]> git.openfabrics.org - ~shefty/rdma-dev.git/blob - drivers/net/wireless/iwlegacy/common.c
2e1bbb2e846494a713d527fa821d3e4c7ce6605f
[~shefty/rdma-dev.git] / drivers / net / wireless / iwlegacy / common.c
1 /******************************************************************************
2  *
3  * GPL LICENSE SUMMARY
4  *
5  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of version 2 of the GNU General Public License as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
19  * USA
20  *
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * Contact Information:
25  *  Intel Linux Wireless <ilw@linux.intel.com>
26  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27  *****************************************************************************/
28
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/etherdevice.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/types.h>
35 #include <linux/lockdep.h>
36 #include <linux/init.h>
37 #include <linux/pci.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/delay.h>
40 #include <linux/skbuff.h>
41 #include <net/mac80211.h>
42
43 #include "common.h"
44
45 const char *
46 il_get_cmd_string(u8 cmd)
47 {
48         switch (cmd) {
49                 IL_CMD(N_ALIVE);
50                 IL_CMD(N_ERROR);
51                 IL_CMD(C_RXON);
52                 IL_CMD(C_RXON_ASSOC);
53                 IL_CMD(C_QOS_PARAM);
54                 IL_CMD(C_RXON_TIMING);
55                 IL_CMD(C_ADD_STA);
56                 IL_CMD(C_REM_STA);
57                 IL_CMD(C_WEPKEY);
58                 IL_CMD(N_3945_RX);
59                 IL_CMD(C_TX);
60                 IL_CMD(C_RATE_SCALE);
61                 IL_CMD(C_LEDS);
62                 IL_CMD(C_TX_LINK_QUALITY_CMD);
63                 IL_CMD(C_CHANNEL_SWITCH);
64                 IL_CMD(N_CHANNEL_SWITCH);
65                 IL_CMD(C_SPECTRUM_MEASUREMENT);
66                 IL_CMD(N_SPECTRUM_MEASUREMENT);
67                 IL_CMD(C_POWER_TBL);
68                 IL_CMD(N_PM_SLEEP);
69                 IL_CMD(N_PM_DEBUG_STATS);
70                 IL_CMD(C_SCAN);
71                 IL_CMD(C_SCAN_ABORT);
72                 IL_CMD(N_SCAN_START);
73                 IL_CMD(N_SCAN_RESULTS);
74                 IL_CMD(N_SCAN_COMPLETE);
75                 IL_CMD(N_BEACON);
76                 IL_CMD(C_TX_BEACON);
77                 IL_CMD(C_TX_PWR_TBL);
78                 IL_CMD(C_BT_CONFIG);
79                 IL_CMD(C_STATS);
80                 IL_CMD(N_STATS);
81                 IL_CMD(N_CARD_STATE);
82                 IL_CMD(N_MISSED_BEACONS);
83                 IL_CMD(C_CT_KILL_CONFIG);
84                 IL_CMD(C_SENSITIVITY);
85                 IL_CMD(C_PHY_CALIBRATION);
86                 IL_CMD(N_RX_PHY);
87                 IL_CMD(N_RX_MPDU);
88                 IL_CMD(N_RX);
89                 IL_CMD(N_COMPRESSED_BA);
90         default:
91                 return "UNKNOWN";
92
93         }
94 }
95
96 EXPORT_SYMBOL(il_get_cmd_string);
97
98 #define HOST_COMPLETE_TIMEOUT (HZ / 2)
99
100 static void
101 il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd,
102                         struct il_rx_pkt *pkt)
103 {
104         if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
105                 IL_ERR("Bad return from %s (0x%08X)\n",
106                        il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
107                 return;
108         }
109 #ifdef CONFIG_IWLEGACY_DEBUG
110         switch (cmd->hdr.cmd) {
111         case C_TX_LINK_QUALITY_CMD:
112         case C_SENSITIVITY:
113                 D_HC_DUMP("back from %s (0x%08X)\n",
114                           il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
115                 break;
116         default:
117                 D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd),
118                      pkt->hdr.flags);
119         }
120 #endif
121 }
122
123 static int
124 il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd)
125 {
126         int ret;
127
128         BUG_ON(!(cmd->flags & CMD_ASYNC));
129
130         /* An asynchronous command can not expect an SKB to be set. */
131         BUG_ON(cmd->flags & CMD_WANT_SKB);
132
133         /* Assign a generic callback if one is not provided */
134         if (!cmd->callback)
135                 cmd->callback = il_generic_cmd_callback;
136
137         if (test_bit(S_EXIT_PENDING, &il->status))
138                 return -EBUSY;
139
140         ret = il_enqueue_hcmd(il, cmd);
141         if (ret < 0) {
142                 IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
143                        il_get_cmd_string(cmd->id), ret);
144                 return ret;
145         }
146         return 0;
147 }
148
149 int
150 il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd)
151 {
152         int cmd_idx;
153         int ret;
154
155         lockdep_assert_held(&il->mutex);
156
157         BUG_ON(cmd->flags & CMD_ASYNC);
158
159         /* A synchronous command can not have a callback set. */
160         BUG_ON(cmd->callback);
161
162         D_INFO("Attempting to send sync command %s\n",
163                il_get_cmd_string(cmd->id));
164
165         set_bit(S_HCMD_ACTIVE, &il->status);
166         D_INFO("Setting HCMD_ACTIVE for command %s\n",
167                il_get_cmd_string(cmd->id));
168
169         cmd_idx = il_enqueue_hcmd(il, cmd);
170         if (cmd_idx < 0) {
171                 ret = cmd_idx;
172                 IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
173                        il_get_cmd_string(cmd->id), ret);
174                 goto out;
175         }
176
177         ret = wait_event_timeout(il->wait_command_queue,
178                                  !test_bit(S_HCMD_ACTIVE, &il->status),
179                                  HOST_COMPLETE_TIMEOUT);
180         if (!ret) {
181                 if (test_bit(S_HCMD_ACTIVE, &il->status)) {
182                         IL_ERR("Error sending %s: time out after %dms.\n",
183                                il_get_cmd_string(cmd->id),
184                                jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
185
186                         clear_bit(S_HCMD_ACTIVE, &il->status);
187                         D_INFO("Clearing HCMD_ACTIVE for command %s\n",
188                                il_get_cmd_string(cmd->id));
189                         ret = -ETIMEDOUT;
190                         goto cancel;
191                 }
192         }
193
194         if (test_bit(S_RF_KILL_HW, &il->status)) {
195                 IL_ERR("Command %s aborted: RF KILL Switch\n",
196                        il_get_cmd_string(cmd->id));
197                 ret = -ECANCELED;
198                 goto fail;
199         }
200         if (test_bit(S_FW_ERROR, &il->status)) {
201                 IL_ERR("Command %s failed: FW Error\n",
202                        il_get_cmd_string(cmd->id));
203                 ret = -EIO;
204                 goto fail;
205         }
206         if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) {
207                 IL_ERR("Error: Response NULL in '%s'\n",
208                        il_get_cmd_string(cmd->id));
209                 ret = -EIO;
210                 goto cancel;
211         }
212
213         ret = 0;
214         goto out;
215
216 cancel:
217         if (cmd->flags & CMD_WANT_SKB) {
218                 /*
219                  * Cancel the CMD_WANT_SKB flag for the cmd in the
220                  * TX cmd queue. Otherwise in case the cmd comes
221                  * in later, it will possibly set an invalid
222                  * address (cmd->meta.source).
223                  */
224                 il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB;
225         }
226 fail:
227         if (cmd->reply_page) {
228                 il_free_pages(il, cmd->reply_page);
229                 cmd->reply_page = 0;
230         }
231 out:
232         return ret;
233 }
234
235 EXPORT_SYMBOL(il_send_cmd_sync);
236
237 int
238 il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd)
239 {
240         if (cmd->flags & CMD_ASYNC)
241                 return il_send_cmd_async(il, cmd);
242
243         return il_send_cmd_sync(il, cmd);
244 }
245
246 EXPORT_SYMBOL(il_send_cmd);
247
248 int
249 il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data)
250 {
251         struct il_host_cmd cmd = {
252                 .id = id,
253                 .len = len,
254                 .data = data,
255         };
256
257         return il_send_cmd_sync(il, &cmd);
258 }
259
260 EXPORT_SYMBOL(il_send_cmd_pdu);
261
262 int
263 il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data,
264                       void (*callback) (struct il_priv * il,
265                                         struct il_device_cmd * cmd,
266                                         struct il_rx_pkt * pkt))
267 {
268         struct il_host_cmd cmd = {
269                 .id = id,
270                 .len = len,
271                 .data = data,
272         };
273
274         cmd.flags |= CMD_ASYNC;
275         cmd.callback = callback;
276
277         return il_send_cmd_async(il, &cmd);
278 }
279
280 EXPORT_SYMBOL(il_send_cmd_pdu_async);
281
282 /* default: IL_LED_BLINK(0) using blinking idx table */
283 static int led_mode;
284 module_param(led_mode, int, S_IRUGO);
285 MODULE_PARM_DESC(led_mode,
286                  "0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking");
287
288 /* Throughput           OFF time(ms)    ON time (ms)
289  *      >300                    25              25
290  *      >200 to 300             40              40
291  *      >100 to 200             55              55
292  *      >70 to 100              65              65
293  *      >50 to 70               75              75
294  *      >20 to 50               85              85
295  *      >10 to 20               95              95
296  *      >5 to 10                110             110
297  *      >1 to 5                 130             130
298  *      >0 to 1                 167             167
299  *      <=0                                     SOLID ON
300  */
301 static const struct ieee80211_tpt_blink il_blink[] = {
302         {.throughput = 0,.blink_time = 334},
303         {.throughput = 1 * 1024 - 1,.blink_time = 260},
304         {.throughput = 5 * 1024 - 1,.blink_time = 220},
305         {.throughput = 10 * 1024 - 1,.blink_time = 190},
306         {.throughput = 20 * 1024 - 1,.blink_time = 170},
307         {.throughput = 50 * 1024 - 1,.blink_time = 150},
308         {.throughput = 70 * 1024 - 1,.blink_time = 130},
309         {.throughput = 100 * 1024 - 1,.blink_time = 110},
310         {.throughput = 200 * 1024 - 1,.blink_time = 80},
311         {.throughput = 300 * 1024 - 1,.blink_time = 50},
312 };
313
314 /*
315  * Adjust led blink rate to compensate on a MAC Clock difference on every HW
316  * Led blink rate analysis showed an average deviation of 0% on 3945,
317  * 5% on 4965 HW.
318  * Need to compensate on the led on/off time per HW according to the deviation
319  * to achieve the desired led frequency
320  * The calculation is: (100-averageDeviation)/100 * blinkTime
321  * For code efficiency the calculation will be:
322  *     compensation = (100 - averageDeviation) * 64 / 100
323  *     NewBlinkTime = (compensation * BlinkTime) / 64
324  */
325 static inline u8
326 il_blink_compensation(struct il_priv *il, u8 time, u16 compensation)
327 {
328         if (!compensation) {
329                 IL_ERR("undefined blink compensation: "
330                        "use pre-defined blinking time\n");
331                 return time;
332         }
333
334         return (u8) ((time * compensation) >> 6);
335 }
336
337 /* Set led pattern command */
338 static int
339 il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off)
340 {
341         struct il_led_cmd led_cmd = {
342                 .id = IL_LED_LINK,
343                 .interval = IL_DEF_LED_INTRVL
344         };
345         int ret;
346
347         if (!test_bit(S_READY, &il->status))
348                 return -EBUSY;
349
350         if (il->blink_on == on && il->blink_off == off)
351                 return 0;
352
353         if (off == 0) {
354                 /* led is SOLID_ON */
355                 on = IL_LED_SOLID;
356         }
357
358         D_LED("Led blink time compensation=%u\n",
359               il->cfg->base_params->led_compensation);
360         led_cmd.on =
361             il_blink_compensation(il, on,
362                                   il->cfg->base_params->led_compensation);
363         led_cmd.off =
364             il_blink_compensation(il, off,
365                                   il->cfg->base_params->led_compensation);
366
367         ret = il->cfg->ops->led->cmd(il, &led_cmd);
368         if (!ret) {
369                 il->blink_on = on;
370                 il->blink_off = off;
371         }
372         return ret;
373 }
374
375 static void
376 il_led_brightness_set(struct led_classdev *led_cdev,
377                       enum led_brightness brightness)
378 {
379         struct il_priv *il = container_of(led_cdev, struct il_priv, led);
380         unsigned long on = 0;
381
382         if (brightness > 0)
383                 on = IL_LED_SOLID;
384
385         il_led_cmd(il, on, 0);
386 }
387
388 static int
389 il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on,
390                  unsigned long *delay_off)
391 {
392         struct il_priv *il = container_of(led_cdev, struct il_priv, led);
393
394         return il_led_cmd(il, *delay_on, *delay_off);
395 }
396
397 void
398 il_leds_init(struct il_priv *il)
399 {
400         int mode = led_mode;
401         int ret;
402
403         if (mode == IL_LED_DEFAULT)
404                 mode = il->cfg->led_mode;
405
406         il->led.name =
407             kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy));
408         il->led.brightness_set = il_led_brightness_set;
409         il->led.blink_set = il_led_blink_set;
410         il->led.max_brightness = 1;
411
412         switch (mode) {
413         case IL_LED_DEFAULT:
414                 WARN_ON(1);
415                 break;
416         case IL_LED_BLINK:
417                 il->led.default_trigger =
418                     ieee80211_create_tpt_led_trigger(il->hw,
419                                                      IEEE80211_TPT_LEDTRIG_FL_CONNECTED,
420                                                      il_blink,
421                                                      ARRAY_SIZE(il_blink));
422                 break;
423         case IL_LED_RF_STATE:
424                 il->led.default_trigger = ieee80211_get_radio_led_name(il->hw);
425                 break;
426         }
427
428         ret = led_classdev_register(&il->pci_dev->dev, &il->led);
429         if (ret) {
430                 kfree(il->led.name);
431                 return;
432         }
433
434         il->led_registered = true;
435 }
436
437 EXPORT_SYMBOL(il_leds_init);
438
439 void
440 il_leds_exit(struct il_priv *il)
441 {
442         if (!il->led_registered)
443                 return;
444
445         led_classdev_unregister(&il->led);
446         kfree(il->led.name);
447 }
448
449 EXPORT_SYMBOL(il_leds_exit);
450
451 /************************** EEPROM BANDS ****************************
452  *
453  * The il_eeprom_band definitions below provide the mapping from the
454  * EEPROM contents to the specific channel number supported for each
455  * band.
456  *
457  * For example, il_priv->eeprom.band_3_channels[4] from the band_3
458  * definition below maps to physical channel 42 in the 5.2GHz spectrum.
459  * The specific geography and calibration information for that channel
460  * is contained in the eeprom map itself.
461  *
462  * During init, we copy the eeprom information and channel map
463  * information into il->channel_info_24/52 and il->channel_map_24/52
464  *
465  * channel_map_24/52 provides the idx in the channel_info array for a
466  * given channel.  We have to have two separate maps as there is channel
467  * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
468  * band_2
469  *
470  * A value of 0xff stored in the channel_map indicates that the channel
471  * is not supported by the hardware at all.
472  *
473  * A value of 0xfe in the channel_map indicates that the channel is not
474  * valid for Tx with the current hardware.  This means that
475  * while the system can tune and receive on a given channel, it may not
476  * be able to associate or transmit any frames on that
477  * channel.  There is no corresponding channel information for that
478  * entry.
479  *
480  *********************************************************************/
481
482 /* 2.4 GHz */
483 const u8 il_eeprom_band_1[14] = {
484         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
485 };
486
487 /* 5.2 GHz bands */
488 static const u8 il_eeprom_band_2[] = {  /* 4915-5080MHz */
489         183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
490 };
491
492 static const u8 il_eeprom_band_3[] = {  /* 5170-5320MHz */
493         34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
494 };
495
496 static const u8 il_eeprom_band_4[] = {  /* 5500-5700MHz */
497         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
498 };
499
500 static const u8 il_eeprom_band_5[] = {  /* 5725-5825MHz */
501         145, 149, 153, 157, 161, 165
502 };
503
504 static const u8 il_eeprom_band_6[] = {  /* 2.4 ht40 channel */
505         1, 2, 3, 4, 5, 6, 7
506 };
507
508 static const u8 il_eeprom_band_7[] = {  /* 5.2 ht40 channel */
509         36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
510 };
511
512 /******************************************************************************
513  *
514  * EEPROM related functions
515  *
516 ******************************************************************************/
517
518 static int
519 il_eeprom_verify_signature(struct il_priv *il)
520 {
521         u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
522         int ret = 0;
523
524         D_EEPROM("EEPROM signature=0x%08x\n", gp);
525         switch (gp) {
526         case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
527         case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
528                 break;
529         default:
530                 IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp);
531                 ret = -ENOENT;
532                 break;
533         }
534         return ret;
535 }
536
537 const u8 *
538 il_eeprom_query_addr(const struct il_priv *il, size_t offset)
539 {
540         BUG_ON(offset >= il->cfg->base_params->eeprom_size);
541         return &il->eeprom[offset];
542 }
543
544 EXPORT_SYMBOL(il_eeprom_query_addr);
545
546 u16
547 il_eeprom_query16(const struct il_priv * il, size_t offset)
548 {
549         if (!il->eeprom)
550                 return 0;
551         return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8);
552 }
553
554 EXPORT_SYMBOL(il_eeprom_query16);
555
556 /**
557  * il_eeprom_init - read EEPROM contents
558  *
559  * Load the EEPROM contents from adapter into il->eeprom
560  *
561  * NOTE:  This routine uses the non-debug IO access functions.
562  */
563 int
564 il_eeprom_init(struct il_priv *il)
565 {
566         __le16 *e;
567         u32 gp = _il_rd(il, CSR_EEPROM_GP);
568         int sz;
569         int ret;
570         u16 addr;
571
572         /* allocate eeprom */
573         sz = il->cfg->base_params->eeprom_size;
574         D_EEPROM("NVM size = %d\n", sz);
575         il->eeprom = kzalloc(sz, GFP_KERNEL);
576         if (!il->eeprom) {
577                 ret = -ENOMEM;
578                 goto alloc_err;
579         }
580         e = (__le16 *) il->eeprom;
581
582         il->cfg->ops->lib->apm_ops.init(il);
583
584         ret = il_eeprom_verify_signature(il);
585         if (ret < 0) {
586                 IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp);
587                 ret = -ENOENT;
588                 goto err;
589         }
590
591         /* Make sure driver (instead of uCode) is allowed to read EEPROM */
592         ret = il->cfg->ops->lib->eeprom_ops.acquire_semaphore(il);
593         if (ret < 0) {
594                 IL_ERR("Failed to acquire EEPROM semaphore.\n");
595                 ret = -ENOENT;
596                 goto err;
597         }
598
599         /* eeprom is an array of 16bit values */
600         for (addr = 0; addr < sz; addr += sizeof(u16)) {
601                 u32 r;
602
603                 _il_wr(il, CSR_EEPROM_REG,
604                        CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
605
606                 ret =
607                     _il_poll_bit(il, CSR_EEPROM_REG,
608                                  CSR_EEPROM_REG_READ_VALID_MSK,
609                                  CSR_EEPROM_REG_READ_VALID_MSK,
610                                  IL_EEPROM_ACCESS_TIMEOUT);
611                 if (ret < 0) {
612                         IL_ERR("Time out reading EEPROM[%d]\n", addr);
613                         goto done;
614                 }
615                 r = _il_rd(il, CSR_EEPROM_REG);
616                 e[addr / 2] = cpu_to_le16(r >> 16);
617         }
618
619         D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM",
620                  il_eeprom_query16(il, EEPROM_VERSION));
621
622         ret = 0;
623 done:
624         il->cfg->ops->lib->eeprom_ops.release_semaphore(il);
625
626 err:
627         if (ret)
628                 il_eeprom_free(il);
629         /* Reset chip to save power until we load uCode during "up". */
630         il_apm_stop(il);
631 alloc_err:
632         return ret;
633 }
634
635 EXPORT_SYMBOL(il_eeprom_init);
636
637 void
638 il_eeprom_free(struct il_priv *il)
639 {
640         kfree(il->eeprom);
641         il->eeprom = NULL;
642 }
643
644 EXPORT_SYMBOL(il_eeprom_free);
645
646 static void
647 il_init_band_reference(const struct il_priv *il, int eep_band,
648                        int *eeprom_ch_count,
649                        const struct il_eeprom_channel **eeprom_ch_info,
650                        const u8 ** eeprom_ch_idx)
651 {
652         u32 offset =
653             il->cfg->ops->lib->eeprom_ops.regulatory_bands[eep_band - 1];
654         switch (eep_band) {
655         case 1:         /* 2.4GHz band */
656                 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1);
657                 *eeprom_ch_info =
658                     (struct il_eeprom_channel *)il_eeprom_query_addr(il,
659                                                                      offset);
660                 *eeprom_ch_idx = il_eeprom_band_1;
661                 break;
662         case 2:         /* 4.9GHz band */
663                 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2);
664                 *eeprom_ch_info =
665                     (struct il_eeprom_channel *)il_eeprom_query_addr(il,
666                                                                      offset);
667                 *eeprom_ch_idx = il_eeprom_band_2;
668                 break;
669         case 3:         /* 5.2GHz band */
670                 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3);
671                 *eeprom_ch_info =
672                     (struct il_eeprom_channel *)il_eeprom_query_addr(il,
673                                                                      offset);
674                 *eeprom_ch_idx = il_eeprom_band_3;
675                 break;
676         case 4:         /* 5.5GHz band */
677                 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4);
678                 *eeprom_ch_info =
679                     (struct il_eeprom_channel *)il_eeprom_query_addr(il,
680                                                                      offset);
681                 *eeprom_ch_idx = il_eeprom_band_4;
682                 break;
683         case 5:         /* 5.7GHz band */
684                 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5);
685                 *eeprom_ch_info =
686                     (struct il_eeprom_channel *)il_eeprom_query_addr(il,
687                                                                      offset);
688                 *eeprom_ch_idx = il_eeprom_band_5;
689                 break;
690         case 6:         /* 2.4GHz ht40 channels */
691                 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6);
692                 *eeprom_ch_info =
693                     (struct il_eeprom_channel *)il_eeprom_query_addr(il,
694                                                                      offset);
695                 *eeprom_ch_idx = il_eeprom_band_6;
696                 break;
697         case 7:         /* 5 GHz ht40 channels */
698                 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7);
699                 *eeprom_ch_info =
700                     (struct il_eeprom_channel *)il_eeprom_query_addr(il,
701                                                                      offset);
702                 *eeprom_ch_idx = il_eeprom_band_7;
703                 break;
704         default:
705                 BUG();
706         }
707 }
708
709 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
710                             ? # x " " : "")
711 /**
712  * il_mod_ht40_chan_info - Copy ht40 channel info into driver's il.
713  *
714  * Does not set up a command, or touch hardware.
715  */
716 static int
717 il_mod_ht40_chan_info(struct il_priv *il, enum ieee80211_band band, u16 channel,
718                       const struct il_eeprom_channel *eeprom_ch,
719                       u8 clear_ht40_extension_channel)
720 {
721         struct il_channel_info *ch_info;
722
723         ch_info =
724             (struct il_channel_info *)il_get_channel_info(il, band, channel);
725
726         if (!il_is_channel_valid(ch_info))
727                 return -1;
728
729         D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
730                  " Ad-Hoc %ssupported\n", ch_info->channel,
731                  il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
732                  CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE),
733                  CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE),
734                  CHECK_AND_PRINT(DFS), eeprom_ch->flags,
735                  eeprom_ch->max_power_avg,
736                  ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
737                   !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not ");
738
739         ch_info->ht40_eeprom = *eeprom_ch;
740         ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
741         ch_info->ht40_flags = eeprom_ch->flags;
742         if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
743                 ch_info->ht40_extension_channel &=
744                     ~clear_ht40_extension_channel;
745
746         return 0;
747 }
748
749 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
750                             ? # x " " : "")
751
752 /**
753  * il_init_channel_map - Set up driver's info for all possible channels
754  */
755 int
756 il_init_channel_map(struct il_priv *il)
757 {
758         int eeprom_ch_count = 0;
759         const u8 *eeprom_ch_idx = NULL;
760         const struct il_eeprom_channel *eeprom_ch_info = NULL;
761         int band, ch;
762         struct il_channel_info *ch_info;
763
764         if (il->channel_count) {
765                 D_EEPROM("Channel map already initialized.\n");
766                 return 0;
767         }
768
769         D_EEPROM("Initializing regulatory info from EEPROM\n");
770
771         il->channel_count =
772             ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) +
773             ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) +
774             ARRAY_SIZE(il_eeprom_band_5);
775
776         D_EEPROM("Parsing data for %d channels.\n", il->channel_count);
777
778         il->channel_info =
779             kzalloc(sizeof(struct il_channel_info) * il->channel_count,
780                     GFP_KERNEL);
781         if (!il->channel_info) {
782                 IL_ERR("Could not allocate channel_info\n");
783                 il->channel_count = 0;
784                 return -ENOMEM;
785         }
786
787         ch_info = il->channel_info;
788
789         /* Loop through the 5 EEPROM bands adding them in order to the
790          * channel map we maintain (that contains additional information than
791          * what just in the EEPROM) */
792         for (band = 1; band <= 5; band++) {
793
794                 il_init_band_reference(il, band, &eeprom_ch_count,
795                                        &eeprom_ch_info, &eeprom_ch_idx);
796
797                 /* Loop through each band adding each of the channels */
798                 for (ch = 0; ch < eeprom_ch_count; ch++) {
799                         ch_info->channel = eeprom_ch_idx[ch];
800                         ch_info->band =
801                             (band ==
802                              1) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
803
804                         /* permanently store EEPROM's channel regulatory flags
805                          *   and max power in channel info database. */
806                         ch_info->eeprom = eeprom_ch_info[ch];
807
808                         /* Copy the run-time flags so they are there even on
809                          * invalid channels */
810                         ch_info->flags = eeprom_ch_info[ch].flags;
811                         /* First write that ht40 is not enabled, and then enable
812                          * one by one */
813                         ch_info->ht40_extension_channel =
814                             IEEE80211_CHAN_NO_HT40;
815
816                         if (!(il_is_channel_valid(ch_info))) {
817                                 D_EEPROM("Ch. %d Flags %x [%sGHz] - "
818                                          "No traffic\n", ch_info->channel,
819                                          ch_info->flags,
820                                          il_is_channel_a_band(ch_info) ? "5.2" :
821                                          "2.4");
822                                 ch_info++;
823                                 continue;
824                         }
825
826                         /* Initialize regulatory-based run-time data */
827                         ch_info->max_power_avg = ch_info->curr_txpow =
828                             eeprom_ch_info[ch].max_power_avg;
829                         ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
830                         ch_info->min_power = 0;
831
832                         D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):"
833                                  " Ad-Hoc %ssupported\n", ch_info->channel,
834                                  il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
835                                  CHECK_AND_PRINT_I(VALID),
836                                  CHECK_AND_PRINT_I(IBSS),
837                                  CHECK_AND_PRINT_I(ACTIVE),
838                                  CHECK_AND_PRINT_I(RADAR),
839                                  CHECK_AND_PRINT_I(WIDE),
840                                  CHECK_AND_PRINT_I(DFS),
841                                  eeprom_ch_info[ch].flags,
842                                  eeprom_ch_info[ch].max_power_avg,
843                                  ((eeprom_ch_info[ch].
844                                    flags & EEPROM_CHANNEL_IBSS) &&
845                                   !(eeprom_ch_info[ch].
846                                     flags & EEPROM_CHANNEL_RADAR)) ? "" :
847                                  "not ");
848
849                         ch_info++;
850                 }
851         }
852
853         /* Check if we do have HT40 channels */
854         if (il->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
855             EEPROM_REGULATORY_BAND_NO_HT40 &&
856             il->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
857             EEPROM_REGULATORY_BAND_NO_HT40)
858                 return 0;
859
860         /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
861         for (band = 6; band <= 7; band++) {
862                 enum ieee80211_band ieeeband;
863
864                 il_init_band_reference(il, band, &eeprom_ch_count,
865                                        &eeprom_ch_info, &eeprom_ch_idx);
866
867                 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
868                 ieeeband =
869                     (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
870
871                 /* Loop through each band adding each of the channels */
872                 for (ch = 0; ch < eeprom_ch_count; ch++) {
873                         /* Set up driver's info for lower half */
874                         il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch],
875                                               &eeprom_ch_info[ch],
876                                               IEEE80211_CHAN_NO_HT40PLUS);
877
878                         /* Set up driver's info for upper half */
879                         il_mod_ht40_chan_info(il, ieeeband,
880                                               eeprom_ch_idx[ch] + 4,
881                                               &eeprom_ch_info[ch],
882                                               IEEE80211_CHAN_NO_HT40MINUS);
883                 }
884         }
885
886         return 0;
887 }
888
889 EXPORT_SYMBOL(il_init_channel_map);
890
891 /*
892  * il_free_channel_map - undo allocations in il_init_channel_map
893  */
894 void
895 il_free_channel_map(struct il_priv *il)
896 {
897         kfree(il->channel_info);
898         il->channel_count = 0;
899 }
900
901 EXPORT_SYMBOL(il_free_channel_map);
902
903 /**
904  * il_get_channel_info - Find driver's ilate channel info
905  *
906  * Based on band and channel number.
907  */
908 const struct il_channel_info *
909 il_get_channel_info(const struct il_priv *il, enum ieee80211_band band,
910                     u16 channel)
911 {
912         int i;
913
914         switch (band) {
915         case IEEE80211_BAND_5GHZ:
916                 for (i = 14; i < il->channel_count; i++) {
917                         if (il->channel_info[i].channel == channel)
918                                 return &il->channel_info[i];
919                 }
920                 break;
921         case IEEE80211_BAND_2GHZ:
922                 if (channel >= 1 && channel <= 14)
923                         return &il->channel_info[channel - 1];
924                 break;
925         default:
926                 BUG();
927         }
928
929         return NULL;
930 }
931
932 EXPORT_SYMBOL(il_get_channel_info);
933
934 /*
935  * Setting power level allows the card to go to sleep when not busy.
936  *
937  * We calculate a sleep command based on the required latency, which
938  * we get from mac80211. In order to handle thermal throttling, we can
939  * also use pre-defined power levels.
940  */
941
942 /*
943  * This defines the old power levels. They are still used by default
944  * (level 1) and for thermal throttle (levels 3 through 5)
945  */
946
947 struct il_power_vec_entry {
948         struct il_powertable_cmd cmd;
949         u8 no_dtim;             /* number of skip dtim */
950 };
951
952 static void
953 il_power_sleep_cam_cmd(struct il_priv *il, struct il_powertable_cmd *cmd)
954 {
955         memset(cmd, 0, sizeof(*cmd));
956
957         if (il->power_data.pci_pm)
958                 cmd->flags |= IL_POWER_PCI_PM_MSK;
959
960         D_POWER("Sleep command for CAM\n");
961 }
962
963 static int
964 il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd)
965 {
966         D_POWER("Sending power/sleep command\n");
967         D_POWER("Flags value = 0x%08X\n", cmd->flags);
968         D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
969         D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
970         D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n",
971                 le32_to_cpu(cmd->sleep_interval[0]),
972                 le32_to_cpu(cmd->sleep_interval[1]),
973                 le32_to_cpu(cmd->sleep_interval[2]),
974                 le32_to_cpu(cmd->sleep_interval[3]),
975                 le32_to_cpu(cmd->sleep_interval[4]));
976
977         return il_send_cmd_pdu(il, C_POWER_TBL,
978                                sizeof(struct il_powertable_cmd), cmd);
979 }
980
981 int
982 il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force)
983 {
984         int ret;
985         bool update_chains;
986
987         lockdep_assert_held(&il->mutex);
988
989         /* Don't update the RX chain when chain noise calibration is running */
990         update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE ||
991             il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE;
992
993         if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
994                 return 0;
995
996         if (!il_is_ready_rf(il))
997                 return -EIO;
998
999         /* scan complete use sleep_power_next, need to be updated */
1000         memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
1001         if (test_bit(S_SCANNING, &il->status) && !force) {
1002                 D_INFO("Defer power set mode while scanning\n");
1003                 return 0;
1004         }
1005
1006         if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)
1007                 set_bit(S_POWER_PMI, &il->status);
1008
1009         ret = il_set_power(il, cmd);
1010         if (!ret) {
1011                 if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK))
1012                         clear_bit(S_POWER_PMI, &il->status);
1013
1014                 if (il->cfg->ops->lib->update_chain_flags && update_chains)
1015                         il->cfg->ops->lib->update_chain_flags(il);
1016                 else if (il->cfg->ops->lib->update_chain_flags)
1017                         D_POWER("Cannot update the power, chain noise "
1018                                 "calibration running: %d\n",
1019                                 il->chain_noise_data.state);
1020
1021                 memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd));
1022         } else
1023                 IL_ERR("set power fail, ret = %d", ret);
1024
1025         return ret;
1026 }
1027
1028 int
1029 il_power_update_mode(struct il_priv *il, bool force)
1030 {
1031         struct il_powertable_cmd cmd;
1032
1033         il_power_sleep_cam_cmd(il, &cmd);
1034         return il_power_set_mode(il, &cmd, force);
1035 }
1036
1037 EXPORT_SYMBOL(il_power_update_mode);
1038
1039 /* initialize to default */
1040 void
1041 il_power_initialize(struct il_priv *il)
1042 {
1043         u16 lctl = il_pcie_link_ctl(il);
1044
1045         il->power_data.pci_pm = !(lctl & PCI_CFG_LINK_CTRL_VAL_L0S_EN);
1046
1047         il->power_data.debug_sleep_level_override = -1;
1048
1049         memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd));
1050 }
1051 EXPORT_SYMBOL(il_power_initialize);
1052
1053 /* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after
1054  * sending probe req.  This should be set long enough to hear probe responses
1055  * from more than one AP.  */
1056 #define IL_ACTIVE_DWELL_TIME_24    (30) /* all times in msec */
1057 #define IL_ACTIVE_DWELL_TIME_52    (20)
1058
1059 #define IL_ACTIVE_DWELL_FACTOR_24GHZ (3)
1060 #define IL_ACTIVE_DWELL_FACTOR_52GHZ (2)
1061
1062 /* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel.
1063  * Must be set longer than active dwell time.
1064  * For the most reliable scan, set > AP beacon interval (typically 100msec). */
1065 #define IL_PASSIVE_DWELL_TIME_24   (20) /* all times in msec */
1066 #define IL_PASSIVE_DWELL_TIME_52   (10)
1067 #define IL_PASSIVE_DWELL_BASE      (100)
1068 #define IL_CHANNEL_TUNE_TIME       5
1069
1070 static int
1071 il_send_scan_abort(struct il_priv *il)
1072 {
1073         int ret;
1074         struct il_rx_pkt *pkt;
1075         struct il_host_cmd cmd = {
1076                 .id = C_SCAN_ABORT,
1077                 .flags = CMD_WANT_SKB,
1078         };
1079
1080         /* Exit instantly with error when device is not ready
1081          * to receive scan abort command or it does not perform
1082          * hardware scan currently */
1083         if (!test_bit(S_READY, &il->status) ||
1084             !test_bit(S_GEO_CONFIGURED, &il->status) ||
1085             !test_bit(S_SCAN_HW, &il->status) ||
1086             test_bit(S_FW_ERROR, &il->status) ||
1087             test_bit(S_EXIT_PENDING, &il->status))
1088                 return -EIO;
1089
1090         ret = il_send_cmd_sync(il, &cmd);
1091         if (ret)
1092                 return ret;
1093
1094         pkt = (struct il_rx_pkt *)cmd.reply_page;
1095         if (pkt->u.status != CAN_ABORT_STATUS) {
1096                 /* The scan abort will return 1 for success or
1097                  * 2 for "failure".  A failure condition can be
1098                  * due to simply not being in an active scan which
1099                  * can occur if we send the scan abort before we
1100                  * the microcode has notified us that a scan is
1101                  * completed. */
1102                 D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status);
1103                 ret = -EIO;
1104         }
1105
1106         il_free_pages(il, cmd.reply_page);
1107         return ret;
1108 }
1109
1110 static void
1111 il_complete_scan(struct il_priv *il, bool aborted)
1112 {
1113         /* check if scan was requested from mac80211 */
1114         if (il->scan_request) {
1115                 D_SCAN("Complete scan in mac80211\n");
1116                 ieee80211_scan_completed(il->hw, aborted);
1117         }
1118
1119         il->scan_vif = NULL;
1120         il->scan_request = NULL;
1121 }
1122
1123 void
1124 il_force_scan_end(struct il_priv *il)
1125 {
1126         lockdep_assert_held(&il->mutex);
1127
1128         if (!test_bit(S_SCANNING, &il->status)) {
1129                 D_SCAN("Forcing scan end while not scanning\n");
1130                 return;
1131         }
1132
1133         D_SCAN("Forcing scan end\n");
1134         clear_bit(S_SCANNING, &il->status);
1135         clear_bit(S_SCAN_HW, &il->status);
1136         clear_bit(S_SCAN_ABORTING, &il->status);
1137         il_complete_scan(il, true);
1138 }
1139
1140 static void
1141 il_do_scan_abort(struct il_priv *il)
1142 {
1143         int ret;
1144
1145         lockdep_assert_held(&il->mutex);
1146
1147         if (!test_bit(S_SCANNING, &il->status)) {
1148                 D_SCAN("Not performing scan to abort\n");
1149                 return;
1150         }
1151
1152         if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) {
1153                 D_SCAN("Scan abort in progress\n");
1154                 return;
1155         }
1156
1157         ret = il_send_scan_abort(il);
1158         if (ret) {
1159                 D_SCAN("Send scan abort failed %d\n", ret);
1160                 il_force_scan_end(il);
1161         } else
1162                 D_SCAN("Successfully send scan abort\n");
1163 }
1164
1165 /**
1166  * il_scan_cancel - Cancel any currently executing HW scan
1167  */
1168 int
1169 il_scan_cancel(struct il_priv *il)
1170 {
1171         D_SCAN("Queuing abort scan\n");
1172         queue_work(il->workqueue, &il->abort_scan);
1173         return 0;
1174 }
1175
1176 EXPORT_SYMBOL(il_scan_cancel);
1177
1178 /**
1179  * il_scan_cancel_timeout - Cancel any currently executing HW scan
1180  * @ms: amount of time to wait (in milliseconds) for scan to abort
1181  *
1182  */
1183 int
1184 il_scan_cancel_timeout(struct il_priv *il, unsigned long ms)
1185 {
1186         unsigned long timeout = jiffies + msecs_to_jiffies(ms);
1187
1188         lockdep_assert_held(&il->mutex);
1189
1190         D_SCAN("Scan cancel timeout\n");
1191
1192         il_do_scan_abort(il);
1193
1194         while (time_before_eq(jiffies, timeout)) {
1195                 if (!test_bit(S_SCAN_HW, &il->status))
1196                         break;
1197                 msleep(20);
1198         }
1199
1200         return test_bit(S_SCAN_HW, &il->status);
1201 }
1202
1203 EXPORT_SYMBOL(il_scan_cancel_timeout);
1204
1205 /* Service response to C_SCAN (0x80) */
1206 static void
1207 il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb)
1208 {
1209 #ifdef CONFIG_IWLEGACY_DEBUG
1210         struct il_rx_pkt *pkt = rxb_addr(rxb);
1211         struct il_scanreq_notification *notif =
1212             (struct il_scanreq_notification *)pkt->u.raw;
1213
1214         D_SCAN("Scan request status = 0x%x\n", notif->status);
1215 #endif
1216 }
1217
1218 /* Service N_SCAN_START (0x82) */
1219 static void
1220 il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb)
1221 {
1222         struct il_rx_pkt *pkt = rxb_addr(rxb);
1223         struct il_scanstart_notification *notif =
1224             (struct il_scanstart_notification *)pkt->u.raw;
1225         il->scan_start_tsf = le32_to_cpu(notif->tsf_low);
1226         D_SCAN("Scan start: " "%d [802.11%s] "
1227                "(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel,
1228                notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high),
1229                le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer);
1230 }
1231
1232 /* Service N_SCAN_RESULTS (0x83) */
1233 static void
1234 il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb)
1235 {
1236 #ifdef CONFIG_IWLEGACY_DEBUG
1237         struct il_rx_pkt *pkt = rxb_addr(rxb);
1238         struct il_scanresults_notification *notif =
1239             (struct il_scanresults_notification *)pkt->u.raw;
1240
1241         D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d "
1242                "elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a",
1243                le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low),
1244                le32_to_cpu(notif->stats[0]),
1245                le32_to_cpu(notif->tsf_low) - il->scan_start_tsf);
1246 #endif
1247 }
1248
1249 /* Service N_SCAN_COMPLETE (0x84) */
1250 static void
1251 il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb)
1252 {
1253
1254 #ifdef CONFIG_IWLEGACY_DEBUG
1255         struct il_rx_pkt *pkt = rxb_addr(rxb);
1256         struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw;
1257 #endif
1258
1259         D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n",
1260                scan_notif->scanned_channels, scan_notif->tsf_low,
1261                scan_notif->tsf_high, scan_notif->status);
1262
1263         /* The HW is no longer scanning */
1264         clear_bit(S_SCAN_HW, &il->status);
1265
1266         D_SCAN("Scan on %sGHz took %dms\n",
1267                (il->scan_band == IEEE80211_BAND_2GHZ) ? "2.4" : "5.2",
1268                jiffies_to_msecs(jiffies - il->scan_start));
1269
1270         queue_work(il->workqueue, &il->scan_completed);
1271 }
1272
1273 void
1274 il_setup_rx_scan_handlers(struct il_priv *il)
1275 {
1276         /* scan handlers */
1277         il->handlers[C_SCAN] = il_hdl_scan;
1278         il->handlers[N_SCAN_START] = il_hdl_scan_start;
1279         il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results;
1280         il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete;
1281 }
1282
1283 EXPORT_SYMBOL(il_setup_rx_scan_handlers);
1284
1285 inline u16
1286 il_get_active_dwell_time(struct il_priv *il, enum ieee80211_band band,
1287                          u8 n_probes)
1288 {
1289         if (band == IEEE80211_BAND_5GHZ)
1290                 return IL_ACTIVE_DWELL_TIME_52 +
1291                     IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1);
1292         else
1293                 return IL_ACTIVE_DWELL_TIME_24 +
1294                     IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1);
1295 }
1296
1297 EXPORT_SYMBOL(il_get_active_dwell_time);
1298
1299 u16
1300 il_get_passive_dwell_time(struct il_priv * il, enum ieee80211_band band,
1301                           struct ieee80211_vif * vif)
1302 {
1303         struct il_rxon_context *ctx = &il->ctx;
1304         u16 value;
1305
1306         u16 passive =
1307             (band ==
1308              IEEE80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE +
1309             IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE +
1310             IL_PASSIVE_DWELL_TIME_52;
1311
1312         if (il_is_any_associated(il)) {
1313                 /*
1314                  * If we're associated, we clamp the maximum passive
1315                  * dwell time to be 98% of the smallest beacon interval
1316                  * (minus 2 * channel tune time)
1317                  */
1318                 value = ctx->vif ? ctx->vif->bss_conf.beacon_int : 0;
1319                 if (value > IL_PASSIVE_DWELL_BASE || !value)
1320                         value = IL_PASSIVE_DWELL_BASE;
1321                 value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2;
1322                 passive = min(value, passive);
1323         }
1324
1325         return passive;
1326 }
1327
1328 EXPORT_SYMBOL(il_get_passive_dwell_time);
1329
1330 void
1331 il_init_scan_params(struct il_priv *il)
1332 {
1333         u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1;
1334         if (!il->scan_tx_ant[IEEE80211_BAND_5GHZ])
1335                 il->scan_tx_ant[IEEE80211_BAND_5GHZ] = ant_idx;
1336         if (!il->scan_tx_ant[IEEE80211_BAND_2GHZ])
1337                 il->scan_tx_ant[IEEE80211_BAND_2GHZ] = ant_idx;
1338 }
1339
1340 EXPORT_SYMBOL(il_init_scan_params);
1341
1342 static int
1343 il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif)
1344 {
1345         int ret;
1346
1347         lockdep_assert_held(&il->mutex);
1348
1349         if (WARN_ON(!il->cfg->ops->utils->request_scan))
1350                 return -EOPNOTSUPP;
1351
1352         cancel_delayed_work(&il->scan_check);
1353
1354         if (!il_is_ready_rf(il)) {
1355                 IL_WARN("Request scan called when driver not ready.\n");
1356                 return -EIO;
1357         }
1358
1359         if (test_bit(S_SCAN_HW, &il->status)) {
1360                 D_SCAN("Multiple concurrent scan requests in parallel.\n");
1361                 return -EBUSY;
1362         }
1363
1364         if (test_bit(S_SCAN_ABORTING, &il->status)) {
1365                 D_SCAN("Scan request while abort pending.\n");
1366                 return -EBUSY;
1367         }
1368
1369         D_SCAN("Starting scan...\n");
1370
1371         set_bit(S_SCANNING, &il->status);
1372         il->scan_start = jiffies;
1373
1374         ret = il->cfg->ops->utils->request_scan(il, vif);
1375         if (ret) {
1376                 clear_bit(S_SCANNING, &il->status);
1377                 return ret;
1378         }
1379
1380         queue_delayed_work(il->workqueue, &il->scan_check,
1381                            IL_SCAN_CHECK_WATCHDOG);
1382
1383         return 0;
1384 }
1385
1386 int
1387 il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1388                struct cfg80211_scan_request *req)
1389 {
1390         struct il_priv *il = hw->priv;
1391         int ret;
1392
1393         D_MAC80211("enter\n");
1394
1395         if (req->n_channels == 0)
1396                 return -EINVAL;
1397
1398         mutex_lock(&il->mutex);
1399
1400         if (test_bit(S_SCANNING, &il->status)) {
1401                 D_SCAN("Scan already in progress.\n");
1402                 ret = -EAGAIN;
1403                 goto out_unlock;
1404         }
1405
1406         /* mac80211 will only ask for one band at a time */
1407         il->scan_request = req;
1408         il->scan_vif = vif;
1409         il->scan_band = req->channels[0]->band;
1410
1411         ret = il_scan_initiate(il, vif);
1412
1413         D_MAC80211("leave\n");
1414
1415 out_unlock:
1416         mutex_unlock(&il->mutex);
1417
1418         return ret;
1419 }
1420
1421 EXPORT_SYMBOL(il_mac_hw_scan);
1422
1423 static void
1424 il_bg_scan_check(struct work_struct *data)
1425 {
1426         struct il_priv *il =
1427             container_of(data, struct il_priv, scan_check.work);
1428
1429         D_SCAN("Scan check work\n");
1430
1431         /* Since we are here firmware does not finish scan and
1432          * most likely is in bad shape, so we don't bother to
1433          * send abort command, just force scan complete to mac80211 */
1434         mutex_lock(&il->mutex);
1435         il_force_scan_end(il);
1436         mutex_unlock(&il->mutex);
1437 }
1438
1439 /**
1440  * il_fill_probe_req - fill in all required fields and IE for probe request
1441  */
1442
1443 u16
1444 il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
1445                   const u8 * ta, const u8 * ies, int ie_len, int left)
1446 {
1447         int len = 0;
1448         u8 *pos = NULL;
1449
1450         /* Make sure there is enough space for the probe request,
1451          * two mandatory IEs and the data */
1452         left -= 24;
1453         if (left < 0)
1454                 return 0;
1455
1456         frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
1457         memcpy(frame->da, il_bcast_addr, ETH_ALEN);
1458         memcpy(frame->sa, ta, ETH_ALEN);
1459         memcpy(frame->bssid, il_bcast_addr, ETH_ALEN);
1460         frame->seq_ctrl = 0;
1461
1462         len += 24;
1463
1464         /* ...next IE... */
1465         pos = &frame->u.probe_req.variable[0];
1466
1467         /* fill in our indirect SSID IE */
1468         left -= 2;
1469         if (left < 0)
1470                 return 0;
1471         *pos++ = WLAN_EID_SSID;
1472         *pos++ = 0;
1473
1474         len += 2;
1475
1476         if (WARN_ON(left < ie_len))
1477                 return len;
1478
1479         if (ies && ie_len) {
1480                 memcpy(pos, ies, ie_len);
1481                 len += ie_len;
1482         }
1483
1484         return (u16) len;
1485 }
1486
1487 EXPORT_SYMBOL(il_fill_probe_req);
1488
1489 static void
1490 il_bg_abort_scan(struct work_struct *work)
1491 {
1492         struct il_priv *il = container_of(work, struct il_priv, abort_scan);
1493
1494         D_SCAN("Abort scan work\n");
1495
1496         /* We keep scan_check work queued in case when firmware will not
1497          * report back scan completed notification */
1498         mutex_lock(&il->mutex);
1499         il_scan_cancel_timeout(il, 200);
1500         mutex_unlock(&il->mutex);
1501 }
1502
1503 static void
1504 il_bg_scan_completed(struct work_struct *work)
1505 {
1506         struct il_priv *il = container_of(work, struct il_priv, scan_completed);
1507         bool aborted;
1508
1509         D_SCAN("Completed scan.\n");
1510
1511         cancel_delayed_work(&il->scan_check);
1512
1513         mutex_lock(&il->mutex);
1514
1515         aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status);
1516         if (aborted)
1517                 D_SCAN("Aborted scan completed.\n");
1518
1519         if (!test_and_clear_bit(S_SCANNING, &il->status)) {
1520                 D_SCAN("Scan already completed.\n");
1521                 goto out_settings;
1522         }
1523
1524         il_complete_scan(il, aborted);
1525
1526 out_settings:
1527         /* Can we still talk to firmware ? */
1528         if (!il_is_ready_rf(il))
1529                 goto out;
1530
1531         /*
1532          * We do not commit power settings while scan is pending,
1533          * do it now if the settings changed.
1534          */
1535         il_power_set_mode(il, &il->power_data.sleep_cmd_next, false);
1536         il_set_tx_power(il, il->tx_power_next, false);
1537
1538         il->cfg->ops->utils->post_scan(il);
1539
1540 out:
1541         mutex_unlock(&il->mutex);
1542 }
1543
1544 void
1545 il_setup_scan_deferred_work(struct il_priv *il)
1546 {
1547         INIT_WORK(&il->scan_completed, il_bg_scan_completed);
1548         INIT_WORK(&il->abort_scan, il_bg_abort_scan);
1549         INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check);
1550 }
1551
1552 EXPORT_SYMBOL(il_setup_scan_deferred_work);
1553
1554 void
1555 il_cancel_scan_deferred_work(struct il_priv *il)
1556 {
1557         cancel_work_sync(&il->abort_scan);
1558         cancel_work_sync(&il->scan_completed);
1559
1560         if (cancel_delayed_work_sync(&il->scan_check)) {
1561                 mutex_lock(&il->mutex);
1562                 il_force_scan_end(il);
1563                 mutex_unlock(&il->mutex);
1564         }
1565 }
1566
1567 EXPORT_SYMBOL(il_cancel_scan_deferred_work);
1568
1569 /* il->sta_lock must be held */
1570 static void
1571 il_sta_ucode_activate(struct il_priv *il, u8 sta_id)
1572 {
1573
1574         if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE))
1575                 IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n",
1576                        sta_id, il->stations[sta_id].sta.sta.addr);
1577
1578         if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) {
1579                 D_ASSOC("STA id %u addr %pM already present"
1580                         " in uCode (according to driver)\n", sta_id,
1581                         il->stations[sta_id].sta.sta.addr);
1582         } else {
1583                 il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE;
1584                 D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id,
1585                         il->stations[sta_id].sta.sta.addr);
1586         }
1587 }
1588
1589 static int
1590 il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta,
1591                         struct il_rx_pkt *pkt, bool sync)
1592 {
1593         u8 sta_id = addsta->sta.sta_id;
1594         unsigned long flags;
1595         int ret = -EIO;
1596
1597         if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
1598                 IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags);
1599                 return ret;
1600         }
1601
1602         D_INFO("Processing response for adding station %u\n", sta_id);
1603
1604         spin_lock_irqsave(&il->sta_lock, flags);
1605
1606         switch (pkt->u.add_sta.status) {
1607         case ADD_STA_SUCCESS_MSK:
1608                 D_INFO("C_ADD_STA PASSED\n");
1609                 il_sta_ucode_activate(il, sta_id);
1610                 ret = 0;
1611                 break;
1612         case ADD_STA_NO_ROOM_IN_TBL:
1613                 IL_ERR("Adding station %d failed, no room in table.\n", sta_id);
1614                 break;
1615         case ADD_STA_NO_BLOCK_ACK_RESOURCE:
1616                 IL_ERR("Adding station %d failed, no block ack resource.\n",
1617                        sta_id);
1618                 break;
1619         case ADD_STA_MODIFY_NON_EXIST_STA:
1620                 IL_ERR("Attempting to modify non-existing station %d\n",
1621                        sta_id);
1622                 break;
1623         default:
1624                 D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status);
1625                 break;
1626         }
1627
1628         D_INFO("%s station id %u addr %pM\n",
1629                il->stations[sta_id].sta.mode ==
1630                STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id,
1631                il->stations[sta_id].sta.sta.addr);
1632
1633         /*
1634          * XXX: The MAC address in the command buffer is often changed from
1635          * the original sent to the device. That is, the MAC address
1636          * written to the command buffer often is not the same MAC address
1637          * read from the command buffer when the command returns. This
1638          * issue has not yet been resolved and this debugging is left to
1639          * observe the problem.
1640          */
1641         D_INFO("%s station according to cmd buffer %pM\n",
1642                il->stations[sta_id].sta.mode ==
1643                STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr);
1644         spin_unlock_irqrestore(&il->sta_lock, flags);
1645
1646         return ret;
1647 }
1648
1649 static void
1650 il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd,
1651                     struct il_rx_pkt *pkt)
1652 {
1653         struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload;
1654
1655         il_process_add_sta_resp(il, addsta, pkt, false);
1656
1657 }
1658
1659 int
1660 il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags)
1661 {
1662         struct il_rx_pkt *pkt = NULL;
1663         int ret = 0;
1664         u8 data[sizeof(*sta)];
1665         struct il_host_cmd cmd = {
1666                 .id = C_ADD_STA,
1667                 .flags = flags,
1668                 .data = data,
1669         };
1670         u8 sta_id __maybe_unused = sta->sta.sta_id;
1671
1672         D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr,
1673                flags & CMD_ASYNC ? "a" : "");
1674
1675         if (flags & CMD_ASYNC)
1676                 cmd.callback = il_add_sta_callback;
1677         else {
1678                 cmd.flags |= CMD_WANT_SKB;
1679                 might_sleep();
1680         }
1681
1682         cmd.len = il->cfg->ops->utils->build_addsta_hcmd(sta, data);
1683         ret = il_send_cmd(il, &cmd);
1684
1685         if (ret || (flags & CMD_ASYNC))
1686                 return ret;
1687
1688         if (ret == 0) {
1689                 pkt = (struct il_rx_pkt *)cmd.reply_page;
1690                 ret = il_process_add_sta_resp(il, sta, pkt, true);
1691         }
1692         il_free_pages(il, cmd.reply_page);
1693
1694         return ret;
1695 }
1696
1697 EXPORT_SYMBOL(il_send_add_sta);
1698
1699 static void
1700 il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta,
1701                       struct il_rxon_context *ctx)
1702 {
1703         struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap;
1704         __le32 sta_flags;
1705         u8 mimo_ps_mode;
1706
1707         if (!sta || !sta_ht_inf->ht_supported)
1708                 goto done;
1709
1710         mimo_ps_mode = (sta_ht_inf->cap & IEEE80211_HT_CAP_SM_PS) >> 2;
1711         D_ASSOC("spatial multiplexing power save mode: %s\n",
1712                 (mimo_ps_mode ==
1713                  WLAN_HT_CAP_SM_PS_STATIC) ? "static" : (mimo_ps_mode ==
1714                                                          WLAN_HT_CAP_SM_PS_DYNAMIC)
1715                 ? "dynamic" : "disabled");
1716
1717         sta_flags = il->stations[idx].sta.station_flags;
1718
1719         sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK);
1720
1721         switch (mimo_ps_mode) {
1722         case WLAN_HT_CAP_SM_PS_STATIC:
1723                 sta_flags |= STA_FLG_MIMO_DIS_MSK;
1724                 break;
1725         case WLAN_HT_CAP_SM_PS_DYNAMIC:
1726                 sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
1727                 break;
1728         case WLAN_HT_CAP_SM_PS_DISABLED:
1729                 break;
1730         default:
1731                 IL_WARN("Invalid MIMO PS mode %d\n", mimo_ps_mode);
1732                 break;
1733         }
1734
1735         sta_flags |=
1736             cpu_to_le32((u32) sta_ht_inf->
1737                         ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
1738
1739         sta_flags |=
1740             cpu_to_le32((u32) sta_ht_inf->
1741                         ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
1742
1743         if (il_is_ht40_tx_allowed(il, ctx, &sta->ht_cap))
1744                 sta_flags |= STA_FLG_HT40_EN_MSK;
1745         else
1746                 sta_flags &= ~STA_FLG_HT40_EN_MSK;
1747
1748         il->stations[idx].sta.station_flags = sta_flags;
1749 done:
1750         return;
1751 }
1752
1753 /**
1754  * il_prep_station - Prepare station information for addition
1755  *
1756  * should be called with sta_lock held
1757  */
1758 u8
1759 il_prep_station(struct il_priv * il, struct il_rxon_context * ctx,
1760                 const u8 * addr, bool is_ap, struct ieee80211_sta * sta)
1761 {
1762         struct il_station_entry *station;
1763         int i;
1764         u8 sta_id = IL_INVALID_STATION;
1765         u16 rate;
1766
1767         if (is_ap)
1768                 sta_id = ctx->ap_sta_id;
1769         else if (is_broadcast_ether_addr(addr))
1770                 sta_id = ctx->bcast_sta_id;
1771         else
1772                 for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) {
1773                         if (!compare_ether_addr
1774                             (il->stations[i].sta.sta.addr, addr)) {
1775                                 sta_id = i;
1776                                 break;
1777                         }
1778
1779                         if (!il->stations[i].used &&
1780                             sta_id == IL_INVALID_STATION)
1781                                 sta_id = i;
1782                 }
1783
1784         /*
1785          * These two conditions have the same outcome, but keep them
1786          * separate
1787          */
1788         if (unlikely(sta_id == IL_INVALID_STATION))
1789                 return sta_id;
1790
1791         /*
1792          * uCode is not able to deal with multiple requests to add a
1793          * station. Keep track if one is in progress so that we do not send
1794          * another.
1795          */
1796         if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
1797                 D_INFO("STA %d already in process of being added.\n", sta_id);
1798                 return sta_id;
1799         }
1800
1801         if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
1802             (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) &&
1803             !compare_ether_addr(il->stations[sta_id].sta.sta.addr, addr)) {
1804                 D_ASSOC("STA %d (%pM) already added, not adding again.\n",
1805                         sta_id, addr);
1806                 return sta_id;
1807         }
1808
1809         station = &il->stations[sta_id];
1810         station->used = IL_STA_DRIVER_ACTIVE;
1811         D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr);
1812         il->num_stations++;
1813
1814         /* Set up the C_ADD_STA command to send to device */
1815         memset(&station->sta, 0, sizeof(struct il_addsta_cmd));
1816         memcpy(station->sta.sta.addr, addr, ETH_ALEN);
1817         station->sta.mode = 0;
1818         station->sta.sta.sta_id = sta_id;
1819         station->sta.station_flags = ctx->station_flags;
1820         station->ctxid = ctx->ctxid;
1821
1822         if (sta) {
1823                 struct il_station_priv_common *sta_priv;
1824
1825                 sta_priv = (void *)sta->drv_priv;
1826                 sta_priv->ctx = ctx;
1827         }
1828
1829         /*
1830          * OK to call unconditionally, since local stations (IBSS BSSID
1831          * STA and broadcast STA) pass in a NULL sta, and mac80211
1832          * doesn't allow HT IBSS.
1833          */
1834         il_set_ht_add_station(il, sta_id, sta, ctx);
1835
1836         /* 3945 only */
1837         rate = (il->band == IEEE80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP;
1838         /* Turn on both antennas for the station... */
1839         station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK);
1840
1841         return sta_id;
1842
1843 }
1844
1845 EXPORT_SYMBOL_GPL(il_prep_station);
1846
1847 #define STA_WAIT_TIMEOUT (HZ/2)
1848
1849 /**
1850  * il_add_station_common -
1851  */
1852 int
1853 il_add_station_common(struct il_priv *il, struct il_rxon_context *ctx,
1854                       const u8 * addr, bool is_ap, struct ieee80211_sta *sta,
1855                       u8 * sta_id_r)
1856 {
1857         unsigned long flags_spin;
1858         int ret = 0;
1859         u8 sta_id;
1860         struct il_addsta_cmd sta_cmd;
1861
1862         *sta_id_r = 0;
1863         spin_lock_irqsave(&il->sta_lock, flags_spin);
1864         sta_id = il_prep_station(il, ctx, addr, is_ap, sta);
1865         if (sta_id == IL_INVALID_STATION) {
1866                 IL_ERR("Unable to prepare station %pM for addition\n", addr);
1867                 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1868                 return -EINVAL;
1869         }
1870
1871         /*
1872          * uCode is not able to deal with multiple requests to add a
1873          * station. Keep track if one is in progress so that we do not send
1874          * another.
1875          */
1876         if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
1877                 D_INFO("STA %d already in process of being added.\n", sta_id);
1878                 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1879                 return -EEXIST;
1880         }
1881
1882         if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
1883             (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
1884                 D_ASSOC("STA %d (%pM) already added, not adding again.\n",
1885                         sta_id, addr);
1886                 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1887                 return -EEXIST;
1888         }
1889
1890         il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS;
1891         memcpy(&sta_cmd, &il->stations[sta_id].sta,
1892                sizeof(struct il_addsta_cmd));
1893         spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1894
1895         /* Add station to device's station table */
1896         ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
1897         if (ret) {
1898                 spin_lock_irqsave(&il->sta_lock, flags_spin);
1899                 IL_ERR("Adding station %pM failed.\n",
1900                        il->stations[sta_id].sta.sta.addr);
1901                 il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
1902                 il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
1903                 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1904         }
1905         *sta_id_r = sta_id;
1906         return ret;
1907 }
1908
1909 EXPORT_SYMBOL(il_add_station_common);
1910
1911 /**
1912  * il_sta_ucode_deactivate - deactivate ucode status for a station
1913  *
1914  * il->sta_lock must be held
1915  */
1916 static void
1917 il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id)
1918 {
1919         /* Ucode must be active and driver must be non active */
1920         if ((il->stations[sta_id].
1921              used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) !=
1922             IL_STA_UCODE_ACTIVE)
1923                 IL_ERR("removed non active STA %u\n", sta_id);
1924
1925         il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE;
1926
1927         memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry));
1928         D_ASSOC("Removed STA %u\n", sta_id);
1929 }
1930
1931 static int
1932 il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id,
1933                        bool temporary)
1934 {
1935         struct il_rx_pkt *pkt;
1936         int ret;
1937
1938         unsigned long flags_spin;
1939         struct il_rem_sta_cmd rm_sta_cmd;
1940
1941         struct il_host_cmd cmd = {
1942                 .id = C_REM_STA,
1943                 .len = sizeof(struct il_rem_sta_cmd),
1944                 .flags = CMD_SYNC,
1945                 .data = &rm_sta_cmd,
1946         };
1947
1948         memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
1949         rm_sta_cmd.num_sta = 1;
1950         memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN);
1951
1952         cmd.flags |= CMD_WANT_SKB;
1953
1954         ret = il_send_cmd(il, &cmd);
1955
1956         if (ret)
1957                 return ret;
1958
1959         pkt = (struct il_rx_pkt *)cmd.reply_page;
1960         if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
1961                 IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags);
1962                 ret = -EIO;
1963         }
1964
1965         if (!ret) {
1966                 switch (pkt->u.rem_sta.status) {
1967                 case REM_STA_SUCCESS_MSK:
1968                         if (!temporary) {
1969                                 spin_lock_irqsave(&il->sta_lock, flags_spin);
1970                                 il_sta_ucode_deactivate(il, sta_id);
1971                                 spin_unlock_irqrestore(&il->sta_lock,
1972                                                        flags_spin);
1973                         }
1974                         D_ASSOC("C_REM_STA PASSED\n");
1975                         break;
1976                 default:
1977                         ret = -EIO;
1978                         IL_ERR("C_REM_STA failed\n");
1979                         break;
1980                 }
1981         }
1982         il_free_pages(il, cmd.reply_page);
1983
1984         return ret;
1985 }
1986
1987 /**
1988  * il_remove_station - Remove driver's knowledge of station.
1989  */
1990 int
1991 il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr)
1992 {
1993         unsigned long flags;
1994
1995         if (!il_is_ready(il)) {
1996                 D_INFO("Unable to remove station %pM, device not ready.\n",
1997                        addr);
1998                 /*
1999                  * It is typical for stations to be removed when we are
2000                  * going down. Return success since device will be down
2001                  * soon anyway
2002                  */
2003                 return 0;
2004         }
2005
2006         D_ASSOC("Removing STA from driver:%d  %pM\n", sta_id, addr);
2007
2008         if (WARN_ON(sta_id == IL_INVALID_STATION))
2009                 return -EINVAL;
2010
2011         spin_lock_irqsave(&il->sta_lock, flags);
2012
2013         if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2014                 D_INFO("Removing %pM but non DRIVER active\n", addr);
2015                 goto out_err;
2016         }
2017
2018         if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2019                 D_INFO("Removing %pM but non UCODE active\n", addr);
2020                 goto out_err;
2021         }
2022
2023         if (il->stations[sta_id].used & IL_STA_LOCAL) {
2024                 kfree(il->stations[sta_id].lq);
2025                 il->stations[sta_id].lq = NULL;
2026         }
2027
2028         il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2029
2030         il->num_stations--;
2031
2032         BUG_ON(il->num_stations < 0);
2033
2034         spin_unlock_irqrestore(&il->sta_lock, flags);
2035
2036         return il_send_remove_station(il, addr, sta_id, false);
2037 out_err:
2038         spin_unlock_irqrestore(&il->sta_lock, flags);
2039         return -EINVAL;
2040 }
2041
2042 EXPORT_SYMBOL_GPL(il_remove_station);
2043
2044 /**
2045  * il_clear_ucode_stations - clear ucode station table bits
2046  *
2047  * This function clears all the bits in the driver indicating
2048  * which stations are active in the ucode. Call when something
2049  * other than explicit station management would cause this in
2050  * the ucode, e.g. unassociated RXON.
2051  */
2052 void
2053 il_clear_ucode_stations(struct il_priv *il, struct il_rxon_context *ctx)
2054 {
2055         int i;
2056         unsigned long flags_spin;
2057         bool cleared = false;
2058
2059         D_INFO("Clearing ucode stations in driver\n");
2060
2061         spin_lock_irqsave(&il->sta_lock, flags_spin);
2062         for (i = 0; i < il->hw_params.max_stations; i++) {
2063                 if (ctx && ctx->ctxid != il->stations[i].ctxid)
2064                         continue;
2065
2066                 if (il->stations[i].used & IL_STA_UCODE_ACTIVE) {
2067                         D_INFO("Clearing ucode active for station %d\n", i);
2068                         il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2069                         cleared = true;
2070                 }
2071         }
2072         spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2073
2074         if (!cleared)
2075                 D_INFO("No active stations found to be cleared\n");
2076 }
2077
2078 EXPORT_SYMBOL(il_clear_ucode_stations);
2079
2080 /**
2081  * il_restore_stations() - Restore driver known stations to device
2082  *
2083  * All stations considered active by driver, but not present in ucode, is
2084  * restored.
2085  *
2086  * Function sleeps.
2087  */
2088 void
2089 il_restore_stations(struct il_priv *il, struct il_rxon_context *ctx)
2090 {
2091         struct il_addsta_cmd sta_cmd;
2092         struct il_link_quality_cmd lq;
2093         unsigned long flags_spin;
2094         int i;
2095         bool found = false;
2096         int ret;
2097         bool send_lq;
2098
2099         if (!il_is_ready(il)) {
2100                 D_INFO("Not ready yet, not restoring any stations.\n");
2101                 return;
2102         }
2103
2104         D_ASSOC("Restoring all known stations ... start.\n");
2105         spin_lock_irqsave(&il->sta_lock, flags_spin);
2106         for (i = 0; i < il->hw_params.max_stations; i++) {
2107                 if (ctx->ctxid != il->stations[i].ctxid)
2108                         continue;
2109                 if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) &&
2110                     !(il->stations[i].used & IL_STA_UCODE_ACTIVE)) {
2111                         D_ASSOC("Restoring sta %pM\n",
2112                                 il->stations[i].sta.sta.addr);
2113                         il->stations[i].sta.mode = 0;
2114                         il->stations[i].used |= IL_STA_UCODE_INPROGRESS;
2115                         found = true;
2116                 }
2117         }
2118
2119         for (i = 0; i < il->hw_params.max_stations; i++) {
2120                 if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) {
2121                         memcpy(&sta_cmd, &il->stations[i].sta,
2122                                sizeof(struct il_addsta_cmd));
2123                         send_lq = false;
2124                         if (il->stations[i].lq) {
2125                                 memcpy(&lq, il->stations[i].lq,
2126                                        sizeof(struct il_link_quality_cmd));
2127                                 send_lq = true;
2128                         }
2129                         spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2130                         ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2131                         if (ret) {
2132                                 spin_lock_irqsave(&il->sta_lock, flags_spin);
2133                                 IL_ERR("Adding station %pM failed.\n",
2134                                        il->stations[i].sta.sta.addr);
2135                                 il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE;
2136                                 il->stations[i].used &=
2137                                     ~IL_STA_UCODE_INPROGRESS;
2138                                 spin_unlock_irqrestore(&il->sta_lock,
2139                                                        flags_spin);
2140                         }
2141                         /*
2142                          * Rate scaling has already been initialized, send
2143                          * current LQ command
2144                          */
2145                         if (send_lq)
2146                                 il_send_lq_cmd(il, ctx, &lq, CMD_SYNC, true);
2147                         spin_lock_irqsave(&il->sta_lock, flags_spin);
2148                         il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS;
2149                 }
2150         }
2151
2152         spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2153         if (!found)
2154                 D_INFO("Restoring all known stations"
2155                        " .... no stations to be restored.\n");
2156         else
2157                 D_INFO("Restoring all known stations" " .... complete.\n");
2158 }
2159
2160 EXPORT_SYMBOL(il_restore_stations);
2161
2162 int
2163 il_get_free_ucode_key_idx(struct il_priv *il)
2164 {
2165         int i;
2166
2167         for (i = 0; i < il->sta_key_max_num; i++)
2168                 if (!test_and_set_bit(i, &il->ucode_key_table))
2169                         return i;
2170
2171         return WEP_INVALID_OFFSET;
2172 }
2173
2174 EXPORT_SYMBOL(il_get_free_ucode_key_idx);
2175
2176 void
2177 il_dealloc_bcast_stations(struct il_priv *il)
2178 {
2179         unsigned long flags;
2180         int i;
2181
2182         spin_lock_irqsave(&il->sta_lock, flags);
2183         for (i = 0; i < il->hw_params.max_stations; i++) {
2184                 if (!(il->stations[i].used & IL_STA_BCAST))
2185                         continue;
2186
2187                 il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2188                 il->num_stations--;
2189                 BUG_ON(il->num_stations < 0);
2190                 kfree(il->stations[i].lq);
2191                 il->stations[i].lq = NULL;
2192         }
2193         spin_unlock_irqrestore(&il->sta_lock, flags);
2194 }
2195
2196 EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations);
2197
2198 #ifdef CONFIG_IWLEGACY_DEBUG
2199 static void
2200 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2201 {
2202         int i;
2203         D_RATE("lq station id 0x%x\n", lq->sta_id);
2204         D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk,
2205                lq->general_params.dual_stream_ant_msk);
2206
2207         for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
2208                 D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags);
2209 }
2210 #else
2211 static inline void
2212 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2213 {
2214 }
2215 #endif
2216
2217 /**
2218  * il_is_lq_table_valid() - Test one aspect of LQ cmd for validity
2219  *
2220  * It sometimes happens when a HT rate has been in use and we
2221  * loose connectivity with AP then mac80211 will first tell us that the
2222  * current channel is not HT anymore before removing the station. In such a
2223  * scenario the RXON flags will be updated to indicate we are not
2224  * communicating HT anymore, but the LQ command may still contain HT rates.
2225  * Test for this to prevent driver from sending LQ command between the time
2226  * RXON flags are updated and when LQ command is updated.
2227  */
2228 static bool
2229 il_is_lq_table_valid(struct il_priv *il, struct il_rxon_context *ctx,
2230                      struct il_link_quality_cmd *lq)
2231 {
2232         int i;
2233
2234         if (ctx->ht.enabled)
2235                 return true;
2236
2237         D_INFO("Channel %u is not an HT channel\n", ctx->active.channel);
2238         for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
2239                 if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) {
2240                         D_INFO("idx %d of LQ expects HT channel\n", i);
2241                         return false;
2242                 }
2243         }
2244         return true;
2245 }
2246
2247 /**
2248  * il_send_lq_cmd() - Send link quality command
2249  * @init: This command is sent as part of station initialization right
2250  *        after station has been added.
2251  *
2252  * The link quality command is sent as the last step of station creation.
2253  * This is the special case in which init is set and we call a callback in
2254  * this case to clear the state indicating that station creation is in
2255  * progress.
2256  */
2257 int
2258 il_send_lq_cmd(struct il_priv *il, struct il_rxon_context *ctx,
2259                struct il_link_quality_cmd *lq, u8 flags, bool init)
2260 {
2261         int ret = 0;
2262         unsigned long flags_spin;
2263
2264         struct il_host_cmd cmd = {
2265                 .id = C_TX_LINK_QUALITY_CMD,
2266                 .len = sizeof(struct il_link_quality_cmd),
2267                 .flags = flags,
2268                 .data = lq,
2269         };
2270
2271         if (WARN_ON(lq->sta_id == IL_INVALID_STATION))
2272                 return -EINVAL;
2273
2274         spin_lock_irqsave(&il->sta_lock, flags_spin);
2275         if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2276                 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2277                 return -EINVAL;
2278         }
2279         spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2280
2281         il_dump_lq_cmd(il, lq);
2282         BUG_ON(init && (cmd.flags & CMD_ASYNC));
2283
2284         if (il_is_lq_table_valid(il, ctx, lq))
2285                 ret = il_send_cmd(il, &cmd);
2286         else
2287                 ret = -EINVAL;
2288
2289         if (cmd.flags & CMD_ASYNC)
2290                 return ret;
2291
2292         if (init) {
2293                 D_INFO("init LQ command complete,"
2294                        " clearing sta addition status for sta %d\n",
2295                        lq->sta_id);
2296                 spin_lock_irqsave(&il->sta_lock, flags_spin);
2297                 il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2298                 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2299         }
2300         return ret;
2301 }
2302
2303 EXPORT_SYMBOL(il_send_lq_cmd);
2304
2305 int
2306 il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2307                   struct ieee80211_sta *sta)
2308 {
2309         struct il_priv *il = hw->priv;
2310         struct il_station_priv_common *sta_common = (void *)sta->drv_priv;
2311         int ret;
2312
2313         D_INFO("received request to remove station %pM\n", sta->addr);
2314         mutex_lock(&il->mutex);
2315         D_INFO("proceeding to remove station %pM\n", sta->addr);
2316         ret = il_remove_station(il, sta_common->sta_id, sta->addr);
2317         if (ret)
2318                 IL_ERR("Error removing station %pM\n", sta->addr);
2319         mutex_unlock(&il->mutex);
2320         return ret;
2321 }
2322
2323 EXPORT_SYMBOL(il_mac_sta_remove);
2324
2325 /************************** RX-FUNCTIONS ****************************/
2326 /*
2327  * Rx theory of operation
2328  *
2329  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
2330  * each of which point to Receive Buffers to be filled by the NIC.  These get
2331  * used not only for Rx frames, but for any command response or notification
2332  * from the NIC.  The driver and NIC manage the Rx buffers by means
2333  * of idxes into the circular buffer.
2334  *
2335  * Rx Queue Indexes
2336  * The host/firmware share two idx registers for managing the Rx buffers.
2337  *
2338  * The READ idx maps to the first position that the firmware may be writing
2339  * to -- the driver can read up to (but not including) this position and get
2340  * good data.
2341  * The READ idx is managed by the firmware once the card is enabled.
2342  *
2343  * The WRITE idx maps to the last position the driver has read from -- the
2344  * position preceding WRITE is the last slot the firmware can place a packet.
2345  *
2346  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
2347  * WRITE = READ.
2348  *
2349  * During initialization, the host sets up the READ queue position to the first
2350  * IDX position, and WRITE to the last (READ - 1 wrapped)
2351  *
2352  * When the firmware places a packet in a buffer, it will advance the READ idx
2353  * and fire the RX interrupt.  The driver can then query the READ idx and
2354  * process as many packets as possible, moving the WRITE idx forward as it
2355  * resets the Rx queue buffers with new memory.
2356  *
2357  * The management in the driver is as follows:
2358  * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free.  When
2359  *   iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
2360  *   to replenish the iwl->rxq->rx_free.
2361  * + In il_rx_replenish (scheduled) if 'processed' != 'read' then the
2362  *   iwl->rxq is replenished and the READ IDX is updated (updating the
2363  *   'processed' and 'read' driver idxes as well)
2364  * + A received packet is processed and handed to the kernel network stack,
2365  *   detached from the iwl->rxq.  The driver 'processed' idx is updated.
2366  * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
2367  *   list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
2368  *   IDX is not incremented and iwl->status(RX_STALLED) is set.  If there
2369  *   were enough free buffers and RX_STALLED is set it is cleared.
2370  *
2371  *
2372  * Driver sequence:
2373  *
2374  * il_rx_queue_alloc()   Allocates rx_free
2375  * il_rx_replenish()     Replenishes rx_free list from rx_used, and calls
2376  *                            il_rx_queue_restock
2377  * il_rx_queue_restock() Moves available buffers from rx_free into Rx
2378  *                            queue, updates firmware pointers, and updates
2379  *                            the WRITE idx.  If insufficient rx_free buffers
2380  *                            are available, schedules il_rx_replenish
2381  *
2382  * -- enable interrupts --
2383  * ISR - il_rx()         Detach il_rx_bufs from pool up to the
2384  *                            READ IDX, detaching the SKB from the pool.
2385  *                            Moves the packet buffer from queue to rx_used.
2386  *                            Calls il_rx_queue_restock to refill any empty
2387  *                            slots.
2388  * ...
2389  *
2390  */
2391
2392 /**
2393  * il_rx_queue_space - Return number of free slots available in queue.
2394  */
2395 int
2396 il_rx_queue_space(const struct il_rx_queue *q)
2397 {
2398         int s = q->read - q->write;
2399         if (s <= 0)
2400                 s += RX_QUEUE_SIZE;
2401         /* keep some buffer to not confuse full and empty queue */
2402         s -= 2;
2403         if (s < 0)
2404                 s = 0;
2405         return s;
2406 }
2407
2408 EXPORT_SYMBOL(il_rx_queue_space);
2409
2410 /**
2411  * il_rx_queue_update_write_ptr - Update the write pointer for the RX queue
2412  */
2413 void
2414 il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q)
2415 {
2416         unsigned long flags;
2417         u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg;
2418         u32 reg;
2419
2420         spin_lock_irqsave(&q->lock, flags);
2421
2422         if (q->need_update == 0)
2423                 goto exit_unlock;
2424
2425         /* If power-saving is in use, make sure device is awake */
2426         if (test_bit(S_POWER_PMI, &il->status)) {
2427                 reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2428
2429                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2430                         D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n",
2431                                reg);
2432                         il_set_bit(il, CSR_GP_CNTRL,
2433                                    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2434                         goto exit_unlock;
2435                 }
2436
2437                 q->write_actual = (q->write & ~0x7);
2438                 il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2439
2440                 /* Else device is assumed to be awake */
2441         } else {
2442                 /* Device expects a multiple of 8 */
2443                 q->write_actual = (q->write & ~0x7);
2444                 il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2445         }
2446
2447         q->need_update = 0;
2448
2449 exit_unlock:
2450         spin_unlock_irqrestore(&q->lock, flags);
2451 }
2452
2453 EXPORT_SYMBOL(il_rx_queue_update_write_ptr);
2454
2455 int
2456 il_rx_queue_alloc(struct il_priv *il)
2457 {
2458         struct il_rx_queue *rxq = &il->rxq;
2459         struct device *dev = &il->pci_dev->dev;
2460         int i;
2461
2462         spin_lock_init(&rxq->lock);
2463         INIT_LIST_HEAD(&rxq->rx_free);
2464         INIT_LIST_HEAD(&rxq->rx_used);
2465
2466         /* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
2467         rxq->bd =
2468             dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma,
2469                                GFP_KERNEL);
2470         if (!rxq->bd)
2471                 goto err_bd;
2472
2473         rxq->rb_stts =
2474             dma_alloc_coherent(dev, sizeof(struct il_rb_status),
2475                                &rxq->rb_stts_dma, GFP_KERNEL);
2476         if (!rxq->rb_stts)
2477                 goto err_rb;
2478
2479         /* Fill the rx_used queue with _all_ of the Rx buffers */
2480         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
2481                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
2482
2483         /* Set us so that we have processed and used all buffers, but have
2484          * not restocked the Rx queue with fresh buffers */
2485         rxq->read = rxq->write = 0;
2486         rxq->write_actual = 0;
2487         rxq->free_count = 0;
2488         rxq->need_update = 0;
2489         return 0;
2490
2491 err_rb:
2492         dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
2493                           rxq->bd_dma);
2494 err_bd:
2495         return -ENOMEM;
2496 }
2497
2498 EXPORT_SYMBOL(il_rx_queue_alloc);
2499
2500 void
2501 il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb)
2502 {
2503         struct il_rx_pkt *pkt = rxb_addr(rxb);
2504         struct il_spectrum_notification *report = &(pkt->u.spectrum_notif);
2505
2506         if (!report->state) {
2507                 D_11H("Spectrum Measure Notification: Start\n");
2508                 return;
2509         }
2510
2511         memcpy(&il->measure_report, report, sizeof(*report));
2512         il->measurement_status |= MEASUREMENT_READY;
2513 }
2514
2515 EXPORT_SYMBOL(il_hdl_spectrum_measurement);
2516
2517 /*
2518  * returns non-zero if packet should be dropped
2519  */
2520 int
2521 il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr,
2522                       u32 decrypt_res, struct ieee80211_rx_status *stats)
2523 {
2524         u16 fc = le16_to_cpu(hdr->frame_control);
2525
2526         /*
2527          * All contexts have the same setting here due to it being
2528          * a module parameter, so OK to check any context.
2529          */
2530         if (il->ctx.active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
2531                 return 0;
2532
2533         if (!(fc & IEEE80211_FCTL_PROTECTED))
2534                 return 0;
2535
2536         D_RX("decrypt_res:0x%x\n", decrypt_res);
2537         switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
2538         case RX_RES_STATUS_SEC_TYPE_TKIP:
2539                 /* The uCode has got a bad phase 1 Key, pushes the packet.
2540                  * Decryption will be done in SW. */
2541                 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2542                     RX_RES_STATUS_BAD_KEY_TTAK)
2543                         break;
2544
2545         case RX_RES_STATUS_SEC_TYPE_WEP:
2546                 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2547                     RX_RES_STATUS_BAD_ICV_MIC) {
2548                         /* bad ICV, the packet is destroyed since the
2549                          * decryption is inplace, drop it */
2550                         D_RX("Packet destroyed\n");
2551                         return -1;
2552                 }
2553         case RX_RES_STATUS_SEC_TYPE_CCMP:
2554                 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2555                     RX_RES_STATUS_DECRYPT_OK) {
2556                         D_RX("hw decrypt successfully!!!\n");
2557                         stats->flag |= RX_FLAG_DECRYPTED;
2558                 }
2559                 break;
2560
2561         default:
2562                 break;
2563         }
2564         return 0;
2565 }
2566
2567 EXPORT_SYMBOL(il_set_decrypted_flag);
2568
2569 /**
2570  * il_txq_update_write_ptr - Send new write idx to hardware
2571  */
2572 void
2573 il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq)
2574 {
2575         u32 reg = 0;
2576         int txq_id = txq->q.id;
2577
2578         if (txq->need_update == 0)
2579                 return;
2580
2581         /* if we're trying to save power */
2582         if (test_bit(S_POWER_PMI, &il->status)) {
2583                 /* wake up nic if it's powered down ...
2584                  * uCode will wake up, and interrupt us again, so next
2585                  * time we'll skip this part. */
2586                 reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2587
2588                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2589                         D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n",
2590                                txq_id, reg);
2591                         il_set_bit(il, CSR_GP_CNTRL,
2592                                    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2593                         return;
2594                 }
2595
2596                 il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2597
2598                 /*
2599                  * else not in power-save mode,
2600                  * uCode will never sleep when we're
2601                  * trying to tx (during RFKILL, we're not trying to tx).
2602                  */
2603         } else
2604                 _il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2605         txq->need_update = 0;
2606 }
2607
2608 EXPORT_SYMBOL(il_txq_update_write_ptr);
2609
2610 /**
2611  * il_tx_queue_unmap -  Unmap any remaining DMA mappings and free skb's
2612  */
2613 void
2614 il_tx_queue_unmap(struct il_priv *il, int txq_id)
2615 {
2616         struct il_tx_queue *txq = &il->txq[txq_id];
2617         struct il_queue *q = &txq->q;
2618
2619         if (q->n_bd == 0)
2620                 return;
2621
2622         while (q->write_ptr != q->read_ptr) {
2623                 il->cfg->ops->lib->txq_free_tfd(il, txq);
2624                 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2625         }
2626 }
2627
2628 EXPORT_SYMBOL(il_tx_queue_unmap);
2629
2630 /**
2631  * il_tx_queue_free - Deallocate DMA queue.
2632  * @txq: Transmit queue to deallocate.
2633  *
2634  * Empty queue by removing and destroying all BD's.
2635  * Free all buffers.
2636  * 0-fill, but do not free "txq" descriptor structure.
2637  */
2638 void
2639 il_tx_queue_free(struct il_priv *il, int txq_id)
2640 {
2641         struct il_tx_queue *txq = &il->txq[txq_id];
2642         struct device *dev = &il->pci_dev->dev;
2643         int i;
2644
2645         il_tx_queue_unmap(il, txq_id);
2646
2647         /* De-alloc array of command/tx buffers */
2648         for (i = 0; i < TFD_TX_CMD_SLOTS; i++)
2649                 kfree(txq->cmd[i]);
2650
2651         /* De-alloc circular buffer of TFDs */
2652         if (txq->q.n_bd)
2653                 dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2654                                   txq->tfds, txq->q.dma_addr);
2655
2656         /* De-alloc array of per-TFD driver data */
2657         kfree(txq->txb);
2658         txq->txb = NULL;
2659
2660         /* deallocate arrays */
2661         kfree(txq->cmd);
2662         kfree(txq->meta);
2663         txq->cmd = NULL;
2664         txq->meta = NULL;
2665
2666         /* 0-fill queue descriptor structure */
2667         memset(txq, 0, sizeof(*txq));
2668 }
2669
2670 EXPORT_SYMBOL(il_tx_queue_free);
2671
2672 /**
2673  * il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue
2674  */
2675 void
2676 il_cmd_queue_unmap(struct il_priv *il)
2677 {
2678         struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2679         struct il_queue *q = &txq->q;
2680         int i;
2681
2682         if (q->n_bd == 0)
2683                 return;
2684
2685         while (q->read_ptr != q->write_ptr) {
2686                 i = il_get_cmd_idx(q, q->read_ptr, 0);
2687
2688                 if (txq->meta[i].flags & CMD_MAPPED) {
2689                         pci_unmap_single(il->pci_dev,
2690                                          dma_unmap_addr(&txq->meta[i], mapping),
2691                                          dma_unmap_len(&txq->meta[i], len),
2692                                          PCI_DMA_BIDIRECTIONAL);
2693                         txq->meta[i].flags = 0;
2694                 }
2695
2696                 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2697         }
2698
2699         i = q->n_win;
2700         if (txq->meta[i].flags & CMD_MAPPED) {
2701                 pci_unmap_single(il->pci_dev,
2702                                  dma_unmap_addr(&txq->meta[i], mapping),
2703                                  dma_unmap_len(&txq->meta[i], len),
2704                                  PCI_DMA_BIDIRECTIONAL);
2705                 txq->meta[i].flags = 0;
2706         }
2707 }
2708
2709 EXPORT_SYMBOL(il_cmd_queue_unmap);
2710
2711 /**
2712  * il_cmd_queue_free - Deallocate DMA queue.
2713  * @txq: Transmit queue to deallocate.
2714  *
2715  * Empty queue by removing and destroying all BD's.
2716  * Free all buffers.
2717  * 0-fill, but do not free "txq" descriptor structure.
2718  */
2719 void
2720 il_cmd_queue_free(struct il_priv *il)
2721 {
2722         struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2723         struct device *dev = &il->pci_dev->dev;
2724         int i;
2725
2726         il_cmd_queue_unmap(il);
2727
2728         /* De-alloc array of command/tx buffers */
2729         for (i = 0; i <= TFD_CMD_SLOTS; i++)
2730                 kfree(txq->cmd[i]);
2731
2732         /* De-alloc circular buffer of TFDs */
2733         if (txq->q.n_bd)
2734                 dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2735                                   txq->tfds, txq->q.dma_addr);
2736
2737         /* deallocate arrays */
2738         kfree(txq->cmd);
2739         kfree(txq->meta);
2740         txq->cmd = NULL;
2741         txq->meta = NULL;
2742
2743         /* 0-fill queue descriptor structure */
2744         memset(txq, 0, sizeof(*txq));
2745 }
2746
2747 EXPORT_SYMBOL(il_cmd_queue_free);
2748
2749 /*************** DMA-QUEUE-GENERAL-FUNCTIONS  *****
2750  * DMA services
2751  *
2752  * Theory of operation
2753  *
2754  * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
2755  * of buffer descriptors, each of which points to one or more data buffers for
2756  * the device to read from or fill.  Driver and device exchange status of each
2757  * queue via "read" and "write" pointers.  Driver keeps minimum of 2 empty
2758  * entries in each circular buffer, to protect against confusing empty and full
2759  * queue states.
2760  *
2761  * The device reads or writes the data in the queues via the device's several
2762  * DMA/FIFO channels.  Each queue is mapped to a single DMA channel.
2763  *
2764  * For Tx queue, there are low mark and high mark limits. If, after queuing
2765  * the packet for Tx, free space become < low mark, Tx queue stopped. When
2766  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
2767  * Tx queue resumed.
2768  *
2769  * See more detailed info in 4965.h.
2770  ***************************************************/
2771
2772 int
2773 il_queue_space(const struct il_queue *q)
2774 {
2775         int s = q->read_ptr - q->write_ptr;
2776
2777         if (q->read_ptr > q->write_ptr)
2778                 s -= q->n_bd;
2779
2780         if (s <= 0)
2781                 s += q->n_win;
2782         /* keep some reserve to not confuse empty and full situations */
2783         s -= 2;
2784         if (s < 0)
2785                 s = 0;
2786         return s;
2787 }
2788
2789 EXPORT_SYMBOL(il_queue_space);
2790
2791
2792 /**
2793  * il_queue_init - Initialize queue's high/low-water and read/write idxes
2794  */
2795 static int
2796 il_queue_init(struct il_priv *il, struct il_queue *q, int count, int slots_num,
2797               u32 id)
2798 {
2799         q->n_bd = count;
2800         q->n_win = slots_num;
2801         q->id = id;
2802
2803         /* count must be power-of-two size, otherwise il_queue_inc_wrap
2804          * and il_queue_dec_wrap are broken. */
2805         BUG_ON(!is_power_of_2(count));
2806
2807         /* slots_num must be power-of-two size, otherwise
2808          * il_get_cmd_idx is broken. */
2809         BUG_ON(!is_power_of_2(slots_num));
2810
2811         q->low_mark = q->n_win / 4;
2812         if (q->low_mark < 4)
2813                 q->low_mark = 4;
2814
2815         q->high_mark = q->n_win / 8;
2816         if (q->high_mark < 2)
2817                 q->high_mark = 2;
2818
2819         q->write_ptr = q->read_ptr = 0;
2820
2821         return 0;
2822 }
2823
2824 /**
2825  * il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue
2826  */
2827 static int
2828 il_tx_queue_alloc(struct il_priv *il, struct il_tx_queue *txq, u32 id)
2829 {
2830         struct device *dev = &il->pci_dev->dev;
2831         size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX;
2832
2833         /* Driver ilate data, only for Tx (not command) queues,
2834          * not shared with device. */
2835         if (id != il->cmd_queue) {
2836                 txq->txb =
2837                     kzalloc(sizeof(txq->txb[0]) * TFD_QUEUE_SIZE_MAX,
2838                             GFP_KERNEL);
2839                 if (!txq->txb) {
2840                         IL_ERR("kmalloc for auxiliary BD "
2841                                "structures failed\n");
2842                         goto error;
2843                 }
2844         } else {
2845                 txq->txb = NULL;
2846         }
2847
2848         /* Circular buffer of transmit frame descriptors (TFDs),
2849          * shared with device */
2850         txq->tfds =
2851             dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL);
2852         if (!txq->tfds) {
2853                 IL_ERR("pci_alloc_consistent(%zd) failed\n", tfd_sz);
2854                 goto error;
2855         }
2856         txq->q.id = id;
2857
2858         return 0;
2859
2860 error:
2861         kfree(txq->txb);
2862         txq->txb = NULL;
2863
2864         return -ENOMEM;
2865 }
2866
2867 /**
2868  * il_tx_queue_init - Allocate and initialize one tx/cmd queue
2869  */
2870 int
2871 il_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq, int slots_num,
2872                  u32 txq_id)
2873 {
2874         int i, len;
2875         int ret;
2876         int actual_slots = slots_num;
2877
2878         /*
2879          * Alloc buffer array for commands (Tx or other types of commands).
2880          * For the command queue (#4/#9), allocate command space + one big
2881          * command for scan, since scan command is very huge; the system will
2882          * not have two scans at the same time, so only one is needed.
2883          * For normal Tx queues (all other queues), no super-size command
2884          * space is needed.
2885          */
2886         if (txq_id == il->cmd_queue)
2887                 actual_slots++;
2888
2889         txq->meta =
2890             kzalloc(sizeof(struct il_cmd_meta) * actual_slots, GFP_KERNEL);
2891         txq->cmd =
2892             kzalloc(sizeof(struct il_device_cmd *) * actual_slots, GFP_KERNEL);
2893
2894         if (!txq->meta || !txq->cmd)
2895                 goto out_free_arrays;
2896
2897         len = sizeof(struct il_device_cmd);
2898         for (i = 0; i < actual_slots; i++) {
2899                 /* only happens for cmd queue */
2900                 if (i == slots_num)
2901                         len = IL_MAX_CMD_SIZE;
2902
2903                 txq->cmd[i] = kmalloc(len, GFP_KERNEL);
2904                 if (!txq->cmd[i])
2905                         goto err;
2906         }
2907
2908         /* Alloc driver data array and TFD circular buffer */
2909         ret = il_tx_queue_alloc(il, txq, txq_id);
2910         if (ret)
2911                 goto err;
2912
2913         txq->need_update = 0;
2914
2915         /*
2916          * For the default queues 0-3, set up the swq_id
2917          * already -- all others need to get one later
2918          * (if they need one at all).
2919          */
2920         if (txq_id < 4)
2921                 il_set_swq_id(txq, txq_id, txq_id);
2922
2923         /* TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise
2924          * il_queue_inc_wrap and il_queue_dec_wrap are broken. */
2925         BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1));
2926
2927         /* Initialize queue's high/low-water marks, and head/tail idxes */
2928         il_queue_init(il, &txq->q, TFD_QUEUE_SIZE_MAX, slots_num, txq_id);
2929
2930         /* Tell device where to find queue */
2931         il->cfg->ops->lib->txq_init(il, txq);
2932
2933         return 0;
2934 err:
2935         for (i = 0; i < actual_slots; i++)
2936                 kfree(txq->cmd[i]);
2937 out_free_arrays:
2938         kfree(txq->meta);
2939         kfree(txq->cmd);
2940
2941         return -ENOMEM;
2942 }
2943
2944 EXPORT_SYMBOL(il_tx_queue_init);
2945
2946 void
2947 il_tx_queue_reset(struct il_priv *il, struct il_tx_queue *txq, int slots_num,
2948                   u32 txq_id)
2949 {
2950         int actual_slots = slots_num;
2951
2952         if (txq_id == il->cmd_queue)
2953                 actual_slots++;
2954
2955         memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots);
2956
2957         txq->need_update = 0;
2958
2959         /* Initialize queue's high/low-water marks, and head/tail idxes */
2960         il_queue_init(il, &txq->q, TFD_QUEUE_SIZE_MAX, slots_num, txq_id);
2961
2962         /* Tell device where to find queue */
2963         il->cfg->ops->lib->txq_init(il, txq);
2964 }
2965
2966 EXPORT_SYMBOL(il_tx_queue_reset);
2967
2968 /*************** HOST COMMAND QUEUE FUNCTIONS   *****/
2969
2970 /**
2971  * il_enqueue_hcmd - enqueue a uCode command
2972  * @il: device ilate data point
2973  * @cmd: a point to the ucode command structure
2974  *
2975  * The function returns < 0 values to indicate the operation is
2976  * failed. On success, it turns the idx (> 0) of command in the
2977  * command queue.
2978  */
2979 int
2980 il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
2981 {
2982         struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2983         struct il_queue *q = &txq->q;
2984         struct il_device_cmd *out_cmd;
2985         struct il_cmd_meta *out_meta;
2986         dma_addr_t phys_addr;
2987         unsigned long flags;
2988         int len;
2989         u32 idx;
2990         u16 fix_size;
2991
2992         cmd->len = il->cfg->ops->utils->get_hcmd_size(cmd->id, cmd->len);
2993         fix_size = (u16) (cmd->len + sizeof(out_cmd->hdr));
2994
2995         /* If any of the command structures end up being larger than
2996          * the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then
2997          * we will need to increase the size of the TFD entries
2998          * Also, check to see if command buffer should not exceed the size
2999          * of device_cmd and max_cmd_size. */
3000         BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) &&
3001                !(cmd->flags & CMD_SIZE_HUGE));
3002         BUG_ON(fix_size > IL_MAX_CMD_SIZE);
3003
3004         if (il_is_rfkill(il) || il_is_ctkill(il)) {
3005                 IL_WARN("Not sending command - %s KILL\n",
3006                         il_is_rfkill(il) ? "RF" : "CT");
3007                 return -EIO;
3008         }
3009
3010         spin_lock_irqsave(&il->hcmd_lock, flags);
3011
3012         if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
3013                 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3014
3015                 IL_ERR("Restarting adapter due to command queue full\n");
3016                 queue_work(il->workqueue, &il->restart);
3017                 return -ENOSPC;
3018         }
3019
3020         idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE);
3021         out_cmd = txq->cmd[idx];
3022         out_meta = &txq->meta[idx];
3023
3024         if (WARN_ON(out_meta->flags & CMD_MAPPED)) {
3025                 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3026                 return -ENOSPC;
3027         }
3028
3029         memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */
3030         out_meta->flags = cmd->flags | CMD_MAPPED;
3031         if (cmd->flags & CMD_WANT_SKB)
3032                 out_meta->source = cmd;
3033         if (cmd->flags & CMD_ASYNC)
3034                 out_meta->callback = cmd->callback;
3035
3036         out_cmd->hdr.cmd = cmd->id;
3037         memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len);
3038
3039         /* At this point, the out_cmd now has all of the incoming cmd
3040          * information */
3041
3042         out_cmd->hdr.flags = 0;
3043         out_cmd->hdr.sequence =
3044             cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) | IDX_TO_SEQ(q->write_ptr));
3045         if (cmd->flags & CMD_SIZE_HUGE)
3046                 out_cmd->hdr.sequence |= SEQ_HUGE_FRAME;
3047         len = sizeof(struct il_device_cmd);
3048         if (idx == TFD_CMD_SLOTS)
3049                 len = IL_MAX_CMD_SIZE;
3050
3051 #ifdef CONFIG_IWLEGACY_DEBUG
3052         switch (out_cmd->hdr.cmd) {
3053         case C_TX_LINK_QUALITY_CMD:
3054         case C_SENSITIVITY:
3055                 D_HC_DUMP("Sending command %s (#%x), seq: 0x%04X, "
3056                           "%d bytes at %d[%d]:%d\n",
3057                           il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3058                           le16_to_cpu(out_cmd->hdr.sequence), fix_size,
3059                           q->write_ptr, idx, il->cmd_queue);
3060                 break;
3061         default:
3062                 D_HC("Sending command %s (#%x), seq: 0x%04X, "
3063                      "%d bytes at %d[%d]:%d\n",
3064                      il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3065                      le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr,
3066                      idx, il->cmd_queue);
3067         }
3068 #endif
3069         txq->need_update = 1;
3070
3071         if (il->cfg->ops->lib->txq_update_byte_cnt_tbl)
3072                 /* Set up entry in queue's byte count circular buffer */
3073                 il->cfg->ops->lib->txq_update_byte_cnt_tbl(il, txq, 0);
3074
3075         phys_addr =
3076             pci_map_single(il->pci_dev, &out_cmd->hdr, fix_size,
3077                            PCI_DMA_BIDIRECTIONAL);
3078         dma_unmap_addr_set(out_meta, mapping, phys_addr);
3079         dma_unmap_len_set(out_meta, len, fix_size);
3080
3081         il->cfg->ops->lib->txq_attach_buf_to_tfd(il, txq, phys_addr, fix_size,
3082                                                  1, U32_PAD(cmd->len));
3083
3084         /* Increment and update queue's write idx */
3085         q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd);
3086         il_txq_update_write_ptr(il, txq);
3087
3088         spin_unlock_irqrestore(&il->hcmd_lock, flags);
3089         return idx;
3090 }
3091
3092 /**
3093  * il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd
3094  *
3095  * When FW advances 'R' idx, all entries between old and new 'R' idx
3096  * need to be reclaimed. As result, some free space forms.  If there is
3097  * enough free space (> low mark), wake the stack that feeds us.
3098  */
3099 static void
3100 il_hcmd_queue_reclaim(struct il_priv *il, int txq_id, int idx, int cmd_idx)
3101 {
3102         struct il_tx_queue *txq = &il->txq[txq_id];
3103         struct il_queue *q = &txq->q;
3104         int nfreed = 0;
3105
3106         if (idx >= q->n_bd || il_queue_used(q, idx) == 0) {
3107                 IL_ERR("Read idx for DMA queue txq id (%d), idx %d, "
3108                        "is out of range [0-%d] %d %d.\n", txq_id, idx, q->n_bd,
3109                        q->write_ptr, q->read_ptr);
3110                 return;
3111         }
3112
3113         for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
3114              q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
3115
3116                 if (nfreed++ > 0) {
3117                         IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx,
3118                                q->write_ptr, q->read_ptr);
3119                         queue_work(il->workqueue, &il->restart);
3120                 }
3121
3122         }
3123 }
3124
3125 /**
3126  * il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them
3127  * @rxb: Rx buffer to reclaim
3128  *
3129  * If an Rx buffer has an async callback associated with it the callback
3130  * will be executed.  The attached skb (if present) will only be freed
3131  * if the callback returns 1
3132  */
3133 void
3134 il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb)
3135 {
3136         struct il_rx_pkt *pkt = rxb_addr(rxb);
3137         u16 sequence = le16_to_cpu(pkt->hdr.sequence);
3138         int txq_id = SEQ_TO_QUEUE(sequence);
3139         int idx = SEQ_TO_IDX(sequence);
3140         int cmd_idx;
3141         bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME);
3142         struct il_device_cmd *cmd;
3143         struct il_cmd_meta *meta;
3144         struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3145         unsigned long flags;
3146
3147         /* If a Tx command is being handled and it isn't in the actual
3148          * command queue then there a command routing bug has been introduced
3149          * in the queue management code. */
3150         if (WARN
3151             (txq_id != il->cmd_queue,
3152              "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
3153              txq_id, il->cmd_queue, sequence, il->txq[il->cmd_queue].q.read_ptr,
3154              il->txq[il->cmd_queue].q.write_ptr)) {
3155                 il_print_hex_error(il, pkt, 32);
3156                 return;
3157         }
3158
3159         cmd_idx = il_get_cmd_idx(&txq->q, idx, huge);
3160         cmd = txq->cmd[cmd_idx];
3161         meta = &txq->meta[cmd_idx];
3162
3163         txq->time_stamp = jiffies;
3164
3165         pci_unmap_single(il->pci_dev, dma_unmap_addr(meta, mapping),
3166                          dma_unmap_len(meta, len), PCI_DMA_BIDIRECTIONAL);
3167
3168         /* Input error checking is done when commands are added to queue. */
3169         if (meta->flags & CMD_WANT_SKB) {
3170                 meta->source->reply_page = (unsigned long)rxb_addr(rxb);
3171                 rxb->page = NULL;
3172         } else if (meta->callback)
3173                 meta->callback(il, cmd, pkt);
3174
3175         spin_lock_irqsave(&il->hcmd_lock, flags);
3176
3177         il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx);
3178
3179         if (!(meta->flags & CMD_ASYNC)) {
3180                 clear_bit(S_HCMD_ACTIVE, &il->status);
3181                 D_INFO("Clearing HCMD_ACTIVE for command %s\n",
3182                        il_get_cmd_string(cmd->hdr.cmd));
3183                 wake_up(&il->wait_command_queue);
3184         }
3185
3186         /* Mark as unmapped */
3187         meta->flags = 0;
3188
3189         spin_unlock_irqrestore(&il->hcmd_lock, flags);
3190 }
3191 EXPORT_SYMBOL(il_tx_cmd_complete);
3192
3193 MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965");
3194 MODULE_VERSION(IWLWIFI_VERSION);
3195 MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
3196 MODULE_LICENSE("GPL");
3197
3198 /*
3199  * set bt_coex_active to true, uCode will do kill/defer
3200  * every time the priority line is asserted (BT is sending signals on the
3201  * priority line in the PCIx).
3202  * set bt_coex_active to false, uCode will ignore the BT activity and
3203  * perform the normal operation
3204  *
3205  * User might experience transmit issue on some platform due to WiFi/BT
3206  * co-exist problem. The possible behaviors are:
3207  *   Able to scan and finding all the available AP
3208  *   Not able to associate with any AP
3209  * On those platforms, WiFi communication can be restored by set
3210  * "bt_coex_active" module parameter to "false"
3211  *
3212  * default: bt_coex_active = true (BT_COEX_ENABLE)
3213  */
3214 static bool bt_coex_active = true;
3215 module_param(bt_coex_active, bool, S_IRUGO);
3216 MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist");
3217
3218 u32 il_debug_level;
3219 EXPORT_SYMBOL(il_debug_level);
3220
3221 const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3222
3223 EXPORT_SYMBOL(il_bcast_addr);
3224
3225 /* This function both allocates and initializes hw and il. */
3226 struct ieee80211_hw *
3227 il_alloc_all(struct il_cfg *cfg)
3228 {
3229         struct il_priv *il;
3230         /* mac80211 allocates memory for this device instance, including
3231          *   space for this driver's ilate structure */
3232         struct ieee80211_hw *hw;
3233
3234         hw = ieee80211_alloc_hw(sizeof(struct il_priv),
3235                                 cfg->ops->ieee80211_ops);
3236         if (hw == NULL) {
3237                 pr_err("%s: Can not allocate network device\n", cfg->name);
3238                 goto out;
3239         }
3240
3241         il = hw->priv;
3242         il->hw = hw;
3243
3244 out:
3245         return hw;
3246 }
3247
3248 EXPORT_SYMBOL(il_alloc_all);
3249
3250 #define MAX_BIT_RATE_40_MHZ 150 /* Mbps */
3251 #define MAX_BIT_RATE_20_MHZ 72  /* Mbps */
3252 static void
3253 il_init_ht_hw_capab(const struct il_priv *il,
3254                     struct ieee80211_sta_ht_cap *ht_info,
3255                     enum ieee80211_band band)
3256 {
3257         u16 max_bit_rate = 0;
3258         u8 rx_chains_num = il->hw_params.rx_chains_num;
3259         u8 tx_chains_num = il->hw_params.tx_chains_num;
3260
3261         ht_info->cap = 0;
3262         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
3263
3264         ht_info->ht_supported = true;
3265
3266         ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
3267         max_bit_rate = MAX_BIT_RATE_20_MHZ;
3268         if (il->hw_params.ht40_channel & BIT(band)) {
3269                 ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
3270                 ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
3271                 ht_info->mcs.rx_mask[4] = 0x01;
3272                 max_bit_rate = MAX_BIT_RATE_40_MHZ;
3273         }
3274
3275         if (il->cfg->mod_params->amsdu_size_8K)
3276                 ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
3277
3278         ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
3279         ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
3280
3281         ht_info->mcs.rx_mask[0] = 0xFF;
3282         if (rx_chains_num >= 2)
3283                 ht_info->mcs.rx_mask[1] = 0xFF;
3284         if (rx_chains_num >= 3)
3285                 ht_info->mcs.rx_mask[2] = 0xFF;
3286
3287         /* Highest supported Rx data rate */
3288         max_bit_rate *= rx_chains_num;
3289         WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
3290         ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
3291
3292         /* Tx MCS capabilities */
3293         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
3294         if (tx_chains_num != rx_chains_num) {
3295                 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
3296                 ht_info->mcs.tx_params |=
3297                     ((tx_chains_num -
3298                       1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
3299         }
3300 }
3301
3302 /**
3303  * il_init_geos - Initialize mac80211's geo/channel info based from eeprom
3304  */
3305 int
3306 il_init_geos(struct il_priv *il)
3307 {
3308         struct il_channel_info *ch;
3309         struct ieee80211_supported_band *sband;
3310         struct ieee80211_channel *channels;
3311         struct ieee80211_channel *geo_ch;
3312         struct ieee80211_rate *rates;
3313         int i = 0;
3314         s8 max_tx_power = 0;
3315
3316         if (il->bands[IEEE80211_BAND_2GHZ].n_bitrates ||
3317             il->bands[IEEE80211_BAND_5GHZ].n_bitrates) {
3318                 D_INFO("Geography modes already initialized.\n");
3319                 set_bit(S_GEO_CONFIGURED, &il->status);
3320                 return 0;
3321         }
3322
3323         channels =
3324             kzalloc(sizeof(struct ieee80211_channel) * il->channel_count,
3325                     GFP_KERNEL);
3326         if (!channels)
3327                 return -ENOMEM;
3328
3329         rates =
3330             kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY),
3331                     GFP_KERNEL);
3332         if (!rates) {
3333                 kfree(channels);
3334                 return -ENOMEM;
3335         }
3336
3337         /* 5.2GHz channels start after the 2.4GHz channels */
3338         sband = &il->bands[IEEE80211_BAND_5GHZ];
3339         sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)];
3340         /* just OFDM */
3341         sband->bitrates = &rates[IL_FIRST_OFDM_RATE];
3342         sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE;
3343
3344         if (il->cfg->sku & IL_SKU_N)
3345                 il_init_ht_hw_capab(il, &sband->ht_cap, IEEE80211_BAND_5GHZ);
3346
3347         sband = &il->bands[IEEE80211_BAND_2GHZ];
3348         sband->channels = channels;
3349         /* OFDM & CCK */
3350         sband->bitrates = rates;
3351         sband->n_bitrates = RATE_COUNT_LEGACY;
3352
3353         if (il->cfg->sku & IL_SKU_N)
3354                 il_init_ht_hw_capab(il, &sband->ht_cap, IEEE80211_BAND_2GHZ);
3355
3356         il->ieee_channels = channels;
3357         il->ieee_rates = rates;
3358
3359         for (i = 0; i < il->channel_count; i++) {
3360                 ch = &il->channel_info[i];
3361
3362                 if (!il_is_channel_valid(ch))
3363                         continue;
3364
3365                 sband = &il->bands[ch->band];
3366
3367                 geo_ch = &sband->channels[sband->n_channels++];
3368
3369                 geo_ch->center_freq =
3370                     ieee80211_channel_to_frequency(ch->channel, ch->band);
3371                 geo_ch->max_power = ch->max_power_avg;
3372                 geo_ch->max_antenna_gain = 0xff;
3373                 geo_ch->hw_value = ch->channel;
3374
3375                 if (il_is_channel_valid(ch)) {
3376                         if (!(ch->flags & EEPROM_CHANNEL_IBSS))
3377                                 geo_ch->flags |= IEEE80211_CHAN_NO_IBSS;
3378
3379                         if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
3380                                 geo_ch->flags |= IEEE80211_CHAN_PASSIVE_SCAN;
3381
3382                         if (ch->flags & EEPROM_CHANNEL_RADAR)
3383                                 geo_ch->flags |= IEEE80211_CHAN_RADAR;
3384
3385                         geo_ch->flags |= ch->ht40_extension_channel;
3386
3387                         if (ch->max_power_avg > max_tx_power)
3388                                 max_tx_power = ch->max_power_avg;
3389                 } else {
3390                         geo_ch->flags |= IEEE80211_CHAN_DISABLED;
3391                 }
3392
3393                 D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel,
3394                        geo_ch->center_freq,
3395                        il_is_channel_a_band(ch) ? "5.2" : "2.4",
3396                        geo_ch->
3397                        flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid",
3398                        geo_ch->flags);
3399         }
3400
3401         il->tx_power_device_lmt = max_tx_power;
3402         il->tx_power_user_lmt = max_tx_power;
3403         il->tx_power_next = max_tx_power;
3404
3405         if (il->bands[IEEE80211_BAND_5GHZ].n_channels == 0 &&
3406             (il->cfg->sku & IL_SKU_A)) {
3407                 IL_INFO("Incorrectly detected BG card as ABG. "
3408                         "Please send your PCI ID 0x%04X:0x%04X to maintainer.\n",
3409                         il->pci_dev->device, il->pci_dev->subsystem_device);
3410                 il->cfg->sku &= ~IL_SKU_A;
3411         }
3412
3413         IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n",
3414                 il->bands[IEEE80211_BAND_2GHZ].n_channels,
3415                 il->bands[IEEE80211_BAND_5GHZ].n_channels);
3416
3417         set_bit(S_GEO_CONFIGURED, &il->status);
3418
3419         return 0;
3420 }
3421
3422 EXPORT_SYMBOL(il_init_geos);
3423
3424 /*
3425  * il_free_geos - undo allocations in il_init_geos
3426  */
3427 void
3428 il_free_geos(struct il_priv *il)
3429 {
3430         kfree(il->ieee_channels);
3431         kfree(il->ieee_rates);
3432         clear_bit(S_GEO_CONFIGURED, &il->status);
3433 }
3434
3435 EXPORT_SYMBOL(il_free_geos);
3436
3437 static bool
3438 il_is_channel_extension(struct il_priv *il, enum ieee80211_band band,
3439                         u16 channel, u8 extension_chan_offset)
3440 {
3441         const struct il_channel_info *ch_info;
3442
3443         ch_info = il_get_channel_info(il, band, channel);
3444         if (!il_is_channel_valid(ch_info))
3445                 return false;
3446
3447         if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
3448                 return !(ch_info->
3449                          ht40_extension_channel & IEEE80211_CHAN_NO_HT40PLUS);
3450         else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
3451                 return !(ch_info->
3452                          ht40_extension_channel & IEEE80211_CHAN_NO_HT40MINUS);
3453
3454         return false;
3455 }
3456
3457 bool
3458 il_is_ht40_tx_allowed(struct il_priv * il, struct il_rxon_context * ctx,
3459                       struct ieee80211_sta_ht_cap * ht_cap)
3460 {
3461         if (!ctx->ht.enabled || !ctx->ht.is_40mhz)
3462                 return false;
3463
3464         /*
3465          * We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40
3466          * the bit will not set if it is pure 40MHz case
3467          */
3468         if (ht_cap && !ht_cap->ht_supported)
3469                 return false;
3470
3471 #ifdef CONFIG_IWLEGACY_DEBUGFS
3472         if (il->disable_ht40)
3473                 return false;
3474 #endif
3475
3476         return il_is_channel_extension(il, il->band,
3477                                        le16_to_cpu(ctx->staging.channel),
3478                                        ctx->ht.extension_chan_offset);
3479 }
3480
3481 EXPORT_SYMBOL(il_is_ht40_tx_allowed);
3482
3483 static u16
3484 il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val)
3485 {
3486         u16 new_val;
3487         u16 beacon_factor;
3488
3489         /*
3490          * If mac80211 hasn't given us a beacon interval, program
3491          * the default into the device.
3492          */
3493         if (!beacon_val)
3494                 return DEFAULT_BEACON_INTERVAL;
3495
3496         /*
3497          * If the beacon interval we obtained from the peer
3498          * is too large, we'll have to wake up more often
3499          * (and in IBSS case, we'll beacon too much)
3500          *
3501          * For example, if max_beacon_val is 4096, and the
3502          * requested beacon interval is 7000, we'll have to
3503          * use 3500 to be able to wake up on the beacons.
3504          *
3505          * This could badly influence beacon detection stats.
3506          */
3507
3508         beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val;
3509         new_val = beacon_val / beacon_factor;
3510
3511         if (!new_val)
3512                 new_val = max_beacon_val;
3513
3514         return new_val;
3515 }
3516
3517 int
3518 il_send_rxon_timing(struct il_priv *il, struct il_rxon_context *ctx)
3519 {
3520         u64 tsf;
3521         s32 interval_tm, rem;
3522         struct ieee80211_conf *conf = NULL;
3523         u16 beacon_int;
3524         struct ieee80211_vif *vif = ctx->vif;
3525
3526         conf = &il->hw->conf;
3527
3528         lockdep_assert_held(&il->mutex);
3529
3530         memset(&ctx->timing, 0, sizeof(struct il_rxon_time_cmd));
3531
3532         ctx->timing.timestamp = cpu_to_le64(il->timestamp);
3533         ctx->timing.listen_interval = cpu_to_le16(conf->listen_interval);
3534
3535         beacon_int = vif ? vif->bss_conf.beacon_int : 0;
3536
3537         /*
3538          * TODO: For IBSS we need to get atim_win from mac80211,
3539          *       for now just always use 0
3540          */
3541         ctx->timing.atim_win = 0;
3542
3543         beacon_int =
3544             il_adjust_beacon_interval(beacon_int,
3545                                       il->hw_params.max_beacon_itrvl *
3546                                       TIME_UNIT);
3547         ctx->timing.beacon_interval = cpu_to_le16(beacon_int);
3548
3549         tsf = il->timestamp;    /* tsf is modifed by do_div: copy it */
3550         interval_tm = beacon_int * TIME_UNIT;
3551         rem = do_div(tsf, interval_tm);
3552         ctx->timing.beacon_init_val = cpu_to_le32(interval_tm - rem);
3553
3554         ctx->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ? : 1) : 1;
3555
3556         D_ASSOC("beacon interval %d beacon timer %d beacon tim %d\n",
3557                 le16_to_cpu(ctx->timing.beacon_interval),
3558                 le32_to_cpu(ctx->timing.beacon_init_val),
3559                 le16_to_cpu(ctx->timing.atim_win));
3560
3561         return il_send_cmd_pdu(il, ctx->rxon_timing_cmd, sizeof(ctx->timing),
3562                                &ctx->timing);
3563 }
3564
3565 EXPORT_SYMBOL(il_send_rxon_timing);
3566
3567 void
3568 il_set_rxon_hwcrypto(struct il_priv *il, struct il_rxon_context *ctx,
3569                      int hw_decrypt)
3570 {
3571         struct il_rxon_cmd *rxon = &ctx->staging;
3572
3573         if (hw_decrypt)
3574                 rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK;
3575         else
3576                 rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK;
3577
3578 }
3579
3580 EXPORT_SYMBOL(il_set_rxon_hwcrypto);
3581
3582 /* validate RXON structure is valid */
3583 int
3584 il_check_rxon_cmd(struct il_priv *il, struct il_rxon_context *ctx)
3585 {
3586         struct il_rxon_cmd *rxon = &ctx->staging;
3587         bool error = false;
3588
3589         if (rxon->flags & RXON_FLG_BAND_24G_MSK) {
3590                 if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) {
3591                         IL_WARN("check 2.4G: wrong narrow\n");
3592                         error = true;
3593                 }
3594                 if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) {
3595                         IL_WARN("check 2.4G: wrong radar\n");
3596                         error = true;
3597                 }
3598         } else {
3599                 if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) {
3600                         IL_WARN("check 5.2G: not short slot!\n");
3601                         error = true;
3602                 }
3603                 if (rxon->flags & RXON_FLG_CCK_MSK) {
3604                         IL_WARN("check 5.2G: CCK!\n");
3605                         error = true;
3606                 }
3607         }
3608         if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) {
3609                 IL_WARN("mac/bssid mcast!\n");
3610                 error = true;
3611         }
3612
3613         /* make sure basic rates 6Mbps and 1Mbps are supported */
3614         if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 &&
3615             (rxon->cck_basic_rates & RATE_1M_MASK) == 0) {
3616                 IL_WARN("neither 1 nor 6 are basic\n");
3617                 error = true;
3618         }
3619
3620         if (le16_to_cpu(rxon->assoc_id) > 2007) {
3621                 IL_WARN("aid > 2007\n");
3622                 error = true;
3623         }
3624
3625         if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) ==
3626             (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) {
3627                 IL_WARN("CCK and short slot\n");
3628                 error = true;
3629         }
3630
3631         if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) ==
3632             (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) {
3633                 IL_WARN("CCK and auto detect");
3634                 error = true;
3635         }
3636
3637         if ((rxon->
3638              flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) ==
3639             RXON_FLG_TGG_PROTECT_MSK) {
3640                 IL_WARN("TGg but no auto-detect\n");
3641                 error = true;
3642         }
3643
3644         if (error)
3645                 IL_WARN("Tuning to channel %d\n", le16_to_cpu(rxon->channel));
3646
3647         if (error) {
3648                 IL_ERR("Invalid RXON\n");
3649                 return -EINVAL;
3650         }
3651         return 0;
3652 }
3653
3654 EXPORT_SYMBOL(il_check_rxon_cmd);
3655
3656 /**
3657  * il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed
3658  * @il: staging_rxon is compared to active_rxon
3659  *
3660  * If the RXON structure is changing enough to require a new tune,
3661  * or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that
3662  * a new tune (full RXON command, rather than RXON_ASSOC cmd) is required.
3663  */
3664 int
3665 il_full_rxon_required(struct il_priv *il, struct il_rxon_context *ctx)
3666 {
3667         const struct il_rxon_cmd *staging = &ctx->staging;
3668         const struct il_rxon_cmd *active = &ctx->active;
3669
3670 #define CHK(cond)                                                       \
3671         if ((cond)) {                                                   \
3672                 D_INFO("need full RXON - " #cond "\n"); \
3673                 return 1;                                               \
3674         }
3675
3676 #define CHK_NEQ(c1, c2)                                         \
3677         if ((c1) != (c2)) {                                     \
3678                 D_INFO("need full RXON - "      \
3679                                #c1 " != " #c2 " - %d != %d\n",  \
3680                                (c1), (c2));                     \
3681                 return 1;                                       \
3682         }
3683
3684         /* These items are only settable from the full RXON command */
3685         CHK(!il_is_associated_ctx(ctx));
3686         CHK(compare_ether_addr(staging->bssid_addr, active->bssid_addr));
3687         CHK(compare_ether_addr(staging->node_addr, active->node_addr));
3688         CHK(compare_ether_addr
3689             (staging->wlap_bssid_addr, active->wlap_bssid_addr));
3690         CHK_NEQ(staging->dev_type, active->dev_type);
3691         CHK_NEQ(staging->channel, active->channel);
3692         CHK_NEQ(staging->air_propagation, active->air_propagation);
3693         CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates,
3694                 active->ofdm_ht_single_stream_basic_rates);
3695         CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates,
3696                 active->ofdm_ht_dual_stream_basic_rates);
3697         CHK_NEQ(staging->assoc_id, active->assoc_id);
3698
3699         /* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can
3700          * be updated with the RXON_ASSOC command -- however only some
3701          * flag transitions are allowed using RXON_ASSOC */
3702
3703         /* Check if we are not switching bands */
3704         CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK,
3705                 active->flags & RXON_FLG_BAND_24G_MSK);
3706
3707         /* Check if we are switching association toggle */
3708         CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK,
3709                 active->filter_flags & RXON_FILTER_ASSOC_MSK);
3710
3711 #undef CHK
3712 #undef CHK_NEQ
3713
3714         return 0;
3715 }
3716
3717 EXPORT_SYMBOL(il_full_rxon_required);
3718
3719 u8
3720 il_get_lowest_plcp(struct il_priv * il, struct il_rxon_context * ctx)
3721 {
3722         /*
3723          * Assign the lowest rate -- should really get this from
3724          * the beacon skb from mac80211.
3725          */
3726         if (ctx->staging.flags & RXON_FLG_BAND_24G_MSK)
3727                 return RATE_1M_PLCP;
3728         else
3729                 return RATE_6M_PLCP;
3730 }
3731
3732 EXPORT_SYMBOL(il_get_lowest_plcp);
3733
3734 static void
3735 _il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf,
3736                 struct il_rxon_context *ctx)
3737 {
3738         struct il_rxon_cmd *rxon = &ctx->staging;
3739
3740         if (!ctx->ht.enabled) {
3741                 rxon->flags &=
3742                     ~(RXON_FLG_CHANNEL_MODE_MSK |
3743                       RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | RXON_FLG_HT40_PROT_MSK
3744                       | RXON_FLG_HT_PROT_MSK);
3745                 return;
3746         }
3747
3748         rxon->flags |=
3749             cpu_to_le32(ctx->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS);
3750
3751         /* Set up channel bandwidth:
3752          * 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */
3753         /* clear the HT channel mode before set the mode */
3754         rxon->flags &=
3755             ~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3756         if (il_is_ht40_tx_allowed(il, ctx, NULL)) {
3757                 /* pure ht40 */
3758                 if (ctx->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) {
3759                         rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40;
3760                         /* Note: control channel is opposite of extension channel */
3761                         switch (ctx->ht.extension_chan_offset) {
3762                         case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3763                                 rxon->flags &=
3764                                     ~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3765                                 break;
3766                         case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3767                                 rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3768                                 break;
3769                         }
3770                 } else {
3771                         /* Note: control channel is opposite of extension channel */