_action);
734 mddev->sysfs_action = NULL;
737 mddev->sysfs_active = 0;
739 mutex_unlock(&mddev->reconfig_mutex);
741 /* As we've dropped the mutex we need a spinlock to
742 * make sure the thread doesn't disappear
744 spin_lock(&pers_lock);
745 md_wakeup_thread(mddev->thread);
746 spin_unlock(&pers_lock);
749 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
751 struct md_rdev *rdev;
753 list_for_each_entry(rdev, &mddev->disks, same_set)
754 if (rdev->desc_nr == nr)
760 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
762 struct md_rdev *rdev;
764 list_for_each_entry(rdev, &mddev->disks, same_set)
765 if (rdev->bdev->bd_dev == dev)
771 static struct md_personality *find_pers(int level, char *clevel)
773 struct md_personality *pers;
774 list_for_each_entry(pers, &pers_list, list) {
775 if (level != LEVEL_NONE && pers->level == level)
777 if (strcmp(pers->name, clevel)==0)
783 /* return the offset of the super block in 512byte sectors */
784 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
786 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
787 return MD_NEW_SIZE_SECTORS(num_sectors);
790 static int alloc_disk_sb(struct md_rdev * rdev)
795 rdev->sb_page = alloc_page(GFP_KERNEL);
796 if (!rdev->sb_page) {
797 printk(KERN_ALERT "md: out of memory.\n");
804 static void free_disk_sb(struct md_rdev * rdev)
807 put_page(rdev->sb_page);
809 rdev->sb_page = NULL;
814 put_page(rdev->bb_page);
815 rdev->bb_page = NULL;
820 static void super_written(struct bio *bio, int error)
822 struct md_rdev *rdev = bio->bi_private;
823 struct mddev *mddev = rdev->mddev;
825 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
826 printk("md: super_written gets error=%d, uptodate=%d\n",
827 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
828 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
829 md_error(mddev, rdev);
832 if (atomic_dec_and_test(&mddev->pending_writes))
833 wake_up(&mddev->sb_wait);
837 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
838 sector_t sector, int size, struct page *page)
840 /* write first size bytes of page to sector of rdev
841 * Increment mddev->pending_writes before returning
842 * and decrement it on completion, waking up sb_wait
843 * if zero is reached.
844 * If an error occurred, call md_error
846 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
848 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
849 bio->bi_sector = sector;
850 bio_add_page(bio, page, size, 0);
851 bio->bi_private = rdev;
852 bio->bi_end_io = super_written;
854 atomic_inc(&mddev->pending_writes);
855 submit_bio(WRITE_FLUSH_FUA, bio);
858 void md_super_wait(struct mddev *mddev)
860 /* wait for all superblock writes that were scheduled to complete */
863 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
864 if (atomic_read(&mddev->pending_writes)==0)
868 finish_wait(&mddev->sb_wait, &wq);
871 static void bi_complete(struct bio *bio, int error)
873 complete((struct completion*)bio->bi_private);
876 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
877 struct page *page, int rw, bool metadata_op)
879 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
880 struct completion event;
885 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
886 rdev->meta_bdev : rdev->bdev;
888 bio->bi_sector = sector + rdev->sb_start;
890 bio->bi_sector = sector + rdev->data_offset;
891 bio_add_page(bio, page, size, 0);
892 init_completion(&event);
893 bio->bi_private = &event;
894 bio->bi_end_io = bi_complete;
896 wait_for_completion(&event);
898 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
902 EXPORT_SYMBOL_GPL(sync_page_io);
904 static int read_disk_sb(struct md_rdev * rdev, int size)
906 char b[BDEVNAME_SIZE];
907 if (!rdev->sb_page) {
915 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
921 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
922 bdevname(rdev->bdev,b));
926 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
928 return sb1->set_uuid0 == sb2->set_uuid0 &&
929 sb1->set_uuid1 == sb2->set_uuid1 &&
930 sb1->set_uuid2 == sb2->set_uuid2 &&
931 sb1->set_uuid3 == sb2->set_uuid3;
934 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
937 mdp_super_t *tmp1, *tmp2;
939 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
940 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
942 if (!tmp1 || !tmp2) {
944 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
952 * nr_disks is not constant
957 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
965 static u32 md_csum_fold(u32 csum)
967 csum = (csum & 0xffff) + (csum >> 16);
968 return (csum & 0xffff) + (csum >> 16);
971 static unsigned int calc_sb_csum(mdp_super_t * sb)
974 u32 *sb32 = (u32*)sb;
976 unsigned int disk_csum, csum;
978 disk_csum = sb->sb_csum;
981 for (i = 0; i < MD_SB_BYTES/4 ; i++)
983 csum = (newcsum & 0xffffffff) + (newcsum>>32);
987 /* This used to use csum_partial, which was wrong for several
988 * reasons including that different results are returned on
989 * different architectures. It isn't critical that we get exactly
990 * the same return value as before (we always csum_fold before
991 * testing, and that removes any differences). However as we
992 * know that csum_partial always returned a 16bit value on
993 * alphas, do a fold to maximise conformity to previous behaviour.
995 sb->sb_csum = md_csum_fold(disk_csum);
997 sb->sb_csum = disk_csum;
1004 * Handle superblock details.
1005 * We want to be able to handle multiple superblock formats
1006 * so we have a common interface to them all, and an array of
1007 * different handlers.
1008 * We rely on user-space to write the initial superblock, and support
1009 * reading and updating of superblocks.
1010 * Interface methods are:
1011 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1012 * loads and validates a superblock on dev.
1013 * if refdev != NULL, compare superblocks on both devices
1015 * 0 - dev has a superblock that is compatible with refdev
1016 * 1 - dev has a superblock that is compatible and newer than refdev
1017 * so dev should be used as the refdev in future
1018 * -EINVAL superblock incompatible or invalid
1019 * -othererror e.g. -EIO
1021 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1022 * Verify that dev is acceptable into mddev.
1023 * The first time, mddev->raid_disks will be 0, and data from
1024 * dev should be merged in. Subsequent calls check that dev
1025 * is new enough. Return 0 or -EINVAL
1027 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1028 * Update the superblock for rdev with data in mddev
1029 * This does not write to disc.
1035 struct module *owner;
1036 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1038 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1040 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1041 sector_t num_sectors);
1045 * Check that the given mddev has no bitmap.
1047 * This function is called from the run method of all personalities that do not
1048 * support bitmaps. It prints an error message and returns non-zero if mddev
1049 * has a bitmap. Otherwise, it returns 0.
1052 int md_check_no_bitmap(struct mddev *mddev)
1054 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1056 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1057 mdname(mddev), mddev->pers->name);
1060 EXPORT_SYMBOL(md_check_no_bitmap);
1063 * load_super for 0.90.0
1065 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1067 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1072 * Calculate the position of the superblock (512byte sectors),
1073 * it's at the end of the disk.
1075 * It also happens to be a multiple of 4Kb.
1077 rdev->sb_start = calc_dev_sboffset(rdev);
1079 ret = read_disk_sb(rdev, MD_SB_BYTES);
1080 if (ret) return ret;
1084 bdevname(rdev->bdev, b);
1085 sb = page_address(rdev->sb_page);
1087 if (sb->md_magic != MD_SB_MAGIC) {
1088 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1093 if (sb->major_version != 0 ||
1094 sb->minor_version < 90 ||
1095 sb->minor_version > 91) {
1096 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1097 sb->major_version, sb->minor_version,
1102 if (sb->raid_disks <= 0)
1105 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1106 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1111 rdev->preferred_minor = sb->md_minor;
1112 rdev->data_offset = 0;
1113 rdev->sb_size = MD_SB_BYTES;
1114 rdev->badblocks.shift = -1;
1116 if (sb->level == LEVEL_MULTIPATH)
1119 rdev->desc_nr = sb->this_disk.number;
1125 mdp_super_t *refsb = page_address(refdev->sb_page);
1126 if (!uuid_equal(refsb, sb)) {
1127 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1128 b, bdevname(refdev->bdev,b2));
1131 if (!sb_equal(refsb, sb)) {
1132 printk(KERN_WARNING "md: %s has same UUID"
1133 " but different superblock to %s\n",
1134 b, bdevname(refdev->bdev, b2));
1138 ev2 = md_event(refsb);
1144 rdev->sectors = rdev->sb_start;
1145 /* Limit to 4TB as metadata cannot record more than that */
1146 if (rdev->sectors >= (2ULL << 32))
1147 rdev->sectors = (2ULL << 32) - 2;
1149 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1150 /* "this cannot possibly happen" ... */
1158 * validate_super for 0.90.0
1160 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1163 mdp_super_t *sb = page_address(rdev->sb_page);
1164 __u64 ev1 = md_event(sb);
1166 rdev->raid_disk = -1;
1167 clear_bit(Faulty, &rdev->flags);
1168 clear_bit(In_sync, &rdev->flags);
1169 clear_bit(WriteMostly, &rdev->flags);
1171 if (mddev->raid_disks == 0) {
1172 mddev->major_version = 0;
1173 mddev->minor_version = sb->minor_version;
1174 mddev->patch_version = sb->patch_version;
1175 mddev->external = 0;
1176 mddev->chunk_sectors = sb->chunk_size >> 9;
1177 mddev->ctime = sb->ctime;
1178 mddev->utime = sb->utime;
1179 mddev->level = sb->level;
1180 mddev->clevel[0] = 0;
1181 mddev->layout = sb->layout;
1182 mddev->raid_disks = sb->raid_disks;
1183 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1184 mddev->events = ev1;
1185 mddev->bitmap_info.offset = 0;
1186 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1188 if (mddev->minor_version >= 91) {
1189 mddev->reshape_position = sb->reshape_position;
1190 mddev->delta_disks = sb->delta_disks;
1191 mddev->new_level = sb->new_level;
1192 mddev->new_layout = sb->new_layout;
1193 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1195 mddev->reshape_position = MaxSector;
1196 mddev->delta_disks = 0;
1197 mddev->new_level = mddev->level;
1198 mddev->new_layout = mddev->layout;
1199 mddev->new_chunk_sectors = mddev->chunk_sectors;
1202 if (sb->state & (1<<MD_SB_CLEAN))
1203 mddev->recovery_cp = MaxSector;
1205 if (sb->events_hi == sb->cp_events_hi &&
1206 sb->events_lo == sb->cp_events_lo) {
1207 mddev->recovery_cp = sb->recovery_cp;
1209 mddev->recovery_cp = 0;
1212 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1213 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1214 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1215 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1217 mddev->max_disks = MD_SB_DISKS;
1219 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1220 mddev->bitmap_info.file == NULL)
1221 mddev->bitmap_info.offset =
1222 mddev->bitmap_info.default_offset;
1224 } else if (mddev->pers == NULL) {
1225 /* Insist on good event counter while assembling, except
1226 * for spares (which don't need an event count) */
1228 if (sb->disks[rdev->desc_nr].state & (
1229 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1230 if (ev1 < mddev->events)
1232 } else if (mddev->bitmap) {
1233 /* if adding to array with a bitmap, then we can accept an
1234 * older device ... but not too old.
1236 if (ev1 < mddev->bitmap->events_cleared)
1239 if (ev1 < mddev->events)
1240 /* just a hot-add of a new device, leave raid_disk at -1 */
1244 if (mddev->level != LEVEL_MULTIPATH) {
1245 desc = sb->disks + rdev->desc_nr;
1247 if (desc->state & (1<<MD_DISK_FAULTY))
1248 set_bit(Faulty, &rdev->flags);
1249 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1250 desc->raid_disk < mddev->raid_disks */) {
1251 set_bit(In_sync, &rdev->flags);
1252 rdev->raid_disk = desc->raid_disk;
1253 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1254 /* active but not in sync implies recovery up to
1255 * reshape position. We don't know exactly where
1256 * that is, so set to zero for now */
1257 if (mddev->minor_version >= 91) {
1258 rdev->recovery_offset = 0;
1259 rdev->raid_disk = desc->raid_disk;
1262 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1263 set_bit(WriteMostly, &rdev->flags);
1264 } else /* MULTIPATH are always insync */
1265 set_bit(In_sync, &rdev->flags);
1270 * sync_super for 0.90.0
1272 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1275 struct md_rdev *rdev2;
1276 int next_spare = mddev->raid_disks;
1279 /* make rdev->sb match mddev data..
1282 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1283 * 3/ any empty disks < next_spare become removed
1285 * disks[0] gets initialised to REMOVED because
1286 * we cannot be sure from other fields if it has
1287 * been initialised or not.
1290 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1292 rdev->sb_size = MD_SB_BYTES;
1294 sb = page_address(rdev->sb_page);
1296 memset(sb, 0, sizeof(*sb));
1298 sb->md_magic = MD_SB_MAGIC;
1299 sb->major_version = mddev->major_version;
1300 sb->patch_version = mddev->patch_version;
1301 sb->gvalid_words = 0; /* ignored */
1302 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1303 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1304 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1305 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1307 sb->ctime = mddev->ctime;
1308 sb->level = mddev->level;
1309 sb->size = mddev->dev_sectors / 2;
1310 sb->raid_disks = mddev->raid_disks;
1311 sb->md_minor = mddev->md_minor;
1312 sb->not_persistent = 0;
1313 sb->utime = mddev->utime;
1315 sb->events_hi = (mddev->events>>32);
1316 sb->events_lo = (u32)mddev->events;
1318 if (mddev->reshape_position == MaxSector)
1319 sb->minor_version = 90;
1321 sb->minor_version = 91;
1322 sb->reshape_position = mddev->reshape_position;
1323 sb->new_level = mddev->new_level;
1324 sb->delta_disks = mddev->delta_disks;
1325 sb->new_layout = mddev->new_layout;
1326 sb->new_chunk = mddev->new_chunk_sectors << 9;
1328 mddev->minor_version = sb->minor_version;
1331 sb->recovery_cp = mddev->recovery_cp;
1332 sb->cp_events_hi = (mddev->events>>32);
1333 sb->cp_events_lo = (u32)mddev->events;
1334 if (mddev->recovery_cp == MaxSector)
1335 sb->state = (1<< MD_SB_CLEAN);
1337 sb->recovery_cp = 0;
1339 sb->layout = mddev->layout;
1340 sb->chunk_size = mddev->chunk_sectors << 9;
1342 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1343 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1345 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1346 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1349 int is_active = test_bit(In_sync, &rdev2->flags);
1351 if (rdev2->raid_disk >= 0 &&
1352 sb->minor_version >= 91)
1353 /* we have nowhere to store the recovery_offset,
1354 * but if it is not below the reshape_position,
1355 * we can piggy-back on that.
1358 if (rdev2->raid_disk < 0 ||
1359 test_bit(Faulty, &rdev2->flags))
1362 desc_nr = rdev2->raid_disk;
1364 desc_nr = next_spare++;
1365 rdev2->desc_nr = desc_nr;
1366 d = &sb->disks[rdev2->desc_nr];
1368 d->number = rdev2->desc_nr;
1369 d->major = MAJOR(rdev2->bdev->bd_dev);
1370 d->minor = MINOR(rdev2->bdev->bd_dev);
1372 d->raid_disk = rdev2->raid_disk;
1374 d->raid_disk = rdev2->desc_nr; /* compatibility */
1375 if (test_bit(Faulty, &rdev2->flags))
1376 d->state = (1<<MD_DISK_FAULTY);
1377 else if (is_active) {
1378 d->state = (1<<MD_DISK_ACTIVE);
1379 if (test_bit(In_sync, &rdev2->flags))
1380 d->state |= (1<<MD_DISK_SYNC);
1388 if (test_bit(WriteMostly, &rdev2->flags))
1389 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1391 /* now set the "removed" and "faulty" bits on any missing devices */
1392 for (i=0 ; i < mddev->raid_disks ; i++) {
1393 mdp_disk_t *d = &sb->disks[i];
1394 if (d->state == 0 && d->number == 0) {
1397 d->state = (1<<MD_DISK_REMOVED);
1398 d->state |= (1<<MD_DISK_FAULTY);
1402 sb->nr_disks = nr_disks;
1403 sb->active_disks = active;
1404 sb->working_disks = working;
1405 sb->failed_disks = failed;
1406 sb->spare_disks = spare;
1408 sb->this_disk = sb->disks[rdev->desc_nr];
1409 sb->sb_csum = calc_sb_csum(sb);
1413 * rdev_size_change for 0.90.0
1415 static unsigned long long
1416 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1418 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1419 return 0; /* component must fit device */
1420 if (rdev->mddev->bitmap_info.offset)
1421 return 0; /* can't move bitmap */
1422 rdev->sb_start = calc_dev_sboffset(rdev);
1423 if (!num_sectors || num_sectors > rdev->sb_start)
1424 num_sectors = rdev->sb_start;
1425 /* Limit to 4TB as metadata cannot record more than that.
1426 * 4TB == 2^32 KB, or 2*2^32 sectors.
1428 if (num_sectors >= (2ULL << 32))
1429 num_sectors = (2ULL << 32) - 2;
1430 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1432 md_super_wait(rdev->mddev);
1438 * version 1 superblock
1441 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1445 unsigned long long newcsum;
1446 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1447 __le32 *isuper = (__le32*)sb;
1450 disk_csum = sb->sb_csum;
1453 for (i=0; size>=4; size -= 4 )
1454 newcsum += le32_to_cpu(*isuper++);
1457 newcsum += le16_to_cpu(*(__le16*) isuper);
1459 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1460 sb->sb_csum = disk_csum;
1461 return cpu_to_le32(csum);
1464 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1466 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1468 struct mdp_superblock_1 *sb;
1471 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1475 * Calculate the position of the superblock in 512byte sectors.
1476 * It is always aligned to a 4K boundary and
1477 * depeding on minor_version, it can be:
1478 * 0: At least 8K, but less than 12K, from end of device
1479 * 1: At start of device
1480 * 2: 4K from start of device.
1482 switch(minor_version) {
1484 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1486 sb_start &= ~(sector_t)(4*2-1);
1497 rdev->sb_start = sb_start;
1499 /* superblock is rarely larger than 1K, but it can be larger,
1500 * and it is safe to read 4k, so we do that
1502 ret = read_disk_sb(rdev, 4096);
1503 if (ret) return ret;
1506 sb = page_address(rdev->sb_page);
1508 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1509 sb->major_version != cpu_to_le32(1) ||
1510 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1511 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1512 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1515 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1516 printk("md: invalid superblock checksum on %s\n",
1517 bdevname(rdev->bdev,b));
1520 if (le64_to_cpu(sb->data_size) < 10) {
1521 printk("md: data_size too small on %s\n",
1522 bdevname(rdev->bdev,b));
1526 rdev->preferred_minor = 0xffff;
1527 rdev->data_offset = le64_to_cpu(sb->data_offset);
1528 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1530 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1531 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1532 if (rdev->sb_size & bmask)
1533 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1536 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1539 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1542 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1544 if (!rdev->bb_page) {
1545 rdev->bb_page = alloc_page(GFP_KERNEL);
1549 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1550 rdev->badblocks.count == 0) {
1551 /* need to load the bad block list.
1552 * Currently we limit it to one page.
1558 int sectors = le16_to_cpu(sb->bblog_size);
1559 if (sectors > (PAGE_SIZE / 512))
1561 offset = le32_to_cpu(sb->bblog_offset);
1564 bb_sector = (long long)offset;
1565 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1566 rdev->bb_page, READ, true))
1568 bbp = (u64 *)page_address(rdev->bb_page);
1569 rdev->badblocks.shift = sb->bblog_shift;
1570 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1571 u64 bb = le64_to_cpu(*bbp);
1572 int count = bb & (0x3ff);
1573 u64 sector = bb >> 10;
1574 sector <<= sb->bblog_shift;
1575 count <<= sb->bblog_shift;
1578 if (md_set_badblocks(&rdev->badblocks,
1579 sector, count, 1) == 0)
1582 } else if (sb->bblog_offset == 0)
1583 rdev->badblocks.shift = -1;
1589 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1591 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1592 sb->level != refsb->level ||
1593 sb->layout != refsb->layout ||
1594 sb->chunksize != refsb->chunksize) {
1595 printk(KERN_WARNING "md: %s has strangely different"
1596 " superblock to %s\n",
1597 bdevname(rdev->bdev,b),
1598 bdevname(refdev->bdev,b2));
1601 ev1 = le64_to_cpu(sb->events);
1602 ev2 = le64_to_cpu(refsb->events);
1610 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1611 le64_to_cpu(sb->data_offset);
1613 rdev->sectors = rdev->sb_start;
1614 if (rdev->sectors < le64_to_cpu(sb->data_size))
1616 rdev->sectors = le64_to_cpu(sb->data_size);
1617 if (le64_to_cpu(sb->size) > rdev->sectors)
1622 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1624 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1625 __u64 ev1 = le64_to_cpu(sb->events);
1627 rdev->raid_disk = -1;
1628 clear_bit(Faulty, &rdev->flags);
1629 clear_bit(In_sync, &rdev->flags);
1630 clear_bit(WriteMostly, &rdev->flags);
1632 if (mddev->raid_disks == 0) {
1633 mddev->major_version = 1;
1634 mddev->patch_version = 0;
1635 mddev->external = 0;
1636 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1637 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1638 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1639 mddev->level = le32_to_cpu(sb->level);
1640 mddev->clevel[0] = 0;
1641 mddev->layout = le32_to_cpu(sb->layout);
1642 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1643 mddev->dev_sectors = le64_to_cpu(sb->size);
1644 mddev->events = ev1;
1645 mddev->bitmap_info.offset = 0;
1646 mddev->bitmap_info.default_offset = 1024 >> 9;
1648 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1649 memcpy(mddev->uuid, sb->set_uuid, 16);
1651 mddev->max_disks = (4096-256)/2;
1653 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1654 mddev->bitmap_info.file == NULL )
1655 mddev->bitmap_info.offset =
1656 (__s32)le32_to_cpu(sb->bitmap_offset);
1658 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661 mddev->new_level = le32_to_cpu(sb->new_level);
1662 mddev->new_layout = le32_to_cpu(sb->new_layout);
1663 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1665 mddev->reshape_position = MaxSector;
1666 mddev->delta_disks = 0;
1667 mddev->new_level = mddev->level;
1668 mddev->new_layout = mddev->layout;
1669 mddev->new_chunk_sectors = mddev->chunk_sectors;
1672 } else if (mddev->pers == NULL) {
1673 /* Insist of good event counter while assembling, except for
1674 * spares (which don't need an event count) */
1676 if (rdev->desc_nr >= 0 &&
1677 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1678 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1679 if (ev1 < mddev->events)
1681 } else if (mddev->bitmap) {
1682 /* If adding to array with a bitmap, then we can accept an
1683 * older device, but not too old.
1685 if (ev1 < mddev->bitmap->events_cleared)
1688 if (ev1 < mddev->events)
1689 /* just a hot-add of a new device, leave raid_disk at -1 */
1692 if (mddev->level != LEVEL_MULTIPATH) {
1694 if (rdev->desc_nr < 0 ||
1695 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1699 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1701 case 0xffff: /* spare */
1703 case 0xfffe: /* faulty */
1704 set_bit(Faulty, &rdev->flags);
1707 if ((le32_to_cpu(sb->feature_map) &
1708 MD_FEATURE_RECOVERY_OFFSET))
1709 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1711 set_bit(In_sync, &rdev->flags);
1712 rdev->raid_disk = role;
1715 if (sb->devflags & WriteMostly1)
1716 set_bit(WriteMostly, &rdev->flags);
1717 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1718 set_bit(Replacement, &rdev->flags);
1719 } else /* MULTIPATH are always insync */
1720 set_bit(In_sync, &rdev->flags);
1725 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1727 struct mdp_superblock_1 *sb;
1728 struct md_rdev *rdev2;
1730 /* make rdev->sb match mddev and rdev data. */
1732 sb = page_address(rdev->sb_page);
1734 sb->feature_map = 0;
1736 sb->recovery_offset = cpu_to_le64(0);
1737 memset(sb->pad1, 0, sizeof(sb->pad1));
1738 memset(sb->pad3, 0, sizeof(sb->pad3));
1740 sb->utime = cpu_to_le64((__u64)mddev->utime);
1741 sb->events = cpu_to_le64(mddev->events);
1743 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745 sb->resync_offset = cpu_to_le64(0);
1747 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1749 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1750 sb->size = cpu_to_le64(mddev->dev_sectors);
1751 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1752 sb->level = cpu_to_le32(mddev->level);
1753 sb->layout = cpu_to_le32(mddev->layout);
1755 if (test_bit(WriteMostly, &rdev->flags))
1756 sb->devflags |= WriteMostly1;
1758 sb->devflags &= ~WriteMostly1;
1760 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1761 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1762 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1765 if (rdev->raid_disk >= 0 &&
1766 !test_bit(In_sync, &rdev->flags)) {
1768 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1769 sb->recovery_offset =
1770 cpu_to_le64(rdev->recovery_offset);
1772 if (test_bit(Replacement, &rdev->flags))
1774 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1776 if (mddev->reshape_position != MaxSector) {
1777 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1778 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1779 sb->new_layout = cpu_to_le32(mddev->new_layout);
1780 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1781 sb->new_level = cpu_to_le32(mddev->new_level);
1782 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1785 if (rdev->badblocks.count == 0)
1786 /* Nothing to do for bad blocks*/ ;
1787 else if (sb->bblog_offset == 0)
1788 /* Cannot record bad blocks on this device */
1789 md_error(mddev, rdev);
1791 struct badblocks *bb = &rdev->badblocks;
1792 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1794 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1799 seq = read_seqbegin(&bb->lock);
1801 memset(bbp, 0xff, PAGE_SIZE);
1803 for (i = 0 ; i < bb->count ; i++) {
1804 u64 internal_bb = *p++;
1805 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1806 | BB_LEN(internal_bb));
1807 *bbp++ = cpu_to_le64(store_bb);
1809 if (read_seqretry(&bb->lock, seq))
1812 bb->sector = (rdev->sb_start +
1813 (int)le32_to_cpu(sb->bblog_offset));
1814 bb->size = le16_to_cpu(sb->bblog_size);
1820 list_for_each_entry(rdev2, &mddev->disks, same_set)
1821 if (rdev2->desc_nr+1 > max_dev)
1822 max_dev = rdev2->desc_nr+1;
1824 if (max_dev > le32_to_cpu(sb->max_dev)) {
1826 sb->max_dev = cpu_to_le32(max_dev);
1827 rdev->sb_size = max_dev * 2 + 256;
1828 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1829 if (rdev->sb_size & bmask)
1830 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1832 max_dev = le32_to_cpu(sb->max_dev);
1834 for (i=0; i<max_dev;i++)
1835 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1837 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1839 if (test_bit(Faulty, &rdev2->flags))
1840 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1841 else if (test_bit(In_sync, &rdev2->flags))
1842 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1843 else if (rdev2->raid_disk >= 0)
1844 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1846 sb->dev_roles[i] = cpu_to_le16(0xffff);
1849 sb->sb_csum = calc_sb_1_csum(sb);
1852 static unsigned long long
1853 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1855 struct mdp_superblock_1 *sb;
1856 sector_t max_sectors;
1857 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1858 return 0; /* component must fit device */
1859 if (rdev->sb_start < rdev->data_offset) {
1860 /* minor versions 1 and 2; superblock before data */
1861 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1862 max_sectors -= rdev->data_offset;
1863 if (!num_sectors || num_sectors > max_sectors)
1864 num_sectors = max_sectors;
1865 } else if (rdev->mddev->bitmap_info.offset) {
1866 /* minor version 0 with bitmap we can't move */
1869 /* minor version 0; superblock after data */
1871 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1872 sb_start &= ~(sector_t)(4*2 - 1);
1873 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1874 if (!num_sectors || num_sectors > max_sectors)
1875 num_sectors = max_sectors;
1876 rdev->sb_start = sb_start;
1878 sb = page_address(rdev->sb_page);
1879 sb->data_size = cpu_to_le64(num_sectors);
1880 sb->super_offset = rdev->sb_start;
1881 sb->sb_csum = calc_sb_1_csum(sb);
1882 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1884 md_super_wait(rdev->mddev);
1888 static struct super_type super_types[] = {
1891 .owner = THIS_MODULE,
1892 .load_super = super_90_load,
1893 .validate_super = super_90_validate,
1894 .sync_super = super_90_sync,
1895 .rdev_size_change = super_90_rdev_size_change,
1899 .owner = THIS_MODULE,
1900 .load_super = super_1_load,
1901 .validate_super = super_1_validate,
1902 .sync_super = super_1_sync,
1903 .rdev_size_change = super_1_rdev_size_change,
1907 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1909 if (mddev->sync_super) {
1910 mddev->sync_super(mddev, rdev);
1914 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1916 super_types[mddev->major_version].sync_super(mddev, rdev);
1919 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1921 struct md_rdev *rdev, *rdev2;
1924 rdev_for_each_rcu(rdev, mddev1)
1925 rdev_for_each_rcu(rdev2, mddev2)
1926 if (rdev->bdev->bd_contains ==
1927 rdev2->bdev->bd_contains) {
1935 static LIST_HEAD(pending_raid_disks);
1938 * Try to register data integrity profile for an mddev
1940 * This is called when an array is started and after a disk has been kicked
1941 * from the array. It only succeeds if all working and active component devices
1942 * are integrity capable with matching profiles.
1944 int md_integrity_register(struct mddev *mddev)
1946 struct md_rdev *rdev, *reference = NULL;
1948 if (list_empty(&mddev->disks))
1949 return 0; /* nothing to do */
1950 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1951 return 0; /* shouldn't register, or already is */
1952 list_for_each_entry(rdev, &mddev->disks, same_set) {
1953 /* skip spares and non-functional disks */
1954 if (test_bit(Faulty, &rdev->flags))
1956 if (rdev->raid_disk < 0)
1959 /* Use the first rdev as the reference */
1963 /* does this rdev's profile match the reference profile? */
1964 if (blk_integrity_compare(reference->bdev->bd_disk,
1965 rdev->bdev->bd_disk) < 0)
1968 if (!reference || !bdev_get_integrity(reference->bdev))
1971 * All component devices are integrity capable and have matching
1972 * profiles, register the common profile for the md device.
1974 if (blk_integrity_register(mddev->gendisk,
1975 bdev_get_integrity(reference->bdev)) != 0) {
1976 printk(KERN_ERR "md: failed to register integrity for %s\n",
1980 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1981 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1982 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1988 EXPORT_SYMBOL(md_integrity_register);
1990 /* Disable data integrity if non-capable/non-matching disk is being added */
1991 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1993 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1994 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1996 if (!bi_mddev) /* nothing to do */
1998 if (rdev->raid_disk < 0) /* skip spares */
2000 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2001 rdev->bdev->bd_disk) >= 0)
2003 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2004 blk_integrity_unregister(mddev->gendisk);
2006 EXPORT_SYMBOL(md_integrity_add_rdev);
2008 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2010 char b[BDEVNAME_SIZE];
2020 /* prevent duplicates */
2021 if (find_rdev(mddev, rdev->bdev->bd_dev))
2024 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2025 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2026 rdev->sectors < mddev->dev_sectors)) {
2028 /* Cannot change size, so fail
2029 * If mddev->level <= 0, then we don't care
2030 * about aligning sizes (e.g. linear)
2032 if (mddev->level > 0)
2035 mddev->dev_sectors = rdev->sectors;
2038 /* Verify rdev->desc_nr is unique.
2039 * If it is -1, assign a free number, else
2040 * check number is not in use
2042 if (rdev->desc_nr < 0) {
2044 if (mddev->pers) choice = mddev->raid_disks;
2045 while (find_rdev_nr(mddev, choice))
2047 rdev->desc_nr = choice;
2049 if (find_rdev_nr(mddev, rdev->desc_nr))
2052 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2053 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2054 mdname(mddev), mddev->max_disks);
2057 bdevname(rdev->bdev,b);
2058 while ( (s=strchr(b, '/')) != NULL)
2061 rdev->mddev = mddev;
2062 printk(KERN_INFO "md: bind<%s>\n", b);
2064 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2067 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2068 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2069 /* failure here is OK */;
2070 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2072 list_add_rcu(&rdev->same_set, &mddev->disks);
2073 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2075 /* May as well allow recovery to be retried once */
2076 mddev->recovery_disabled++;
2081 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2086 static void md_delayed_delete(struct work_struct *ws)
2088 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2089 kobject_del(&rdev->kobj);
2090 kobject_put(&rdev->kobj);
2093 static void unbind_rdev_from_array(struct md_rdev * rdev)
2095 char b[BDEVNAME_SIZE];
2100 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2101 list_del_rcu(&rdev->same_set);
2102 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2104 sysfs_remove_link(&rdev->kobj, "block");
2105 sysfs_put(rdev->sysfs_state);
2106 rdev->sysfs_state = NULL;
2107 kfree(rdev->badblocks.page);
2108 rdev->badblocks.count = 0;
2109 rdev->badblocks.page = NULL;
2110 /* We need to delay this, otherwise we can deadlock when
2111 * writing to 'remove' to "dev/state". We also need
2112 * to delay it due to rcu usage.
2115 INIT_WORK(&rdev->del_work, md_delayed_delete);
2116 kobject_get(&rdev->kobj);
2117 queue_work(md_misc_wq, &rdev->del_work);
2121 * prevent the device from being mounted, repartitioned or
2122 * otherwise reused by a RAID array (or any other kernel
2123 * subsystem), by bd_claiming the device.
2125 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2128 struct block_device *bdev;
2129 char b[BDEVNAME_SIZE];
2131 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2132 shared ? (struct md_rdev *)lock_rdev : rdev);
2134 printk(KERN_ERR "md: could not open %s.\n",
2135 __bdevname(dev, b));
2136 return PTR_ERR(bdev);
2142 static void unlock_rdev(struct md_rdev *rdev)
2144 struct block_device *bdev = rdev->bdev;
2148 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2151 void md_autodetect_dev(dev_t dev);
2153 static void export_rdev(struct md_rdev * rdev)
2155 char b[BDEVNAME_SIZE];
2156 printk(KERN_INFO "md: export_rdev(%s)\n",
2157 bdevname(rdev->bdev,b));
2162 if (test_bit(AutoDetected, &rdev->flags))
2163 md_autodetect_dev(rdev->bdev->bd_dev);
2166 kobject_put(&rdev->kobj);
2169 static void kick_rdev_from_array(struct md_rdev * rdev)
2171 unbind_rdev_from_array(rdev);
2175 static void export_array(struct mddev *mddev)
2177 struct md_rdev *rdev, *tmp;
2179 rdev_for_each(rdev, tmp, mddev) {
2184 kick_rdev_from_array(rdev);
2186 if (!list_empty(&mddev->disks))
2188 mddev->raid_disks = 0;
2189 mddev->major_version = 0;
2192 static void print_desc(mdp_disk_t *desc)
2194 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2195 desc->major,desc->minor,desc->raid_disk,desc->state);
2198 static void print_sb_90(mdp_super_t *sb)
2203 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2204 sb->major_version, sb->minor_version, sb->patch_version,
2205 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2207 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2208 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2209 sb->md_minor, sb->layout, sb->chunk_size);
2210 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2211 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2212 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2213 sb->failed_disks, sb->spare_disks,
2214 sb->sb_csum, (unsigned long)sb->events_lo);
2217 for (i = 0; i < MD_SB_DISKS; i++) {
2220 desc = sb->disks + i;
2221 if (desc->number || desc->major || desc->minor ||
2222 desc->raid_disk || (desc->state && (desc->state != 4))) {
2223 printk(" D %2d: ", i);
2227 printk(KERN_INFO "md: THIS: ");
2228 print_desc(&sb->this_disk);
2231 static void print_sb_1(struct mdp_superblock_1 *sb)
2235 uuid = sb->set_uuid;
2237 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2238 "md: Name: \"%s\" CT:%llu\n",
2239 le32_to_cpu(sb->major_version),
2240 le32_to_cpu(sb->feature_map),
2243 (unsigned long long)le64_to_cpu(sb->ctime)
2244 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2246 uuid = sb->device_uuid;
2248 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2250 "md: Dev:%08x UUID: %pU\n"
2251 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2252 "md: (MaxDev:%u) \n",
2253 le32_to_cpu(sb->level),
2254 (unsigned long long)le64_to_cpu(sb->size),
2255 le32_to_cpu(sb->raid_disks),
2256 le32_to_cpu(sb->layout),
2257 le32_to_cpu(sb->chunksize),
2258 (unsigned long long)le64_to_cpu(sb->data_offset),
2259 (unsigned long long)le64_to_cpu(sb->data_size),
2260 (unsigned long long)le64_to_cpu(sb->super_offset),
2261 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2262 le32_to_cpu(sb->dev_number),
2265 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2266 (unsigned long long)le64_to_cpu(sb->events),
2267 (unsigned long long)le64_to_cpu(sb->resync_offset),
2268 le32_to_cpu(sb->sb_csum),
2269 le32_to_cpu(sb->max_dev)
2273 static void print_rdev(struct md_rdev *rdev, int major_version)
2275 char b[BDEVNAME_SIZE];
2276 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2277 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2278 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2280 if (rdev->sb_loaded) {
2281 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2282 switch (major_version) {
2284 print_sb_90(page_address(rdev->sb_page));
2287 print_sb_1(page_address(rdev->sb_page));
2291 printk(KERN_INFO "md: no rdev superblock!\n");
2294 static void md_print_devices(void)
2296 struct list_head *tmp;
2297 struct md_rdev *rdev;
2298 struct mddev *mddev;
2299 char b[BDEVNAME_SIZE];
2302 printk("md: **********************************\n");
2303 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2304 printk("md: **********************************\n");
2305 for_each_mddev(mddev, tmp) {
2308 bitmap_print_sb(mddev->bitmap);
2310 printk("%s: ", mdname(mddev));
2311 list_for_each_entry(rdev, &mddev->disks, same_set)
2312 printk("<%s>", bdevname(rdev->bdev,b));
2315 list_for_each_entry(rdev, &mddev->disks, same_set)
2316 print_rdev(rdev, mddev->major_version);
2318 printk("md: **********************************\n");
2323 static void sync_sbs(struct mddev * mddev, int nospares)
2325 /* Update each superblock (in-memory image), but
2326 * if we are allowed to, skip spares which already
2327 * have the right event counter, or have one earlier
2328 * (which would mean they aren't being marked as dirty
2329 * with the rest of the array)
2331 struct md_rdev *rdev;
2332 list_for_each_entry(rdev, &mddev->disks, same_set) {
2333 if (rdev->sb_events == mddev->events ||
2335 rdev->raid_disk < 0 &&
2336 rdev->sb_events+1 == mddev->events)) {
2337 /* Don't update this superblock */
2338 rdev->sb_loaded = 2;
2340 sync_super(mddev, rdev);
2341 rdev->sb_loaded = 1;
2346 static void md_update_sb(struct mddev * mddev, int force_change)
2348 struct md_rdev *rdev;
2351 int any_badblocks_changed = 0;
2354 /* First make sure individual recovery_offsets are correct */
2355 list_for_each_entry(rdev, &mddev->disks, same_set) {
2356 if (rdev->raid_disk >= 0 &&
2357 mddev->delta_disks >= 0 &&
2358 !test_bit(In_sync, &rdev->flags) &&
2359 mddev->curr_resync_completed > rdev->recovery_offset)
2360 rdev->recovery_offset = mddev->curr_resync_completed;
2363 if (!mddev->persistent) {
2364 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2365 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2366 if (!mddev->external) {
2367 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2368 list_for_each_entry(rdev, &mddev->disks, same_set) {
2369 if (rdev->badblocks.changed) {
2370 md_ack_all_badblocks(&rdev->badblocks);
2371 md_error(mddev, rdev);
2373 clear_bit(Blocked, &rdev->flags);
2374 clear_bit(BlockedBadBlocks, &rdev->flags);
2375 wake_up(&rdev->blocked_wait);
2378 wake_up(&mddev->sb_wait);
2382 spin_lock_irq(&mddev->write_lock);
2384 mddev->utime = get_seconds();
2386 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2388 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2389 /* just a clean<-> dirty transition, possibly leave spares alone,
2390 * though if events isn't the right even/odd, we will have to do
2396 if (mddev->degraded)
2397 /* If the array is degraded, then skipping spares is both
2398 * dangerous and fairly pointless.
2399 * Dangerous because a device that was removed from the array
2400 * might have a event_count that still looks up-to-date,
2401 * so it can be re-added without a resync.
2402 * Pointless because if there are any spares to skip,
2403 * then a recovery will happen and soon that array won't
2404 * be degraded any more and the spare can go back to sleep then.
2408 sync_req = mddev->in_sync;
2410 /* If this is just a dirty<->clean transition, and the array is clean
2411 * and 'events' is odd, we can roll back to the previous clean state */
2413 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2414 && mddev->can_decrease_events
2415 && mddev->events != 1) {
2417 mddev->can_decrease_events = 0;
2419 /* otherwise we have to go forward and ... */
2421 mddev->can_decrease_events = nospares;
2424 if (!mddev->events) {
2426 * oops, this 64-bit counter should never wrap.
2427 * Either we are in around ~1 trillion A.C., assuming
2428 * 1 reboot per second, or we have a bug:
2434 list_for_each_entry(rdev, &mddev->disks, same_set) {
2435 if (rdev->badblocks.changed)
2436 any_badblocks_changed++;
2437 if (test_bit(Faulty, &rdev->flags))
2438 set_bit(FaultRecorded, &rdev->flags);
2441 sync_sbs(mddev, nospares);
2442 spin_unlock_irq(&mddev->write_lock);
2444 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2445 mdname(mddev), mddev->in_sync);
2447 bitmap_update_sb(mddev->bitmap);
2448 list_for_each_entry(rdev, &mddev->disks, same_set) {
2449 char b[BDEVNAME_SIZE];
2451 if (rdev->sb_loaded != 1)
2452 continue; /* no noise on spare devices */
2454 if (!test_bit(Faulty, &rdev->flags) &&
2455 rdev->saved_raid_disk == -1) {
2456 md_super_write(mddev,rdev,
2457 rdev->sb_start, rdev->sb_size,
2459 pr_debug("md: (write) %s's sb offset: %llu\n",
2460 bdevname(rdev->bdev, b),
2461 (unsigned long long)rdev->sb_start);
2462 rdev->sb_events = mddev->events;
2463 if (rdev->badblocks.size) {
2464 md_super_write(mddev, rdev,
2465 rdev->badblocks.sector,
2466 rdev->badblocks.size << 9,
2468 rdev->badblocks.size = 0;
2471 } else if (test_bit(Faulty, &rdev->flags))
2472 pr_debug("md: %s (skipping faulty)\n",
2473 bdevname(rdev->bdev, b));
2475 pr_debug("(skipping incremental s/r ");
2477 if (mddev->level == LEVEL_MULTIPATH)
2478 /* only need to write one superblock... */
2481 md_super_wait(mddev);
2482 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2484 spin_lock_irq(&mddev->write_lock);
2485 if (mddev->in_sync != sync_req ||
2486 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2487 /* have to write it out again */
2488 spin_unlock_irq(&mddev->write_lock);
2491 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2492 spin_unlock_irq(&mddev->write_lock);
2493 wake_up(&mddev->sb_wait);
2494 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2495 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2497 list_for_each_entry(rdev, &mddev->disks, same_set) {
2498 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2499 clear_bit(Blocked, &rdev->flags);
2501 if (any_badblocks_changed)
2502 md_ack_all_badblocks(&rdev->badblocks);
2503 clear_bit(BlockedBadBlocks, &rdev->flags);
2504 wake_up(&rdev->blocked_wait);
2508 /* words written to sysfs files may, or may not, be \n terminated.
2509 * We want to accept with case. For this we use cmd_match.
2511 static int cmd_match(const char *cmd, const char *str)
2513 /* See if cmd, written into a sysfs file, matches
2514 * str. They must either be the same, or cmd can
2515 * have a trailing newline
2517 while (*cmd && *str && *cmd == *str) {
2528 struct rdev_sysfs_entry {
2529 struct attribute attr;
2530 ssize_t (*show)(struct md_rdev *, char *);
2531 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2535 state_show(struct md_rdev *rdev, char *page)
2540 if (test_bit(Faulty, &rdev->flags) ||
2541 rdev->badblocks.unacked_exist) {
2542 len+= sprintf(page+len, "%sfaulty",sep);
2545 if (test_bit(In_sync, &rdev->flags)) {
2546 len += sprintf(page+len, "%sin_sync",sep);
2549 if (test_bit(WriteMostly, &rdev->flags)) {
2550 len += sprintf(page+len, "%swrite_mostly",sep);
2553 if (test_bit(Blocked, &rdev->flags) ||
2554 (rdev->badblocks.unacked_exist
2555 && !test_bit(Faulty, &rdev->flags))) {
2556 len += sprintf(page+len, "%sblocked", sep);
2559 if (!test_bit(Faulty, &rdev->flags) &&
2560 !test_bit(In_sync, &rdev->flags)) {
2561 len += sprintf(page+len, "%sspare", sep);
2564 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2565 len += sprintf(page+len, "%swrite_error", sep);
2568 if (test_bit(WantReplacement, &rdev->flags)) {
2569 len += sprintf(page+len, "%swant_replacement", sep);
2572 if (test_bit(Replacement, &rdev->flags)) {
2573 len += sprintf(page+len, "%sreplacement", sep);
2577 return len+sprintf(page+len, "\n");
2581 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2584 * faulty - simulates an error
2585 * remove - disconnects the device
2586 * writemostly - sets write_mostly
2587 * -writemostly - clears write_mostly
2588 * blocked - sets the Blocked flags
2589 * -blocked - clears the Blocked and possibly simulates an error
2590 * insync - sets Insync providing device isn't active
2591 * write_error - sets WriteErrorSeen
2592 * -write_error - clears WriteErrorSeen
2595 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2596 md_error(rdev->mddev, rdev);
2597 if (test_bit(Faulty, &rdev->flags))
2601 } else if (cmd_match(buf, "remove")) {
2602 if (rdev->raid_disk >= 0)
2605 struct mddev *mddev = rdev->mddev;
2606 kick_rdev_from_array(rdev);
2608 md_update_sb(mddev, 1);
2609 md_new_event(mddev);
2612 } else if (cmd_match(buf, "writemostly")) {
2613 set_bit(WriteMostly, &rdev->flags);
2615 } else if (cmd_match(buf, "-writemostly")) {
2616 clear_bit(WriteMostly, &rdev->flags);
2618 } else if (cmd_match(buf, "blocked")) {
2619 set_bit(Blocked, &rdev->flags);
2621 } else if (cmd_match(buf, "-blocked")) {
2622 if (!test_bit(Faulty, &rdev->flags) &&
2623 rdev->badblocks.unacked_exist) {
2624 /* metadata handler doesn't understand badblocks,
2625 * so we need to fail the device
2627 md_error(rdev->mddev, rdev);
2629 clear_bit(Blocked, &rdev->flags);
2630 clear_bit(BlockedBadBlocks, &rdev->flags);
2631 wake_up(&rdev->blocked_wait);
2632 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2633 md_wakeup_thread(rdev->mddev->thread);
2636 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2637 set_bit(In_sync, &rdev->flags);
2639 } else if (cmd_match(buf, "write_error")) {
2640 set_bit(WriteErrorSeen, &rdev->flags);
2642 } else if (cmd_match(buf, "-write_error")) {
2643 clear_bit(WriteErrorSeen, &rdev->flags);
2645 } else if (cmd_match(buf, "want_replacement")) {
2646 /* Any non-spare device that is not a replacement can
2647 * become want_replacement at any time, but we then need to
2648 * check if recovery is needed.
2650 if (rdev->raid_disk >= 0 &&
2651 !test_bit(Replacement, &rdev->flags))
2652 set_bit(WantReplacement, &rdev->flags);
2653 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2654 md_wakeup_thread(rdev->mddev->thread);
2656 } else if (cmd_match(buf, "-want_replacement")) {
2657 /* Clearing 'want_replacement' is always allowed.
2658 * Once replacements starts it is too late though.
2661 clear_bit(WantReplacement, &rdev->flags);
2662 } else if (cmd_match(buf, "replacement")) {
2663 /* Can only set a device as a replacement when array has not
2664 * yet been started. Once running, replacement is automatic
2665 * from spares, or by assigning 'slot'.
2667 if (rdev->mddev->pers)
2670 set_bit(Replacement, &rdev->flags);
2673 } else if (cmd_match(buf, "-replacement")) {
2674 /* Similarly, can only clear Replacement before start */
2675 if (rdev->mddev->pers)
2678 clear_bit(Replacement, &rdev->flags);
2683 sysfs_notify_dirent_safe(rdev->sysfs_state);
2684 return err ? err : len;
2686 static struct rdev_sysfs_entry rdev_state =
2687 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2690 errors_show(struct md_rdev *rdev, char *page)
2692 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2696 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2699 unsigned long n = simple_strtoul(buf, &e, 10);
2700 if (*buf && (*e == 0 || *e == '\n')) {
2701 atomic_set(&rdev->corrected_errors, n);
2706 static struct rdev_sysfs_entry rdev_errors =
2707 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2710 slot_show(struct md_rdev *rdev, char *page)
2712 if (rdev->raid_disk < 0)
2713 return sprintf(page, "none\n");
2715 return sprintf(page, "%d\n", rdev->raid_disk);
2719 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2723 int slot = simple_strtoul(buf, &e, 10);
2724 if (strncmp(buf, "none", 4)==0)
2726 else if (e==buf || (*e && *e!= '\n'))
2728 if (rdev->mddev->pers && slot == -1) {
2729 /* Setting 'slot' on an active array requires also
2730 * updating the 'rd%d' link, and communicating
2731 * with the personality with ->hot_*_disk.
2732 * For now we only support removing
2733 * failed/spare devices. This normally happens automatically,
2734 * but not when the metadata is externally managed.
2736 if (rdev->raid_disk == -1)
2738 /* personality does all needed checks */
2739 if (rdev->mddev->pers->hot_remove_disk == NULL)
2741 err = rdev->mddev->pers->
2742 hot_remove_disk(rdev->mddev, rdev);
2745 sysfs_unlink_rdev(rdev->mddev, rdev);
2746 rdev->raid_disk = -1;
2747 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2748 md_wakeup_thread(rdev->mddev->thread);
2749 } else if (rdev->mddev->pers) {
2750 /* Activating a spare .. or possibly reactivating
2751 * if we ever get bitmaps working here.
2754 if (rdev->raid_disk != -1)
2757 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2760 if (rdev->mddev->pers->hot_add_disk == NULL)
2763 if (slot >= rdev->mddev->raid_disks &&
2764 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2767 rdev->raid_disk = slot;
2768 if (test_bit(In_sync, &rdev->flags))
2769 rdev->saved_raid_disk = slot;
2771 rdev->saved_raid_disk = -1;
2772 clear_bit(In_sync, &rdev->flags);
2773 err = rdev->mddev->pers->
2774 hot_add_disk(rdev->mddev, rdev);
2776 rdev->raid_disk = -1;
2779 sysfs_notify_dirent_safe(rdev->sysfs_state);
2780 if (sysfs_link_rdev(rdev->mddev, rdev))
2781 /* failure here is OK */;
2782 /* don't wakeup anyone, leave that to userspace. */
2784 if (slot >= rdev->mddev->raid_disks &&
2785 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2787 rdev->raid_disk = slot;
2788 /* assume it is working */
2789 clear_bit(Faulty, &rdev->flags);
2790 clear_bit(WriteMostly, &rdev->flags);
2791 set_bit(In_sync, &rdev->flags);
2792 sysfs_notify_dirent_safe(rdev->sysfs_state);
2798 static struct rdev_sysfs_entry rdev_slot =
2799 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2802 offset_show(struct md_rdev *rdev, char *page)
2804 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2808 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2811 unsigned long long offset = simple_strtoull(buf, &e, 10);
2812 if (e==buf || (*e && *e != '\n'))
2814 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2816 if (rdev->sectors && rdev->mddev->external)
2817 /* Must set offset before size, so overlap checks
2820 rdev->data_offset = offset;
2824 static struct rdev_sysfs_entry rdev_offset =
2825 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2828 rdev_size_show(struct md_rdev *rdev, char *page)
2830 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2833 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2835 /* check if two start/length pairs overlap */
2843 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2845 unsigned long long blocks;
2848 if (strict_strtoull(buf, 10, &blocks) < 0)
2851 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2852 return -EINVAL; /* sector conversion overflow */
2855 if (new != blocks * 2)
2856 return -EINVAL; /* unsigned long long to sector_t overflow */
2863 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2865 struct mddev *my_mddev = rdev->mddev;
2866 sector_t oldsectors = rdev->sectors;
2869 if (strict_blocks_to_sectors(buf, §ors) < 0)
2871 if (my_mddev->pers && rdev->raid_disk >= 0) {
2872 if (my_mddev->persistent) {
2873 sectors = super_types[my_mddev->major_version].
2874 rdev_size_change(rdev, sectors);
2877 } else if (!sectors)
2878 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2881 if (sectors < my_mddev->dev_sectors)
2882 return -EINVAL; /* component must fit device */
2884 rdev->sectors = sectors;
2885 if (sectors > oldsectors && my_mddev->external) {
2886 /* need to check that all other rdevs with the same ->bdev
2887 * do not overlap. We need to unlock the mddev to avoid
2888 * a deadlock. We have already changed rdev->sectors, and if
2889 * we have to change it back, we will have the lock again.
2891 struct mddev *mddev;
2893 struct list_head *tmp;
2895 mddev_unlock(my_mddev);
2896 for_each_mddev(mddev, tmp) {
2897 struct md_rdev *rdev2;
2900 list_for_each_entry(rdev2, &mddev->disks, same_set)
2901 if (rdev->bdev == rdev2->bdev &&
2903 overlaps(rdev->data_offset, rdev->sectors,
2909 mddev_unlock(mddev);
2915 mddev_lock(my_mddev);
2917 /* Someone else could have slipped in a size
2918 * change here, but doing so is just silly.
2919 * We put oldsectors back because we *know* it is
2920 * safe, and trust userspace not to race with
2923 rdev->sectors = oldsectors;
2930 static struct rdev_sysfs_entry rdev_size =
2931 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2934 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2936 unsigned long long recovery_start = rdev->recovery_offset;
2938 if (test_bit(In_sync, &rdev->flags) ||
2939 recovery_start == MaxSector)
2940 return sprintf(page, "none\n");
2942 return sprintf(page, "%llu\n", recovery_start);
2945 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2947 unsigned long long recovery_start;
2949 if (cmd_match(buf, "none"))
2950 recovery_start = MaxSector;
2951 else if (strict_strtoull(buf, 10, &recovery_start))
2954 if (rdev->mddev->pers &&
2955 rdev->raid_disk >= 0)
2958 rdev->recovery_offset = recovery_start;
2959 if (recovery_start == MaxSector)
2960 set_bit(In_sync, &rdev->flags);
2962 clear_bit(In_sync, &rdev->flags);
2966 static struct rdev_sysfs_entry rdev_recovery_start =
2967 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2971 badblocks_show(struct badblocks *bb, char *page, int unack);
2973 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2975 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2977 return badblocks_show(&rdev->badblocks, page, 0);
2979 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2981 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2982 /* Maybe that ack was all we needed */
2983 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2984 wake_up(&rdev->blocked_wait);
2987 static struct rdev_sysfs_entry rdev_bad_blocks =
2988 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2991 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2993 return badblocks_show(&rdev->badblocks, page, 1);
2995 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2997 return badblocks_store(&rdev->badblocks, page, len, 1);
2999 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3000 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3002 static struct attribute *rdev_default_attrs[] = {
3008 &rdev_recovery_start.attr,
3009 &rdev_bad_blocks.attr,
3010 &rdev_unack_bad_blocks.attr,
3014 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3016 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3017 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3018 struct mddev *mddev = rdev->mddev;
3024 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3026 if (rdev->mddev == NULL)
3029 rv = entry->show(rdev, page);
3030 mddev_unlock(mddev);
3036 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3037 const char *page, size_t length)
3039 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3040 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3042 struct mddev *mddev = rdev->mddev;
3046 if (!capable(CAP_SYS_ADMIN))
3048 rv = mddev ? mddev_lock(mddev): -EBUSY;
3050 if (rdev->mddev == NULL)
3053 rv = entry->store(rdev, page, length);
3054 mddev_unlock(mddev);
3059 static void rdev_free(struct kobject *ko)
3061 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3064 static const struct sysfs_ops rdev_sysfs_ops = {
3065 .show = rdev_attr_show,
3066 .store = rdev_attr_store,
3068 static struct kobj_type rdev_ktype = {
3069 .release = rdev_free,
3070 .sysfs_ops = &rdev_sysfs_ops,
3071 .default_attrs = rdev_default_attrs,
3074 int md_rdev_init(struct md_rdev *rdev)
3077 rdev->saved_raid_disk = -1;
3078 rdev->raid_disk = -1;
3080 rdev->data_offset = 0;
3081 rdev->sb_events = 0;
3082 rdev->last_read_error.tv_sec = 0;
3083 rdev->last_read_error.tv_nsec = 0;
3084 rdev->sb_loaded = 0;
3085 rdev->bb_page = NULL;
3086 atomic_set(&rdev->nr_pending, 0);
3087 atomic_set(&rdev->read_errors, 0);
3088 atomic_set(&rdev->corrected_errors, 0);
3090 INIT_LIST_HEAD(&rdev->same_set);
3091 init_waitqueue_head(&rdev->blocked_wait);
3093 /* Add space to store bad block list.
3094 * This reserves the space even on arrays where it cannot
3095 * be used - I wonder if that matters
3097 rdev->badblocks.count = 0;
3098 rdev->badblocks.shift = 0;
3099 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3100 seqlock_init(&rdev->badblocks.lock);
3101 if (rdev->badblocks.page == NULL)
3106 EXPORT_SYMBOL_GPL(md_rdev_init);
3108 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3110 * mark the device faulty if:
3112 * - the device is nonexistent (zero size)
3113 * - the device has no valid superblock
3115 * a faulty rdev _never_ has rdev->sb set.
3117 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3119 char b[BDEVNAME_SIZE];
3121 struct md_rdev *rdev;
3124 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3126 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3127 return ERR_PTR(-ENOMEM);
3130 err = md_rdev_init(rdev);
3133 err = alloc_disk_sb(rdev);
3137 err = lock_rdev(rdev, newdev, super_format == -2);
3141 kobject_init(&rdev->kobj, &rdev_ktype);
3143 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3146 "md: %s has zero or unknown size, marking faulty!\n",
3147 bdevname(rdev->bdev,b));
3152 if (super_format >= 0) {
3153 err = super_types[super_format].
3154 load_super(rdev, NULL, super_minor);
3155 if (err == -EINVAL) {
3157 "md: %s does not have a valid v%d.%d "
3158 "superblock, not importing!\n",
3159 bdevname(rdev->bdev,b),
3160 super_format, super_minor);
3165 "md: could not read %s's sb, not importing!\n",
3166 bdevname(rdev->bdev,b));
3170 if (super_format == -1)
3171 /* hot-add for 0.90, or non-persistent: so no badblocks */
3172 rdev->badblocks.shift = -1;
3180 kfree(rdev->badblocks.page);
3182 return ERR_PTR(err);
3186 * Check a full RAID array for plausibility
3190 static void analyze_sbs(struct mddev * mddev)
3193 struct md_rdev *rdev, *freshest, *tmp;
3194 char b[BDEVNAME_SIZE];
3197 rdev_for_each(rdev, tmp, mddev)
3198 switch (super_types[mddev->major_version].
3199 load_super(rdev, freshest, mddev->minor_version)) {
3207 "md: fatal superblock inconsistency in %s"
3208 " -- removing from array\n",
3209 bdevname(rdev->bdev,b));
3210 kick_rdev_from_array(rdev);
3214 super_types[mddev->major_version].
3215 validate_super(mddev, freshest);
3218 rdev_for_each(rdev, tmp, mddev) {
3219 if (mddev->max_disks &&
3220 (rdev->desc_nr >= mddev->max_disks ||
3221 i > mddev->max_disks)) {
3223 "md: %s: %s: only %d devices permitted\n",
3224 mdname(mddev), bdevname(rdev->bdev, b),
3226 kick_rdev_from_array(rdev);
3229 if (rdev != freshest)
3230 if (super_types[mddev->major_version].
3231 validate_super(mddev, rdev)) {
3232 printk(KERN_WARNING "md: kicking non-fresh %s"
3234 bdevname(rdev->bdev,b));
3235 kick_rdev_from_array(rdev);
3238 if (mddev->level == LEVEL_MULTIPATH) {
3239 rdev->desc_nr = i++;
3240 rdev->raid_disk = rdev->desc_nr;
3241 set_bit(In_sync, &rdev->flags);
3242 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3243 rdev->raid_disk = -1;
3244 clear_bit(In_sync, &rdev->flags);
3249 /* Read a fixed-point number.
3250 * Numbers in sysfs attributes should be in "standard" units where
3251 * possible, so time should be in seconds.
3252 * However we internally use a a much smaller unit such as
3253 * milliseconds or jiffies.
3254 * This function takes a decimal number with a possible fractional
3255 * component, and produces an integer which is the result of
3256 * multiplying that number by 10^'scale'.
3257 * all without any floating-point arithmetic.
3259 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3261 unsigned long result = 0;
3263 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3266 else if (decimals < scale) {
3269 result = result * 10 + value;
3281 while (decimals < scale) {
3290 static void md_safemode_timeout(unsigned long data);
3293 safe_delay_show(struct mddev *mddev, char *page)
3295 int msec = (mddev->safemode_delay*1000)/HZ;
3296 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3299 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3303 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3306 mddev->safemode_delay = 0;
3308 unsigned long old_delay = mddev->safemode_delay;
3309 mddev->safemode_delay = (msec*HZ)/1000;
3310 if (mddev->safemode_delay == 0)
3311 mddev->safemode_delay = 1;
3312 if (mddev->safemode_delay < old_delay)
3313 md_safemode_timeout((unsigned long)mddev);
3317 static struct md_sysfs_entry md_safe_delay =
3318 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3321 level_show(struct mddev *mddev, char *page)
3323 struct md_personality *p = mddev->pers;
3325 return sprintf(page, "%s\n", p->name);
3326 else if (mddev->clevel[0])
3327 return sprintf(page, "%s\n", mddev->clevel);
3328 else if (mddev->level != LEVEL_NONE)
3329 return sprintf(page, "%d\n", mddev->level);
3335 level_store(struct mddev *mddev, const char *buf, size_t len)
3339 struct md_personality *pers;
3342 struct md_rdev *rdev;