]> git.openfabrics.org - ~shefty/rdma-dev.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
RDMA/cxgb4: Fix LE hash collision bug for passive open connection
[~shefty/rdma-dev.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <asm/uaccess.h>
64
65 #include "cxgb4.h"
66 #include "t4_regs.h"
67 #include "t4_msg.h"
68 #include "t4fw_api.h"
69 #include "l2t.h"
70
71 #define DRV_VERSION "1.3.0-ko"
72 #define DRV_DESC "Chelsio T4 Network Driver"
73
74 /*
75  * Max interrupt hold-off timer value in us.  Queues fall back to this value
76  * under extreme memory pressure so it's largish to give the system time to
77  * recover.
78  */
79 #define MAX_SGE_TIMERVAL 200U
80
81 enum {
82         /*
83          * Physical Function provisioning constants.
84          */
85         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
86         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
87         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
88                                          */
89         PFRES_NEQ = 256,                /* # of egress queues */
90         PFRES_NIQ = 0,                  /* # of ingress queues */
91         PFRES_TC = 0,                   /* PCI-E traffic class */
92         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
93
94         PFRES_R_CAPS = FW_CMD_CAP_PF,
95         PFRES_WX_CAPS = FW_CMD_CAP_PF,
96
97 #ifdef CONFIG_PCI_IOV
98         /*
99          * Virtual Function provisioning constants.  We need two extra Ingress
100          * Queues with Interrupt capability to serve as the VF's Firmware
101          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
102          * neither will have Free Lists associated with them).  For each
103          * Ethernet/Control Egress Queue and for each Free List, we need an
104          * Egress Context.
105          */
106         VFRES_NPORTS = 1,               /* # of "ports" per VF */
107         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
108
109         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
110         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
111         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
112         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
113         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
114         VFRES_TC = 0,                   /* PCI-E traffic class */
115         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
116
117         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
118         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
119 #endif
120 };
121
122 /*
123  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
124  * static and likely not to be useful in the long run.  We really need to
125  * implement some form of persistent configuration which the firmware
126  * controls.
127  */
128 static unsigned int pfvfres_pmask(struct adapter *adapter,
129                                   unsigned int pf, unsigned int vf)
130 {
131         unsigned int portn, portvec;
132
133         /*
134          * Give PF's access to all of the ports.
135          */
136         if (vf == 0)
137                 return FW_PFVF_CMD_PMASK_MASK;
138
139         /*
140          * For VFs, we'll assign them access to the ports based purely on the
141          * PF.  We assign active ports in order, wrapping around if there are
142          * fewer active ports than PFs: e.g. active port[pf % nports].
143          * Unfortunately the adapter's port_info structs haven't been
144          * initialized yet so we have to compute this.
145          */
146         if (adapter->params.nports == 0)
147                 return 0;
148
149         portn = pf % adapter->params.nports;
150         portvec = adapter->params.portvec;
151         for (;;) {
152                 /*
153                  * Isolate the lowest set bit in the port vector.  If we're at
154                  * the port number that we want, return that as the pmask.
155                  * otherwise mask that bit out of the port vector and
156                  * decrement our port number ...
157                  */
158                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
159                 if (portn == 0)
160                         return pmask;
161                 portn--;
162                 portvec &= ~pmask;
163         }
164         /*NOTREACHED*/
165 }
166
167 enum {
168         MAX_TXQ_ENTRIES      = 16384,
169         MAX_CTRL_TXQ_ENTRIES = 1024,
170         MAX_RSPQ_ENTRIES     = 16384,
171         MAX_RX_BUFFERS       = 16384,
172         MIN_TXQ_ENTRIES      = 32,
173         MIN_CTRL_TXQ_ENTRIES = 32,
174         MIN_RSPQ_ENTRIES     = 128,
175         MIN_FL_ENTRIES       = 16
176 };
177
178 /* Host shadow copy of ingress filter entry.  This is in host native format
179  * and doesn't match the ordering or bit order, etc. of the hardware of the
180  * firmware command.  The use of bit-field structure elements is purely to
181  * remind ourselves of the field size limitations and save memory in the case
182  * where the filter table is large.
183  */
184 struct filter_entry {
185         /* Administrative fields for filter.
186          */
187         u32 valid:1;            /* filter allocated and valid */
188         u32 locked:1;           /* filter is administratively locked */
189
190         u32 pending:1;          /* filter action is pending firmware reply */
191         u32 smtidx:8;           /* Source MAC Table index for smac */
192         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
193
194         /* The filter itself.  Most of this is a straight copy of information
195          * provided by the extended ioctl().  Some fields are translated to
196          * internal forms -- for instance the Ingress Queue ID passed in from
197          * the ioctl() is translated into the Absolute Ingress Queue ID.
198          */
199         struct ch_filter_specification fs;
200 };
201
202 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
203                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
204                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
205
206 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
207
208 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
209         CH_DEVICE(0xa000, 0),  /* PE10K */
210         CH_DEVICE(0x4001, -1),
211         CH_DEVICE(0x4002, -1),
212         CH_DEVICE(0x4003, -1),
213         CH_DEVICE(0x4004, -1),
214         CH_DEVICE(0x4005, -1),
215         CH_DEVICE(0x4006, -1),
216         CH_DEVICE(0x4007, -1),
217         CH_DEVICE(0x4008, -1),
218         CH_DEVICE(0x4009, -1),
219         CH_DEVICE(0x400a, -1),
220         CH_DEVICE(0x4401, 4),
221         CH_DEVICE(0x4402, 4),
222         CH_DEVICE(0x4403, 4),
223         CH_DEVICE(0x4404, 4),
224         CH_DEVICE(0x4405, 4),
225         CH_DEVICE(0x4406, 4),
226         CH_DEVICE(0x4407, 4),
227         CH_DEVICE(0x4408, 4),
228         CH_DEVICE(0x4409, 4),
229         CH_DEVICE(0x440a, 4),
230         CH_DEVICE(0x440d, 4),
231         CH_DEVICE(0x440e, 4),
232         { 0, }
233 };
234
235 #define FW_FNAME "cxgb4/t4fw.bin"
236 #define FW_CFNAME "cxgb4/t4-config.txt"
237
238 MODULE_DESCRIPTION(DRV_DESC);
239 MODULE_AUTHOR("Chelsio Communications");
240 MODULE_LICENSE("Dual BSD/GPL");
241 MODULE_VERSION(DRV_VERSION);
242 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
243 MODULE_FIRMWARE(FW_FNAME);
244
245 /*
246  * Normally we're willing to become the firmware's Master PF but will be happy
247  * if another PF has already become the Master and initialized the adapter.
248  * Setting "force_init" will cause this driver to forcibly establish itself as
249  * the Master PF and initialize the adapter.
250  */
251 static uint force_init;
252
253 module_param(force_init, uint, 0644);
254 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
255
256 /*
257  * Normally if the firmware we connect to has Configuration File support, we
258  * use that and only fall back to the old Driver-based initialization if the
259  * Configuration File fails for some reason.  If force_old_init is set, then
260  * we'll always use the old Driver-based initialization sequence.
261  */
262 static uint force_old_init;
263
264 module_param(force_old_init, uint, 0644);
265 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
266
267 static int dflt_msg_enable = DFLT_MSG_ENABLE;
268
269 module_param(dflt_msg_enable, int, 0644);
270 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
271
272 /*
273  * The driver uses the best interrupt scheme available on a platform in the
274  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
275  * of these schemes the driver may consider as follows:
276  *
277  * msi = 2: choose from among all three options
278  * msi = 1: only consider MSI and INTx interrupts
279  * msi = 0: force INTx interrupts
280  */
281 static int msi = 2;
282
283 module_param(msi, int, 0644);
284 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
285
286 /*
287  * Queue interrupt hold-off timer values.  Queues default to the first of these
288  * upon creation.
289  */
290 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
291
292 module_param_array(intr_holdoff, uint, NULL, 0644);
293 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
294                  "0..4 in microseconds");
295
296 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
297
298 module_param_array(intr_cnt, uint, NULL, 0644);
299 MODULE_PARM_DESC(intr_cnt,
300                  "thresholds 1..3 for queue interrupt packet counters");
301
302 /*
303  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
304  * offset by 2 bytes in order to have the IP headers line up on 4-byte
305  * boundaries.  This is a requirement for many architectures which will throw
306  * a machine check fault if an attempt is made to access one of the 4-byte IP
307  * header fields on a non-4-byte boundary.  And it's a major performance issue
308  * even on some architectures which allow it like some implementations of the
309  * x86 ISA.  However, some architectures don't mind this and for some very
310  * edge-case performance sensitive applications (like forwarding large volumes
311  * of small packets), setting this DMA offset to 0 will decrease the number of
312  * PCI-E Bus transfers enough to measurably affect performance.
313  */
314 static int rx_dma_offset = 2;
315
316 static bool vf_acls;
317
318 #ifdef CONFIG_PCI_IOV
319 module_param(vf_acls, bool, 0644);
320 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
321
322 static unsigned int num_vf[4];
323
324 module_param_array(num_vf, uint, NULL, 0644);
325 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
326 #endif
327
328 /*
329  * The filter TCAM has a fixed portion and a variable portion.  The fixed
330  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
331  * ports.  The variable portion is 36 bits which can include things like Exact
332  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
333  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
334  * far exceed the 36-bit budget for this "compressed" header portion of the
335  * filter.  Thus, we have a scarce resource which must be carefully managed.
336  *
337  * By default we set this up to mostly match the set of filter matching
338  * capabilities of T3 but with accommodations for some of T4's more
339  * interesting features:
340  *
341  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
342  *     [Inner] VLAN (17), Port (3), FCoE (1) }
343  */
344 enum {
345         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
346         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
347         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
348 };
349
350 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
351
352 module_param(tp_vlan_pri_map, uint, 0644);
353 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
354
355 static struct dentry *cxgb4_debugfs_root;
356
357 static LIST_HEAD(adapter_list);
358 static DEFINE_MUTEX(uld_mutex);
359 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
360 static const char *uld_str[] = { "RDMA", "iSCSI" };
361
362 static void link_report(struct net_device *dev)
363 {
364         if (!netif_carrier_ok(dev))
365                 netdev_info(dev, "link down\n");
366         else {
367                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
368
369                 const char *s = "10Mbps";
370                 const struct port_info *p = netdev_priv(dev);
371
372                 switch (p->link_cfg.speed) {
373                 case SPEED_10000:
374                         s = "10Gbps";
375                         break;
376                 case SPEED_1000:
377                         s = "1000Mbps";
378                         break;
379                 case SPEED_100:
380                         s = "100Mbps";
381                         break;
382                 }
383
384                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
385                             fc[p->link_cfg.fc]);
386         }
387 }
388
389 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
390 {
391         struct net_device *dev = adapter->port[port_id];
392
393         /* Skip changes from disabled ports. */
394         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
395                 if (link_stat)
396                         netif_carrier_on(dev);
397                 else
398                         netif_carrier_off(dev);
399
400                 link_report(dev);
401         }
402 }
403
404 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
405 {
406         static const char *mod_str[] = {
407                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
408         };
409
410         const struct net_device *dev = adap->port[port_id];
411         const struct port_info *pi = netdev_priv(dev);
412
413         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
414                 netdev_info(dev, "port module unplugged\n");
415         else if (pi->mod_type < ARRAY_SIZE(mod_str))
416                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
417 }
418
419 /*
420  * Configure the exact and hash address filters to handle a port's multicast
421  * and secondary unicast MAC addresses.
422  */
423 static int set_addr_filters(const struct net_device *dev, bool sleep)
424 {
425         u64 mhash = 0;
426         u64 uhash = 0;
427         bool free = true;
428         u16 filt_idx[7];
429         const u8 *addr[7];
430         int ret, naddr = 0;
431         const struct netdev_hw_addr *ha;
432         int uc_cnt = netdev_uc_count(dev);
433         int mc_cnt = netdev_mc_count(dev);
434         const struct port_info *pi = netdev_priv(dev);
435         unsigned int mb = pi->adapter->fn;
436
437         /* first do the secondary unicast addresses */
438         netdev_for_each_uc_addr(ha, dev) {
439                 addr[naddr++] = ha->addr;
440                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
441                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
442                                         naddr, addr, filt_idx, &uhash, sleep);
443                         if (ret < 0)
444                                 return ret;
445
446                         free = false;
447                         naddr = 0;
448                 }
449         }
450
451         /* next set up the multicast addresses */
452         netdev_for_each_mc_addr(ha, dev) {
453                 addr[naddr++] = ha->addr;
454                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
455                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
456                                         naddr, addr, filt_idx, &mhash, sleep);
457                         if (ret < 0)
458                                 return ret;
459
460                         free = false;
461                         naddr = 0;
462                 }
463         }
464
465         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
466                                 uhash | mhash, sleep);
467 }
468
469 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
470 module_param(dbfifo_int_thresh, int, 0644);
471 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
472
473 /*
474  * usecs to sleep while draining the dbfifo
475  */
476 static int dbfifo_drain_delay = 1000;
477 module_param(dbfifo_drain_delay, int, 0644);
478 MODULE_PARM_DESC(dbfifo_drain_delay,
479                  "usecs to sleep while draining the dbfifo");
480
481 /*
482  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
483  * If @mtu is -1 it is left unchanged.
484  */
485 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
486 {
487         int ret;
488         struct port_info *pi = netdev_priv(dev);
489
490         ret = set_addr_filters(dev, sleep_ok);
491         if (ret == 0)
492                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
493                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
494                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
495                                     sleep_ok);
496         return ret;
497 }
498
499 static struct workqueue_struct *workq;
500
501 /**
502  *      link_start - enable a port
503  *      @dev: the port to enable
504  *
505  *      Performs the MAC and PHY actions needed to enable a port.
506  */
507 static int link_start(struct net_device *dev)
508 {
509         int ret;
510         struct port_info *pi = netdev_priv(dev);
511         unsigned int mb = pi->adapter->fn;
512
513         /*
514          * We do not set address filters and promiscuity here, the stack does
515          * that step explicitly.
516          */
517         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
518                             !!(dev->features & NETIF_F_HW_VLAN_RX), true);
519         if (ret == 0) {
520                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
521                                     pi->xact_addr_filt, dev->dev_addr, true,
522                                     true);
523                 if (ret >= 0) {
524                         pi->xact_addr_filt = ret;
525                         ret = 0;
526                 }
527         }
528         if (ret == 0)
529                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
530                                     &pi->link_cfg);
531         if (ret == 0)
532                 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
533         return ret;
534 }
535
536 /* Clear a filter and release any of its resources that we own.  This also
537  * clears the filter's "pending" status.
538  */
539 static void clear_filter(struct adapter *adap, struct filter_entry *f)
540 {
541         /* If the new or old filter have loopback rewriteing rules then we'll
542          * need to free any existing Layer Two Table (L2T) entries of the old
543          * filter rule.  The firmware will handle freeing up any Source MAC
544          * Table (SMT) entries used for rewriting Source MAC Addresses in
545          * loopback rules.
546          */
547         if (f->l2t)
548                 cxgb4_l2t_release(f->l2t);
549
550         /* The zeroing of the filter rule below clears the filter valid,
551          * pending, locked flags, l2t pointer, etc. so it's all we need for
552          * this operation.
553          */
554         memset(f, 0, sizeof(*f));
555 }
556
557 /* Handle a filter write/deletion reply.
558  */
559 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
560 {
561         unsigned int idx = GET_TID(rpl);
562         unsigned int nidx = idx - adap->tids.ftid_base;
563         unsigned int ret;
564         struct filter_entry *f;
565
566         if (idx >= adap->tids.ftid_base && nidx <
567            (adap->tids.nftids + adap->tids.nsftids)) {
568                 idx = nidx;
569                 ret = GET_TCB_COOKIE(rpl->cookie);
570                 f = &adap->tids.ftid_tab[idx];
571
572                 if (ret == FW_FILTER_WR_FLT_DELETED) {
573                         /* Clear the filter when we get confirmation from the
574                          * hardware that the filter has been deleted.
575                          */
576                         clear_filter(adap, f);
577                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
578                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
579                                 idx);
580                         clear_filter(adap, f);
581                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
582                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
583                         f->pending = 0;  /* asynchronous setup completed */
584                         f->valid = 1;
585                 } else {
586                         /* Something went wrong.  Issue a warning about the
587                          * problem and clear everything out.
588                          */
589                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
590                                 idx, ret);
591                         clear_filter(adap, f);
592                 }
593         }
594 }
595
596 /* Response queue handler for the FW event queue.
597  */
598 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
599                           const struct pkt_gl *gl)
600 {
601         u8 opcode = ((const struct rss_header *)rsp)->opcode;
602
603         rsp++;                                          /* skip RSS header */
604         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
605                 const struct cpl_sge_egr_update *p = (void *)rsp;
606                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
607                 struct sge_txq *txq;
608
609                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
610                 txq->restarts++;
611                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
612                         struct sge_eth_txq *eq;
613
614                         eq = container_of(txq, struct sge_eth_txq, q);
615                         netif_tx_wake_queue(eq->txq);
616                 } else {
617                         struct sge_ofld_txq *oq;
618
619                         oq = container_of(txq, struct sge_ofld_txq, q);
620                         tasklet_schedule(&oq->qresume_tsk);
621                 }
622         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
623                 const struct cpl_fw6_msg *p = (void *)rsp;
624
625                 if (p->type == 0)
626                         t4_handle_fw_rpl(q->adap, p->data);
627         } else if (opcode == CPL_L2T_WRITE_RPL) {
628                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
629
630                 do_l2t_write_rpl(q->adap, p);
631         } else if (opcode == CPL_SET_TCB_RPL) {
632                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
633
634                 filter_rpl(q->adap, p);
635         } else
636                 dev_err(q->adap->pdev_dev,
637                         "unexpected CPL %#x on FW event queue\n", opcode);
638         return 0;
639 }
640
641 /**
642  *      uldrx_handler - response queue handler for ULD queues
643  *      @q: the response queue that received the packet
644  *      @rsp: the response queue descriptor holding the offload message
645  *      @gl: the gather list of packet fragments
646  *
647  *      Deliver an ingress offload packet to a ULD.  All processing is done by
648  *      the ULD, we just maintain statistics.
649  */
650 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
651                          const struct pkt_gl *gl)
652 {
653         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
654
655         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
656                 rxq->stats.nomem++;
657                 return -1;
658         }
659         if (gl == NULL)
660                 rxq->stats.imm++;
661         else if (gl == CXGB4_MSG_AN)
662                 rxq->stats.an++;
663         else
664                 rxq->stats.pkts++;
665         return 0;
666 }
667
668 static void disable_msi(struct adapter *adapter)
669 {
670         if (adapter->flags & USING_MSIX) {
671                 pci_disable_msix(adapter->pdev);
672                 adapter->flags &= ~USING_MSIX;
673         } else if (adapter->flags & USING_MSI) {
674                 pci_disable_msi(adapter->pdev);
675                 adapter->flags &= ~USING_MSI;
676         }
677 }
678
679 /*
680  * Interrupt handler for non-data events used with MSI-X.
681  */
682 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
683 {
684         struct adapter *adap = cookie;
685
686         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
687         if (v & PFSW) {
688                 adap->swintr = 1;
689                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
690         }
691         t4_slow_intr_handler(adap);
692         return IRQ_HANDLED;
693 }
694
695 /*
696  * Name the MSI-X interrupts.
697  */
698 static void name_msix_vecs(struct adapter *adap)
699 {
700         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
701
702         /* non-data interrupts */
703         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
704
705         /* FW events */
706         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
707                  adap->port[0]->name);
708
709         /* Ethernet queues */
710         for_each_port(adap, j) {
711                 struct net_device *d = adap->port[j];
712                 const struct port_info *pi = netdev_priv(d);
713
714                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
715                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
716                                  d->name, i);
717         }
718
719         /* offload queues */
720         for_each_ofldrxq(&adap->sge, i)
721                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
722                          adap->port[0]->name, i);
723
724         for_each_rdmarxq(&adap->sge, i)
725                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
726                          adap->port[0]->name, i);
727 }
728
729 static int request_msix_queue_irqs(struct adapter *adap)
730 {
731         struct sge *s = &adap->sge;
732         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2;
733
734         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
735                           adap->msix_info[1].desc, &s->fw_evtq);
736         if (err)
737                 return err;
738
739         for_each_ethrxq(s, ethqidx) {
740                 err = request_irq(adap->msix_info[msi_index].vec,
741                                   t4_sge_intr_msix, 0,
742                                   adap->msix_info[msi_index].desc,
743                                   &s->ethrxq[ethqidx].rspq);
744                 if (err)
745                         goto unwind;
746                 msi_index++;
747         }
748         for_each_ofldrxq(s, ofldqidx) {
749                 err = request_irq(adap->msix_info[msi_index].vec,
750                                   t4_sge_intr_msix, 0,
751                                   adap->msix_info[msi_index].desc,
752                                   &s->ofldrxq[ofldqidx].rspq);
753                 if (err)
754                         goto unwind;
755                 msi_index++;
756         }
757         for_each_rdmarxq(s, rdmaqidx) {
758                 err = request_irq(adap->msix_info[msi_index].vec,
759                                   t4_sge_intr_msix, 0,
760                                   adap->msix_info[msi_index].desc,
761                                   &s->rdmarxq[rdmaqidx].rspq);
762                 if (err)
763                         goto unwind;
764                 msi_index++;
765         }
766         return 0;
767
768 unwind:
769         while (--rdmaqidx >= 0)
770                 free_irq(adap->msix_info[--msi_index].vec,
771                          &s->rdmarxq[rdmaqidx].rspq);
772         while (--ofldqidx >= 0)
773                 free_irq(adap->msix_info[--msi_index].vec,
774                          &s->ofldrxq[ofldqidx].rspq);
775         while (--ethqidx >= 0)
776                 free_irq(adap->msix_info[--msi_index].vec,
777                          &s->ethrxq[ethqidx].rspq);
778         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
779         return err;
780 }
781
782 static void free_msix_queue_irqs(struct adapter *adap)
783 {
784         int i, msi_index = 2;
785         struct sge *s = &adap->sge;
786
787         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
788         for_each_ethrxq(s, i)
789                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
790         for_each_ofldrxq(s, i)
791                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
792         for_each_rdmarxq(s, i)
793                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
794 }
795
796 /**
797  *      write_rss - write the RSS table for a given port
798  *      @pi: the port
799  *      @queues: array of queue indices for RSS
800  *
801  *      Sets up the portion of the HW RSS table for the port's VI to distribute
802  *      packets to the Rx queues in @queues.
803  */
804 static int write_rss(const struct port_info *pi, const u16 *queues)
805 {
806         u16 *rss;
807         int i, err;
808         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
809
810         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
811         if (!rss)
812                 return -ENOMEM;
813
814         /* map the queue indices to queue ids */
815         for (i = 0; i < pi->rss_size; i++, queues++)
816                 rss[i] = q[*queues].rspq.abs_id;
817
818         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
819                                   pi->rss_size, rss, pi->rss_size);
820         kfree(rss);
821         return err;
822 }
823
824 /**
825  *      setup_rss - configure RSS
826  *      @adap: the adapter
827  *
828  *      Sets up RSS for each port.
829  */
830 static int setup_rss(struct adapter *adap)
831 {
832         int i, err;
833
834         for_each_port(adap, i) {
835                 const struct port_info *pi = adap2pinfo(adap, i);
836
837                 err = write_rss(pi, pi->rss);
838                 if (err)
839                         return err;
840         }
841         return 0;
842 }
843
844 /*
845  * Return the channel of the ingress queue with the given qid.
846  */
847 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
848 {
849         qid -= p->ingr_start;
850         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
851 }
852
853 /*
854  * Wait until all NAPI handlers are descheduled.
855  */
856 static void quiesce_rx(struct adapter *adap)
857 {
858         int i;
859
860         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
861                 struct sge_rspq *q = adap->sge.ingr_map[i];
862
863                 if (q && q->handler)
864                         napi_disable(&q->napi);
865         }
866 }
867
868 /*
869  * Enable NAPI scheduling and interrupt generation for all Rx queues.
870  */
871 static void enable_rx(struct adapter *adap)
872 {
873         int i;
874
875         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
876                 struct sge_rspq *q = adap->sge.ingr_map[i];
877
878                 if (!q)
879                         continue;
880                 if (q->handler)
881                         napi_enable(&q->napi);
882                 /* 0-increment GTS to start the timer and enable interrupts */
883                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
884                              SEINTARM(q->intr_params) |
885                              INGRESSQID(q->cntxt_id));
886         }
887 }
888
889 /**
890  *      setup_sge_queues - configure SGE Tx/Rx/response queues
891  *      @adap: the adapter
892  *
893  *      Determines how many sets of SGE queues to use and initializes them.
894  *      We support multiple queue sets per port if we have MSI-X, otherwise
895  *      just one queue set per port.
896  */
897 static int setup_sge_queues(struct adapter *adap)
898 {
899         int err, msi_idx, i, j;
900         struct sge *s = &adap->sge;
901
902         bitmap_zero(s->starving_fl, MAX_EGRQ);
903         bitmap_zero(s->txq_maperr, MAX_EGRQ);
904
905         if (adap->flags & USING_MSIX)
906                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
907         else {
908                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
909                                        NULL, NULL);
910                 if (err)
911                         return err;
912                 msi_idx = -((int)s->intrq.abs_id + 1);
913         }
914
915         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
916                                msi_idx, NULL, fwevtq_handler);
917         if (err) {
918 freeout:        t4_free_sge_resources(adap);
919                 return err;
920         }
921
922         for_each_port(adap, i) {
923                 struct net_device *dev = adap->port[i];
924                 struct port_info *pi = netdev_priv(dev);
925                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
926                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
927
928                 for (j = 0; j < pi->nqsets; j++, q++) {
929                         if (msi_idx > 0)
930                                 msi_idx++;
931                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
932                                                msi_idx, &q->fl,
933                                                t4_ethrx_handler);
934                         if (err)
935                                 goto freeout;
936                         q->rspq.idx = j;
937                         memset(&q->stats, 0, sizeof(q->stats));
938                 }
939                 for (j = 0; j < pi->nqsets; j++, t++) {
940                         err = t4_sge_alloc_eth_txq(adap, t, dev,
941                                         netdev_get_tx_queue(dev, j),
942                                         s->fw_evtq.cntxt_id);
943                         if (err)
944                                 goto freeout;
945                 }
946         }
947
948         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
949         for_each_ofldrxq(s, i) {
950                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
951                 struct net_device *dev = adap->port[i / j];
952
953                 if (msi_idx > 0)
954                         msi_idx++;
955                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
956                                        &q->fl, uldrx_handler);
957                 if (err)
958                         goto freeout;
959                 memset(&q->stats, 0, sizeof(q->stats));
960                 s->ofld_rxq[i] = q->rspq.abs_id;
961                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
962                                             s->fw_evtq.cntxt_id);
963                 if (err)
964                         goto freeout;
965         }
966
967         for_each_rdmarxq(s, i) {
968                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
969
970                 if (msi_idx > 0)
971                         msi_idx++;
972                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
973                                        msi_idx, &q->fl, uldrx_handler);
974                 if (err)
975                         goto freeout;
976                 memset(&q->stats, 0, sizeof(q->stats));
977                 s->rdma_rxq[i] = q->rspq.abs_id;
978         }
979
980         for_each_port(adap, i) {
981                 /*
982                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
983                  * have RDMA queues, and that's the right value.
984                  */
985                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
986                                             s->fw_evtq.cntxt_id,
987                                             s->rdmarxq[i].rspq.cntxt_id);
988                 if (err)
989                         goto freeout;
990         }
991
992         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
993                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
994                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
995         return 0;
996 }
997
998 /*
999  * Returns 0 if new FW was successfully loaded, a positive errno if a load was
1000  * started but failed, and a negative errno if flash load couldn't start.
1001  */
1002 static int upgrade_fw(struct adapter *adap)
1003 {
1004         int ret;
1005         u32 vers;
1006         const struct fw_hdr *hdr;
1007         const struct firmware *fw;
1008         struct device *dev = adap->pdev_dev;
1009
1010         ret = request_firmware(&fw, FW_FNAME, dev);
1011         if (ret < 0) {
1012                 dev_err(dev, "unable to load firmware image " FW_FNAME
1013                         ", error %d\n", ret);
1014                 return ret;
1015         }
1016
1017         hdr = (const struct fw_hdr *)fw->data;
1018         vers = ntohl(hdr->fw_ver);
1019         if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) {
1020                 ret = -EINVAL;              /* wrong major version, won't do */
1021                 goto out;
1022         }
1023
1024         /*
1025          * If the flash FW is unusable or we found something newer, load it.
1026          */
1027         if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR ||
1028             vers > adap->params.fw_vers) {
1029                 dev_info(dev, "upgrading firmware ...\n");
1030                 ret = t4_fw_upgrade(adap, adap->mbox, fw->data, fw->size,
1031                                     /*force=*/false);
1032                 if (!ret)
1033                         dev_info(dev, "firmware successfully upgraded to "
1034                                  FW_FNAME " (%d.%d.%d.%d)\n",
1035                                  FW_HDR_FW_VER_MAJOR_GET(vers),
1036                                  FW_HDR_FW_VER_MINOR_GET(vers),
1037                                  FW_HDR_FW_VER_MICRO_GET(vers),
1038                                  FW_HDR_FW_VER_BUILD_GET(vers));
1039                 else
1040                         dev_err(dev, "firmware upgrade failed! err=%d\n", -ret);
1041         } else {
1042                 /*
1043                  * Tell our caller that we didn't upgrade the firmware.
1044                  */
1045                 ret = -EINVAL;
1046         }
1047
1048 out:    release_firmware(fw);
1049         return ret;
1050 }
1051
1052 /*
1053  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1054  * The allocated memory is cleared.
1055  */
1056 void *t4_alloc_mem(size_t size)
1057 {
1058         void *p = kzalloc(size, GFP_KERNEL);
1059
1060         if (!p)
1061                 p = vzalloc(size);
1062         return p;
1063 }
1064
1065 /*
1066  * Free memory allocated through alloc_mem().
1067  */
1068 static void t4_free_mem(void *addr)
1069 {
1070         if (is_vmalloc_addr(addr))
1071                 vfree(addr);
1072         else
1073                 kfree(addr);
1074 }
1075
1076 /* Send a Work Request to write the filter at a specified index.  We construct
1077  * a Firmware Filter Work Request to have the work done and put the indicated
1078  * filter into "pending" mode which will prevent any further actions against
1079  * it till we get a reply from the firmware on the completion status of the
1080  * request.
1081  */
1082 static int set_filter_wr(struct adapter *adapter, int fidx)
1083 {
1084         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1085         struct sk_buff *skb;
1086         struct fw_filter_wr *fwr;
1087         unsigned int ftid;
1088
1089         /* If the new filter requires loopback Destination MAC and/or VLAN
1090          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1091          * the filter.
1092          */
1093         if (f->fs.newdmac || f->fs.newvlan) {
1094                 /* allocate L2T entry for new filter */
1095                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1096                 if (f->l2t == NULL)
1097                         return -EAGAIN;
1098                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1099                                         f->fs.eport, f->fs.dmac)) {
1100                         cxgb4_l2t_release(f->l2t);
1101                         f->l2t = NULL;
1102                         return -ENOMEM;
1103                 }
1104         }
1105
1106         ftid = adapter->tids.ftid_base + fidx;
1107
1108         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1109         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1110         memset(fwr, 0, sizeof(*fwr));
1111
1112         /* It would be nice to put most of the following in t4_hw.c but most
1113          * of the work is translating the cxgbtool ch_filter_specification
1114          * into the Work Request and the definition of that structure is
1115          * currently in cxgbtool.h which isn't appropriate to pull into the
1116          * common code.  We may eventually try to come up with a more neutral
1117          * filter specification structure but for now it's easiest to simply
1118          * put this fairly direct code in line ...
1119          */
1120         fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1121         fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1122         fwr->tid_to_iq =
1123                 htonl(V_FW_FILTER_WR_TID(ftid) |
1124                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1125                       V_FW_FILTER_WR_NOREPLY(0) |
1126                       V_FW_FILTER_WR_IQ(f->fs.iq));
1127         fwr->del_filter_to_l2tix =
1128                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1129                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1130                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1131                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1132                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1133                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1134                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1135                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1136                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1137                                              f->fs.newvlan == VLAN_REWRITE) |
1138                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1139                                             f->fs.newvlan == VLAN_REWRITE) |
1140                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1141                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1142                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1143                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1144         fwr->ethtype = htons(f->fs.val.ethtype);
1145         fwr->ethtypem = htons(f->fs.mask.ethtype);
1146         fwr->frag_to_ovlan_vldm =
1147                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1148                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1149                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1150                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1151                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1152                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1153         fwr->smac_sel = 0;
1154         fwr->rx_chan_rx_rpl_iq =
1155                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1156                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1157         fwr->maci_to_matchtypem =
1158                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1159                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1160                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1161                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1162                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1163                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1164                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1165                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1166         fwr->ptcl = f->fs.val.proto;
1167         fwr->ptclm = f->fs.mask.proto;
1168         fwr->ttyp = f->fs.val.tos;
1169         fwr->ttypm = f->fs.mask.tos;
1170         fwr->ivlan = htons(f->fs.val.ivlan);
1171         fwr->ivlanm = htons(f->fs.mask.ivlan);
1172         fwr->ovlan = htons(f->fs.val.ovlan);
1173         fwr->ovlanm = htons(f->fs.mask.ovlan);
1174         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1175         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1176         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1177         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1178         fwr->lp = htons(f->fs.val.lport);
1179         fwr->lpm = htons(f->fs.mask.lport);
1180         fwr->fp = htons(f->fs.val.fport);
1181         fwr->fpm = htons(f->fs.mask.fport);
1182         if (f->fs.newsmac)
1183                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1184
1185         /* Mark the filter as "pending" and ship off the Filter Work Request.
1186          * When we get the Work Request Reply we'll clear the pending status.
1187          */
1188         f->pending = 1;
1189         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1190         t4_ofld_send(adapter, skb);
1191         return 0;
1192 }
1193
1194 /* Delete the filter at a specified index.
1195  */
1196 static int del_filter_wr(struct adapter *adapter, int fidx)
1197 {
1198         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1199         struct sk_buff *skb;
1200         struct fw_filter_wr *fwr;
1201         unsigned int len, ftid;
1202
1203         len = sizeof(*fwr);
1204         ftid = adapter->tids.ftid_base + fidx;
1205
1206         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1207         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1208         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1209
1210         /* Mark the filter as "pending" and ship off the Filter Work Request.
1211          * When we get the Work Request Reply we'll clear the pending status.
1212          */
1213         f->pending = 1;
1214         t4_mgmt_tx(adapter, skb);
1215         return 0;
1216 }
1217
1218 static inline int is_offload(const struct adapter *adap)
1219 {
1220         return adap->params.offload;
1221 }
1222
1223 /*
1224  * Implementation of ethtool operations.
1225  */
1226
1227 static u32 get_msglevel(struct net_device *dev)
1228 {
1229         return netdev2adap(dev)->msg_enable;
1230 }
1231
1232 static void set_msglevel(struct net_device *dev, u32 val)
1233 {
1234         netdev2adap(dev)->msg_enable = val;
1235 }
1236
1237 static char stats_strings[][ETH_GSTRING_LEN] = {
1238         "TxOctetsOK         ",
1239         "TxFramesOK         ",
1240         "TxBroadcastFrames  ",
1241         "TxMulticastFrames  ",
1242         "TxUnicastFrames    ",
1243         "TxErrorFrames      ",
1244
1245         "TxFrames64         ",
1246         "TxFrames65To127    ",
1247         "TxFrames128To255   ",
1248         "TxFrames256To511   ",
1249         "TxFrames512To1023  ",
1250         "TxFrames1024To1518 ",
1251         "TxFrames1519ToMax  ",
1252
1253         "TxFramesDropped    ",
1254         "TxPauseFrames      ",
1255         "TxPPP0Frames       ",
1256         "TxPPP1Frames       ",
1257         "TxPPP2Frames       ",
1258         "TxPPP3Frames       ",
1259         "TxPPP4Frames       ",
1260         "TxPPP5Frames       ",
1261         "TxPPP6Frames       ",
1262         "TxPPP7Frames       ",
1263
1264         "RxOctetsOK         ",
1265         "RxFramesOK         ",
1266         "RxBroadcastFrames  ",
1267         "RxMulticastFrames  ",
1268         "RxUnicastFrames    ",
1269
1270         "RxFramesTooLong    ",
1271         "RxJabberErrors     ",
1272         "RxFCSErrors        ",
1273         "RxLengthErrors     ",
1274         "RxSymbolErrors     ",
1275         "RxRuntFrames       ",
1276
1277         "RxFrames64         ",
1278         "RxFrames65To127    ",
1279         "RxFrames128To255   ",
1280         "RxFrames256To511   ",
1281         "RxFrames512To1023  ",
1282         "RxFrames1024To1518 ",
1283         "RxFrames1519ToMax  ",
1284
1285         "RxPauseFrames      ",
1286         "RxPPP0Frames       ",
1287         "RxPPP1Frames       ",
1288         "RxPPP2Frames       ",
1289         "RxPPP3Frames       ",
1290         "RxPPP4Frames       ",
1291         "RxPPP5Frames       ",
1292         "RxPPP6Frames       ",
1293         "RxPPP7Frames       ",
1294
1295         "RxBG0FramesDropped ",
1296         "RxBG1FramesDropped ",
1297         "RxBG2FramesDropped ",
1298         "RxBG3FramesDropped ",
1299         "RxBG0FramesTrunc   ",
1300         "RxBG1FramesTrunc   ",
1301         "RxBG2FramesTrunc   ",
1302         "RxBG3FramesTrunc   ",
1303
1304         "TSO                ",
1305         "TxCsumOffload      ",
1306         "RxCsumGood         ",
1307         "VLANextractions    ",
1308         "VLANinsertions     ",
1309         "GROpackets         ",
1310         "GROmerged          ",
1311 };
1312
1313 static int get_sset_count(struct net_device *dev, int sset)
1314 {
1315         switch (sset) {
1316         case ETH_SS_STATS:
1317                 return ARRAY_SIZE(stats_strings);
1318         default:
1319                 return -EOPNOTSUPP;
1320         }
1321 }
1322
1323 #define T4_REGMAP_SIZE (160 * 1024)
1324
1325 static int get_regs_len(struct net_device *dev)
1326 {
1327         return T4_REGMAP_SIZE;
1328 }
1329
1330 static int get_eeprom_len(struct net_device *dev)
1331 {
1332         return EEPROMSIZE;
1333 }
1334
1335 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1336 {
1337         struct adapter *adapter = netdev2adap(dev);
1338
1339         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1340         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1341         strlcpy(info->bus_info, pci_name(adapter->pdev),
1342                 sizeof(info->bus_info));
1343
1344         if (adapter->params.fw_vers)
1345                 snprintf(info->fw_version, sizeof(info->fw_version),
1346                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1347                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1348                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1349                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1350                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1351                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1352                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1353                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1354                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1355 }
1356
1357 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1358 {
1359         if (stringset == ETH_SS_STATS)
1360                 memcpy(data, stats_strings, sizeof(stats_strings));
1361 }
1362
1363 /*
1364  * port stats maintained per queue of the port.  They should be in the same
1365  * order as in stats_strings above.
1366  */
1367 struct queue_port_stats {
1368         u64 tso;
1369         u64 tx_csum;
1370         u64 rx_csum;
1371         u64 vlan_ex;
1372         u64 vlan_ins;
1373         u64 gro_pkts;
1374         u64 gro_merged;
1375 };
1376
1377 static void collect_sge_port_stats(const struct adapter *adap,
1378                 const struct port_info *p, struct queue_port_stats *s)
1379 {
1380         int i;
1381         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1382         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1383
1384         memset(s, 0, sizeof(*s));
1385         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1386                 s->tso += tx->tso;
1387                 s->tx_csum += tx->tx_cso;
1388                 s->rx_csum += rx->stats.rx_cso;
1389                 s->vlan_ex += rx->stats.vlan_ex;
1390                 s->vlan_ins += tx->vlan_ins;
1391                 s->gro_pkts += rx->stats.lro_pkts;
1392                 s->gro_merged += rx->stats.lro_merged;
1393         }
1394 }
1395
1396 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1397                       u64 *data)
1398 {
1399         struct port_info *pi = netdev_priv(dev);
1400         struct adapter *adapter = pi->adapter;
1401
1402         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1403
1404         data += sizeof(struct port_stats) / sizeof(u64);
1405         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1406 }
1407
1408 /*
1409  * Return a version number to identify the type of adapter.  The scheme is:
1410  * - bits 0..9: chip version
1411  * - bits 10..15: chip revision
1412  * - bits 16..23: register dump version
1413  */
1414 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1415 {
1416         return 4 | (ap->params.rev << 10) | (1 << 16);
1417 }
1418
1419 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1420                            unsigned int end)
1421 {
1422         u32 *p = buf + start;
1423
1424         for ( ; start <= end; start += sizeof(u32))
1425                 *p++ = t4_read_reg(ap, start);
1426 }
1427
1428 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1429                      void *buf)
1430 {
1431         static const unsigned int reg_ranges[] = {
1432                 0x1008, 0x1108,
1433                 0x1180, 0x11b4,
1434                 0x11fc, 0x123c,
1435                 0x1300, 0x173c,
1436                 0x1800, 0x18fc,
1437                 0x3000, 0x30d8,
1438                 0x30e0, 0x5924,
1439                 0x5960, 0x59d4,
1440                 0x5a00, 0x5af8,
1441                 0x6000, 0x6098,
1442                 0x6100, 0x6150,
1443                 0x6200, 0x6208,
1444                 0x6240, 0x6248,
1445                 0x6280, 0x6338,
1446                 0x6370, 0x638c,
1447                 0x6400, 0x643c,
1448                 0x6500, 0x6524,
1449                 0x6a00, 0x6a38,
1450                 0x6a60, 0x6a78,
1451                 0x6b00, 0x6b84,
1452                 0x6bf0, 0x6c84,
1453                 0x6cf0, 0x6d84,
1454                 0x6df0, 0x6e84,
1455                 0x6ef0, 0x6f84,
1456                 0x6ff0, 0x7084,
1457                 0x70f0, 0x7184,
1458                 0x71f0, 0x7284,
1459                 0x72f0, 0x7384,
1460                 0x73f0, 0x7450,
1461                 0x7500, 0x7530,
1462                 0x7600, 0x761c,
1463                 0x7680, 0x76cc,
1464                 0x7700, 0x7798,
1465                 0x77c0, 0x77fc,
1466                 0x7900, 0x79fc,
1467                 0x7b00, 0x7c38,
1468                 0x7d00, 0x7efc,
1469                 0x8dc0, 0x8e1c,
1470                 0x8e30, 0x8e78,
1471                 0x8ea0, 0x8f6c,
1472                 0x8fc0, 0x9074,
1473                 0x90fc, 0x90fc,
1474                 0x9400, 0x9458,
1475                 0x9600, 0x96bc,
1476                 0x9800, 0x9808,
1477                 0x9820, 0x983c,
1478                 0x9850, 0x9864,
1479                 0x9c00, 0x9c6c,
1480                 0x9c80, 0x9cec,
1481                 0x9d00, 0x9d6c,
1482                 0x9d80, 0x9dec,
1483                 0x9e00, 0x9e6c,
1484                 0x9e80, 0x9eec,
1485                 0x9f00, 0x9f6c,
1486                 0x9f80, 0x9fec,
1487                 0xd004, 0xd03c,
1488                 0xdfc0, 0xdfe0,
1489                 0xe000, 0xea7c,
1490                 0xf000, 0x11190,
1491                 0x19040, 0x1906c,
1492                 0x19078, 0x19080,
1493                 0x1908c, 0x19124,
1494                 0x19150, 0x191b0,
1495                 0x191d0, 0x191e8,
1496                 0x19238, 0x1924c,
1497                 0x193f8, 0x19474,
1498                 0x19490, 0x194f8,
1499                 0x19800, 0x19f30,
1500                 0x1a000, 0x1a06c,
1501                 0x1a0b0, 0x1a120,
1502                 0x1a128, 0x1a138,
1503                 0x1a190, 0x1a1c4,
1504                 0x1a1fc, 0x1a1fc,
1505                 0x1e040, 0x1e04c,
1506                 0x1e284, 0x1e28c,
1507                 0x1e2c0, 0x1e2c0,
1508                 0x1e2e0, 0x1e2e0,
1509                 0x1e300, 0x1e384,
1510                 0x1e3c0, 0x1e3c8,
1511                 0x1e440, 0x1e44c,
1512                 0x1e684, 0x1e68c,
1513                 0x1e6c0, 0x1e6c0,
1514                 0x1e6e0, 0x1e6e0,
1515                 0x1e700, 0x1e784,
1516                 0x1e7c0, 0x1e7c8,
1517                 0x1e840, 0x1e84c,
1518                 0x1ea84, 0x1ea8c,
1519                 0x1eac0, 0x1eac0,
1520                 0x1eae0, 0x1eae0,
1521                 0x1eb00, 0x1eb84,
1522                 0x1ebc0, 0x1ebc8,
1523                 0x1ec40, 0x1ec4c,
1524                 0x1ee84, 0x1ee8c,
1525                 0x1eec0, 0x1eec0,
1526                 0x1eee0, 0x1eee0,
1527                 0x1ef00, 0x1ef84,
1528                 0x1efc0, 0x1efc8,
1529                 0x1f040, 0x1f04c,
1530                 0x1f284, 0x1f28c,
1531                 0x1f2c0, 0x1f2c0,
1532                 0x1f2e0, 0x1f2e0,
1533                 0x1f300, 0x1f384,
1534                 0x1f3c0, 0x1f3c8,
1535                 0x1f440, 0x1f44c,
1536                 0x1f684, 0x1f68c,
1537                 0x1f6c0, 0x1f6c0,
1538                 0x1f6e0, 0x1f6e0,
1539                 0x1f700, 0x1f784,
1540                 0x1f7c0, 0x1f7c8,
1541                 0x1f840, 0x1f84c,
1542                 0x1fa84, 0x1fa8c,
1543                 0x1fac0, 0x1fac0,
1544                 0x1fae0, 0x1fae0,
1545                 0x1fb00, 0x1fb84,
1546                 0x1fbc0, 0x1fbc8,
1547                 0x1fc40, 0x1fc4c,
1548                 0x1fe84, 0x1fe8c,
1549                 0x1fec0, 0x1fec0,
1550                 0x1fee0, 0x1fee0,
1551                 0x1ff00, 0x1ff84,
1552                 0x1ffc0, 0x1ffc8,
1553                 0x20000, 0x2002c,
1554                 0x20100, 0x2013c,
1555                 0x20190, 0x201c8,
1556                 0x20200, 0x20318,
1557                 0x20400, 0x20528,
1558                 0x20540, 0x20614,
1559                 0x21000, 0x21040,
1560                 0x2104c, 0x21060,
1561                 0x210c0, 0x210ec,
1562                 0x21200, 0x21268,
1563                 0x21270, 0x21284,
1564                 0x212fc, 0x21388,
1565                 0x21400, 0x21404,
1566                 0x21500, 0x21518,
1567                 0x2152c, 0x2153c,
1568                 0x21550, 0x21554,
1569                 0x21600, 0x21600,
1570                 0x21608, 0x21628,
1571                 0x21630, 0x2163c,
1572                 0x21700, 0x2171c,
1573                 0x21780, 0x2178c,
1574                 0x21800, 0x21c38,
1575                 0x21c80, 0x21d7c,
1576                 0x21e00, 0x21e04,
1577                 0x22000, 0x2202c,
1578                 0x22100, 0x2213c,
1579                 0x22190, 0x221c8,
1580                 0x22200, 0x22318,
1581                 0x22400, 0x22528,
1582                 0x22540, 0x22614,
1583                 0x23000, 0x23040,
1584                 0x2304c, 0x23060,
1585                 0x230c0, 0x230ec,
1586                 0x23200, 0x23268,
1587                 0x23270, 0x23284,
1588                 0x232fc, 0x23388,
1589                 0x23400, 0x23404,
1590                 0x23500, 0x23518,
1591                 0x2352c, 0x2353c,
1592                 0x23550, 0x23554,
1593                 0x23600, 0x23600,
1594                 0x23608, 0x23628,
1595                 0x23630, 0x2363c,
1596                 0x23700, 0x2371c,
1597                 0x23780, 0x2378c,
1598                 0x23800, 0x23c38,
1599                 0x23c80, 0x23d7c,
1600                 0x23e00, 0x23e04,
1601                 0x24000, 0x2402c,
1602                 0x24100, 0x2413c,
1603                 0x24190, 0x241c8,
1604                 0x24200, 0x24318,
1605                 0x24400, 0x24528,
1606                 0x24540, 0x24614,
1607                 0x25000, 0x25040,
1608                 0x2504c, 0x25060,
1609                 0x250c0, 0x250ec,
1610                 0x25200, 0x25268,
1611                 0x25270, 0x25284,
1612                 0x252fc, 0x25388,
1613                 0x25400, 0x25404,
1614                 0x25500, 0x25518,
1615                 0x2552c, 0x2553c,
1616                 0x25550, 0x25554,
1617                 0x25600, 0x25600,
1618                 0x25608, 0x25628,
1619                 0x25630, 0x2563c,
1620                 0x25700, 0x2571c,
1621                 0x25780, 0x2578c,
1622                 0x25800, 0x25c38,
1623                 0x25c80, 0x25d7c,
1624                 0x25e00, 0x25e04,
1625                 0x26000, 0x2602c,
1626                 0x26100, 0x2613c,
1627                 0x26190, 0x261c8,
1628                 0x26200, 0x26318,
1629                 0x26400, 0x26528,
1630                 0x26540, 0x26614,
1631                 0x27000, 0x27040,
1632                 0x2704c, 0x27060,
1633                 0x270c0, 0x270ec,
1634                 0x27200, 0x27268,
1635                 0x27270, 0x27284,
1636                 0x272fc, 0x27388,
1637                 0x27400, 0x27404,
1638                 0x27500, 0x27518,
1639                 0x2752c, 0x2753c,
1640                 0x27550, 0x27554,
1641                 0x27600, 0x27600,
1642                 0x27608, 0x27628,
1643                 0x27630, 0x2763c,
1644                 0x27700, 0x2771c,
1645                 0x27780, 0x2778c,
1646                 0x27800, 0x27c38,
1647                 0x27c80, 0x27d7c,
1648                 0x27e00, 0x27e04
1649         };
1650
1651         int i;
1652         struct adapter *ap = netdev2adap(dev);
1653
1654         regs->version = mk_adap_vers(ap);
1655
1656         memset(buf, 0, T4_REGMAP_SIZE);
1657         for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
1658                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
1659 }
1660
1661 static int restart_autoneg(struct net_device *dev)
1662 {
1663         struct port_info *p = netdev_priv(dev);
1664
1665         if (!netif_running(dev))
1666                 return -EAGAIN;
1667         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
1668                 return -EINVAL;
1669         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
1670         return 0;
1671 }
1672
1673 static int identify_port(struct net_device *dev,
1674                          enum ethtool_phys_id_state state)
1675 {
1676         unsigned int val;
1677         struct adapter *adap = netdev2adap(dev);
1678
1679         if (state == ETHTOOL_ID_ACTIVE)
1680                 val = 0xffff;
1681         else if (state == ETHTOOL_ID_INACTIVE)
1682                 val = 0;
1683         else
1684                 return -EINVAL;
1685
1686         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
1687 }
1688
1689 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
1690 {
1691         unsigned int v = 0;
1692
1693         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
1694             type == FW_PORT_TYPE_BT_XAUI) {
1695                 v |= SUPPORTED_TP;
1696                 if (caps & FW_PORT_CAP_SPEED_100M)
1697                         v |= SUPPORTED_100baseT_Full;
1698                 if (caps & FW_PORT_CAP_SPEED_1G)
1699                         v |= SUPPORTED_1000baseT_Full;
1700                 if (caps & FW_PORT_CAP_SPEED_10G)
1701                         v |= SUPPORTED_10000baseT_Full;
1702         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1703                 v |= SUPPORTED_Backplane;
1704                 if (caps & FW_PORT_CAP_SPEED_1G)
1705                         v |= SUPPORTED_1000baseKX_Full;
1706                 if (caps & FW_PORT_CAP_SPEED_10G)
1707                         v |= SUPPORTED_10000baseKX4_Full;
1708         } else if (type == FW_PORT_TYPE_KR)
1709                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1710         else if (type == FW_PORT_TYPE_BP_AP)
1711                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1712                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
1713         else if (type == FW_PORT_TYPE_BP4_AP)
1714                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1715                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
1716                      SUPPORTED_10000baseKX4_Full;
1717         else if (type == FW_PORT_TYPE_FIBER_XFI ||
1718                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
1719                 v |= SUPPORTED_FIBRE;
1720
1721         if (caps & FW_PORT_CAP_ANEG)
1722                 v |= SUPPORTED_Autoneg;
1723         return v;
1724 }
1725
1726 static unsigned int to_fw_linkcaps(unsigned int caps)
1727 {
1728         unsigned int v = 0;
1729
1730         if (caps & ADVERTISED_100baseT_Full)
1731                 v |= FW_PORT_CAP_SPEED_100M;
1732         if (caps & ADVERTISED_1000baseT_Full)
1733                 v |= FW_PORT_CAP_SPEED_1G;
1734         if (caps & ADVERTISED_10000baseT_Full)
1735                 v |= FW_PORT_CAP_SPEED_10G;
1736         return v;
1737 }
1738
1739 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1740 {
1741         const struct port_info *p = netdev_priv(dev);
1742
1743         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1744             p->port_type == FW_PORT_TYPE_BT_XFI ||
1745             p->port_type == FW_PORT_TYPE_BT_XAUI)
1746                 cmd->port = PORT_TP;
1747         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
1748                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
1749                 cmd->port = PORT_FIBRE;
1750         else if (p->port_type == FW_PORT_TYPE_SFP) {
1751                 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1752                     p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1753                         cmd->port = PORT_DA;
1754                 else
1755                         cmd->port = PORT_FIBRE;
1756         } else
1757                 cmd->port = PORT_OTHER;
1758
1759         if (p->mdio_addr >= 0) {
1760                 cmd->phy_address = p->mdio_addr;
1761                 cmd->transceiver = XCVR_EXTERNAL;
1762                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1763                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1764         } else {
1765                 cmd->phy_address = 0;  /* not really, but no better option */
1766                 cmd->transceiver = XCVR_INTERNAL;
1767                 cmd->mdio_support = 0;
1768         }
1769
1770         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
1771         cmd->advertising = from_fw_linkcaps(p->port_type,
1772                                             p->link_cfg.advertising);
1773         ethtool_cmd_speed_set(cmd,
1774                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
1775         cmd->duplex = DUPLEX_FULL;
1776         cmd->autoneg = p->link_cfg.autoneg;
1777         cmd->maxtxpkt = 0;
1778         cmd->maxrxpkt = 0;
1779         return 0;
1780 }
1781
1782 static unsigned int speed_to_caps(int speed)
1783 {
1784         if (speed == SPEED_100)
1785                 return FW_PORT_CAP_SPEED_100M;
1786         if (speed == SPEED_1000)
1787                 return FW_PORT_CAP_SPEED_1G;
1788         if (speed == SPEED_10000)
1789                 return FW_PORT_CAP_SPEED_10G;
1790         return 0;
1791 }
1792
1793 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1794 {
1795         unsigned int cap;
1796         struct port_info *p = netdev_priv(dev);
1797         struct link_config *lc = &p->link_cfg;
1798         u32 speed = ethtool_cmd_speed(cmd);
1799
1800         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
1801                 return -EINVAL;
1802
1803         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1804                 /*
1805                  * PHY offers a single speed.  See if that's what's
1806                  * being requested.
1807                  */
1808                 if (cmd->autoneg == AUTONEG_DISABLE &&
1809                     (lc->supported & speed_to_caps(speed)))
1810                         return 0;
1811                 return -EINVAL;
1812         }
1813
1814         if (cmd->autoneg == AUTONEG_DISABLE) {
1815                 cap = speed_to_caps(speed);
1816
1817                 if (!(lc->supported & cap) || (speed == SPEED_1000) ||
1818                     (speed == SPEED_10000))
1819                         return -EINVAL;
1820                 lc->requested_speed = cap;
1821                 lc->advertising = 0;
1822         } else {
1823                 cap = to_fw_linkcaps(cmd->advertising);
1824                 if (!(lc->supported & cap))
1825                         return -EINVAL;
1826                 lc->requested_speed = 0;
1827                 lc->advertising = cap | FW_PORT_CAP_ANEG;
1828         }
1829         lc->autoneg = cmd->autoneg;
1830
1831         if (netif_running(dev))
1832                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1833                                      lc);
1834         return 0;
1835 }
1836
1837 static void get_pauseparam(struct net_device *dev,
1838                            struct ethtool_pauseparam *epause)
1839 {
1840         struct port_info *p = netdev_priv(dev);
1841
1842         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1843         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
1844         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
1845 }
1846
1847 static int set_pauseparam(struct net_device *dev,
1848                           struct ethtool_pauseparam *epause)
1849 {
1850         struct port_info *p = netdev_priv(dev);
1851         struct link_config *lc = &p->link_cfg;
1852
1853         if (epause->autoneg == AUTONEG_DISABLE)
1854                 lc->requested_fc = 0;
1855         else if (lc->supported & FW_PORT_CAP_ANEG)
1856                 lc->requested_fc = PAUSE_AUTONEG;
1857         else
1858                 return -EINVAL;
1859
1860         if (epause->rx_pause)
1861                 lc->requested_fc |= PAUSE_RX;
1862         if (epause->tx_pause)
1863                 lc->requested_fc |= PAUSE_TX;
1864         if (netif_running(dev))
1865                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1866                                      lc);
1867         return 0;
1868 }
1869
1870 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1871 {
1872         const struct port_info *pi = netdev_priv(dev);
1873         const struct sge *s = &pi->adapter->sge;
1874
1875         e->rx_max_pending = MAX_RX_BUFFERS;
1876         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1877         e->rx_jumbo_max_pending = 0;
1878         e->tx_max_pending = MAX_TXQ_ENTRIES;
1879
1880         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
1881         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1882         e->rx_jumbo_pending = 0;
1883         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
1884 }
1885
1886 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1887 {
1888         int i;
1889         const struct port_info *pi = netdev_priv(dev);
1890         struct adapter *adapter = pi->adapter;
1891         struct sge *s = &adapter->sge;
1892
1893         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
1894             e->tx_pending > MAX_TXQ_ENTRIES ||
1895             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1896             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1897             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
1898                 return -EINVAL;
1899
1900         if (adapter->flags & FULL_INIT_DONE)
1901                 return -EBUSY;
1902
1903         for (i = 0; i < pi->nqsets; ++i) {
1904                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
1905                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
1906                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
1907         }
1908         return 0;
1909 }
1910
1911 static int closest_timer(const struct sge *s, int time)
1912 {
1913         int i, delta, match = 0, min_delta = INT_MAX;
1914
1915         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1916                 delta = time - s->timer_val[i];
1917                 if (delta < 0)
1918                         delta = -delta;
1919                 if (delta < min_delta) {
1920                         min_delta = delta;
1921                         match = i;
1922                 }
1923         }
1924         return match;
1925 }
1926
1927 static int closest_thres(const struct sge *s, int thres)
1928 {
1929         int i, delta, match = 0, min_delta = INT_MAX;
1930
1931         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1932                 delta = thres - s->counter_val[i];
1933                 if (delta < 0)
1934                         delta = -delta;
1935                 if (delta < min_delta) {
1936                         min_delta = delta;
1937                         match = i;
1938                 }
1939         }
1940         return match;
1941 }
1942
1943 /*
1944  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1945  */
1946 static unsigned int qtimer_val(const struct adapter *adap,
1947                                const struct sge_rspq *q)
1948 {
1949         unsigned int idx = q->intr_params >> 1;
1950
1951         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
1952 }
1953
1954 /**
1955  *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1956  *      @adap: the adapter
1957  *      @q: the Rx queue
1958  *      @us: the hold-off time in us, or 0 to disable timer
1959  *      @cnt: the hold-off packet count, or 0 to disable counter
1960  *
1961  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1962  *      one of the two needs to be enabled for the queue to generate interrupts.
1963  */
1964 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
1965                                unsigned int us, unsigned int cnt)
1966 {
1967         if ((us | cnt) == 0)
1968                 cnt = 1;
1969
1970         if (cnt) {
1971                 int err;
1972                 u32 v, new_idx;
1973
1974                 new_idx = closest_thres(&adap->sge, cnt);
1975                 if (q->desc && q->pktcnt_idx != new_idx) {
1976                         /* the queue has already been created, update it */
1977                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1978                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1979                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
1980                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1981                                             &new_idx);
1982                         if (err)
1983                                 return err;
1984                 }
1985                 q->pktcnt_idx = new_idx;
1986         }
1987
1988         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1989         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1990         return 0;
1991 }
1992
1993 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1994 {
1995         const struct port_info *pi = netdev_priv(dev);
1996         struct adapter *adap = pi->adapter;
1997
1998         return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq,
1999                         c->rx_coalesce_usecs, c->rx_max_coalesced_frames);
2000 }
2001
2002 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2003 {
2004         const struct port_info *pi = netdev_priv(dev);
2005         const struct adapter *adap = pi->adapter;
2006         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2007
2008         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2009         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2010                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2011         return 0;
2012 }
2013
2014 /**
2015  *      eeprom_ptov - translate a physical EEPROM address to virtual
2016  *      @phys_addr: the physical EEPROM address
2017  *      @fn: the PCI function number
2018  *      @sz: size of function-specific area
2019  *
2020  *      Translate a physical EEPROM address to virtual.  The first 1K is
2021  *      accessed through virtual addresses starting at 31K, the rest is
2022  *      accessed through virtual addresses starting at 0.
2023  *
2024  *      The mapping is as follows:
2025  *      [0..1K) -> [31K..32K)
2026  *      [1K..1K+A) -> [31K-A..31K)
2027  *      [1K+A..ES) -> [0..ES-A-1K)
2028  *
2029  *      where A = @fn * @sz, and ES = EEPROM size.
2030  */
2031 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2032 {
2033         fn *= sz;
2034         if (phys_addr < 1024)
2035                 return phys_addr + (31 << 10);
2036         if (phys_addr < 1024 + fn)
2037                 return 31744 - fn + phys_addr - 1024;
2038         if (phys_addr < EEPROMSIZE)
2039                 return phys_addr - 1024 - fn;
2040         return -EINVAL;
2041 }
2042
2043 /*
2044  * The next two routines implement eeprom read/write from physical addresses.
2045  */
2046 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2047 {
2048         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2049
2050         if (vaddr >= 0)
2051                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2052         return vaddr < 0 ? vaddr : 0;
2053 }
2054
2055 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2056 {
2057         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2058
2059         if (vaddr >= 0)
2060                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2061         return vaddr < 0 ? vaddr : 0;
2062 }
2063
2064 #define EEPROM_MAGIC 0x38E2F10C
2065
2066 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2067                       u8 *data)
2068 {
2069         int i, err = 0;
2070         struct adapter *adapter = netdev2adap(dev);
2071
2072         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2073         if (!buf)
2074                 return -ENOMEM;
2075
2076         e->magic = EEPROM_MAGIC;
2077         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2078                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2079
2080         if (!err)
2081                 memcpy(data, buf + e->offset, e->len);
2082         kfree(buf);
2083         return err;
2084 }
2085
2086 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2087                       u8 *data)
2088 {
2089         u8 *buf;
2090         int err = 0;
2091         u32 aligned_offset, aligned_len, *p;
2092         struct adapter *adapter = netdev2adap(dev);
2093
2094         if (eeprom->magic != EEPROM_MAGIC)
2095                 return -EINVAL;
2096
2097         aligned_offset = eeprom->offset & ~3;
2098         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2099
2100         if (adapter->fn > 0) {
2101                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2102
2103                 if (aligned_offset < start ||
2104                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2105                         return -EPERM;
2106         }
2107
2108         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2109                 /*
2110                  * RMW possibly needed for first or last words.
2111                  */
2112                 buf = kmalloc(aligned_len, GFP_KERNEL);
2113                 if (!buf)
2114                         return -ENOMEM;
2115                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2116                 if (!err && aligned_len > 4)
2117                         err = eeprom_rd_phys(adapter,
2118                                              aligned_offset + aligned_len - 4,
2119                                              (u32 *)&buf[aligned_len - 4]);
2120                 if (err)
2121                         goto out;
2122                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2123         } else
2124                 buf = data;
2125
2126         err = t4_seeprom_wp(adapter, false);
2127         if (err)
2128                 goto out;
2129
2130         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2131                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2132                 aligned_offset += 4;
2133         }
2134
2135         if (!err)
2136                 err = t4_seeprom_wp(adapter, true);
2137 out:
2138         if (buf != data)
2139                 kfree(buf);
2140         return err;
2141 }
2142
2143 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2144 {
2145         int ret;
2146         const struct firmware *fw;
2147         struct adapter *adap = netdev2adap(netdev);
2148
2149         ef->data[sizeof(ef->data) - 1] = '\0';
2150         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2151         if (ret < 0)
2152                 return ret;
2153
2154         ret = t4_load_fw(adap, fw->data, fw->size);
2155         release_firmware(fw);
2156         if (!ret)
2157                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2158         return ret;
2159 }
2160
2161 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2162 #define BCAST_CRC 0xa0ccc1a6
2163
2164 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2165 {
2166         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2167         wol->wolopts = netdev2adap(dev)->wol;
2168         memset(&wol->sopass, 0, sizeof(wol->sopass));
2169 }
2170
2171 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2172 {
2173         int err = 0;
2174         struct port_info *pi = netdev_priv(dev);
2175
2176         if (wol->wolopts & ~WOL_SUPPORTED)
2177                 return -EINVAL;
2178         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2179                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2180         if (wol->wolopts & WAKE_BCAST) {
2181                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2182                                         ~0ULL, 0, false);
2183                 if (!err)
2184                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2185                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2186         } else
2187                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2188         return err;
2189 }
2190
2191 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2192 {
2193         const struct port_info *pi = netdev_priv(dev);
2194         netdev_features_t changed = dev->features ^ features;
2195         int err;
2196
2197         if (!(changed & NETIF_F_HW_VLAN_RX))
2198                 return 0;
2199
2200         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2201                             -1, -1, -1,
2202                             !!(features & NETIF_F_HW_VLAN_RX), true);
2203         if (unlikely(err))
2204                 dev->features = features ^ NETIF_F_HW_VLAN_RX;
2205         return err;
2206 }
2207
2208 static u32 get_rss_table_size(struct net_device *dev)
2209 {
2210         const struct port_info *pi = netdev_priv(dev);
2211
2212         return pi->rss_size;
2213 }
2214
2215 static int get_rss_table(struct net_device *dev, u32 *p)
2216 {
2217         const struct port_info *pi = netdev_priv(dev);
2218         unsigned int n = pi->rss_size;
2219
2220         while (n--)
2221                 p[n] = pi->rss[n];
2222         return 0;
2223 }
2224
2225 static int set_rss_table(struct net_device *dev, const u32 *p)
2226 {
2227         unsigned int i;
2228         struct port_info *pi = netdev_priv(dev);
2229
2230         for (i = 0; i < pi->rss_size; i++)
2231                 pi->rss[i] = p[i];
2232         if (pi->adapter->flags & FULL_INIT_DONE)
2233                 return write_rss(pi, pi->rss);
2234         return 0;
2235 }
2236
2237 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2238                      u32 *rules)
2239 {
2240         const struct port_info *pi = netdev_priv(dev);
2241
2242         switch (info->cmd) {
2243         case ETHTOOL_GRXFH: {
2244                 unsigned int v = pi->rss_mode;
2245
2246                 info->data = 0;
2247                 switch (info->flow_type) {
2248                 case TCP_V4_FLOW:
2249                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2250                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2251                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2252                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2253                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2254                         break;
2255                 case UDP_V4_FLOW:
2256                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2257                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2258                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2259                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2260                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2261                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2262                         break;
2263                 case SCTP_V4_FLOW:
2264                 case AH_ESP_V4_FLOW:
2265                 case IPV4_FLOW:
2266                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2267                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2268                         break;
2269                 case TCP_V6_FLOW:
2270                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2271                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2272                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2273                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2274                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2275                         break;
2276                 case UDP_V6_FLOW:
2277                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
2278                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2279                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2280                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2281                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2282                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2283                         break;
2284                 case SCTP_V6_FLOW:
2285                 case AH_ESP_V6_FLOW:
2286                 case IPV6_FLOW:
2287                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2288                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2289                         break;
2290                 }
2291                 return 0;
2292         }
2293         case ETHTOOL_GRXRINGS:
2294                 info->data = pi->nqsets;
2295                 return 0;
2296         }
2297         return -EOPNOTSUPP;
2298 }
2299
2300 static const struct ethtool_ops cxgb_ethtool_ops = {
2301         .get_settings      = get_settings,
2302         .set_settings      = set_settings,
2303         .get_drvinfo       = get_drvinfo,
2304         .get_msglevel      = get_msglevel,
2305         .set_msglevel      = set_msglevel,
2306         .get_ringparam     = get_sge_param,
2307         .set_ringparam     = set_sge_param,
2308         .get_coalesce      = get_coalesce,
2309         .set_coalesce      = set_coalesce,
2310         .get_eeprom_len    = get_eeprom_len,
2311         .get_eeprom        = get_eeprom,
2312         .set_eeprom        = set_eeprom,
2313         .get_pauseparam    = get_pauseparam,
2314         .set_pauseparam    = set_pauseparam,
2315         .get_link          = ethtool_op_get_link,
2316         .get_strings       = get_strings,
2317         .set_phys_id       = identify_port,
2318         .nway_reset        = restart_autoneg,
2319         .get_sset_count    = get_sset_count,
2320         .get_ethtool_stats = get_stats,
2321         .get_regs_len      = get_regs_len,
2322         .get_regs          = get_regs,
2323         .get_wol           = get_wol,
2324         .set_wol           = set_wol,
2325         .get_rxnfc         = get_rxnfc,
2326         .get_rxfh_indir_size = get_rss_table_size,
2327         .get_rxfh_indir    = get_rss_table,
2328         .set_rxfh_indir    = set_rss_table,
2329         .flash_device      = set_flash,
2330 };
2331
2332 /*
2333  * debugfs support
2334  */
2335 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2336                         loff_t *ppos)
2337 {
2338         loff_t pos = *ppos;
2339         loff_t avail = file->f_path.dentry->d_inode->i_size;
2340         unsigned int mem = (uintptr_t)file->private_data & 3;
2341         struct adapter *adap = file->private_data - mem;
2342
2343         if (pos < 0)
2344                 return -EINVAL;
2345         if (pos >= avail)
2346                 return 0;
2347         if (count > avail - pos)
2348                 count = avail - pos;
2349
2350         while (count) {
2351                 size_t len;
2352                 int ret, ofst;
2353                 __be32 data[16];
2354
2355                 if (mem == MEM_MC)
2356                         ret = t4_mc_read(adap, pos, data, NULL);
2357                 else
2358                         ret = t4_edc_read(adap, mem, pos, data, NULL);
2359                 if (ret)
2360                         return ret;
2361
2362                 ofst = pos % sizeof(data);
2363                 len = min(count, sizeof(data) - ofst);
2364                 if (copy_to_user(buf, (u8 *)data + ofst, len))
2365                         return -EFAULT;
2366
2367                 buf += len;
2368                 pos += len;
2369                 count -= len;
2370         }
2371         count = pos - *ppos;
2372         *ppos = pos;
2373         return count;
2374 }
2375
2376 static const struct file_operations mem_debugfs_fops = {
2377         .owner   = THIS_MODULE,
2378         .open    = simple_open,
2379         .read    = mem_read,
2380         .llseek  = default_llseek,
2381 };
2382
2383 static void add_debugfs_mem(struct adapter *adap, const char *name,
2384                             unsigned int idx, unsigned int size_mb)
2385 {
2386         struct dentry *de;
2387
2388         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2389                                  (void *)adap + idx, &mem_debugfs_fops);
2390         if (de && de->d_inode)
2391                 de->d_inode->i_size = size_mb << 20;
2392 }
2393
2394 static int setup_debugfs(struct adapter *adap)
2395 {
2396         int i;
2397
2398         if (IS_ERR_OR_NULL(adap->debugfs_root))
2399                 return -1;
2400
2401         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2402         if (i & EDRAM0_ENABLE)
2403                 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
2404         if (i & EDRAM1_ENABLE)
2405                 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
2406         if (i & EXT_MEM_ENABLE)
2407                 add_debugfs_mem(adap, "mc", MEM_MC,
2408                         EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
2409         if (adap->l2t)
2410                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2411                                     &t4_l2t_fops);
2412         return 0;
2413 }
2414
2415 /*
2416  * upper-layer driver support
2417  */
2418
2419 /*
2420  * Allocate an active-open TID and set it to the supplied value.
2421  */
2422 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2423 {
2424         int atid = -1;
2425
2426         spin_lock_bh(&t->atid_lock);
2427         if (t->afree) {
2428                 union aopen_entry *p = t->afree;
2429
2430                 atid = (p - t->atid_tab) + t->atid_base;
2431                 t->afree = p->next;
2432                 p->data = data;
2433                 t->atids_in_use++;
2434         }
2435         spin_unlock_bh(&t->atid_lock);
2436         return atid;
2437 }
2438 EXPORT_SYMBOL(cxgb4_alloc_atid);
2439
2440 /*
2441  * Release an active-open TID.
2442  */
2443 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2444 {
2445         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
2446
2447         spin_lock_bh(&t->atid_lock);
2448         p->next = t->afree;
2449         t->afree = p;
2450         t->atids_in_use--;
2451         spin_unlock_bh(&t->atid_lock);
2452 }
2453 EXPORT_SYMBOL(cxgb4_free_atid);
2454
2455 /*
2456  * Allocate a server TID and set it to the supplied value.
2457  */
2458 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2459 {
2460         int stid;
2461
2462         spin_lock_bh(&t->stid_lock);
2463         if (family == PF_INET) {
2464                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2465                 if (stid < t->nstids)
2466                         __set_bit(stid, t->stid_bmap);
2467                 else
2468                         stid = -1;
2469         } else {
2470                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2471                 if (stid < 0)
2472                         stid = -1;
2473         }
2474         if (stid >= 0) {
2475                 t->stid_tab[stid].data = data;
2476                 stid += t->stid_base;
2477                 t->stids_in_use++;
2478         }
2479         spin_unlock_bh(&t->stid_lock);
2480         return stid;
2481 }
2482 EXPORT_SYMBOL(cxgb4_alloc_stid);
2483
2484 /* Allocate a server filter TID and set it to the supplied value.
2485  */
2486 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
2487 {
2488         int stid;
2489
2490         spin_lock_bh(&t->stid_lock);
2491         if (family == PF_INET) {
2492                 stid = find_next_zero_bit(t->stid_bmap,
2493                                 t->nstids + t->nsftids, t->nstids);
2494                 if (stid < (t->nstids + t->nsftids))
2495                         __set_bit(stid, t->stid_bmap);
2496                 else
2497                         stid = -1;
2498         } else {
2499                 stid = -1;
2500         }
2501         if (stid >= 0) {
2502                 t->stid_tab[stid].data = data;
2503                 stid += t->stid_base;
2504                 t->stids_in_use++;
2505         }
2506         spin_unlock_bh(&t->stid_lock);
2507         return stid;
2508 }
2509 EXPORT_SYMBOL(cxgb4_alloc_sftid);
2510
2511 /* Release a server TID.
2512  */
2513 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
2514 {
2515         stid -= t->stid_base;
2516         spin_lock_bh(&t->stid_lock);
2517         if (family == PF_INET)
2518                 __clear_bit(stid, t->stid_bmap);
2519         else
2520                 bitmap_release_region(t->stid_bmap, stid, 2);
2521         t->stid_tab[stid].data = NULL;
2522         t->stids_in_use--;
2523         spin_unlock_bh(&t->stid_lock);
2524 }
2525 EXPORT_SYMBOL(cxgb4_free_stid);
2526
2527 /*
2528  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
2529  */
2530 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
2531                            unsigned int tid)
2532 {
2533         struct cpl_tid_release *req;
2534
2535         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
2536         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
2537         INIT_TP_WR(req, tid);
2538         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
2539 }
2540
2541 /*
2542  * Queue a TID release request and if necessary schedule a work queue to
2543  * process it.
2544  */
2545 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
2546                                     unsigned int tid)
2547 {
2548         void **p = &t->tid_tab[tid];
2549         struct adapter *adap = container_of(t, struct adapter, tids);
2550
2551         spin_lock_bh(&adap->tid_release_lock);
2552         *p = adap->tid_release_head;
2553         /* Low 2 bits encode the Tx channel number */
2554         adap->tid_release_head = (void **)((uintptr_t)p | chan);
2555         if (!adap->tid_release_task_busy) {
2556                 adap->tid_release_task_busy = true;
2557                 queue_work(workq, &adap->tid_release_task);
2558         }
2559         spin_unlock_bh(&adap->tid_release_lock);
2560 }
2561
2562 /*
2563  * Process the list of pending TID release requests.
2564  */
2565 static void process_tid_release_list(struct work_struct *work)
2566 {
2567         struct sk_buff *skb;
2568         struct adapter *adap;
2569
2570         adap = container_of(work, struct adapter, tid_release_task);
2571
2572         spin_lock_bh(&adap->tid_release_lock);
2573         while (adap->tid_release_head) {
2574                 void **p = adap->tid_release_head;
2575                 unsigned int chan = (uintptr_t)p & 3;
2576                 p = (void *)p - chan;
2577
2578                 adap->tid_release_head = *p;
2579                 *p = NULL;
2580                 spin_unlock_bh(&adap->tid_release_lock);
2581
2582                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
2583                                          GFP_KERNEL)))
2584                         schedule_timeout_uninterruptible(1);
2585
2586                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
2587                 t4_ofld_send(adap, skb);
2588                 spin_lock_bh(&adap->tid_release_lock);
2589         }
2590         adap->tid_release_task_busy = false;
2591         spin_unlock_bh(&adap->tid_release_lock);
2592 }
2593
2594 /*
2595  * Release a TID and inform HW.  If we are unable to allocate the release
2596  * message we defer to a work queue.
2597  */
2598 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
2599 {
2600         void *old;
2601         struct sk_buff *skb;
2602         struct adapter *adap = container_of(t, struct adapter, tids);
2603
2604         old = t->tid_tab[tid];
2605         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
2606         if (likely(skb)) {
2607                 t->tid_tab[tid] = NULL;
2608                 mk_tid_release(skb, chan, tid);
2609                 t4_ofld_send(adap, skb);
2610         } else
2611                 cxgb4_queue_tid_release(t, chan, tid);
2612         if (old)
2613                 atomic_dec(&t->tids_in_use);
2614 }
2615 EXPORT_SYMBOL(cxgb4_remove_tid);
2616
2617 /*
2618  * Allocate and initialize the TID tables.  Returns 0 on success.
2619  */
2620 static int tid_init(struct tid_info *t)
2621 {
2622         size_t size;
2623         unsigned int stid_bmap_size;
2624         unsigned int natids = t->natids;
2625
2626         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
2627         size = t->ntids * sizeof(*t->tid_tab) +
2628                natids * sizeof(*t->atid_tab) +
2629                t->nstids * sizeof(*t->stid_tab) +
2630                t->nsftids * sizeof(*t->stid_tab) +
2631                stid_bmap_size * sizeof(long) +
2632                t->nftids * sizeof(*t->ftid_tab) +
2633                t->nsftids * sizeof(*t->ftid_tab);
2634
2635         t->tid_tab = t4_alloc_mem(size);
2636         if (!t->tid_tab)
2637                 return -ENOMEM;
2638
2639         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
2640         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
2641         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
2642         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
2643         spin_lock_init(&t->stid_lock);
2644         spin_lock_init(&t->atid_lock);
2645
2646         t->stids_in_use = 0;
2647         t->afree = NULL;
2648         t->atids_in_use = 0;
2649         atomic_set(&t->tids_in_use, 0);
2650
2651         /* Setup the free list for atid_tab and clear the stid bitmap. */
2652         if (natids) {
2653                 while (--natids)
2654                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
2655                 t->afree = t->atid_tab;
2656         }
2657         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
2658         return 0;
2659 }
2660
2661 /**
2662  *      cxgb4_create_server - create an IP server
2663  *      @dev: the device
2664  *      @stid: the server TID
2665  *      @sip: local IP address to bind server to
2666  *      @sport: the server's TCP port
2667  *      @queue: queue to direct messages from this server to
2668  *
2669  *      Create an IP server for the given port and address.
2670  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
2671  */
2672 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
2673                         __be32 sip, __be16 sport, unsigned int queue)
2674 {
2675         unsigned int chan;
2676         struct sk_buff *skb;
2677         struct adapter *adap;
2678         struct cpl_pass_open_req *req;
2679
2680         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2681         if (!skb)
2682                 return -ENOMEM;
2683
2684         adap = netdev2adap(dev);
2685         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
2686         INIT_TP_WR(req, 0);
2687         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
2688         req->local_port = sport;
2689         req->peer_port = htons(0);
2690         req->local_ip = sip;
2691         req->peer_ip = htonl(0);
2692         chan = rxq_to_chan(&adap->sge, queue);
2693         req->opt0 = cpu_to_be64(TX_CHAN(chan));
2694         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2695                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2696         return t4_mgmt_tx(adap, skb);
2697 }
2698 EXPORT_SYMBOL(cxgb4_create_server);
2699
2700 /**
2701  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2702  *      @mtus: the HW MTU table
2703  *      @mtu: the target MTU
2704  *      @idx: index of selected entry in the MTU table
2705  *
2706  *      Returns the index and the value in the HW MTU table that is closest to
2707  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
2708  *      table, in which case that smallest available value is selected.
2709  */
2710 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2711                             unsigned int *idx)
2712 {
2713         unsigned int i = 0;
2714
2715         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2716                 ++i;
2717         if (idx)
2718                 *idx = i;
2719         return mtus[i];
2720 }
2721 EXPORT_SYMBOL(cxgb4_best_mtu);
2722
2723 /**
2724  *      cxgb4_port_chan - get the HW channel of a port
2725  *      @dev: the net device for the port
2726  *
2727  *      Return the HW Tx channel of the given port.
2728  */
2729 unsigned int cxgb4_port_chan(const struct net_device *dev)
2730 {
2731         return netdev2pinfo(dev)->tx_chan;
2732 }
2733 EXPORT_SYMBOL(cxgb4_port_chan);
2734
2735 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2736 {
2737         struct adapter *adap = netdev2adap(dev);
2738         u32 v;
2739
2740         v = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
2741         return lpfifo ? G_LP_COUNT(v) : G_HP_COUNT(v);
2742 }
2743 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2744
2745 /**
2746  *      cxgb4_port_viid - get the VI id of a port
2747  *      @dev: the net device for the port
2748  *
2749  *      Return the VI id of the given port.
2750  */
2751 unsigned int cxgb4_port_viid(const struct net_device *dev)
2752 {
2753         return netdev2pinfo(dev)->viid;
2754 }
2755 EXPORT_SYMBOL(cxgb4_port_viid);
2756
2757 /**
2758  *      cxgb4_port_idx - get the index of a port
2759  *      @dev: the net device for the port
2760  *
2761  *      Return the index of the given port.
2762  */
2763 unsigned int cxgb4_port_idx(const struct net_device *dev)
2764 {
2765         return netdev2pinfo(dev)->port_id;
2766 }
2767 EXPORT_SYMBOL(cxgb4_port_idx);
2768
2769 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2770                          struct tp_tcp_stats *v6)
2771 {
2772         struct adapter *adap = pci_get_drvdata(pdev);
2773
2774         spin_lock(&adap->stats_lock);
2775         t4_tp_get_tcp_stats(adap, v4, v6);
2776         spin_unlock(&adap->stats_lock);
2777 }
2778 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2779
2780 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2781                       const unsigned int *pgsz_order)
2782 {
2783         struct adapter *adap = netdev2adap(dev);
2784
2785         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
2786         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
2787                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
2788                      HPZ3(pgsz_order[3]));
2789 }
2790 EXPORT_SYMBOL(cxgb4_iscsi_init);
2791
2792 int cxgb4_flush_eq_cache(struct net_device *dev)
2793 {
2794         struct adapter *adap = netdev2adap(dev);
2795         int ret;
2796
2797         ret = t4_fwaddrspace_write(adap, adap->mbox,
2798                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
2799         return ret;
2800 }
2801 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2802
2803 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2804 {
2805         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
2806         __be64 indices;
2807         int ret;
2808
2809         ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
2810         if (!ret) {
2811                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2812                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2813         }
2814         return ret;
2815 }
2816
2817 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2818                         u16 size)
2819 {
2820         struct adapter *adap = netdev2adap(dev);
2821         u16 hw_pidx, hw_cidx;
2822         int ret;
2823
2824         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2825         if (ret)
2826                 goto out;
2827
2828         if (pidx != hw_pidx) {
2829                 u16 delta;
2830
2831                 if (pidx >= hw_pidx)
2832                         delta = pidx - hw_pidx;
2833                 else
2834                         delta = size - hw_pidx + pidx;
2835                 wmb();
2836                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
2837                              QID(qid) | PIDX(delta));
2838         }
2839 out:
2840         return ret;
2841 }
2842 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2843
2844 static struct pci_driver cxgb4_driver;
2845
2846 static void check_neigh_update(struct neighbour *neigh)
2847 {
2848         const struct device *parent;
2849         const struct net_device *netdev = neigh->dev;
2850
2851         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2852                 netdev = vlan_dev_real_dev(netdev);
2853         parent = netdev->dev.parent;
2854         if (parent && parent->driver == &cxgb4_driver.driver)
2855                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2856 }
2857
2858 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2859                        void *data)
2860 {
2861         switch (event) {
2862         case NETEVENT_NEIGH_UPDATE:
2863                 check_neigh_update(data);
2864                 break;
2865         case NETEVENT_REDIRECT:
2866         default:
2867                 break;
2868         }
2869         return 0;
2870 }
2871
2872 static bool netevent_registered;
2873 static struct notifier_block cxgb4_netevent_nb = {
2874         .notifier_call = netevent_cb
2875 };
2876
2877 static void drain_db_fifo(struct adapter *adap, int usecs)
2878 {
2879         u32 v;
2880
2881         do {
2882                 set_current_state(TASK_UNINTERRUPTIBLE);
2883                 schedule_timeout(usecs_to_jiffies(usecs));
2884                 v = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
2885                 if (G_LP_COUNT(v) == 0 && G_HP_COUNT(v) == 0)
2886                         break;
2887         } while (1);
2888 }
2889
2890 static void disable_txq_db(struct sge_txq *q)
2891 {
2892         spin_lock_irq(&q->db_lock);
2893         q->db_disabled = 1;
2894         spin_unlock_irq(&q->db_lock);
2895 }
2896
2897 static void enable_txq_db(struct sge_txq *q)
2898 {
2899         spin_lock_irq(&q->db_lock);
2900         q->db_disabled = 0;
2901         spin_unlock_irq(&q->db_lock);
2902 }
2903
2904 static void disable_dbs(struct adapter *adap)
2905 {
2906         int i;
2907
2908         for_each_ethrxq(&adap->sge, i)
2909                 disable_txq_db(&adap->sge.ethtxq[i].q);
2910         for_each_ofldrxq(&adap->sge, i)
2911                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2912         for_each_port(adap, i)
2913                 disable_txq_db(&adap->sge.ctrlq[i].q);
2914 }
2915
2916 static void enable_dbs(struct adapter *adap)
2917 {
2918         int i;
2919
2920         for_each_ethrxq(&adap->sge, i)
2921                 enable_txq_db(&adap->sge.ethtxq[i].q);
2922         for_each_ofldrxq(&adap->sge, i)
2923                 enable_txq_db(&adap->sge.ofldtxq[i].q);
2924         for_each_port(adap, i)
2925                 enable_txq_db(&adap->sge.ctrlq[i].q);
2926 }
2927
2928 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2929 {
2930         u16 hw_pidx, hw_cidx;
2931         int ret;
2932
2933         spin_lock_bh(&q->db_lock);
2934         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2935         if (ret)
2936                 goto out;
2937         if (q->db_pidx != hw_pidx) {
2938                 u16 delta;
2939
2940                 if (q->db_pidx >= hw_pidx)
2941                         delta = q->db_pidx - hw_pidx;
2942                 else
2943                         delta = q->size - hw_pidx + q->db_pidx;
2944                 wmb();
2945                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
2946                              QID(q->cntxt_id) | PIDX(delta));
2947         }
2948 out:
2949         q->db_disabled = 0;
2950         spin_unlock_bh(&q->db_lock);
2951         if (ret)
2952                 CH_WARN(adap, "DB drop recovery failed.\n");
2953 }
2954 static void recover_all_queues(struct adapter *adap)
2955 {
2956         int i;
2957
2958         for_each_ethrxq(&adap->sge, i)
2959                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2960         for_each_ofldrxq(&adap->sge, i)
2961                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2962         for_each_port(adap, i)
2963                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2964 }
2965
2966 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2967 {
2968         mutex_lock(&uld_mutex);
2969         if (adap->uld_handle[CXGB4_ULD_RDMA])
2970                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2971                                 cmd);
2972         mutex_unlock(&uld_mutex);
2973 }
2974
2975 static void process_db_full(struct work_struct *work)
2976 {
2977         struct adapter *adap;
2978
2979         adap = container_of(work, struct adapter, db_full_task);
2980
2981         notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2982         drain_db_fifo(adap, dbfifo_drain_delay);
2983         t4_set_reg_field(adap, SGE_INT_ENABLE3,
2984                          DBFIFO_HP_INT | DBFIFO_LP_INT,
2985                          DBFIFO_HP_INT | DBFIFO_LP_INT);
2986         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2987 }
2988
2989 static void process_db_drop(struct work_struct *work)
2990 {
2991         struct adapter *adap;
2992
2993         adap = container_of(work, struct adapter, db_drop_task);
2994
2995         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
2996         disable_dbs(adap);
2997         notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2998         drain_db_fifo(adap, 1);
2999         recover_all_queues(adap);
3000         enable_dbs(adap);
3001 }
3002
3003 void t4_db_full(struct adapter *adap)
3004 {
3005         t4_set_reg_field(adap, SGE_INT_ENABLE3,
3006                          DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
3007         queue_work(workq, &adap->db_full_task);
3008 }
3009
3010 void t4_db_dropped(struct adapter *adap)
3011 {
3012         queue_work(workq, &adap->db_drop_task);
3013 }
3014
3015 static void uld_attach(struct adapter *adap, unsigned int uld)
3016 {
3017         void *handle;
3018         struct cxgb4_lld_info lli;
3019         unsigned short i;
3020
3021         lli.pdev = adap->pdev;
3022         lli.l2t = adap->l2t;
3023         lli.tids = &adap->tids;
3024         lli.ports = adap->port;
3025         lli.vr = &adap->vres;
3026         lli.mtus = adap->params.mtus;
3027         if (uld == CXGB4_ULD_RDMA) {
3028                 lli.rxq_ids = adap->sge.rdma_rxq;
3029                 lli.nrxq = adap->sge.rdmaqs;
3030         } else if (uld == CXGB4_ULD_ISCSI) {
3031                 lli.rxq_ids = adap->sge.ofld_rxq;
3032                 lli.nrxq = adap->sge.ofldqsets;
3033         }
3034         lli.ntxq = adap->sge.ofldqsets;
3035         lli.nchan = adap->params.nports;
3036         lli.nports = adap->params.nports;
3037         lli.wr_cred = adap->params.ofldq_wr_cred;
3038         lli.adapter_type = adap->params.rev;
3039         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
3040         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
3041                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
3042                         (adap->fn * 4));
3043         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
3044                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
3045                         (adap->fn * 4));
3046         lli.filt_mode = tp_vlan_pri_map;
3047         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
3048         for (i = 0; i < NCHAN; i++)
3049                 lli.tx_modq[i] = i;
3050         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
3051         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
3052         lli.fw_vers = adap->params.fw_vers;
3053         lli.dbfifo_int_thresh = dbfifo_int_thresh;
3054         lli.sge_pktshift = adap->sge.pktshift;
3055         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
3056
3057         handle = ulds[uld].add(&lli);
3058         if (IS_ERR(handle)) {
3059                 dev_warn(adap->pdev_dev,
3060                          "could not attach to the %s driver, error %ld\n",
3061                          uld_str[uld], PTR_ERR(handle));
3062                 return;
3063         }
3064
3065         adap->uld_handle[uld] = handle;
3066
3067         if (!netevent_registered) {
3068                 register_netevent_notifier(&cxgb4_netevent_nb);
3069                 netevent_registered = true;
3070         }
3071
3072         if (adap->flags & FULL_INIT_DONE)
3073                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
3074 }
3075
3076 static void attach_ulds(struct adapter *adap)
3077 {
3078         unsigned int i;
3079
3080         mutex_lock(&uld_mutex);
3081         list_add_tail(&adap->list_node, &adapter_list);
3082         for (i = 0; i < CXGB4_ULD_MAX; i++)
3083                 if (ulds[i].add)
3084                         uld_attach(adap, i);
3085         mutex_unlock(&uld_mutex);
3086 }
3087
3088 static void detach_ulds(struct adapter *adap)
3089 {
3090         unsigned int i;
3091
3092         mutex_lock(&uld_mutex);
3093         list_del(&adap->list_node);
3094         for (i = 0; i < CXGB4_ULD_MAX; i++)
3095                 if (adap->uld_handle[i]) {
3096                         ulds[i].state_change(adap->uld_handle[i],
3097                                              CXGB4_STATE_DETACH);
3098                         adap->uld_handle[i] = NULL;
3099                 }
3100         if (netevent_registered && list_empty(&adapter_list)) {
3101                 unregister_netevent_notifier(&cxgb4_netevent_nb);
3102            &n