2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
22 * UBI wear-leveling sub-system.
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47 * in a physical eraseblock, it has to be moved. Technically this is the same
48 * as moving it for wear-leveling reasons.
50 * As it was said, for the UBI sub-system all physical eraseblocks are either
51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
55 * When the WL sub-system returns a physical eraseblock, the physical
56 * eraseblock is protected from being moved for some "time". For this reason,
57 * the physical eraseblock is not directly moved from the @wl->free tree to the
58 * @wl->used tree. There is a protection queue in between where this
59 * physical eraseblock is temporarily stored (@wl->pq).
61 * All this protection stuff is needed because:
62 * o we don't want to move physical eraseblocks just after we have given them
63 * to the user; instead, we first want to let users fill them up with data;
65 * o there is a chance that the user will put the physical eraseblock very
66 * soon, so it makes sense not to move it for some time, but wait.
68 * Physical eraseblocks stay protected only for limited time. But the "time" is
69 * measured in erase cycles in this case. This is implemented with help of the
70 * protection queue. Eraseblocks are put to the tail of this queue when they
71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72 * head of the queue on each erase operation (for any eraseblock). So the
73 * length of the queue defines how may (global) erase cycles PEBs are protected.
75 * To put it differently, each physical eraseblock has 2 main states: free and
76 * used. The former state corresponds to the @wl->free tree. The latter state
77 * is split up on several sub-states:
78 * o the WL movement is allowed (@wl->used tree);
79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80 * erroneous - e.g., there was a read error;
81 * o the WL movement is temporarily prohibited (@wl->pq queue);
82 * o scrubbing is needed (@wl->scrub tree).
84 * Depending on the sub-state, wear-leveling entries of the used physical
85 * eraseblocks may be kept in one of those structures.
87 * Note, in this implementation, we keep a small in-RAM object for each physical
88 * eraseblock. This is surely not a scalable solution. But it appears to be good
89 * enough for moderately large flashes and it is simple. In future, one may
90 * re-work this sub-system and make it more scalable.
92 * At the moment this sub-system does not utilize the sequence number, which
93 * was introduced relatively recently. But it would be wise to do this because
94 * the sequence number of a logical eraseblock characterizes how old is it. For
95 * example, when we move a PEB with low erase counter, and we need to pick the
96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97 * pick target PEB with an average EC if our PEB is not very "old". This is a
98 * room for future re-works of the WL sub-system.
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
111 * Maximum difference between two erase counters. If this threshold is
112 * exceeded, the WL sub-system starts moving data from used physical
113 * eraseblocks with low erase counter to free physical eraseblocks with high
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
119 * When a physical eraseblock is moved, the WL sub-system has to pick the target
120 * physical eraseblock to move to. The simplest way would be just to pick the
121 * one with the highest erase counter. But in certain workloads this could lead
122 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123 * situation when the picked physical eraseblock is constantly erased after the
124 * data is written to it. So, we have a constant which limits the highest erase
125 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126 * does not pick eraseblocks with erase counter greater than the lowest erase
127 * counter plus %WL_FREE_MAX_DIFF.
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
132 * Maximum number of consecutive background thread failures which is enough to
133 * switch to read-only mode.
135 #define WL_MAX_FAILURES 32
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139 struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141 struct ubi_wl_entry *e);
143 #ifdef CONFIG_MTD_UBI_FASTMAP
145 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146 * @wrk: the work description object
148 static void update_fastmap_work_fn(struct work_struct *wrk)
150 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151 ubi_update_fastmap(ubi);
155 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156 * @ubi: UBI device description object
157 * @pnum: the to be checked PEB
159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
166 for (i = 0; i < ubi->fm->used_blocks; i++)
167 if (ubi->fm->e[i]->pnum == pnum)
173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
180 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181 * @e: the wear-leveling entry to add
182 * @root: the root of the tree
184 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185 * the @ubi->used and @ubi->free RB-trees.
187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
189 struct rb_node **p, *parent = NULL;
193 struct ubi_wl_entry *e1;
196 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
200 else if (e->ec > e1->ec)
203 ubi_assert(e->pnum != e1->pnum);
204 if (e->pnum < e1->pnum)
211 rb_link_node(&e->u.rb, parent, p);
212 rb_insert_color(&e->u.rb, root);
216 * do_work - do one pending work.
217 * @ubi: UBI device description object
219 * This function returns zero in case of success and a negative error code in
222 static int do_work(struct ubi_device *ubi)
225 struct ubi_work *wrk;
230 * @ubi->work_sem is used to synchronize with the workers. Workers take
231 * it in read mode, so many of them may be doing works at a time. But
232 * the queue flush code has to be sure the whole queue of works is
233 * done, and it takes the mutex in write mode.
235 down_read(&ubi->work_sem);
236 spin_lock(&ubi->wl_lock);
237 if (list_empty(&ubi->works)) {
238 spin_unlock(&ubi->wl_lock);
239 up_read(&ubi->work_sem);
243 wrk = list_entry(ubi->works.next, struct ubi_work, list);
244 list_del(&wrk->list);
245 ubi->works_count -= 1;
246 ubi_assert(ubi->works_count >= 0);
247 spin_unlock(&ubi->wl_lock);
250 * Call the worker function. Do not touch the work structure
251 * after this call as it will have been freed or reused by that
252 * time by the worker function.
254 err = wrk->func(ubi, wrk, 0);
256 ubi_err("work failed with error code %d", err);
257 up_read(&ubi->work_sem);
263 * produce_free_peb - produce a free physical eraseblock.
264 * @ubi: UBI device description object
266 * This function tries to make a free PEB by means of synchronous execution of
267 * pending works. This may be needed if, for example the background thread is
268 * disabled. Returns zero in case of success and a negative error code in case
271 static int produce_free_peb(struct ubi_device *ubi)
275 while (!ubi->free.rb_node) {
276 spin_unlock(&ubi->wl_lock);
278 dbg_wl("do one work synchronously");
281 spin_lock(&ubi->wl_lock);
290 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291 * @e: the wear-leveling entry to check
292 * @root: the root of the tree
294 * This function returns non-zero if @e is in the @root RB-tree and zero if it
297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
303 struct ubi_wl_entry *e1;
305 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307 if (e->pnum == e1->pnum) {
314 else if (e->ec > e1->ec)
317 ubi_assert(e->pnum != e1->pnum);
318 if (e->pnum < e1->pnum)
329 * prot_queue_add - add physical eraseblock to the protection queue.
330 * @ubi: UBI device description object
331 * @e: the physical eraseblock to add
333 * This function adds @e to the tail of the protection queue @ubi->pq, where
334 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340 int pq_tail = ubi->pq_head - 1;
343 pq_tail = UBI_PROT_QUEUE_LEN - 1;
344 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
350 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351 * @ubi: UBI device description object
352 * @root: the RB-tree where to look for
353 * @diff: maximum possible difference from the smallest erase counter
355 * This function looks for a wear leveling entry with erase counter closest to
356 * min + @diff, where min is the smallest erase counter.
358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359 struct rb_root *root, int diff)
362 struct ubi_wl_entry *e, *prev_e = NULL;
365 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
370 struct ubi_wl_entry *e1;
372 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
382 /* If no fastmap has been written and this WL entry can be used
383 * as anchor PEB, hold it back and return the second best WL entry
384 * such that fastmap can use the anchor PEB later. */
385 if (prev_e && !ubi->fm_disabled &&
386 !ubi->fm && e->pnum < UBI_FM_MAX_START)
393 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394 * @ubi: UBI device description object
395 * @root: the RB-tree where to look for
397 * This function looks for a wear leveling entry with medium erase counter,
398 * but not greater or equivalent than the lowest erase counter plus
399 * %WL_FREE_MAX_DIFF/2.
401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402 struct rb_root *root)
404 struct ubi_wl_entry *e, *first, *last;
406 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
409 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413 /* If no fastmap has been written and this WL entry can be used
414 * as anchor PEB, hold it back and return the second best
415 * WL entry such that fastmap can use the anchor PEB later. */
416 if (e && !ubi->fm_disabled && !ubi->fm &&
417 e->pnum < UBI_FM_MAX_START)
418 e = rb_entry(rb_next(root->rb_node),
419 struct ubi_wl_entry, u.rb);
422 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
427 #ifdef CONFIG_MTD_UBI_FASTMAP
429 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430 * @root: the RB-tree where to look for
432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
435 struct ubi_wl_entry *e, *victim = NULL;
436 int max_ec = UBI_MAX_ERASECOUNTER;
438 ubi_rb_for_each_entry(p, e, root, u.rb) {
439 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
448 static int anchor_pebs_avalible(struct rb_root *root)
451 struct ubi_wl_entry *e;
453 ubi_rb_for_each_entry(p, e, root, u.rb)
454 if (e->pnum < UBI_FM_MAX_START)
461 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462 * @ubi: UBI device description object
463 * @anchor: This PEB will be used as anchor PEB by fastmap
465 * The function returns a physical erase block with a given maximal number
466 * and removes it from the wl subsystem.
467 * Must be called with wl_lock held!
469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
471 struct ubi_wl_entry *e = NULL;
473 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
477 e = find_anchor_wl_entry(&ubi->free);
479 e = find_mean_wl_entry(ubi, &ubi->free);
484 self_check_in_wl_tree(ubi, e, &ubi->free);
486 /* remove it from the free list,
487 * the wl subsystem does no longer know this erase block */
488 rb_erase(&e->u.rb, &ubi->free);
496 * __wl_get_peb - get a physical eraseblock.
497 * @ubi: UBI device description object
499 * This function returns a physical eraseblock in case of success and a
500 * negative error code in case of failure. Might sleep.
502 static int __wl_get_peb(struct ubi_device *ubi)
505 struct ubi_wl_entry *e;
508 if (!ubi->free.rb_node) {
509 if (ubi->works_count == 0) {
510 ubi_err("no free eraseblocks");
511 ubi_assert(list_empty(&ubi->works));
515 err = produce_free_peb(ubi);
521 e = find_mean_wl_entry(ubi, &ubi->free);
523 ubi_err("no free eraseblocks");
527 self_check_in_wl_tree(ubi, e, &ubi->free);
530 * Move the physical eraseblock to the protection queue where it will
531 * be protected from being moved for some time.
533 rb_erase(&e->u.rb, &ubi->free);
535 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
536 #ifndef CONFIG_MTD_UBI_FASTMAP
537 /* We have to enqueue e only if fastmap is disabled,
538 * is fastmap enabled prot_queue_add() will be called by
539 * ubi_wl_get_peb() after removing e from the pool. */
540 prot_queue_add(ubi, e);
542 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
543 ubi->peb_size - ubi->vid_hdr_aloffset);
545 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
552 #ifdef CONFIG_MTD_UBI_FASTMAP
554 * return_unused_pool_pebs - returns unused PEB to the free tree.
555 * @ubi: UBI device description object
556 * @pool: fastmap pool description object
558 static void return_unused_pool_pebs(struct ubi_device *ubi,
559 struct ubi_fm_pool *pool)
562 struct ubi_wl_entry *e;
564 for (i = pool->used; i < pool->size; i++) {
565 e = ubi->lookuptbl[pool->pebs[i]];
566 wl_tree_add(e, &ubi->free);
572 * refill_wl_pool - refills all the fastmap pool used by the
574 * @ubi: UBI device description object
576 static void refill_wl_pool(struct ubi_device *ubi)
578 struct ubi_wl_entry *e;
579 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
581 return_unused_pool_pebs(ubi, pool);
583 for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
584 if (!ubi->free.rb_node ||
585 (ubi->free_count - ubi->beb_rsvd_pebs < 5))
588 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
589 self_check_in_wl_tree(ubi, e, &ubi->free);
590 rb_erase(&e->u.rb, &ubi->free);
593 pool->pebs[pool->size] = e->pnum;
599 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
600 * @ubi: UBI device description object
602 static void refill_wl_user_pool(struct ubi_device *ubi)
604 struct ubi_fm_pool *pool = &ubi->fm_pool;
606 return_unused_pool_pebs(ubi, pool);
608 for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
609 if (!ubi->free.rb_node ||
610 (ubi->free_count - ubi->beb_rsvd_pebs < 1))
613 pool->pebs[pool->size] = __wl_get_peb(ubi);
614 if (pool->pebs[pool->size] < 0)
621 * ubi_refill_pools - refills all fastmap PEB pools.
622 * @ubi: UBI device description object
624 void ubi_refill_pools(struct ubi_device *ubi)
626 spin_lock(&ubi->wl_lock);
628 refill_wl_user_pool(ubi);
629 spin_unlock(&ubi->wl_lock);
632 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
635 int ubi_wl_get_peb(struct ubi_device *ubi)
638 struct ubi_fm_pool *pool = &ubi->fm_pool;
639 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
641 if (!pool->size || !wl_pool->size || pool->used == pool->size ||
642 wl_pool->used == wl_pool->size)
643 ubi_update_fastmap(ubi);
645 /* we got not a single free PEB */
649 spin_lock(&ubi->wl_lock);
650 ret = pool->pebs[pool->used++];
651 prot_queue_add(ubi, ubi->lookuptbl[ret]);
652 spin_unlock(&ubi->wl_lock);
658 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
660 * @ubi: UBI device description object
662 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
664 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
667 if (pool->used == pool->size || !pool->size) {
668 /* We cannot update the fastmap here because this
669 * function is called in atomic context.
670 * Let's fail here and refill/update it as soon as possible. */
671 schedule_work(&ubi->fm_work);
674 pnum = pool->pebs[pool->used++];
675 return ubi->lookuptbl[pnum];
679 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
681 return find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
684 int ubi_wl_get_peb(struct ubi_device *ubi)
688 spin_lock(&ubi->wl_lock);
689 peb = __wl_get_peb(ubi);
690 spin_unlock(&ubi->wl_lock);
697 * prot_queue_del - remove a physical eraseblock from the protection queue.
698 * @ubi: UBI device description object
699 * @pnum: the physical eraseblock to remove
701 * This function deletes PEB @pnum from the protection queue and returns zero
702 * in case of success and %-ENODEV if the PEB was not found.
704 static int prot_queue_del(struct ubi_device *ubi, int pnum)
706 struct ubi_wl_entry *e;
708 e = ubi->lookuptbl[pnum];
712 if (self_check_in_pq(ubi, e))
715 list_del(&e->u.list);
716 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
721 * sync_erase - synchronously erase a physical eraseblock.
722 * @ubi: UBI device description object
723 * @e: the the physical eraseblock to erase
724 * @torture: if the physical eraseblock has to be tortured
726 * This function returns zero in case of success and a negative error code in
729 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
733 struct ubi_ec_hdr *ec_hdr;
734 unsigned long long ec = e->ec;
736 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
738 err = self_check_ec(ubi, e->pnum, e->ec);
742 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
746 err = ubi_io_sync_erase(ubi, e->pnum, torture);
751 if (ec > UBI_MAX_ERASECOUNTER) {
753 * Erase counter overflow. Upgrade UBI and use 64-bit
754 * erase counters internally.
756 ubi_err("erase counter overflow at PEB %d, EC %llu",
762 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
764 ec_hdr->ec = cpu_to_be64(ec);
766 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
771 spin_lock(&ubi->wl_lock);
772 if (e->ec > ubi->max_ec)
774 spin_unlock(&ubi->wl_lock);
782 * serve_prot_queue - check if it is time to stop protecting PEBs.
783 * @ubi: UBI device description object
785 * This function is called after each erase operation and removes PEBs from the
786 * tail of the protection queue. These PEBs have been protected for long enough
787 * and should be moved to the used tree.
789 static void serve_prot_queue(struct ubi_device *ubi)
791 struct ubi_wl_entry *e, *tmp;
795 * There may be several protected physical eraseblock to remove,
800 spin_lock(&ubi->wl_lock);
801 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
802 dbg_wl("PEB %d EC %d protection over, move to used tree",
805 list_del(&e->u.list);
806 wl_tree_add(e, &ubi->used);
809 * Let's be nice and avoid holding the spinlock for
812 spin_unlock(&ubi->wl_lock);
819 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
821 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
822 spin_unlock(&ubi->wl_lock);
826 * __schedule_ubi_work - schedule a work.
827 * @ubi: UBI device description object
828 * @wrk: the work to schedule
830 * This function adds a work defined by @wrk to the tail of the pending works
831 * list. Can only be used of ubi->work_sem is already held in read mode!
833 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
835 spin_lock(&ubi->wl_lock);
836 list_add_tail(&wrk->list, &ubi->works);
837 ubi_assert(ubi->works_count >= 0);
838 ubi->works_count += 1;
839 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
840 wake_up_process(ubi->bgt_thread);
841 spin_unlock(&ubi->wl_lock);
845 * schedule_ubi_work - schedule a work.
846 * @ubi: UBI device description object
847 * @wrk: the work to schedule
849 * This function adds a work defined by @wrk to the tail of the pending works
852 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
854 down_read(&ubi->work_sem);
855 __schedule_ubi_work(ubi, wrk);
856 up_read(&ubi->work_sem);
859 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
862 #ifdef CONFIG_MTD_UBI_FASTMAP
864 * ubi_is_erase_work - checks whether a work is erase work.
865 * @wrk: The work object to be checked
867 int ubi_is_erase_work(struct ubi_work *wrk)
869 return wrk->func == erase_worker;
874 * schedule_erase - schedule an erase work.
875 * @ubi: UBI device description object
876 * @e: the WL entry of the physical eraseblock to erase
877 * @vol_id: the volume ID that last used this PEB
878 * @lnum: the last used logical eraseblock number for the PEB
879 * @torture: if the physical eraseblock has to be tortured
881 * This function returns zero in case of success and a %-ENOMEM in case of
884 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
885 int vol_id, int lnum, int torture)
887 struct ubi_work *wl_wrk;
890 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
892 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
893 e->pnum, e->ec, torture);
895 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
899 wl_wrk->func = &erase_worker;
901 wl_wrk->vol_id = vol_id;
903 wl_wrk->torture = torture;
905 schedule_ubi_work(ubi, wl_wrk);
910 * do_sync_erase - run the erase worker synchronously.
911 * @ubi: UBI device description object
912 * @e: the WL entry of the physical eraseblock to erase
913 * @vol_id: the volume ID that last used this PEB
914 * @lnum: the last used logical eraseblock number for the PEB
915 * @torture: if the physical eraseblock has to be tortured
918 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
919 int vol_id, int lnum, int torture)
921 struct ubi_work *wl_wrk;
923 dbg_wl("sync erase of PEB %i", e->pnum);
925 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
930 wl_wrk->vol_id = vol_id;
932 wl_wrk->torture = torture;
934 return erase_worker(ubi, wl_wrk, 0);
937 #ifdef CONFIG_MTD_UBI_FASTMAP
939 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
941 * see: ubi_wl_put_peb()
943 * @ubi: UBI device description object
944 * @fm_e: physical eraseblock to return
945 * @lnum: the last used logical eraseblock number for the PEB
946 * @torture: if this physical eraseblock has to be tortured
948 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
949 int lnum, int torture)
951 struct ubi_wl_entry *e;
952 int vol_id, pnum = fm_e->pnum;
954 dbg_wl("PEB %d", pnum);
956 ubi_assert(pnum >= 0);
957 ubi_assert(pnum < ubi->peb_count);
959 spin_lock(&ubi->wl_lock);
960 e = ubi->lookuptbl[pnum];
962 /* This can happen if we recovered from a fastmap the very
963 * first time and writing now a new one. In this case the wl system
964 * has never seen any PEB used by the original fastmap.
968 ubi_assert(e->ec >= 0);
969 ubi->lookuptbl[pnum] = e;
975 spin_unlock(&ubi->wl_lock);
977 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
978 return schedule_erase(ubi, e, vol_id, lnum, torture);
983 * wear_leveling_worker - wear-leveling worker function.
984 * @ubi: UBI device description object
985 * @wrk: the work object
986 * @cancel: non-zero if the worker has to free memory and exit
988 * This function copies a more worn out physical eraseblock to a less worn out
989 * one. Returns zero in case of success and a negative error code in case of
992 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
995 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
996 int vol_id = -1, uninitialized_var(lnum);
997 #ifdef CONFIG_MTD_UBI_FASTMAP
998 int anchor = wrk->anchor;
1000 struct ubi_wl_entry *e1, *e2;
1001 struct ubi_vid_hdr *vid_hdr;
1007 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1011 mutex_lock(&ubi->move_mutex);
1012 spin_lock(&ubi->wl_lock);
1013 ubi_assert(!ubi->move_from && !ubi->move_to);
1014 ubi_assert(!ubi->move_to_put);
1016 if (!ubi->free.rb_node ||
1017 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1019 * No free physical eraseblocks? Well, they must be waiting in
1020 * the queue to be erased. Cancel movement - it will be
1021 * triggered again when a free physical eraseblock appears.
1023 * No used physical eraseblocks? They must be temporarily
1024 * protected from being moved. They will be moved to the
1025 * @ubi->used tree later and the wear-leveling will be
1028 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1029 !ubi->free.rb_node, !ubi->used.rb_node);
1033 #ifdef CONFIG_MTD_UBI_FASTMAP
1034 /* Check whether we need to produce an anchor PEB */
1036 anchor = !anchor_pebs_avalible(&ubi->free);
1039 e1 = find_anchor_wl_entry(&ubi->used);
1042 e2 = get_peb_for_wl(ubi);
1046 self_check_in_wl_tree(ubi, e1, &ubi->used);
1047 rb_erase(&e1->u.rb, &ubi->used);
1048 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1049 } else if (!ubi->scrub.rb_node) {
1051 if (!ubi->scrub.rb_node) {
1054 * Now pick the least worn-out used physical eraseblock and a
1055 * highly worn-out free physical eraseblock. If the erase
1056 * counters differ much enough, start wear-leveling.
1058 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1059 e2 = get_peb_for_wl(ubi);
1063 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1064 dbg_wl("no WL needed: min used EC %d, max free EC %d",
1068 self_check_in_wl_tree(ubi, e1, &ubi->used);
1069 rb_erase(&e1->u.rb, &ubi->used);
1070 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1071 e1->pnum, e1->ec, e2->pnum, e2->ec);
1073 /* Perform scrubbing */
1075 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1076 e2 = get_peb_for_wl(ubi);
1080 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1081 rb_erase(&e1->u.rb, &ubi->scrub);
1082 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1085 ubi->move_from = e1;
1087 spin_unlock(&ubi->wl_lock);
1090 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1091 * We so far do not know which logical eraseblock our physical
1092 * eraseblock (@e1) belongs to. We have to read the volume identifier
1095 * Note, we are protected from this PEB being unmapped and erased. The
1096 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1097 * which is being moved was unmapped.
1100 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1101 if (err && err != UBI_IO_BITFLIPS) {
1102 if (err == UBI_IO_FF) {
1104 * We are trying to move PEB without a VID header. UBI
1105 * always write VID headers shortly after the PEB was
1106 * given, so we have a situation when it has not yet
1107 * had a chance to write it, because it was preempted.
1108 * So add this PEB to the protection queue so far,
1109 * because presumably more data will be written there
1110 * (including the missing VID header), and then we'll
1113 dbg_wl("PEB %d has no VID header", e1->pnum);
1116 } else if (err == UBI_IO_FF_BITFLIPS) {
1118 * The same situation as %UBI_IO_FF, but bit-flips were
1119 * detected. It is better to schedule this PEB for
1122 dbg_wl("PEB %d has no VID header but has bit-flips",
1128 ubi_err("error %d while reading VID header from PEB %d",
1133 vol_id = be32_to_cpu(vid_hdr->vol_id);
1134 lnum = be32_to_cpu(vid_hdr->lnum);
1136 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1138 if (err == MOVE_CANCEL_RACE) {
1140 * The LEB has not been moved because the volume is
1141 * being deleted or the PEB has been put meanwhile. We
1142 * should prevent this PEB from being selected for
1143 * wear-leveling movement again, so put it to the
1149 if (err == MOVE_RETRY) {
1153 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1154 err == MOVE_TARGET_RD_ERR) {
1156 * Target PEB had bit-flips or write error - torture it.
1162 if (err == MOVE_SOURCE_RD_ERR) {
1164 * An error happened while reading the source PEB. Do
1165 * not switch to R/O mode in this case, and give the
1166 * upper layers a possibility to recover from this,
1167 * e.g. by unmapping corresponding LEB. Instead, just
1168 * put this PEB to the @ubi->erroneous list to prevent
1169 * UBI from trying to move it over and over again.
1171 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1172 ubi_err("too many erroneous eraseblocks (%d)",
1173 ubi->erroneous_peb_count);
1186 /* The PEB has been successfully moved */
1188 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1189 e1->pnum, vol_id, lnum, e2->pnum);
1190 ubi_free_vid_hdr(ubi, vid_hdr);
1192 spin_lock(&ubi->wl_lock);
1193 if (!ubi->move_to_put) {
1194 wl_tree_add(e2, &ubi->used);
1197 ubi->move_from = ubi->move_to = NULL;
1198 ubi->move_to_put = ubi->wl_scheduled = 0;
1199 spin_unlock(&ubi->wl_lock);
1201 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1203 kmem_cache_free(ubi_wl_entry_slab, e1);
1205 kmem_cache_free(ubi_wl_entry_slab, e2);
1211 * Well, the target PEB was put meanwhile, schedule it for
1214 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1215 e2->pnum, vol_id, lnum);
1216 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1218 kmem_cache_free(ubi_wl_entry_slab, e2);
1224 mutex_unlock(&ubi->move_mutex);
1228 * For some reasons the LEB was not moved, might be an error, might be
1229 * something else. @e1 was not changed, so return it back. @e2 might
1230 * have been changed, schedule it for erasure.
1234 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1235 e1->pnum, vol_id, lnum, e2->pnum, err);
1237 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1238 e1->pnum, e2->pnum, err);
1239 spin_lock(&ubi->wl_lock);
1241 prot_queue_add(ubi, e1);
1242 else if (erroneous) {
1243 wl_tree_add(e1, &ubi->erroneous);
1244 ubi->erroneous_peb_count += 1;
1245 } else if (scrubbing)
1246 wl_tree_add(e1, &ubi->scrub);
1248 wl_tree_add(e1, &ubi->used);
1249 ubi_assert(!ubi->move_to_put);
1250 ubi->move_from = ubi->move_to = NULL;
1251 ubi->wl_scheduled = 0;
1252 spin_unlock(&ubi->wl_lock);
1254 ubi_free_vid_hdr(ubi, vid_hdr);
1255 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1257 kmem_cache_free(ubi_wl_entry_slab, e2);
1260 mutex_unlock(&ubi->move_mutex);
1265 ubi_err("error %d while moving PEB %d to PEB %d",
1266 err, e1->pnum, e2->pnum);
1268 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1269 err, e1->pnum, vol_id, lnum, e2->pnum);
1270 spin_lock(&ubi->wl_lock);
1271 ubi->move_from = ubi->move_to = NULL;
1272 ubi->move_to_put = ubi->wl_scheduled = 0;
1273 spin_unlock(&ubi->wl_lock);
1275 ubi_free_vid_hdr(ubi, vid_hdr);
1276 kmem_cache_free(ubi_wl_entry_slab, e1);
1277 kmem_cache_free(ubi_wl_entry_slab, e2);
1281 mutex_unlock(&ubi->move_mutex);
1282 ubi_assert(err != 0);
1283 return err < 0 ? err : -EIO;
1286 ubi->wl_scheduled = 0;
1287 spin_unlock(&ubi->wl_lock);
1288 mutex_unlock(&ubi->move_mutex);
1289 ubi_free_vid_hdr(ubi, vid_hdr);
1294 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1295 * @ubi: UBI device description object
1296 * @nested: set to non-zero if this function is called from UBI worker
1298 * This function checks if it is time to start wear-leveling and schedules it
1299 * if yes. This function returns zero in case of success and a negative error
1300 * code in case of failure.
1302 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1305 struct ubi_wl_entry *e1;
1306 struct ubi_wl_entry *e2;
1307 struct ubi_work *wrk;
1309 spin_lock(&ubi->wl_lock);
1310 if (ubi->wl_scheduled)
1311 /* Wear-leveling is already in the work queue */
1315 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1316 * the WL worker has to be scheduled anyway.
1318 if (!ubi->scrub.rb_node) {
1319 if (!ubi->used.rb_node || !ubi->free.rb_node)
1320 /* No physical eraseblocks - no deal */
1324 * We schedule wear-leveling only if the difference between the
1325 * lowest erase counter of used physical eraseblocks and a high
1326 * erase counter of free physical eraseblocks is greater than
1327 * %UBI_WL_THRESHOLD.
1329 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1330 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1332 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1334 dbg_wl("schedule wear-leveling");
1336 dbg_wl("schedule scrubbing");
1338 ubi->wl_scheduled = 1;
1339 spin_unlock(&ubi->wl_lock);
1341 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1348 wrk->func = &wear_leveling_worker;
1350 __schedule_ubi_work(ubi, wrk);
1352 schedule_ubi_work(ubi, wrk);
1356 spin_lock(&ubi->wl_lock);
1357 ubi->wl_scheduled = 0;
1359 spin_unlock(&ubi->wl_lock);
1363 #ifdef CONFIG_MTD_UBI_FASTMAP
1365 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1366 * @ubi: UBI device description object
1368 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1370 struct ubi_work *wrk;
1372 spin_lock(&ubi->wl_lock);
1373 if (ubi->wl_scheduled) {
1374 spin_unlock(&ubi->wl_lock);
1377 ubi->wl_scheduled = 1;
1378 spin_unlock(&ubi->wl_lock);
1380 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1382 spin_lock(&ubi->wl_lock);
1383 ubi->wl_scheduled = 0;
1384 spin_unlock(&ubi->wl_lock);
1389 wrk->func = &wear_leveling_worker;
1390 schedule_ubi_work(ubi, wrk);
1396 * erase_worker - physical eraseblock erase worker function.
1397 * @ubi: UBI device description object
1398 * @wl_wrk: the work object
1399 * @cancel: non-zero if the worker has to free memory and exit
1401 * This function erases a physical eraseblock and perform torture testing if
1402 * needed. It also takes care about marking the physical eraseblock bad if
1403 * needed. Returns zero in case of success and a negative error code in case of
1406 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1409 struct ubi_wl_entry *e = wl_wrk->e;
1411 int vol_id = wl_wrk->vol_id;
1412 int lnum = wl_wrk->lnum;
1413 int err, available_consumed = 0;
1416 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1418 kmem_cache_free(ubi_wl_entry_slab, e);
1422 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1423 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1425 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1427 err = sync_erase(ubi, e, wl_wrk->torture);
1429 /* Fine, we've erased it successfully */
1432 spin_lock(&ubi->wl_lock);
1433 wl_tree_add(e, &ubi->free);
1435 spin_unlock(&ubi->wl_lock);
1438 * One more erase operation has happened, take care about
1439 * protected physical eraseblocks.
1441 serve_prot_queue(ubi);
1443 /* And take care about wear-leveling */
1444 err = ensure_wear_leveling(ubi, 1);
1448 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1451 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1455 /* Re-schedule the LEB for erasure */
1456 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1464 kmem_cache_free(ubi_wl_entry_slab, e);
1467 * If this is not %-EIO, we have no idea what to do. Scheduling
1468 * this physical eraseblock for erasure again would cause
1469 * errors again and again. Well, lets switch to R/O mode.
1473 /* It is %-EIO, the PEB went bad */
1475 if (!ubi->bad_allowed) {
1476 ubi_err("bad physical eraseblock %d detected", pnum);
1480 spin_lock(&ubi->volumes_lock);
1481 if (ubi->beb_rsvd_pebs == 0) {
1482 if (ubi->avail_pebs == 0) {
1483 spin_unlock(&ubi->volumes_lock);
1484 ubi_err("no reserved/available physical eraseblocks");
1487 ubi->avail_pebs -= 1;
1488 available_consumed = 1;
1490 spin_unlock(&ubi->volumes_lock);
1492 ubi_msg("mark PEB %d as bad", pnum);
1493 err = ubi_io_mark_bad(ubi, pnum);
1497 spin_lock(&ubi->volumes_lock);
1498 if (ubi->beb_rsvd_pebs > 0) {
1499 if (available_consumed) {
1501 * The amount of reserved PEBs increased since we last
1504 ubi->avail_pebs += 1;
1505 available_consumed = 0;
1507 ubi->beb_rsvd_pebs -= 1;
1509 ubi->bad_peb_count += 1;
1510 ubi->good_peb_count -= 1;
1511 ubi_calculate_reserved(ubi);
1512 if (available_consumed)
1513 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1514 else if (ubi->beb_rsvd_pebs)
1515 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1517 ubi_warn("last PEB from the reserve was used");
1518 spin_unlock(&ubi->volumes_lock);
1523 if (available_consumed) {
1524 spin_lock(&ubi->volumes_lock);
1525 ubi->avail_pebs += 1;
1526 spin_unlock(&ubi->volumes_lock);
1533 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1534 * @ubi: UBI device description object
1535 * @vol_id: the volume ID that last used this PEB
1536 * @lnum: the last used logical eraseblock number for the PEB
1537 * @pnum: physical eraseblock to return
1538 * @torture: if this physical eraseblock has to be tortured
1540 * This function is called to return physical eraseblock @pnum to the pool of
1541 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1542 * occurred to this @pnum and it has to be tested. This function returns zero
1543 * in case of success, and a negative error code in case of failure.
1545 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1546 int pnum, int torture)
1549 struct ubi_wl_entry *e;
1551 dbg_wl("PEB %d", pnum);
1552 ubi_assert(pnum >= 0);
1553 ubi_assert(pnum < ubi->peb_count);
1556 spin_lock(&ubi->wl_lock);
1557 e = ubi->lookuptbl[pnum];
1558 if (e == ubi->move_from) {
1560 * User is putting the physical eraseblock which was selected to
1561 * be moved. It will be scheduled for erasure in the
1562 * wear-leveling worker.
1564 dbg_wl("PEB %d is being moved, wait", pnum);
1565 spin_unlock(&ubi->wl_lock);
1567 /* Wait for the WL worker by taking the @ubi->move_mutex */
1568 mutex_lock(&ubi->move_mutex);
1569 mutex_unlock(&ubi->move_mutex);
1571 } else if (e == ubi->move_to) {
1573 * User is putting the physical eraseblock which was selected
1574 * as the target the data is moved to. It may happen if the EBA
1575 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1576 * but the WL sub-system has not put the PEB to the "used" tree
1577 * yet, but it is about to do this. So we just set a flag which
1578 * will tell the WL worker that the PEB is not needed anymore
1579 * and should be scheduled for erasure.
1581 dbg_wl("PEB %d is the target of data moving", pnum);
1582 ubi_assert(!ubi->move_to_put);
1583 ubi->move_to_put = 1;
1584 spin_unlock(&ubi->wl_lock);
1587 if (in_wl_tree(e, &ubi->used)) {
1588 self_check_in_wl_tree(ubi, e, &ubi->used);
1589 rb_erase(&e->u.rb, &ubi->used);
1590 } else if (in_wl_tree(e, &ubi->scrub)) {
1591 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1592 rb_erase(&e->u.rb, &ubi->scrub);
1593 } else if (in_wl_tree(e, &ubi->erroneous)) {
1594 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1595 rb_erase(&e->u.rb, &ubi->erroneous);
1596 ubi->erroneous_peb_count -= 1;
1597 ubi_assert(ubi->erroneous_peb_count >= 0);
1598 /* Erroneous PEBs should be tortured */
1601 err = prot_queue_del(ubi, e->pnum);
1603 ubi_err("PEB %d not found", pnum);
1605 spin_unlock(&ubi->wl_lock);
1610 spin_unlock(&ubi->wl_lock);
1612 err = schedule_erase(ubi, e, vol_id, lnum, torture);
1614 spin_lock(&ubi->wl_lock);
1615 wl_tree_add(e, &ubi->used);
1616 spin_unlock(&ubi->wl_lock);
1623 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1624 * @ubi: UBI device description object
1625 * @pnum: the physical eraseblock to schedule
1627 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1628 * needs scrubbing. This function schedules a physical eraseblock for
1629 * scrubbing which is done in background. This function returns zero in case of
1630 * success and a negative error code in case of failure.
1632 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1634 struct ubi_wl_entry *e;
1636 ubi_msg("schedule PEB %d for scrubbing", pnum);
1639 spin_lock(&ubi->wl_lock);
1640 e = ubi->lookuptbl[pnum];
1641 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1642 in_wl_tree(e, &ubi->erroneous)) {
1643 spin_unlock(&ubi->wl_lock);
1647 if (e == ubi->move_to) {
1649 * This physical eraseblock was used to move data to. The data
1650 * was moved but the PEB was not yet inserted to the proper
1651 * tree. We should just wait a little and let the WL worker
1654 spin_unlock(&ubi->wl_lock);
1655 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1660 if (in_wl_tree(e, &ubi->used)) {
1661 self_check_in_wl_tree(ubi, e, &ubi->used);
1662 rb_erase(&e->u.rb, &ubi->used);
1666 err = prot_queue_del(ubi, e->pnum);
1668 ubi_err("PEB %d not found", pnum);
1670 spin_unlock(&ubi->wl_lock);
1675 wl_tree_add(e, &ubi->scrub);
1676 spin_unlock(&ubi->wl_lock);
1679 * Technically scrubbing is the same as wear-leveling, so it is done
1682 return ensure_wear_leveling(ubi, 0);
1686 * ubi_wl_flush - flush all pending works.
1687 * @ubi: UBI device description object
1688 * @vol_id: the volume id to flush for
1689 * @lnum: the logical eraseblock number to flush for
1691 * This function executes all pending works for a particular volume id /
1692 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1693 * acts as a wildcard for all of the corresponding volume numbers or logical
1694 * eraseblock numbers. It returns zero in case of success and a negative error
1695 * code in case of failure.
1697 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1703 * Erase while the pending works queue is not empty, but not more than
1704 * the number of currently pending works.
1706 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1707 vol_id, lnum, ubi->works_count);
1710 struct ubi_work *wrk;
1713 down_read(&ubi->work_sem);
1714 spin_lock(&ubi->wl_lock);
1715 list_for_each_entry(wrk, &ubi->works, list) {
1716 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1717 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1718 list_del(&wrk->list);
1719 ubi->works_count -= 1;
1720 ubi_assert(ubi->works_count >= 0);
1721 spin_unlock(&ubi->wl_lock);
1723 err = wrk->func(ubi, wrk, 0);
1725 up_read(&ubi->work_sem);
1729 spin_lock(&ubi->wl_lock);
1734 spin_unlock(&ubi->wl_lock);
1735 up_read(&ubi->work_sem);
1739 * Make sure all the works which have been done in parallel are
1742 down_write(&ubi->work_sem);
1743 up_write(&ubi->work_sem);
1749 * tree_destroy - destroy an RB-tree.
1750 * @root: the root of the tree to destroy
1752 static void tree_destroy(struct rb_root *root)
1755 struct ubi_wl_entry *e;
1761 else if (rb->rb_right)
1764 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1768 if (rb->rb_left == &e->u.rb)
1771 rb->rb_right = NULL;
1774 kmem_cache_free(ubi_wl_entry_slab, e);
1780 * ubi_thread - UBI background thread.
1781 * @u: the UBI device description object pointer
1783 int ubi_thread(void *u)
1786 struct ubi_device *ubi = u;
1788 ubi_msg("background thread \"%s\" started, PID %d",
1789 ubi->bgt_name, task_pid_nr(current));
1795 if (kthread_should_stop())
1798 if (try_to_freeze())
1801 spin_lock(&ubi->wl_lock);
1802 if (list_empty(&ubi->works) || ubi->ro_mode ||
1803 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1804 set_current_state(TASK_INTERRUPTIBLE);
1805 spin_unlock(&ubi->wl_lock);
1809 spin_unlock(&ubi->wl_lock);
1813 ubi_err("%s: work failed with error code %d",
1814 ubi->bgt_name, err);
1815 if (failures++ > WL_MAX_FAILURES) {
1817 * Too many failures, disable the thread and
1818 * switch to read-only mode.
1820 ubi_msg("%s: %d consecutive failures",
1821 ubi->bgt_name, WL_MAX_FAILURES);
1823 ubi->thread_enabled = 0;
1832 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1837 * cancel_pending - cancel all pending works.
1838 * @ubi: UBI device description object
1840 static void cancel_pending(struct ubi_device *ubi)
1842 while (!list_empty(&ubi->works)) {
1843 struct ubi_work *wrk;
1845 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1846 list_del(&wrk->list);
1847 wrk->func(ubi, wrk, 1);
1848 ubi->works_count -= 1;
1849 ubi_assert(ubi->works_count >= 0);
1854 * ubi_wl_init - initialize the WL sub-system using attaching information.
1855 * @ubi: UBI device description object
1856 * @ai: attaching information
1858 * This function returns zero in case of success, and a negative error code in
1861 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1863 int err, i, reserved_pebs, found_pebs = 0;
1864 struct rb_node *rb1, *rb2;
1865 struct ubi_ainf_volume *av;
1866 struct ubi_ainf_peb *aeb, *tmp;
1867 struct ubi_wl_entry *e;
1869 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1870 spin_lock_init(&ubi->wl_lock);
1871 mutex_init(&ubi->move_mutex);
1872 init_rwsem(&ubi->work_sem);
1873 ubi->max_ec = ai->max_ec;
1874 INIT_LIST_HEAD(&ubi->works);
1875 #ifdef CONFIG_MTD_UBI_FASTMAP
1876 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1879 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1882 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1883 if (!ubi->lookuptbl)
1886 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1887 INIT_LIST_HEAD(&ubi->pq[i]);
1890 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1893 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1897 e->pnum = aeb->pnum;
1899 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1900 ubi->lookuptbl[e->pnum] = e;
1901 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1902 kmem_cache_free(ubi_wl_entry_slab, e);
1909 ubi->free_count = 0;
1910 list_for_each_entry(aeb, &ai->free, u.list) {
1913 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1917 e->pnum = aeb->pnum;
1919 ubi_assert(e->ec >= 0);
1920 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1922 wl_tree_add(e, &ubi->free);
1925 ubi->lookuptbl[e->pnum] = e;
1930 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1931 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1934 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1938 e->pnum = aeb->pnum;
1940 ubi->lookuptbl[e->pnum] = e;
1943 dbg_wl("add PEB %d EC %d to the used tree",
1945 wl_tree_add(e, &ubi->used);
1947 dbg_wl("add PEB %d EC %d to the scrub tree",
1949 wl_tree_add(e, &ubi->scrub);
1956 dbg_wl("found %i PEBs", found_pebs);
1959 ubi_assert(ubi->good_peb_count == \
1960 found_pebs + ubi->fm->used_blocks);
1962 ubi_assert(ubi->good_peb_count == found_pebs);
1964 reserved_pebs = WL_RESERVED_PEBS;
1965 #ifdef CONFIG_MTD_UBI_FASTMAP
1966 /* Reserve enough LEBs to store two fastmaps. */
1967 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1970 if (ubi->avail_pebs < reserved_pebs) {
1971 ubi_err("no enough physical eraseblocks (%d, need %d)",
1972 ubi->avail_pebs, reserved_pebs);
1973 if (ubi->corr_peb_count)
1974 ubi_err("%d PEBs are corrupted and not used",
1975 ubi->corr_peb_count);
1978 ubi->avail_pebs -= reserved_pebs;
1979 ubi->rsvd_pebs += reserved_pebs;
1981 /* Schedule wear-leveling if needed */
1982 err = ensure_wear_leveling(ubi, 0);
1989 cancel_pending(ubi);
1990 tree_destroy(&ubi->used);
1991 tree_destroy(&ubi->free);
1992 tree_destroy(&ubi->scrub);
1993 kfree(ubi->lookuptbl);
1998 * protection_queue_destroy - destroy the protection queue.
1999 * @ubi: UBI device description object
2001 static void protection_queue_destroy(struct ubi_device *ubi)
2004 struct ubi_wl_entry *e, *tmp;
2006 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2007 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2008 list_del(&e->u.list);
2009 kmem_cache_free(ubi_wl_entry_slab, e);
2015 * ubi_wl_close - close the wear-leveling sub-system.
2016 * @ubi: UBI device description object
2018 void ubi_wl_close(struct ubi_device *ubi)
2020 dbg_wl("close the WL sub-system");
2021 cancel_pending(ubi);
2022 protection_queue_destroy(ubi);
2023 tree_destroy(&ubi->used);
2024 tree_destroy(&ubi->erroneous);
2025 tree_destroy(&ubi->free);
2026 tree_destroy(&ubi->scrub);
2027 kfree(ubi->lookuptbl);
2031 * self_check_ec - make sure that the erase counter of a PEB is correct.
2032 * @ubi: UBI device description object
2033 * @pnum: the physical eraseblock number to check
2034 * @ec: the erase counter to check
2036 * This function returns zero if the erase counter of physical eraseblock @pnum
2037 * is equivalent to @ec, and a negative error code if not or if an error
2040 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2044 struct ubi_ec_hdr *ec_hdr;
2046 if (!ubi_dbg_chk_gen(ubi))
2049 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2053 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2054 if (err && err != UBI_IO_BITFLIPS) {
2055 /* The header does not have to exist */
2060 read_ec = be64_to_cpu(ec_hdr->ec);
2061 if (ec != read_ec && read_ec - ec > 1) {
2062 ubi_err("self-check failed for PEB %d", pnum);
2063 ubi_err("read EC is %lld, should be %d", read_ec, ec);
2075 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2076 * @ubi: UBI device description object
2077 * @e: the wear-leveling entry to check
2078 * @root: the root of the tree
2080 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2083 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2084 struct ubi_wl_entry *e, struct rb_root *root)
2086 if (!ubi_dbg_chk_gen(ubi))
2089 if (in_wl_tree(e, root))
2092 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2093 e->pnum, e->ec, root);
2099 * self_check_in_pq - check if wear-leveling entry is in the protection
2101 * @ubi: UBI device description object
2102 * @e: the wear-leveling entry to check
2104 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2106 static int self_check_in_pq(const struct ubi_device *ubi,
2107 struct ubi_wl_entry *e)
2109 struct ubi_wl_entry *p;
2112 if (!ubi_dbg_chk_gen(ubi))
2115 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2116 list_for_each_entry(p, &ubi->pq[i], u.list)
2120 ubi_err("self-check failed for PEB %d, EC %d, Protect queue",