1 /* bnx2x_cmn.c: Broadcom Everest network driver.
3 * Copyright (c) 2007-2012 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/etherdevice.h>
21 #include <linux/if_vlan.h>
22 #include <linux/interrupt.h>
25 #include <net/ip6_checksum.h>
26 #include <linux/prefetch.h>
27 #include "bnx2x_cmn.h"
28 #include "bnx2x_init.h"
34 * bnx2x_move_fp - move content of the fastpath structure.
37 * @from: source FP index
38 * @to: destination FP index
40 * Makes sure the contents of the bp->fp[to].napi is kept
41 * intact. This is done by first copying the napi struct from
42 * the target to the source, and then mem copying the entire
43 * source onto the target. Update txdata pointers and related
46 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
48 struct bnx2x_fastpath *from_fp = &bp->fp[from];
49 struct bnx2x_fastpath *to_fp = &bp->fp[to];
50 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
51 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
52 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
53 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
54 int old_max_eth_txqs, new_max_eth_txqs;
55 int old_txdata_index = 0, new_txdata_index = 0;
57 /* Copy the NAPI object as it has been already initialized */
58 from_fp->napi = to_fp->napi;
60 /* Move bnx2x_fastpath contents */
61 memcpy(to_fp, from_fp, sizeof(*to_fp));
64 /* move sp_objs contents as well, as their indices match fp ones */
65 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
67 /* move fp_stats contents as well, as their indices match fp ones */
68 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
70 /* Update txdata pointers in fp and move txdata content accordingly:
71 * Each fp consumes 'max_cos' txdata structures, so the index should be
72 * decremented by max_cos x delta.
75 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
76 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
78 if (from == FCOE_IDX(bp)) {
79 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
80 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
83 memcpy(&bp->bnx2x_txq[old_txdata_index],
84 &bp->bnx2x_txq[new_txdata_index],
85 sizeof(struct bnx2x_fp_txdata));
86 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
89 int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
91 /* free skb in the packet ring at pos idx
92 * return idx of last bd freed
94 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
95 u16 idx, unsigned int *pkts_compl,
96 unsigned int *bytes_compl)
98 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
99 struct eth_tx_start_bd *tx_start_bd;
100 struct eth_tx_bd *tx_data_bd;
101 struct sk_buff *skb = tx_buf->skb;
102 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
105 /* prefetch skb end pointer to speedup dev_kfree_skb() */
108 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
109 txdata->txq_index, idx, tx_buf, skb);
112 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
113 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
114 BD_UNMAP_LEN(tx_start_bd), DMA_TO_DEVICE);
117 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
118 #ifdef BNX2X_STOP_ON_ERROR
119 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
120 BNX2X_ERR("BAD nbd!\n");
124 new_cons = nbd + tx_buf->first_bd;
126 /* Get the next bd */
127 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
129 /* Skip a parse bd... */
131 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
133 /* ...and the TSO split header bd since they have no mapping */
134 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
136 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
142 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
143 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
144 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
146 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
153 (*bytes_compl) += skb->len;
156 dev_kfree_skb_any(skb);
157 tx_buf->first_bd = 0;
163 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
165 struct netdev_queue *txq;
166 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
167 unsigned int pkts_compl = 0, bytes_compl = 0;
169 #ifdef BNX2X_STOP_ON_ERROR
170 if (unlikely(bp->panic))
174 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
175 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
176 sw_cons = txdata->tx_pkt_cons;
178 while (sw_cons != hw_cons) {
181 pkt_cons = TX_BD(sw_cons);
183 DP(NETIF_MSG_TX_DONE,
184 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
185 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
187 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
188 &pkts_compl, &bytes_compl);
193 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
195 txdata->tx_pkt_cons = sw_cons;
196 txdata->tx_bd_cons = bd_cons;
198 /* Need to make the tx_bd_cons update visible to start_xmit()
199 * before checking for netif_tx_queue_stopped(). Without the
200 * memory barrier, there is a small possibility that
201 * start_xmit() will miss it and cause the queue to be stopped
203 * On the other hand we need an rmb() here to ensure the proper
204 * ordering of bit testing in the following
205 * netif_tx_queue_stopped(txq) call.
209 if (unlikely(netif_tx_queue_stopped(txq))) {
210 /* Taking tx_lock() is needed to prevent reenabling the queue
211 * while it's empty. This could have happen if rx_action() gets
212 * suspended in bnx2x_tx_int() after the condition before
213 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
215 * stops the queue->sees fresh tx_bd_cons->releases the queue->
216 * sends some packets consuming the whole queue again->
220 __netif_tx_lock(txq, smp_processor_id());
222 if ((netif_tx_queue_stopped(txq)) &&
223 (bp->state == BNX2X_STATE_OPEN) &&
224 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
225 netif_tx_wake_queue(txq);
227 __netif_tx_unlock(txq);
232 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
235 u16 last_max = fp->last_max_sge;
237 if (SUB_S16(idx, last_max) > 0)
238 fp->last_max_sge = idx;
241 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
243 struct eth_end_agg_rx_cqe *cqe)
245 struct bnx2x *bp = fp->bp;
246 u16 last_max, last_elem, first_elem;
253 /* First mark all used pages */
254 for (i = 0; i < sge_len; i++)
255 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
256 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
258 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
259 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
261 /* Here we assume that the last SGE index is the biggest */
262 prefetch((void *)(fp->sge_mask));
263 bnx2x_update_last_max_sge(fp,
264 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
266 last_max = RX_SGE(fp->last_max_sge);
267 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
268 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
270 /* If ring is not full */
271 if (last_elem + 1 != first_elem)
274 /* Now update the prod */
275 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
276 if (likely(fp->sge_mask[i]))
279 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
280 delta += BIT_VEC64_ELEM_SZ;
284 fp->rx_sge_prod += delta;
285 /* clear page-end entries */
286 bnx2x_clear_sge_mask_next_elems(fp);
289 DP(NETIF_MSG_RX_STATUS,
290 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
291 fp->last_max_sge, fp->rx_sge_prod);
294 /* Set Toeplitz hash value in the skb using the value from the
295 * CQE (calculated by HW).
297 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
298 const struct eth_fast_path_rx_cqe *cqe,
301 /* Set Toeplitz hash from CQE */
302 if ((bp->dev->features & NETIF_F_RXHASH) &&
303 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
304 enum eth_rss_hash_type htype;
306 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
307 *l4_rxhash = (htype == TCP_IPV4_HASH_TYPE) ||
308 (htype == TCP_IPV6_HASH_TYPE);
309 return le32_to_cpu(cqe->rss_hash_result);
315 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
317 struct eth_fast_path_rx_cqe *cqe)
319 struct bnx2x *bp = fp->bp;
320 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
321 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
322 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
324 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
325 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
327 /* print error if current state != stop */
328 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
329 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
331 /* Try to map an empty data buffer from the aggregation info */
332 mapping = dma_map_single(&bp->pdev->dev,
333 first_buf->data + NET_SKB_PAD,
334 fp->rx_buf_size, DMA_FROM_DEVICE);
336 * ...if it fails - move the skb from the consumer to the producer
337 * and set the current aggregation state as ERROR to drop it
338 * when TPA_STOP arrives.
341 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
342 /* Move the BD from the consumer to the producer */
343 bnx2x_reuse_rx_data(fp, cons, prod);
344 tpa_info->tpa_state = BNX2X_TPA_ERROR;
348 /* move empty data from pool to prod */
349 prod_rx_buf->data = first_buf->data;
350 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
351 /* point prod_bd to new data */
352 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
353 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
355 /* move partial skb from cons to pool (don't unmap yet) */
356 *first_buf = *cons_rx_buf;
358 /* mark bin state as START */
359 tpa_info->parsing_flags =
360 le16_to_cpu(cqe->pars_flags.flags);
361 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
362 tpa_info->tpa_state = BNX2X_TPA_START;
363 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
364 tpa_info->placement_offset = cqe->placement_offset;
365 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->l4_rxhash);
366 if (fp->mode == TPA_MODE_GRO) {
367 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
368 tpa_info->full_page =
369 SGE_PAGE_SIZE * PAGES_PER_SGE / gro_size * gro_size;
370 tpa_info->gro_size = gro_size;
373 #ifdef BNX2X_STOP_ON_ERROR
374 fp->tpa_queue_used |= (1 << queue);
375 #ifdef _ASM_GENERIC_INT_L64_H
376 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n",
378 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
384 /* Timestamp option length allowed for TPA aggregation:
386 * nop nop kind length echo val
388 #define TPA_TSTAMP_OPT_LEN 12
390 * bnx2x_set_lro_mss - calculate the approximate value of the MSS
393 * @parsing_flags: parsing flags from the START CQE
394 * @len_on_bd: total length of the first packet for the
397 * Approximate value of the MSS for this aggregation calculated using
398 * the first packet of it.
400 static u16 bnx2x_set_lro_mss(struct bnx2x *bp, u16 parsing_flags,
404 * TPA arrgregation won't have either IP options or TCP options
405 * other than timestamp or IPv6 extension headers.
407 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
409 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
410 PRS_FLAG_OVERETH_IPV6)
411 hdrs_len += sizeof(struct ipv6hdr);
413 hdrs_len += sizeof(struct iphdr);
416 /* Check if there was a TCP timestamp, if there is it's will
417 * always be 12 bytes length: nop nop kind length echo val.
419 * Otherwise FW would close the aggregation.
421 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
422 hdrs_len += TPA_TSTAMP_OPT_LEN;
424 return len_on_bd - hdrs_len;
427 static int bnx2x_alloc_rx_sge(struct bnx2x *bp,
428 struct bnx2x_fastpath *fp, u16 index)
430 struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
431 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
432 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
435 if (unlikely(page == NULL)) {
436 BNX2X_ERR("Can't alloc sge\n");
440 mapping = dma_map_page(&bp->pdev->dev, page, 0,
441 SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
442 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
443 __free_pages(page, PAGES_PER_SGE_SHIFT);
444 BNX2X_ERR("Can't map sge\n");
449 dma_unmap_addr_set(sw_buf, mapping, mapping);
451 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
452 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
457 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
458 struct bnx2x_agg_info *tpa_info,
461 struct eth_end_agg_rx_cqe *cqe,
464 struct sw_rx_page *rx_pg, old_rx_pg;
465 u32 i, frag_len, frag_size;
466 int err, j, frag_id = 0;
467 u16 len_on_bd = tpa_info->len_on_bd;
468 u16 full_page = 0, gro_size = 0;
470 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
472 if (fp->mode == TPA_MODE_GRO) {
473 gro_size = tpa_info->gro_size;
474 full_page = tpa_info->full_page;
477 /* This is needed in order to enable forwarding support */
479 skb_shinfo(skb)->gso_size = bnx2x_set_lro_mss(bp,
480 tpa_info->parsing_flags, len_on_bd);
483 if (fp->mode == TPA_MODE_GRO)
484 skb_shinfo(skb)->gso_type =
485 (GET_FLAG(tpa_info->parsing_flags,
486 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
487 PRS_FLAG_OVERETH_IPV6) ?
488 SKB_GSO_TCPV6 : SKB_GSO_TCPV4;
492 #ifdef BNX2X_STOP_ON_ERROR
493 if (pages > min_t(u32, 8, MAX_SKB_FRAGS)*SGE_PAGE_SIZE*PAGES_PER_SGE) {
494 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
496 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
502 /* Run through the SGL and compose the fragmented skb */
503 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
504 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
506 /* FW gives the indices of the SGE as if the ring is an array
507 (meaning that "next" element will consume 2 indices) */
508 if (fp->mode == TPA_MODE_GRO)
509 frag_len = min_t(u32, frag_size, (u32)full_page);
511 frag_len = min_t(u32, frag_size,
512 (u32)(SGE_PAGE_SIZE * PAGES_PER_SGE));
514 rx_pg = &fp->rx_page_ring[sge_idx];
517 /* If we fail to allocate a substitute page, we simply stop
518 where we are and drop the whole packet */
519 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx);
521 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
525 /* Unmap the page as we r going to pass it to the stack */
526 dma_unmap_page(&bp->pdev->dev,
527 dma_unmap_addr(&old_rx_pg, mapping),
528 SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
529 /* Add one frag and update the appropriate fields in the skb */
530 if (fp->mode == TPA_MODE_LRO)
531 skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len);
535 for (rem = frag_len; rem > 0; rem -= gro_size) {
536 int len = rem > gro_size ? gro_size : rem;
537 skb_fill_page_desc(skb, frag_id++,
538 old_rx_pg.page, offset, len);
540 get_page(old_rx_pg.page);
545 skb->data_len += frag_len;
546 skb->truesize += SGE_PAGE_SIZE * PAGES_PER_SGE;
547 skb->len += frag_len;
549 frag_size -= frag_len;
555 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
557 if (fp->rx_frag_size)
558 put_page(virt_to_head_page(data));
563 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp)
565 if (fp->rx_frag_size)
566 return netdev_alloc_frag(fp->rx_frag_size);
568 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC);
572 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
573 struct bnx2x_agg_info *tpa_info,
575 struct eth_end_agg_rx_cqe *cqe,
578 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
579 u8 pad = tpa_info->placement_offset;
580 u16 len = tpa_info->len_on_bd;
581 struct sk_buff *skb = NULL;
582 u8 *new_data, *data = rx_buf->data;
583 u8 old_tpa_state = tpa_info->tpa_state;
585 tpa_info->tpa_state = BNX2X_TPA_STOP;
587 /* If we there was an error during the handling of the TPA_START -
588 * drop this aggregation.
590 if (old_tpa_state == BNX2X_TPA_ERROR)
593 /* Try to allocate the new data */
594 new_data = bnx2x_frag_alloc(fp);
595 /* Unmap skb in the pool anyway, as we are going to change
596 pool entry status to BNX2X_TPA_STOP even if new skb allocation
598 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
599 fp->rx_buf_size, DMA_FROM_DEVICE);
600 if (likely(new_data))
601 skb = build_skb(data, fp->rx_frag_size);
604 #ifdef BNX2X_STOP_ON_ERROR
605 if (pad + len > fp->rx_buf_size) {
606 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
607 pad, len, fp->rx_buf_size);
613 skb_reserve(skb, pad + NET_SKB_PAD);
615 skb->rxhash = tpa_info->rxhash;
616 skb->l4_rxhash = tpa_info->l4_rxhash;
618 skb->protocol = eth_type_trans(skb, bp->dev);
619 skb->ip_summed = CHECKSUM_UNNECESSARY;
621 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
622 skb, cqe, cqe_idx)) {
623 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
624 __vlan_hwaccel_put_tag(skb, tpa_info->vlan_tag);
625 napi_gro_receive(&fp->napi, skb);
627 DP(NETIF_MSG_RX_STATUS,
628 "Failed to allocate new pages - dropping packet!\n");
629 dev_kfree_skb_any(skb);
633 /* put new data in bin */
634 rx_buf->data = new_data;
638 bnx2x_frag_free(fp, new_data);
640 /* drop the packet and keep the buffer in the bin */
641 DP(NETIF_MSG_RX_STATUS,
642 "Failed to allocate or map a new skb - dropping packet!\n");
643 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
646 static int bnx2x_alloc_rx_data(struct bnx2x *bp,
647 struct bnx2x_fastpath *fp, u16 index)
650 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
651 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
654 data = bnx2x_frag_alloc(fp);
655 if (unlikely(data == NULL))
658 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
661 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
662 bnx2x_frag_free(fp, data);
663 BNX2X_ERR("Can't map rx data\n");
668 dma_unmap_addr_set(rx_buf, mapping, mapping);
670 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
671 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
677 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
678 struct bnx2x_fastpath *fp,
679 struct bnx2x_eth_q_stats *qstats)
681 /* Do nothing if no L4 csum validation was done.
682 * We do not check whether IP csum was validated. For IPv4 we assume
683 * that if the card got as far as validating the L4 csum, it also
684 * validated the IP csum. IPv6 has no IP csum.
686 if (cqe->fast_path_cqe.status_flags &
687 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
690 /* If L4 validation was done, check if an error was found. */
692 if (cqe->fast_path_cqe.type_error_flags &
693 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
694 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
695 qstats->hw_csum_err++;
697 skb->ip_summed = CHECKSUM_UNNECESSARY;
700 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
702 struct bnx2x *bp = fp->bp;
703 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
704 u16 hw_comp_cons, sw_comp_cons, sw_comp_prod;
707 #ifdef BNX2X_STOP_ON_ERROR
708 if (unlikely(bp->panic))
712 /* CQ "next element" is of the size of the regular element,
713 that's why it's ok here */
714 hw_comp_cons = le16_to_cpu(*fp->rx_cons_sb);
715 if ((hw_comp_cons & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
718 bd_cons = fp->rx_bd_cons;
719 bd_prod = fp->rx_bd_prod;
720 bd_prod_fw = bd_prod;
721 sw_comp_cons = fp->rx_comp_cons;
722 sw_comp_prod = fp->rx_comp_prod;
724 /* Memory barrier necessary as speculative reads of the rx
725 * buffer can be ahead of the index in the status block
729 DP(NETIF_MSG_RX_STATUS,
730 "queue[%d]: hw_comp_cons %u sw_comp_cons %u\n",
731 fp->index, hw_comp_cons, sw_comp_cons);
733 while (sw_comp_cons != hw_comp_cons) {
734 struct sw_rx_bd *rx_buf = NULL;
736 union eth_rx_cqe *cqe;
737 struct eth_fast_path_rx_cqe *cqe_fp;
739 enum eth_rx_cqe_type cqe_fp_type;
744 #ifdef BNX2X_STOP_ON_ERROR
745 if (unlikely(bp->panic))
749 comp_ring_cons = RCQ_BD(sw_comp_cons);
750 bd_prod = RX_BD(bd_prod);
751 bd_cons = RX_BD(bd_cons);
753 cqe = &fp->rx_comp_ring[comp_ring_cons];
754 cqe_fp = &cqe->fast_path_cqe;
755 cqe_fp_flags = cqe_fp->type_error_flags;
756 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
758 DP(NETIF_MSG_RX_STATUS,
759 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
760 CQE_TYPE(cqe_fp_flags),
761 cqe_fp_flags, cqe_fp->status_flags,
762 le32_to_cpu(cqe_fp->rss_hash_result),
763 le16_to_cpu(cqe_fp->vlan_tag),
764 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
766 /* is this a slowpath msg? */
767 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
768 bnx2x_sp_event(fp, cqe);
772 rx_buf = &fp->rx_buf_ring[bd_cons];
775 if (!CQE_TYPE_FAST(cqe_fp_type)) {
776 struct bnx2x_agg_info *tpa_info;
777 u16 frag_size, pages;
778 #ifdef BNX2X_STOP_ON_ERROR
780 if (fp->disable_tpa &&
781 (CQE_TYPE_START(cqe_fp_type) ||
782 CQE_TYPE_STOP(cqe_fp_type)))
783 BNX2X_ERR("START/STOP packet while disable_tpa type %x\n",
784 CQE_TYPE(cqe_fp_type));
787 if (CQE_TYPE_START(cqe_fp_type)) {
788 u16 queue = cqe_fp->queue_index;
789 DP(NETIF_MSG_RX_STATUS,
790 "calling tpa_start on queue %d\n",
793 bnx2x_tpa_start(fp, queue,
800 queue = cqe->end_agg_cqe.queue_index;
801 tpa_info = &fp->tpa_info[queue];
802 DP(NETIF_MSG_RX_STATUS,
803 "calling tpa_stop on queue %d\n",
806 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
809 if (fp->mode == TPA_MODE_GRO)
810 pages = (frag_size + tpa_info->full_page - 1) /
813 pages = SGE_PAGE_ALIGN(frag_size) >>
816 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
817 &cqe->end_agg_cqe, comp_ring_cons);
818 #ifdef BNX2X_STOP_ON_ERROR
823 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
827 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
828 pad = cqe_fp->placement_offset;
829 dma_sync_single_for_cpu(&bp->pdev->dev,
830 dma_unmap_addr(rx_buf, mapping),
831 pad + RX_COPY_THRESH,
834 prefetch(data + pad); /* speedup eth_type_trans() */
835 /* is this an error packet? */
836 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
837 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
838 "ERROR flags %x rx packet %u\n",
839 cqe_fp_flags, sw_comp_cons);
840 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
844 /* Since we don't have a jumbo ring
845 * copy small packets if mtu > 1500
847 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
848 (len <= RX_COPY_THRESH)) {
849 skb = netdev_alloc_skb_ip_align(bp->dev, len);
851 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
852 "ERROR packet dropped because of alloc failure\n");
853 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
856 memcpy(skb->data, data + pad, len);
857 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
859 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod) == 0)) {
860 dma_unmap_single(&bp->pdev->dev,
861 dma_unmap_addr(rx_buf, mapping),
864 skb = build_skb(data, fp->rx_frag_size);
865 if (unlikely(!skb)) {
866 bnx2x_frag_free(fp, data);
867 bnx2x_fp_qstats(bp, fp)->
868 rx_skb_alloc_failed++;
871 skb_reserve(skb, pad);
873 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
874 "ERROR packet dropped because of alloc failure\n");
875 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
877 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
883 skb->protocol = eth_type_trans(skb, bp->dev);
885 /* Set Toeplitz hash for a none-LRO skb */
886 skb->rxhash = bnx2x_get_rxhash(bp, cqe_fp, &l4_rxhash);
887 skb->l4_rxhash = l4_rxhash;
889 skb_checksum_none_assert(skb);
891 if (bp->dev->features & NETIF_F_RXCSUM)
892 bnx2x_csum_validate(skb, cqe, fp,
893 bnx2x_fp_qstats(bp, fp));
895 skb_record_rx_queue(skb, fp->rx_queue);
897 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
899 __vlan_hwaccel_put_tag(skb,
900 le16_to_cpu(cqe_fp->vlan_tag));
901 napi_gro_receive(&fp->napi, skb);
907 bd_cons = NEXT_RX_IDX(bd_cons);
908 bd_prod = NEXT_RX_IDX(bd_prod);
909 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
912 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
913 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
915 if (rx_pkt == budget)
919 fp->rx_bd_cons = bd_cons;
920 fp->rx_bd_prod = bd_prod_fw;
921 fp->rx_comp_cons = sw_comp_cons;
922 fp->rx_comp_prod = sw_comp_prod;
924 /* Update producers */
925 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
928 fp->rx_pkt += rx_pkt;
934 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
936 struct bnx2x_fastpath *fp = fp_cookie;
937 struct bnx2x *bp = fp->bp;
941 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
942 fp->index, fp->fw_sb_id, fp->igu_sb_id);
943 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
945 #ifdef BNX2X_STOP_ON_ERROR
946 if (unlikely(bp->panic))
950 /* Handle Rx and Tx according to MSI-X vector */
951 prefetch(fp->rx_cons_sb);
953 for_each_cos_in_tx_queue(fp, cos)
954 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
956 prefetch(&fp->sb_running_index[SM_RX_ID]);
957 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
962 /* HW Lock for shared dual port PHYs */
963 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
965 mutex_lock(&bp->port.phy_mutex);
967 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
970 void bnx2x_release_phy_lock(struct bnx2x *bp)
972 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
974 mutex_unlock(&bp->port.phy_mutex);
977 /* calculates MF speed according to current linespeed and MF configuration */
978 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
980 u16 line_speed = bp->link_vars.line_speed;
982 u16 maxCfg = bnx2x_extract_max_cfg(bp,
983 bp->mf_config[BP_VN(bp)]);
985 /* Calculate the current MAX line speed limit for the MF
989 line_speed = (line_speed * maxCfg) / 100;
991 u16 vn_max_rate = maxCfg * 100;
993 if (vn_max_rate < line_speed)
994 line_speed = vn_max_rate;
1002 * bnx2x_fill_report_data - fill link report data to report
1004 * @bp: driver handle
1005 * @data: link state to update
1007 * It uses a none-atomic bit operations because is called under the mutex.
1009 static void bnx2x_fill_report_data(struct bnx2x *bp,
1010 struct bnx2x_link_report_data *data)
1012 u16 line_speed = bnx2x_get_mf_speed(bp);
1014 memset(data, 0, sizeof(*data));
1016 /* Fill the report data: efective line speed */
1017 data->line_speed = line_speed;
1020 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1021 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1022 &data->link_report_flags);
1025 if (bp->link_vars.duplex == DUPLEX_FULL)
1026 __set_bit(BNX2X_LINK_REPORT_FD, &data->link_report_flags);
1028 /* Rx Flow Control is ON */
1029 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1030 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
1032 /* Tx Flow Control is ON */
1033 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1034 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
1038 * bnx2x_link_report - report link status to OS.
1040 * @bp: driver handle
1042 * Calls the __bnx2x_link_report() under the same locking scheme
1043 * as a link/PHY state managing code to ensure a consistent link
1047 void bnx2x_link_report(struct bnx2x *bp)
1049 bnx2x_acquire_phy_lock(bp);
1050 __bnx2x_link_report(bp);
1051 bnx2x_release_phy_lock(bp);
1055 * __bnx2x_link_report - report link status to OS.
1057 * @bp: driver handle
1059 * None atomic inmlementation.
1060 * Should be called under the phy_lock.
1062 void __bnx2x_link_report(struct bnx2x *bp)
1064 struct bnx2x_link_report_data cur_data;
1067 if (!CHIP_IS_E1(bp))
1068 bnx2x_read_mf_cfg(bp);
1070 /* Read the current link report info */
1071 bnx2x_fill_report_data(bp, &cur_data);
1073 /* Don't report link down or exactly the same link status twice */
1074 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1075 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1076 &bp->last_reported_link.link_report_flags) &&
1077 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1078 &cur_data.link_report_flags)))
1083 /* We are going to report a new link parameters now -
1084 * remember the current data for the next time.
1086 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1088 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1089 &cur_data.link_report_flags)) {
1090 netif_carrier_off(bp->dev);
1091 netdev_err(bp->dev, "NIC Link is Down\n");
1097 netif_carrier_on(bp->dev);
1099 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1100 &cur_data.link_report_flags))
1105 /* Handle the FC at the end so that only these flags would be
1106 * possibly set. This way we may easily check if there is no FC
1109 if (cur_data.link_report_flags) {
1110 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1111 &cur_data.link_report_flags)) {
1112 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1113 &cur_data.link_report_flags))
1114 flow = "ON - receive & transmit";
1116 flow = "ON - receive";
1118 flow = "ON - transmit";
1123 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1124 cur_data.line_speed, duplex, flow);
1128 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1132 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1133 struct eth_rx_sge *sge;
1135 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1137 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1138 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1141 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1142 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1146 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1147 struct bnx2x_fastpath *fp, int last)
1151 for (i = 0; i < last; i++) {
1152 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1153 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1154 u8 *data = first_buf->data;
1157 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1160 if (tpa_info->tpa_state == BNX2X_TPA_START)
1161 dma_unmap_single(&bp->pdev->dev,
1162 dma_unmap_addr(first_buf, mapping),
1163 fp->rx_buf_size, DMA_FROM_DEVICE);
1164 bnx2x_frag_free(fp, data);
1165 first_buf->data = NULL;
1169 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1173 for_each_rx_queue_cnic(bp, j) {
1174 struct bnx2x_fastpath *fp = &bp->fp[j];
1178 /* Activate BD ring */
1180 * this will generate an interrupt (to the TSTORM)
1181 * must only be done after chip is initialized
1183 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1188 void bnx2x_init_rx_rings(struct bnx2x *bp)
1190 int func = BP_FUNC(bp);
1194 /* Allocate TPA resources */
1195 for_each_eth_queue(bp, j) {
1196 struct bnx2x_fastpath *fp = &bp->fp[j];
1199 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1201 if (!fp->disable_tpa) {
1202 /* Fill the per-aggregtion pool */
1203 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1204 struct bnx2x_agg_info *tpa_info =
1206 struct sw_rx_bd *first_buf =
1207 &tpa_info->first_buf;
1209 first_buf->data = bnx2x_frag_alloc(fp);
1210 if (!first_buf->data) {
1211 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1213 bnx2x_free_tpa_pool(bp, fp, i);
1214 fp->disable_tpa = 1;
1217 dma_unmap_addr_set(first_buf, mapping, 0);
1218 tpa_info->tpa_state = BNX2X_TPA_STOP;
1221 /* "next page" elements initialization */
1222 bnx2x_set_next_page_sgl(fp);
1224 /* set SGEs bit mask */
1225 bnx2x_init_sge_ring_bit_mask(fp);
1227 /* Allocate SGEs and initialize the ring elements */
1228 for (i = 0, ring_prod = 0;
1229 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1231 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) {
1232 BNX2X_ERR("was only able to allocate %d rx sges\n",
1234 BNX2X_ERR("disabling TPA for queue[%d]\n",
1236 /* Cleanup already allocated elements */
1237 bnx2x_free_rx_sge_range(bp, fp,
1239 bnx2x_free_tpa_pool(bp, fp,
1241 fp->disable_tpa = 1;
1245 ring_prod = NEXT_SGE_IDX(ring_prod);
1248 fp->rx_sge_prod = ring_prod;
1252 for_each_eth_queue(bp, j) {
1253 struct bnx2x_fastpath *fp = &bp->fp[j];
1257 /* Activate BD ring */
1259 * this will generate an interrupt (to the TSTORM)
1260 * must only be done after chip is initialized
1262 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1268 if (CHIP_IS_E1(bp)) {
1269 REG_WR(bp, BAR_USTRORM_INTMEM +
1270 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1271 U64_LO(fp->rx_comp_mapping));
1272 REG_WR(bp, BAR_USTRORM_INTMEM +
1273 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1274 U64_HI(fp->rx_comp_mapping));
1279 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1282 struct bnx2x *bp = fp->bp;
1284 for_each_cos_in_tx_queue(fp, cos) {
1285 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1286 unsigned pkts_compl = 0, bytes_compl = 0;
1288 u16 sw_prod = txdata->tx_pkt_prod;
1289 u16 sw_cons = txdata->tx_pkt_cons;
1291 while (sw_cons != sw_prod) {
1292 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1293 &pkts_compl, &bytes_compl);
1297 netdev_tx_reset_queue(
1298 netdev_get_tx_queue(bp->dev,
1299 txdata->txq_index));
1303 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1307 for_each_tx_queue_cnic(bp, i) {
1308 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1312 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1316 for_each_eth_queue(bp, i) {
1317 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1321 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1323 struct bnx2x *bp = fp->bp;
1326 /* ring wasn't allocated */
1327 if (fp->rx_buf_ring == NULL)
1330 for (i = 0; i < NUM_RX_BD; i++) {
1331 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1332 u8 *data = rx_buf->data;
1336 dma_unmap_single(&bp->pdev->dev,
1337 dma_unmap_addr(rx_buf, mapping),
1338 fp->rx_buf_size, DMA_FROM_DEVICE);
1340 rx_buf->data = NULL;
1341 bnx2x_frag_free(fp, data);
1345 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1349 for_each_rx_queue_cnic(bp, j) {
1350 bnx2x_free_rx_bds(&bp->fp[j]);
1354 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1358 for_each_eth_queue(bp, j) {
1359 struct bnx2x_fastpath *fp = &bp->fp[j];
1361 bnx2x_free_rx_bds(fp);
1363 if (!fp->disable_tpa)
1364 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1368 void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1370 bnx2x_free_tx_skbs_cnic(bp);
1371 bnx2x_free_rx_skbs_cnic(bp);
1374 void bnx2x_free_skbs(struct bnx2x *bp)
1376 bnx2x_free_tx_skbs(bp);
1377 bnx2x_free_rx_skbs(bp);
1380 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1382 /* load old values */
1383 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1385 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1386 /* leave all but MAX value */
1387 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1389 /* set new MAX value */
1390 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1391 & FUNC_MF_CFG_MAX_BW_MASK;
1393 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1398 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1400 * @bp: driver handle
1401 * @nvecs: number of vectors to be released
1403 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1407 if (nvecs == offset)
1409 free_irq(bp->msix_table[offset].vector, bp->dev);
1410 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1411 bp->msix_table[offset].vector);
1414 if (CNIC_SUPPORT(bp)) {
1415 if (nvecs == offset)
1420 for_each_eth_queue(bp, i) {
1421 if (nvecs == offset)
1423 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1424 i, bp->msix_table[offset].vector);
1426 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1430 void bnx2x_free_irq(struct bnx2x *bp)
1432 if (bp->flags & USING_MSIX_FLAG &&
1433 !(bp->flags & USING_SINGLE_MSIX_FLAG))
1434 bnx2x_free_msix_irqs(bp, BNX2X_NUM_ETH_QUEUES(bp) +
1435 CNIC_SUPPORT(bp) + 1);
1437 free_irq(bp->dev->irq, bp->dev);
1440 int bnx2x_enable_msix(struct bnx2x *bp)
1442 int msix_vec = 0, i, rc, req_cnt;
1444 bp->msix_table[msix_vec].entry = msix_vec;
1445 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1446 bp->msix_table[0].entry);
1449 /* Cnic requires an msix vector for itself */
1450 if (CNIC_SUPPORT(bp)) {
1451 bp->msix_table[msix_vec].entry = msix_vec;
1452 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1453 msix_vec, bp->msix_table[msix_vec].entry);
1457 /* We need separate vectors for ETH queues only (not FCoE) */
1458 for_each_eth_queue(bp, i) {
1459 bp->msix_table[msix_vec].entry = msix_vec;
1460 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1461 msix_vec, msix_vec, i);
1465 req_cnt = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp) + 1;
1467 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], req_cnt);
1470 * reconfigure number of tx/rx queues according to available
1473 if (rc >= BNX2X_MIN_MSIX_VEC_CNT(bp)) {
1474 /* how less vectors we will have? */
1475 int diff = req_cnt - rc;
1477 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1479 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc);
1482 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1486 * decrease number of queues by number of unallocated entries
1488 bp->num_ethernet_queues -= diff;
1489 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1491 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1493 } else if (rc > 0) {
1494 /* Get by with single vector */
1495 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], 1);
1497 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1502 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1503 bp->flags |= USING_SINGLE_MSIX_FLAG;
1505 BNX2X_DEV_INFO("set number of queues to 1\n");
1506 bp->num_ethernet_queues = 1;
1507 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1508 } else if (rc < 0) {
1509 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1513 bp->flags |= USING_MSIX_FLAG;
1518 /* fall to INTx if not enough memory */
1520 bp->flags |= DISABLE_MSI_FLAG;
1525 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1527 int i, rc, offset = 0;
1529 rc = request_irq(bp->msix_table[offset++].vector,
1530 bnx2x_msix_sp_int, 0,
1531 bp->dev->name, bp->dev);
1533 BNX2X_ERR("request sp irq failed\n");
1537 if (CNIC_SUPPORT(bp))
1540 for_each_eth_queue(bp, i) {
1541 struct bnx2x_fastpath *fp = &bp->fp[i];
1542 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1545 rc = request_irq(bp->msix_table[offset].vector,
1546 bnx2x_msix_fp_int, 0, fp->name, fp);
1548 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1549 bp->msix_table[offset].vector, rc);
1550 bnx2x_free_msix_irqs(bp, offset);
1557 i = BNX2X_NUM_ETH_QUEUES(bp);
1558 offset = 1 + CNIC_SUPPORT(bp);
1559 netdev_info(bp->dev, "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1560 bp->msix_table[0].vector,
1561 0, bp->msix_table[offset].vector,
1562 i - 1, bp->msix_table[offset + i - 1].vector);
1567 int bnx2x_enable_msi(struct bnx2x *bp)
1571 rc = pci_enable_msi(bp->pdev);
1573 BNX2X_DEV_INFO("MSI is not attainable\n");
1576 bp->flags |= USING_MSI_FLAG;
1581 static int bnx2x_req_irq(struct bnx2x *bp)
1583 unsigned long flags;
1586 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1589 flags = IRQF_SHARED;
1591 if (bp->flags & USING_MSIX_FLAG)
1592 irq = bp->msix_table[0].vector;
1594 irq = bp->pdev->irq;
1596 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1599 static int bnx2x_setup_irqs(struct bnx2x *bp)
1602 if (bp->flags & USING_MSIX_FLAG &&
1603 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1604 rc = bnx2x_req_msix_irqs(bp);
1609 rc = bnx2x_req_irq(bp);
1611 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1614 if (bp->flags & USING_MSI_FLAG) {
1615 bp->dev->irq = bp->pdev->irq;
1616 netdev_info(bp->dev, "using MSI IRQ %d\n",
1619 if (bp->flags & USING_MSIX_FLAG) {
1620 bp->dev->irq = bp->msix_table[0].vector;
1621 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1629 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1633 for_each_rx_queue_cnic(bp, i)
1634 napi_enable(&bnx2x_fp(bp, i, napi));
1637 static void bnx2x_napi_enable(struct bnx2x *bp)
1641 for_each_eth_queue(bp, i)
1642 napi_enable(&bnx2x_fp(bp, i, napi));
1645 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1649 for_each_rx_queue_cnic(bp, i)
1650 napi_disable(&bnx2x_fp(bp, i, napi));
1653 static void bnx2x_napi_disable(struct bnx2x *bp)
1657 for_each_eth_queue(bp, i)
1658 napi_disable(&bnx2x_fp(bp, i, napi));
1661 void bnx2x_netif_start(struct bnx2x *bp)
1663 if (netif_running(bp->dev)) {
1664 bnx2x_napi_enable(bp);
1665 if (CNIC_LOADED(bp))
1666 bnx2x_napi_enable_cnic(bp);
1667 bnx2x_int_enable(bp);
1668 if (bp->state == BNX2X_STATE_OPEN)
1669 netif_tx_wake_all_queues(bp->dev);
1673 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1675 bnx2x_int_disable_sync(bp, disable_hw);
1676 bnx2x_napi_disable(bp);
1677 if (CNIC_LOADED(bp))
1678 bnx2x_napi_disable_cnic(bp);
1681 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb)
1683 struct bnx2x *bp = netdev_priv(dev);
1685 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1686 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1687 u16 ether_type = ntohs(hdr->h_proto);
1689 /* Skip VLAN tag if present */
1690 if (ether_type == ETH_P_8021Q) {
1691 struct vlan_ethhdr *vhdr =
1692 (struct vlan_ethhdr *)skb->data;
1694 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1697 /* If ethertype is FCoE or FIP - use FCoE ring */
1698 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1699 return bnx2x_fcoe_tx(bp, txq_index);
1702 /* select a non-FCoE queue */
1703 return __skb_tx_hash(dev, skb, BNX2X_NUM_ETH_QUEUES(bp));
1707 void bnx2x_set_num_queues(struct bnx2x *bp)
1710 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1712 /* override in STORAGE SD modes */
1713 if (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))
1714 bp->num_ethernet_queues = 1;
1716 /* Add special queues */
1717 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1718 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1720 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1724 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1726 * @bp: Driver handle
1728 * We currently support for at most 16 Tx queues for each CoS thus we will
1729 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1732 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1733 * index after all ETH L2 indices.
1735 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1736 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1737 * 16..31,...) with indicies that are not coupled with any real Tx queue.
1739 * The proper configuration of skb->queue_mapping is handled by
1740 * bnx2x_select_queue() and __skb_tx_hash().
1742 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1743 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1745 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1749 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1750 rx = BNX2X_NUM_ETH_QUEUES(bp);
1752 /* account for fcoe queue */
1753 if (include_cnic && !NO_FCOE(bp)) {
1758 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1760 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1763 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1765 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1769 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
1775 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
1779 for_each_queue(bp, i) {
1780 struct bnx2x_fastpath *fp = &bp->fp[i];
1783 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
1786 * Although there are no IP frames expected to arrive to
1787 * this ring we still want to add an
1788 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
1791 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
1794 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
1795 IP_HEADER_ALIGNMENT_PADDING +
1798 BNX2X_FW_RX_ALIGN_END;
1799 /* Note : rx_buf_size doesnt take into account NET_SKB_PAD */
1800 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
1801 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
1803 fp->rx_frag_size = 0;
1807 static int bnx2x_init_rss_pf(struct bnx2x *bp)
1810 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
1812 /* Prepare the initial contents fo the indirection table if RSS is
1815 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
1816 bp->rss_conf_obj.ind_table[i] =
1818 ethtool_rxfh_indir_default(i, num_eth_queues);
1821 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
1822 * per-port, so if explicit configuration is needed , do it only
1825 * For 57712 and newer on the other hand it's a per-function
1828 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
1831 int bnx2x_config_rss_pf(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
1834 struct bnx2x_config_rss_params params = {NULL};
1836 /* Although RSS is meaningless when there is a single HW queue we
1837 * still need it enabled in order to have HW Rx hash generated.
1839 * if (!is_eth_multi(bp))
1840 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
1843 params.rss_obj = rss_obj;
1845 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
1847 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags);
1849 /* RSS configuration */
1850 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags);
1851 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags);
1852 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags);
1853 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags);
1854 if (rss_obj->udp_rss_v4)
1855 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags);
1856 if (rss_obj->udp_rss_v6)
1857 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags);
1860 params.rss_result_mask = MULTI_MASK;
1862 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
1866 prandom_bytes(params.rss_key, sizeof(params.rss_key));
1867 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags);
1870 return bnx2x_config_rss(bp, ¶ms);
1873 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
1875 struct bnx2x_func_state_params func_params = {NULL};
1877 /* Prepare parameters for function state transitions */
1878 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1880 func_params.f_obj = &bp->func_obj;
1881 func_params.cmd = BNX2X_F_CMD_HW_INIT;
1883 func_params.params.hw_init.load_phase = load_code;
1885 return bnx2x_func_state_change(bp, &func_params);
1889 * Cleans the object that have internal lists without sending
1890 * ramrods. Should be run when interrutps are disabled.
1892 static void bnx2x_squeeze_objects(struct bnx2x *bp)
1895 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1896 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1897 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
1899 /***************** Cleanup MACs' object first *************************/
1901 /* Wait for completion of requested */
1902 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1903 /* Perform a dry cleanup */
1904 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1906 /* Clean ETH primary MAC */
1907 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
1908 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
1911 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
1913 /* Cleanup UC list */
1915 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
1916 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
1919 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
1921 /***************** Now clean mcast object *****************************/
1922 rparam.mcast_obj = &bp->mcast_obj;
1923 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1925 /* Add a DEL command... */
1926 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
1928 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
1931 /* ...and wait until all pending commands are cleared */
1932 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1935 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
1940 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1944 #ifndef BNX2X_STOP_ON_ERROR
1945 #define LOAD_ERROR_EXIT(bp, label) \
1947 (bp)->state = BNX2X_STATE_ERROR; \
1951 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
1953 bp->cnic_loaded = false; \
1956 #else /*BNX2X_STOP_ON_ERROR*/
1957 #define LOAD_ERROR_EXIT(bp, label) \
1959 (bp)->state = BNX2X_STATE_ERROR; \
1963 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
1965 bp->cnic_loaded = false; \
1969 #endif /*BNX2X_STOP_ON_ERROR*/
1971 bool bnx2x_test_firmware_version(struct bnx2x *bp, bool is_err)
1973 /* build FW version dword */
1974 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
1975 (BCM_5710_FW_MINOR_VERSION << 8) +
1976 (BCM_5710_FW_REVISION_VERSION << 16) +
1977 (BCM_5710_FW_ENGINEERING_VERSION << 24);
1979 /* read loaded FW from chip */
1980 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
1982 DP(NETIF_MSG_IFUP, "loaded fw %x, my fw %x\n", loaded_fw, my_fw);
1984 if (loaded_fw != my_fw) {
1986 BNX2X_ERR("bnx2x with FW %x was already loaded, which mismatches my %x FW. aborting\n",
1995 * bnx2x_bz_fp - zero content of the fastpath structure.
1997 * @bp: driver handle
1998 * @index: fastpath index to be zeroed
2000 * Makes sure the contents of the bp->fp[index].napi is kept
2003 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2005 struct bnx2x_fastpath *fp = &bp->fp[index];
2006 struct bnx2x_fp_stats *fp_stats = &bp->fp_stats[index];
2009 struct napi_struct orig_napi = fp->napi;
2010 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2011 /* bzero bnx2x_fastpath contents */
2012 if (bp->stats_init) {
2013 memset(fp->tpa_info, 0, sizeof(*fp->tpa_info));
2014 memset(fp, 0, sizeof(*fp));
2016 /* Keep Queue statistics */
2017 struct bnx2x_eth_q_stats *tmp_eth_q_stats;
2018 struct bnx2x_eth_q_stats_old *tmp_eth_q_stats_old;
2020 tmp_eth_q_stats = kzalloc(sizeof(struct bnx2x_eth_q_stats),
2022 if (tmp_eth_q_stats)
2023 memcpy(tmp_eth_q_stats, &fp_stats->eth_q_stats,
2024 sizeof(struct bnx2x_eth_q_stats));
2026 tmp_eth_q_stats_old =
2027 kzalloc(sizeof(struct bnx2x_eth_q_stats_old),
2029 if (tmp_eth_q_stats_old)
2030 memcpy(tmp_eth_q_stats_old, &fp_stats->eth_q_stats_old,
2031 sizeof(struct bnx2x_eth_q_stats_old));
2033 memset(fp->tpa_info, 0, sizeof(*fp->tpa_info));
2034 memset(fp, 0, sizeof(*fp));
2036 if (tmp_eth_q_stats) {
2037 memcpy(&fp_stats->eth_q_stats, tmp_eth_q_stats,
2038 sizeof(struct bnx2x_eth_q_stats));
2039 kfree(tmp_eth_q_stats);
2042 if (tmp_eth_q_stats_old) {
2043 memcpy(&fp_stats->eth_q_stats_old, tmp_eth_q_stats_old,
2044 sizeof(struct bnx2x_eth_q_stats_old));
2045 kfree(tmp_eth_q_stats_old);
2050 /* Restore the NAPI object as it has been already initialized */
2051 fp->napi = orig_napi;
2052 fp->tpa_info = orig_tpa_info;
2056 fp->max_cos = bp->max_cos;
2058 /* Special queues support only one CoS */
2061 /* Init txdata pointers */
2063 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2065 for_each_cos_in_tx_queue(fp, cos)
2066 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2067 BNX2X_NUM_ETH_QUEUES(bp) + index];
2070 * set the tpa flag for each queue. The tpa flag determines the queue
2071 * minimal size so it must be set prior to queue memory allocation
2073 fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG ||
2074 (bp->flags & GRO_ENABLE_FLAG &&
2075 bnx2x_mtu_allows_gro(bp->dev->mtu)));
2076 if (bp->flags & TPA_ENABLE_FLAG)
2077 fp->mode = TPA_MODE_LRO;
2078 else if (bp->flags & GRO_ENABLE_FLAG)
2079 fp->mode = TPA_MODE_GRO;
2081 /* We don't want TPA on an FCoE L2 ring */
2083 fp->disable_tpa = 1;
2086 int bnx2x_load_cnic(struct bnx2x *bp)
2088 int i, rc, port = BP_PORT(bp);
2090 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2092 mutex_init(&bp->cnic_mutex);
2094 rc = bnx2x_alloc_mem_cnic(bp);
2096 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2097 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2100 rc = bnx2x_alloc_fp_mem_cnic(bp);
2102 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2103 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2106 /* Update the number of queues with the cnic queues */
2107 rc = bnx2x_set_real_num_queues(bp, 1);
2109 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2110 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2113 /* Add all CNIC NAPI objects */
2114 bnx2x_add_all_napi_cnic(bp);
2115 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2116 bnx2x_napi_enable_cnic(bp);
2118 rc = bnx2x_init_hw_func_cnic(bp);
2120 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2122 bnx2x_nic_init_cnic(bp);
2124 /* Enable Timer scan */
2125 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2127 for_each_cnic_queue(bp, i) {
2128 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2130 BNX2X_ERR("Queue setup failed\n");
2131 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2135 /* Initialize Rx filter. */
2136 netif_addr_lock_bh(bp->dev);
2137 bnx2x_set_rx_mode(bp->dev);
2138 netif_addr_unlock_bh(bp->dev);
2140 /* re-read iscsi info */
2141 bnx2x_get_iscsi_info(bp);
2142 bnx2x_setup_cnic_irq_info(bp);
2143 bnx2x_setup_cnic_info(bp);
2144 bp->cnic_loaded = true;
2145 if (bp->state == BNX2X_STATE_OPEN)
2146 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2149 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2153 #ifndef BNX2X_STOP_ON_ERROR
2155 /* Disable Timer scan */
2156 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2159 bnx2x_napi_disable_cnic(bp);
2160 /* Update the number of queues without the cnic queues */
2161 rc = bnx2x_set_real_num_queues(bp, 0);
2163 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2165 BNX2X_ERR("CNIC-related load failed\n");
2166 bnx2x_free_fp_mem_cnic(bp);
2167 bnx2x_free_mem_cnic(bp);
2169 #endif /* ! BNX2X_STOP_ON_ERROR */
2173 /* must be called with rtnl_lock */
2174 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2176 int port = BP_PORT(bp);
2180 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2182 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2184 #ifdef BNX2X_STOP_ON_ERROR
2185 if (unlikely(bp->panic)) {
2186 BNX2X_ERR("Can't load NIC when there is panic\n");
2191 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2193 /* Set the initial link reported state to link down */
2194 bnx2x_acquire_phy_lock(bp);
2195 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2196 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2197 &bp->last_reported_link.link_report_flags);
2198 bnx2x_release_phy_lock(bp);
2200 /* must be called before memory allocation and HW init */
2201 bnx2x_ilt_set_info(bp);
2204 * Zero fastpath structures preserving invariants like napi, which are
2205 * allocated only once, fp index, max_cos, bp pointer.
2206 * Also set fp->disable_tpa and txdata_ptr.
2208 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2209 for_each_queue(bp, i)
2211 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2212 bp->num_cnic_queues) *
2213 sizeof(struct bnx2x_fp_txdata));
2215 bp->fcoe_init = false;
2217 /* Set the receive queues buffer size */
2218 bnx2x_set_rx_buf_size(bp);
2220 if (bnx2x_alloc_mem(bp))
2223 /* As long as bnx2x_alloc_mem() may possibly update
2224 * bp->num_queues, bnx2x_set_real_num_queues() should always
2225 * come after it. At this stage cnic queues are not counted.
2227 rc = bnx2x_set_real_num_queues(bp, 0);
2229 BNX2X_ERR("Unable to set real_num_queues\n");
2230 LOAD_ERROR_EXIT(bp, load_error0);
2233 /* configure multi cos mappings in kernel.
2234 * this configuration may be overriden by a multi class queue discipline
2235 * or by a dcbx negotiation result.
2237 bnx2x_setup_tc(bp->dev, bp->max_cos);
2239 /* Add all NAPI objects */
2240 bnx2x_add_all_napi(bp);
2241 DP(NETIF_MSG_IFUP, "napi added\n");
2242 bnx2x_napi_enable(bp);
2244 /* set pf load just before approaching the MCP */
2245 bnx2x_set_pf_load(bp);
2247 /* Send LOAD_REQUEST command to MCP
2248 * Returns the type of LOAD command:
2249 * if it is the first port to be initialized
2250 * common blocks should be initialized, otherwise - not
2252 if (!BP_NOMCP(bp)) {
2255 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2256 DRV_MSG_SEQ_NUMBER_MASK);
2257 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2259 /* Get current FW pulse sequence */
2260 bp->fw_drv_pulse_wr_seq =
2261 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2262 DRV_PULSE_SEQ_MASK);
2263 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2265 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
2266 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2268 BNX2X_ERR("MCP response failure, aborting\n");
2270 LOAD_ERROR_EXIT(bp, load_error1);
2272 if (load_code == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2273 BNX2X_ERR("Driver load refused\n");
2274 rc = -EBUSY; /* other port in diagnostic mode */
2275 LOAD_ERROR_EXIT(bp, load_error1);
2277 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2278 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2279 /* abort nic load if version mismatch */
2280 if (!bnx2x_test_firmware_version(bp, true)) {
2282 LOAD_ERROR_EXIT(bp, load_error2);
2287 int path = BP_PATH(bp);
2289 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2290 path, load_count[path][0], load_count[path][1],
2291 load_count[path][2]);
2292 load_count[path][0]++;
2293 load_count[path][1 + port]++;
2294 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2295 path, load_count[path][0], load_count[path][1],
2296 load_count[path][2]);
2297 if (load_count[path][0] == 1)
2298 load_code = FW_MSG_CODE_DRV_LOAD_COMMON;
2299 else if (load_count[path][1 + port] == 1)
2300 load_code = FW_MSG_CODE_DRV_LOAD_PORT;
2302 load_code = FW_MSG_CODE_DRV_LOAD_FUNCTION;
2305 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2306 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2307 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2310 * We need the barrier to ensure the ordering between the
2311 * writing to bp->port.pmf here and reading it from the
2312 * bnx2x_periodic_task().
2318 DP(NETIF_MSG_IFUP, "pmf %d\n", bp->port.pmf);
2320 /* Init Function state controlling object */
2321 bnx2x__init_func_obj(bp);
2324 rc = bnx2x_init_hw(bp, load_code);
2326 BNX2X_ERR("HW init failed, aborting\n");
2327 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2328 LOAD_ERROR_EXIT(bp, load_error2);
2331 /* Connect to IRQs */
2332 rc = bnx2x_setup_irqs(bp);
2334 BNX2X_ERR("IRQs setup failed\n");
2335 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2336 LOAD_ERROR_EXIT(bp, load_error2);
2339 /* Setup NIC internals and enable interrupts */
2340 bnx2x_nic_init(bp, load_code);
2342 /* Init per-function objects */
2343 bnx2x_init_bp_objs(bp);
2345 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2346 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2347 (bp->common.shmem2_base)) {
2348 if (SHMEM2_HAS(bp, dcc_support))
2349 SHMEM2_WR(bp, dcc_support,
2350 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2351 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2352 if (SHMEM2_HAS(bp, afex_driver_support))
2353 SHMEM2_WR(bp, afex_driver_support,
2354 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2357 /* Set AFEX default VLAN tag to an invalid value */
2358 bp->afex_def_vlan_tag = -1;
2360 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2361 rc = bnx2x_func_start(bp);
2363 BNX2X_ERR("Function start failed!\n");
2364 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2365 LOAD_ERROR_EXIT(bp, load_error3);
2368 /* Send LOAD_DONE command to MCP */
2369 if (!BP_NOMCP(bp)) {
2370 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2372 BNX2X_ERR("MCP response failure, aborting\n");
2374 LOAD_ERROR_EXIT(bp, load_error3);
2378 rc = bnx2x_setup_leading(bp);
2380 BNX2X_ERR("Setup leading failed!\n");
2381 LOAD_ERROR_EXIT(bp, load_error3);
2384 for_each_nondefault_eth_queue(bp, i) {
2385 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2387 BNX2X_ERR("Queue setup failed\n");
2388 LOAD_ERROR_EXIT(bp, load_error3);
2392 rc = bnx2x_init_rss_pf(bp);
2394 BNX2X_ERR("PF RSS init failed\n");
2395 LOAD_ERROR_EXIT(bp, load_error3);
2398 /* Now when Clients are configured we are ready to work */
2399 bp->state = BNX2X_STATE_OPEN;
2401 /* Configure a ucast MAC */
2402 rc = bnx2x_set_eth_mac(bp, true);
2404 BNX2X_ERR("Setting Ethernet MAC failed\n");
2405 LOAD_ERROR_EXIT(bp, load_error3);
2408 if (bp->pending_max) {
2409 bnx2x_update_max_mf_config(bp, bp->pending_max);
2410 bp->pending_max = 0;
2414 bnx2x_initial_phy_init(bp, load_mode);
2415 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2417 /* Start fast path */
2419 /* Initialize Rx filter. */
2420 netif_addr_lock_bh(bp->dev);
2421 bnx2x_set_rx_mode(bp->dev);
2422 netif_addr_unlock_bh(bp->dev);
2425 switch (load_mode) {
2427 /* Tx queue should be only reenabled */
2428 netif_tx_wake_all_queues(bp->dev);
2432 netif_tx_start_all_queues(bp->dev);
2433 smp_mb__after_clear_bit();
2437 case LOAD_LOOPBACK_EXT:
2438 bp->state = BNX2X_STATE_DIAG;
2446 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2448 bnx2x__link_status_update(bp);
2450 /* start the timer */
2451 mod_timer(&bp->timer, jiffies + bp->current_interval);
2453 if (CNIC_ENABLED(bp))
2454 bnx2x_load_cnic(bp);
2456 /* mark driver is loaded in shmem2 */
2457 if (SHMEM2_HAS(bp, drv_capabilities_flag)) {
2459 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2460 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2461 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2462 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2465 /* Wait for all pending SP commands to complete */
2466 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2467 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2468 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2472 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2473 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2474 bnx2x_dcbx_init(bp, false);
2476 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2480 #ifndef BNX2X_STOP_ON_ERROR
2482 bnx2x_int_disable_sync(bp, 1);
2484 /* Clean queueable objects */
2485 bnx2x_squeeze_objects(bp);
2487 /* Free SKBs, SGEs, TPA pool and driver internals */
2488 bnx2x_free_skbs(bp);
2489 for_each_rx_queue(bp, i)
2490 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2495 if (!BP_NOMCP(bp)) {
2496 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2497 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2502 bnx2x_napi_disable(bp);
2503 /* clear pf_load status, as it was already set */
2504 bnx2x_clear_pf_load(bp);
2509 #endif /* ! BNX2X_STOP_ON_ERROR */
2512 /* must be called with rtnl_lock */
2513 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2516 bool global = false;
2518 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2520 /* mark driver is unloaded in shmem2 */
2521 if (SHMEM2_HAS(bp, drv_capabilities_flag)) {
2523 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2524 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2525 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2528 if ((bp->state == BNX2X_STATE_CLOSED) ||
2529 (bp->state == BNX2X_STATE_ERROR)) {
2530 /* We can get here if the driver has been unloaded
2531 * during parity error recovery and is either waiting for a
2532 * leader to complete or for other functions to unload and
2533 * then ifdown has been issued. In this case we want to
2534 * unload and let other functions to complete a recovery
2537 bp->recovery_state = BNX2X_RECOVERY_DONE;
2539 bnx2x_release_leader_lock(bp);
2542 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
2543 BNX2X_ERR("Can't unload in closed or error state\n");
2548 * It's important to set the bp->state to the value different from
2549 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
2550 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
2552 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
2555 if (CNIC_LOADED(bp))
2556 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
2559 bnx2x_tx_disable(bp);
2560 netdev_reset_tc(bp->dev);
2562 bp->rx_mode = BNX2X_RX_MODE_NONE;
2564 del_timer_sync(&bp->timer);
2566 /* Set ALWAYS_ALIVE bit in shmem */
2567 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2569 bnx2x_drv_pulse(bp);
2571 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2572 bnx2x_save_statistics(bp);
2574 /* Cleanup the chip if needed */
2575 if (unload_mode != UNLOAD_RECOVERY)
2576 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
2578 /* Send the UNLOAD_REQUEST to the MCP */
2579 bnx2x_send_unload_req(bp, unload_mode);
2582 * Prevent transactions to host from the functions on the
2583 * engine that doesn't reset global blocks in case of global
2584 * attention once gloabl blocks are reset and gates are opened
2585 * (the engine which leader will perform the recovery
2588 if (!CHIP_IS_E1x(bp))
2589 bnx2x_pf_disable(bp);
2591 /* Disable HW interrupts, NAPI */
2592 bnx2x_netif_stop(bp, 1);
2593 /* Delete all NAPI objects */
2594 bnx2x_del_all_napi(bp);
2595 if (CNIC_LOADED(bp))
2596 bnx2x_del_all_napi_cnic(bp);
2600 /* Report UNLOAD_DONE to MCP */
2601 bnx2x_send_unload_done(bp, false);
2605 * At this stage no more interrupts will arrive so we may safly clean
2606 * the queueable objects here in case they failed to get cleaned so far.
2608 bnx2x_squeeze_objects(bp);
2610 /* There should be no more pending SP commands at this stage */
2615 /* Free SKBs, SGEs, TPA pool and driver internals */
2616 bnx2x_free_skbs(bp);
2617 if (CNIC_LOADED(bp))
2618 bnx2x_free_skbs_cnic(bp);
2619 for_each_rx_queue(bp, i)
2620 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2622 if (CNIC_LOADED(bp)) {
2623 bnx2x_free_fp_mem_cnic(bp);
2624 bnx2x_free_mem_cnic(bp);
2628 bp->state = BNX2X_STATE_CLOSED;
2629 bp->cnic_loaded = false;
2631 /* Check if there are pending parity attentions. If there are - set
2632 * RECOVERY_IN_PROGRESS.
2634 if (bnx2x_chk_parity_attn(bp, &global, false)) {
2635 bnx2x_set_reset_in_progress(bp);
2637 /* Set RESET_IS_GLOBAL if needed */
2639 bnx2x_set_reset_global(bp);
2643 /* The last driver must disable a "close the gate" if there is no
2644 * parity attention or "process kill" pending.
2646 if (!bnx2x_clear_pf_load(bp) && bnx2x_reset_is_done(bp, BP_PATH(bp)))
2647 bnx2x_disable_close_the_gate(bp);
2649 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
2654 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
2658 /* If there is no power capability, silently succeed */
2660 BNX2X_DEV_INFO("No power capability. Breaking.\n");
2664 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
2668 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2669 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
2670 PCI_PM_CTRL_PME_STATUS));
2672 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
2673 /* delay required during transition out of D3hot */
2678 /* If there are other clients above don't
2679 shut down the power */
2680 if (atomic_read(&bp->pdev->enable_cnt) != 1)
2682 /* Don't shut down the power for emulation and FPGA */
2683 if (CHIP_REV_IS_SLOW(bp))
2686 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2690 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2692 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2695 /* No more memory access after this point until
2696 * device is brought back to D0.
2701 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
2708 * net_device service functions
2710 int bnx2x_poll(struct napi_struct *napi, int budget)
2714 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
2716 struct bnx2x *bp = fp->bp;
2719 #ifdef BNX2X_STOP_ON_ERROR
2720 if (unlikely(bp->panic)) {
2721 napi_complete(napi);
2726 for_each_cos_in_tx_queue(fp, cos)
2727 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
2728 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
2731 if (bnx2x_has_rx_work(fp)) {
2732 work_done += bnx2x_rx_int(fp, budget - work_done);
2734 /* must not complete if we consumed full budget */
2735 if (work_done >= budget)
2739 /* Fall out from the NAPI loop if needed */
2740 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
2742 /* No need to update SB for FCoE L2 ring as long as
2743 * it's connected to the default SB and the SB
2744 * has been updated when NAPI was scheduled.
2746 if (IS_FCOE_FP(fp)) {
2747 napi_complete(napi);
2750 bnx2x_update_fpsb_idx(fp);
2751 /* bnx2x_has_rx_work() reads the status block,
2752 * thus we need to ensure that status block indices
2753 * have been actually read (bnx2x_update_fpsb_idx)
2754 * prior to this check (bnx2x_has_rx_work) so that
2755 * we won't write the "newer" value of the status block
2756 * to IGU (if there was a DMA right after
2757 * bnx2x_has_rx_work and if there is no rmb, the memory
2758 * reading (bnx2x_update_fpsb_idx) may be postponed
2759 * to right before bnx2x_ack_sb). In this case there
2760 * will never be another interrupt until there is
2761 * another update of the status block, while there
2762 * is still unhandled work.
2766 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
2767 napi_complete(napi);
2768 /* Re-enable interrupts */
2769 DP(NETIF_MSG_RX_STATUS,
2770 "Update index to %d\n", fp->fp_hc_idx);
2771 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
2772 le16_to_cpu(fp->fp_hc_idx),
2782 /* we split the first BD into headers and data BDs
2783 * to ease the pain of our fellow microcode engineers
2784 * we use one mapping for both BDs
2786 static noinline u16 bnx2x_tx_split(struct bnx2x *bp,
2787 struct bnx2x_fp_txdata *txdata,
2788 struct sw_tx_bd *tx_buf,
2789 struct eth_tx_start_bd **tx_bd, u16 hlen,
2790 u16 bd_prod, int nbd)
2792 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
2793 struct eth_tx_bd *d_tx_bd;
2795 int old_len = le16_to_cpu(h_tx_bd->nbytes);
2797 /* first fix first BD */
2798 h_tx_bd->nbd = cpu_to_le16(nbd);
2799 h_tx_bd->nbytes = cpu_to_le16(hlen);
2801 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x) nbd %d\n",
2802 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo, h_tx_bd->nbd);
2804 /* now get a new data BD
2805 * (after the pbd) and fill it */
2806 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
2807 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
2809 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
2810 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
2812 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
2813 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
2814 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
2816 /* this marks the BD as one that has no individual mapping */
2817 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
2819 DP(NETIF_MSG_TX_QUEUED,
2820 "TSO split data size is %d (%x:%x)\n",
2821 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
2824 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
2829 static inline u16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
2832 csum = (u16) ~csum_fold(csum_sub(csum,
2833 csum_partial(t_header - fix, fix, 0)));
2836 csum = (u16) ~csum_fold(csum_add(csum,
2837 csum_partial(t_header, -fix, 0)));
2839 return swab16(csum);
2842 static inline u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
2846 if (skb->ip_summed != CHECKSUM_PARTIAL)
2850 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) {
2852 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2853 rc |= XMIT_CSUM_TCP;
2857 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2858 rc |= XMIT_CSUM_TCP;
2862 if (skb_is_gso_v6(skb))
2863 rc |= XMIT_GSO_V6 | XMIT_CSUM_TCP | XMIT_CSUM_V6;
2864 else if (skb_is_gso(skb))
2865 rc |= XMIT_GSO_V4 | XMIT_CSUM_V4 | XMIT_CSUM_TCP;
2870 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
2871 /* check if packet requires linearization (packet is too fragmented)
2872 no need to check fragmentation if page size > 8K (there will be no
2873 violation to FW restrictions) */
2874 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
2879 int first_bd_sz = 0;
2881 /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
2882 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) {
2884 if (xmit_type & XMIT_GSO) {
2885 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
2886 /* Check if LSO packet needs to be copied:
2887 3 = 1 (for headers BD) + 2 (for PBD and last BD) */
2888 int wnd_size = MAX_FETCH_BD - 3;
2889 /* Number of windows to check */
2890 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
2895 /* Headers length */
2896 hlen = (int)(skb_transport_header(skb) - skb->data) +
2899 /* Amount of data (w/o headers) on linear part of SKB*/
2900 first_bd_sz = skb_headlen(skb) - hlen;
2902 wnd_sum = first_bd_sz;
2904 /* Calculate the first sum - it's special */
2905 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
2907 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
2909 /* If there was data on linear skb data - check it */
2910 if (first_bd_sz > 0) {
2911 if (unlikely(wnd_sum < lso_mss)) {
2916 wnd_sum -= first_bd_sz;
2919 /* Others are easier: run through the frag list and
2920 check all windows */
2921 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
2923 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
2925 if (unlikely(wnd_sum < lso_mss)) {
2930 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
2933 /* in non-LSO too fragmented packet should always
2940 if (unlikely(to_copy))
2941 DP(NETIF_MSG_TX_QUEUED,
2942 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
2943 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
2944 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
2950 static inline void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data,
2953 *parsing_data |= (skb_shinfo(skb)->gso_size <<
2954 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
2955 ETH_TX_PARSE_BD_E2_LSO_MSS;
2956 if ((xmit_type & XMIT_GSO_V6) &&
2957 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
2958 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
2962 * bnx2x_set_pbd_gso - update PBD in GSO case.
2966 * @xmit_type: xmit flags
2968 static inline void bnx2x_set_pbd_gso(struct sk_buff *skb,
2969 struct eth_tx_parse_bd_e1x *pbd,
2972 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2973 pbd->tcp_send_seq = swab32(tcp_hdr(skb)->seq);
2974 pbd->tcp_flags = pbd_tcp_flags(skb);
2976 if (xmit_type & XMIT_GSO_V4) {
2977 pbd->ip_id = swab16(ip_hdr(skb)->id);
2978 pbd->tcp_pseudo_csum =
2979 swab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
2981 0, IPPROTO_TCP, 0));
2984 pbd->tcp_pseudo_csum =
2985 swab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2986 &ipv6_hdr(skb)->daddr,
2987 0, IPPROTO_TCP, 0));
2989 pbd->global_data |= ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN;
2993 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
2995 * @bp: driver handle
2997 * @parsing_data: data to be updated
2998 * @xmit_type: xmit flags
3002 static inline u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3003 u32 *parsing_data, u32 xmit_type)
3006 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3007 ETH_TX_PARSE_BD_E2_TCP_HDR_START_OFFSET_W_SHIFT) &
3008 ETH_TX_PARSE_BD_E2_TCP_HDR_START_OFFSET_W;
3010 if (xmit_type & XMIT_CSUM_TCP) {
3011 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3012 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3013 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3015 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3017 /* We support checksum offload for TCP and UDP only.
3018 * No need to pass the UDP header length - it's a constant.
3020 return skb_transport_header(skb) +
3021 sizeof(struct udphdr) - skb->data;
3024 static inline void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,