1 /******************************************************************************
5 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *****************************************************************************/
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/etherdevice.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/types.h>
35 #include <linux/lockdep.h>
36 #include <linux/init.h>
37 #include <linux/pci.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/delay.h>
40 #include <linux/skbuff.h>
41 #include <net/mac80211.h>
46 il_get_cmd_string(u8 cmd)
54 IL_CMD(C_RXON_TIMING);
62 IL_CMD(C_TX_LINK_QUALITY_CMD);
63 IL_CMD(C_CHANNEL_SWITCH);
64 IL_CMD(N_CHANNEL_SWITCH);
65 IL_CMD(C_SPECTRUM_MEASUREMENT);
66 IL_CMD(N_SPECTRUM_MEASUREMENT);
69 IL_CMD(N_PM_DEBUG_STATS);
73 IL_CMD(N_SCAN_RESULTS);
74 IL_CMD(N_SCAN_COMPLETE);
82 IL_CMD(N_MISSED_BEACONS);
83 IL_CMD(C_CT_KILL_CONFIG);
84 IL_CMD(C_SENSITIVITY);
85 IL_CMD(C_PHY_CALIBRATION);
89 IL_CMD(N_COMPRESSED_BA);
96 EXPORT_SYMBOL(il_get_cmd_string);
98 #define HOST_COMPLETE_TIMEOUT (HZ / 2)
101 il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd,
102 struct il_rx_pkt *pkt)
104 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
105 IL_ERR("Bad return from %s (0x%08X)\n",
106 il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
109 #ifdef CONFIG_IWLEGACY_DEBUG
110 switch (cmd->hdr.cmd) {
111 case C_TX_LINK_QUALITY_CMD:
113 D_HC_DUMP("back from %s (0x%08X)\n",
114 il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
117 D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd),
124 il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd)
128 BUG_ON(!(cmd->flags & CMD_ASYNC));
130 /* An asynchronous command can not expect an SKB to be set. */
131 BUG_ON(cmd->flags & CMD_WANT_SKB);
133 /* Assign a generic callback if one is not provided */
135 cmd->callback = il_generic_cmd_callback;
137 if (test_bit(S_EXIT_PENDING, &il->status))
140 ret = il_enqueue_hcmd(il, cmd);
142 IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
143 il_get_cmd_string(cmd->id), ret);
150 il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd)
155 lockdep_assert_held(&il->mutex);
157 BUG_ON(cmd->flags & CMD_ASYNC);
159 /* A synchronous command can not have a callback set. */
160 BUG_ON(cmd->callback);
162 D_INFO("Attempting to send sync command %s\n",
163 il_get_cmd_string(cmd->id));
165 set_bit(S_HCMD_ACTIVE, &il->status);
166 D_INFO("Setting HCMD_ACTIVE for command %s\n",
167 il_get_cmd_string(cmd->id));
169 cmd_idx = il_enqueue_hcmd(il, cmd);
172 IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
173 il_get_cmd_string(cmd->id), ret);
177 ret = wait_event_timeout(il->wait_command_queue,
178 !test_bit(S_HCMD_ACTIVE, &il->status),
179 HOST_COMPLETE_TIMEOUT);
181 if (test_bit(S_HCMD_ACTIVE, &il->status)) {
182 IL_ERR("Error sending %s: time out after %dms.\n",
183 il_get_cmd_string(cmd->id),
184 jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
186 clear_bit(S_HCMD_ACTIVE, &il->status);
187 D_INFO("Clearing HCMD_ACTIVE for command %s\n",
188 il_get_cmd_string(cmd->id));
194 if (test_bit(S_RF_KILL_HW, &il->status)) {
195 IL_ERR("Command %s aborted: RF KILL Switch\n",
196 il_get_cmd_string(cmd->id));
200 if (test_bit(S_FW_ERROR, &il->status)) {
201 IL_ERR("Command %s failed: FW Error\n",
202 il_get_cmd_string(cmd->id));
206 if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) {
207 IL_ERR("Error: Response NULL in '%s'\n",
208 il_get_cmd_string(cmd->id));
217 if (cmd->flags & CMD_WANT_SKB) {
219 * Cancel the CMD_WANT_SKB flag for the cmd in the
220 * TX cmd queue. Otherwise in case the cmd comes
221 * in later, it will possibly set an invalid
222 * address (cmd->meta.source).
224 il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB;
227 if (cmd->reply_page) {
228 il_free_pages(il, cmd->reply_page);
235 EXPORT_SYMBOL(il_send_cmd_sync);
238 il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd)
240 if (cmd->flags & CMD_ASYNC)
241 return il_send_cmd_async(il, cmd);
243 return il_send_cmd_sync(il, cmd);
246 EXPORT_SYMBOL(il_send_cmd);
249 il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data)
251 struct il_host_cmd cmd = {
257 return il_send_cmd_sync(il, &cmd);
260 EXPORT_SYMBOL(il_send_cmd_pdu);
263 il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data,
264 void (*callback) (struct il_priv * il,
265 struct il_device_cmd * cmd,
266 struct il_rx_pkt * pkt))
268 struct il_host_cmd cmd = {
274 cmd.flags |= CMD_ASYNC;
275 cmd.callback = callback;
277 return il_send_cmd_async(il, &cmd);
280 EXPORT_SYMBOL(il_send_cmd_pdu_async);
282 /* default: IL_LED_BLINK(0) using blinking idx table */
284 module_param(led_mode, int, S_IRUGO);
285 MODULE_PARM_DESC(led_mode,
286 "0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking");
288 /* Throughput OFF time(ms) ON time (ms)
301 static const struct ieee80211_tpt_blink il_blink[] = {
302 {.throughput = 0,.blink_time = 334},
303 {.throughput = 1 * 1024 - 1,.blink_time = 260},
304 {.throughput = 5 * 1024 - 1,.blink_time = 220},
305 {.throughput = 10 * 1024 - 1,.blink_time = 190},
306 {.throughput = 20 * 1024 - 1,.blink_time = 170},
307 {.throughput = 50 * 1024 - 1,.blink_time = 150},
308 {.throughput = 70 * 1024 - 1,.blink_time = 130},
309 {.throughput = 100 * 1024 - 1,.blink_time = 110},
310 {.throughput = 200 * 1024 - 1,.blink_time = 80},
311 {.throughput = 300 * 1024 - 1,.blink_time = 50},
315 * Adjust led blink rate to compensate on a MAC Clock difference on every HW
316 * Led blink rate analysis showed an average deviation of 0% on 3945,
318 * Need to compensate on the led on/off time per HW according to the deviation
319 * to achieve the desired led frequency
320 * The calculation is: (100-averageDeviation)/100 * blinkTime
321 * For code efficiency the calculation will be:
322 * compensation = (100 - averageDeviation) * 64 / 100
323 * NewBlinkTime = (compensation * BlinkTime) / 64
326 il_blink_compensation(struct il_priv *il, u8 time, u16 compensation)
329 IL_ERR("undefined blink compensation: "
330 "use pre-defined blinking time\n");
334 return (u8) ((time * compensation) >> 6);
337 /* Set led pattern command */
339 il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off)
341 struct il_led_cmd led_cmd = {
343 .interval = IL_DEF_LED_INTRVL
347 if (!test_bit(S_READY, &il->status))
350 if (il->blink_on == on && il->blink_off == off)
354 /* led is SOLID_ON */
358 D_LED("Led blink time compensation=%u\n",
359 il->cfg->base_params->led_compensation);
361 il_blink_compensation(il, on,
362 il->cfg->base_params->led_compensation);
364 il_blink_compensation(il, off,
365 il->cfg->base_params->led_compensation);
367 ret = il->cfg->ops->led->cmd(il, &led_cmd);
376 il_led_brightness_set(struct led_classdev *led_cdev,
377 enum led_brightness brightness)
379 struct il_priv *il = container_of(led_cdev, struct il_priv, led);
380 unsigned long on = 0;
385 il_led_cmd(il, on, 0);
389 il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on,
390 unsigned long *delay_off)
392 struct il_priv *il = container_of(led_cdev, struct il_priv, led);
394 return il_led_cmd(il, *delay_on, *delay_off);
398 il_leds_init(struct il_priv *il)
403 if (mode == IL_LED_DEFAULT)
404 mode = il->cfg->led_mode;
407 kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy));
408 il->led.brightness_set = il_led_brightness_set;
409 il->led.blink_set = il_led_blink_set;
410 il->led.max_brightness = 1;
417 il->led.default_trigger =
418 ieee80211_create_tpt_led_trigger(il->hw,
419 IEEE80211_TPT_LEDTRIG_FL_CONNECTED,
421 ARRAY_SIZE(il_blink));
423 case IL_LED_RF_STATE:
424 il->led.default_trigger = ieee80211_get_radio_led_name(il->hw);
428 ret = led_classdev_register(&il->pci_dev->dev, &il->led);
434 il->led_registered = true;
437 EXPORT_SYMBOL(il_leds_init);
440 il_leds_exit(struct il_priv *il)
442 if (!il->led_registered)
445 led_classdev_unregister(&il->led);
449 EXPORT_SYMBOL(il_leds_exit);
451 /************************** EEPROM BANDS ****************************
453 * The il_eeprom_band definitions below provide the mapping from the
454 * EEPROM contents to the specific channel number supported for each
457 * For example, il_priv->eeprom.band_3_channels[4] from the band_3
458 * definition below maps to physical channel 42 in the 5.2GHz spectrum.
459 * The specific geography and calibration information for that channel
460 * is contained in the eeprom map itself.
462 * During init, we copy the eeprom information and channel map
463 * information into il->channel_info_24/52 and il->channel_map_24/52
465 * channel_map_24/52 provides the idx in the channel_info array for a
466 * given channel. We have to have two separate maps as there is channel
467 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
470 * A value of 0xff stored in the channel_map indicates that the channel
471 * is not supported by the hardware at all.
473 * A value of 0xfe in the channel_map indicates that the channel is not
474 * valid for Tx with the current hardware. This means that
475 * while the system can tune and receive on a given channel, it may not
476 * be able to associate or transmit any frames on that
477 * channel. There is no corresponding channel information for that
480 *********************************************************************/
483 const u8 il_eeprom_band_1[14] = {
484 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
488 static const u8 il_eeprom_band_2[] = { /* 4915-5080MHz */
489 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
492 static const u8 il_eeprom_band_3[] = { /* 5170-5320MHz */
493 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
496 static const u8 il_eeprom_band_4[] = { /* 5500-5700MHz */
497 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
500 static const u8 il_eeprom_band_5[] = { /* 5725-5825MHz */
501 145, 149, 153, 157, 161, 165
504 static const u8 il_eeprom_band_6[] = { /* 2.4 ht40 channel */
508 static const u8 il_eeprom_band_7[] = { /* 5.2 ht40 channel */
509 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
512 /******************************************************************************
514 * EEPROM related functions
516 ******************************************************************************/
519 il_eeprom_verify_signature(struct il_priv *il)
521 u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
524 D_EEPROM("EEPROM signature=0x%08x\n", gp);
526 case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
527 case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
530 IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp);
538 il_eeprom_query_addr(const struct il_priv *il, size_t offset)
540 BUG_ON(offset >= il->cfg->base_params->eeprom_size);
541 return &il->eeprom[offset];
544 EXPORT_SYMBOL(il_eeprom_query_addr);
547 il_eeprom_query16(const struct il_priv * il, size_t offset)
551 return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8);
554 EXPORT_SYMBOL(il_eeprom_query16);
557 * il_eeprom_init - read EEPROM contents
559 * Load the EEPROM contents from adapter into il->eeprom
561 * NOTE: This routine uses the non-debug IO access functions.
564 il_eeprom_init(struct il_priv *il)
567 u32 gp = _il_rd(il, CSR_EEPROM_GP);
572 /* allocate eeprom */
573 sz = il->cfg->base_params->eeprom_size;
574 D_EEPROM("NVM size = %d\n", sz);
575 il->eeprom = kzalloc(sz, GFP_KERNEL);
580 e = (__le16 *) il->eeprom;
582 il->cfg->ops->lib->apm_ops.init(il);
584 ret = il_eeprom_verify_signature(il);
586 IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp);
591 /* Make sure driver (instead of uCode) is allowed to read EEPROM */
592 ret = il->cfg->ops->lib->eeprom_ops.acquire_semaphore(il);
594 IL_ERR("Failed to acquire EEPROM semaphore.\n");
599 /* eeprom is an array of 16bit values */
600 for (addr = 0; addr < sz; addr += sizeof(u16)) {
603 _il_wr(il, CSR_EEPROM_REG,
604 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
607 _il_poll_bit(il, CSR_EEPROM_REG,
608 CSR_EEPROM_REG_READ_VALID_MSK,
609 CSR_EEPROM_REG_READ_VALID_MSK,
610 IL_EEPROM_ACCESS_TIMEOUT);
612 IL_ERR("Time out reading EEPROM[%d]\n", addr);
615 r = _il_rd(il, CSR_EEPROM_REG);
616 e[addr / 2] = cpu_to_le16(r >> 16);
619 D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM",
620 il_eeprom_query16(il, EEPROM_VERSION));
624 il->cfg->ops->lib->eeprom_ops.release_semaphore(il);
629 /* Reset chip to save power until we load uCode during "up". */
635 EXPORT_SYMBOL(il_eeprom_init);
638 il_eeprom_free(struct il_priv *il)
644 EXPORT_SYMBOL(il_eeprom_free);
647 il_init_band_reference(const struct il_priv *il, int eep_band,
648 int *eeprom_ch_count,
649 const struct il_eeprom_channel **eeprom_ch_info,
650 const u8 ** eeprom_ch_idx)
653 il->cfg->ops->lib->eeprom_ops.regulatory_bands[eep_band - 1];
655 case 1: /* 2.4GHz band */
656 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1);
658 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
660 *eeprom_ch_idx = il_eeprom_band_1;
662 case 2: /* 4.9GHz band */
663 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2);
665 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
667 *eeprom_ch_idx = il_eeprom_band_2;
669 case 3: /* 5.2GHz band */
670 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3);
672 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
674 *eeprom_ch_idx = il_eeprom_band_3;
676 case 4: /* 5.5GHz band */
677 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4);
679 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
681 *eeprom_ch_idx = il_eeprom_band_4;
683 case 5: /* 5.7GHz band */
684 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5);
686 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
688 *eeprom_ch_idx = il_eeprom_band_5;
690 case 6: /* 2.4GHz ht40 channels */
691 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6);
693 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
695 *eeprom_ch_idx = il_eeprom_band_6;
697 case 7: /* 5 GHz ht40 channels */
698 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7);
700 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
702 *eeprom_ch_idx = il_eeprom_band_7;
709 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
712 * il_mod_ht40_chan_info - Copy ht40 channel info into driver's il.
714 * Does not set up a command, or touch hardware.
717 il_mod_ht40_chan_info(struct il_priv *il, enum ieee80211_band band, u16 channel,
718 const struct il_eeprom_channel *eeprom_ch,
719 u8 clear_ht40_extension_channel)
721 struct il_channel_info *ch_info;
724 (struct il_channel_info *)il_get_channel_info(il, band, channel);
726 if (!il_is_channel_valid(ch_info))
729 D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
730 " Ad-Hoc %ssupported\n", ch_info->channel,
731 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
732 CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE),
733 CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE),
734 CHECK_AND_PRINT(DFS), eeprom_ch->flags,
735 eeprom_ch->max_power_avg,
736 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
737 !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not ");
739 ch_info->ht40_eeprom = *eeprom_ch;
740 ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
741 ch_info->ht40_flags = eeprom_ch->flags;
742 if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
743 ch_info->ht40_extension_channel &=
744 ~clear_ht40_extension_channel;
749 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
753 * il_init_channel_map - Set up driver's info for all possible channels
756 il_init_channel_map(struct il_priv *il)
758 int eeprom_ch_count = 0;
759 const u8 *eeprom_ch_idx = NULL;
760 const struct il_eeprom_channel *eeprom_ch_info = NULL;
762 struct il_channel_info *ch_info;
764 if (il->channel_count) {
765 D_EEPROM("Channel map already initialized.\n");
769 D_EEPROM("Initializing regulatory info from EEPROM\n");
772 ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) +
773 ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) +
774 ARRAY_SIZE(il_eeprom_band_5);
776 D_EEPROM("Parsing data for %d channels.\n", il->channel_count);
779 kzalloc(sizeof(struct il_channel_info) * il->channel_count,
781 if (!il->channel_info) {
782 IL_ERR("Could not allocate channel_info\n");
783 il->channel_count = 0;
787 ch_info = il->channel_info;
789 /* Loop through the 5 EEPROM bands adding them in order to the
790 * channel map we maintain (that contains additional information than
791 * what just in the EEPROM) */
792 for (band = 1; band <= 5; band++) {
794 il_init_band_reference(il, band, &eeprom_ch_count,
795 &eeprom_ch_info, &eeprom_ch_idx);
797 /* Loop through each band adding each of the channels */
798 for (ch = 0; ch < eeprom_ch_count; ch++) {
799 ch_info->channel = eeprom_ch_idx[ch];
802 1) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
804 /* permanently store EEPROM's channel regulatory flags
805 * and max power in channel info database. */
806 ch_info->eeprom = eeprom_ch_info[ch];
808 /* Copy the run-time flags so they are there even on
809 * invalid channels */
810 ch_info->flags = eeprom_ch_info[ch].flags;
811 /* First write that ht40 is not enabled, and then enable
813 ch_info->ht40_extension_channel =
814 IEEE80211_CHAN_NO_HT40;
816 if (!(il_is_channel_valid(ch_info))) {
817 D_EEPROM("Ch. %d Flags %x [%sGHz] - "
818 "No traffic\n", ch_info->channel,
820 il_is_channel_a_band(ch_info) ? "5.2" :
826 /* Initialize regulatory-based run-time data */
827 ch_info->max_power_avg = ch_info->curr_txpow =
828 eeprom_ch_info[ch].max_power_avg;
829 ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
830 ch_info->min_power = 0;
832 D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):"
833 " Ad-Hoc %ssupported\n", ch_info->channel,
834 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
835 CHECK_AND_PRINT_I(VALID),
836 CHECK_AND_PRINT_I(IBSS),
837 CHECK_AND_PRINT_I(ACTIVE),
838 CHECK_AND_PRINT_I(RADAR),
839 CHECK_AND_PRINT_I(WIDE),
840 CHECK_AND_PRINT_I(DFS),
841 eeprom_ch_info[ch].flags,
842 eeprom_ch_info[ch].max_power_avg,
843 ((eeprom_ch_info[ch].
844 flags & EEPROM_CHANNEL_IBSS) &&
845 !(eeprom_ch_info[ch].
846 flags & EEPROM_CHANNEL_RADAR)) ? "" :
853 /* Check if we do have HT40 channels */
854 if (il->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
855 EEPROM_REGULATORY_BAND_NO_HT40 &&
856 il->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
857 EEPROM_REGULATORY_BAND_NO_HT40)
860 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
861 for (band = 6; band <= 7; band++) {
862 enum ieee80211_band ieeeband;
864 il_init_band_reference(il, band, &eeprom_ch_count,
865 &eeprom_ch_info, &eeprom_ch_idx);
867 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
869 (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
871 /* Loop through each band adding each of the channels */
872 for (ch = 0; ch < eeprom_ch_count; ch++) {
873 /* Set up driver's info for lower half */
874 il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch],
876 IEEE80211_CHAN_NO_HT40PLUS);
878 /* Set up driver's info for upper half */
879 il_mod_ht40_chan_info(il, ieeeband,
880 eeprom_ch_idx[ch] + 4,
882 IEEE80211_CHAN_NO_HT40MINUS);
889 EXPORT_SYMBOL(il_init_channel_map);
892 * il_free_channel_map - undo allocations in il_init_channel_map
895 il_free_channel_map(struct il_priv *il)
897 kfree(il->channel_info);
898 il->channel_count = 0;
901 EXPORT_SYMBOL(il_free_channel_map);
904 * il_get_channel_info - Find driver's ilate channel info
906 * Based on band and channel number.
908 const struct il_channel_info *
909 il_get_channel_info(const struct il_priv *il, enum ieee80211_band band,
915 case IEEE80211_BAND_5GHZ:
916 for (i = 14; i < il->channel_count; i++) {
917 if (il->channel_info[i].channel == channel)
918 return &il->channel_info[i];
921 case IEEE80211_BAND_2GHZ:
922 if (channel >= 1 && channel <= 14)
923 return &il->channel_info[channel - 1];
932 EXPORT_SYMBOL(il_get_channel_info);
935 * Setting power level allows the card to go to sleep when not busy.
937 * We calculate a sleep command based on the required latency, which
938 * we get from mac80211. In order to handle thermal throttling, we can
939 * also use pre-defined power levels.
943 * This defines the old power levels. They are still used by default
944 * (level 1) and for thermal throttle (levels 3 through 5)
947 struct il_power_vec_entry {
948 struct il_powertable_cmd cmd;
949 u8 no_dtim; /* number of skip dtim */
953 il_power_sleep_cam_cmd(struct il_priv *il, struct il_powertable_cmd *cmd)
955 memset(cmd, 0, sizeof(*cmd));
957 if (il->power_data.pci_pm)
958 cmd->flags |= IL_POWER_PCI_PM_MSK;
960 D_POWER("Sleep command for CAM\n");
964 il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd)
966 D_POWER("Sending power/sleep command\n");
967 D_POWER("Flags value = 0x%08X\n", cmd->flags);
968 D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
969 D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
970 D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n",
971 le32_to_cpu(cmd->sleep_interval[0]),
972 le32_to_cpu(cmd->sleep_interval[1]),
973 le32_to_cpu(cmd->sleep_interval[2]),
974 le32_to_cpu(cmd->sleep_interval[3]),
975 le32_to_cpu(cmd->sleep_interval[4]));
977 return il_send_cmd_pdu(il, C_POWER_TBL,
978 sizeof(struct il_powertable_cmd), cmd);
982 il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force)
987 lockdep_assert_held(&il->mutex);
989 /* Don't update the RX chain when chain noise calibration is running */
990 update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE ||
991 il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE;
993 if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
996 if (!il_is_ready_rf(il))
999 /* scan complete use sleep_power_next, need to be updated */
1000 memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
1001 if (test_bit(S_SCANNING, &il->status) && !force) {
1002 D_INFO("Defer power set mode while scanning\n");
1006 if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)
1007 set_bit(S_POWER_PMI, &il->status);
1009 ret = il_set_power(il, cmd);
1011 if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK))
1012 clear_bit(S_POWER_PMI, &il->status);
1014 if (il->cfg->ops->lib->update_chain_flags && update_chains)
1015 il->cfg->ops->lib->update_chain_flags(il);
1016 else if (il->cfg->ops->lib->update_chain_flags)
1017 D_POWER("Cannot update the power, chain noise "
1018 "calibration running: %d\n",
1019 il->chain_noise_data.state);
1021 memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd));
1023 IL_ERR("set power fail, ret = %d", ret);
1029 il_power_update_mode(struct il_priv *il, bool force)
1031 struct il_powertable_cmd cmd;
1033 il_power_sleep_cam_cmd(il, &cmd);
1034 return il_power_set_mode(il, &cmd, force);
1037 EXPORT_SYMBOL(il_power_update_mode);
1039 /* initialize to default */
1041 il_power_initialize(struct il_priv *il)
1043 u16 lctl = il_pcie_link_ctl(il);
1045 il->power_data.pci_pm = !(lctl & PCI_CFG_LINK_CTRL_VAL_L0S_EN);
1047 il->power_data.debug_sleep_level_override = -1;
1049 memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd));
1051 EXPORT_SYMBOL(il_power_initialize);
1053 /* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after
1054 * sending probe req. This should be set long enough to hear probe responses
1055 * from more than one AP. */
1056 #define IL_ACTIVE_DWELL_TIME_24 (30) /* all times in msec */
1057 #define IL_ACTIVE_DWELL_TIME_52 (20)
1059 #define IL_ACTIVE_DWELL_FACTOR_24GHZ (3)
1060 #define IL_ACTIVE_DWELL_FACTOR_52GHZ (2)
1062 /* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel.
1063 * Must be set longer than active dwell time.
1064 * For the most reliable scan, set > AP beacon interval (typically 100msec). */
1065 #define IL_PASSIVE_DWELL_TIME_24 (20) /* all times in msec */
1066 #define IL_PASSIVE_DWELL_TIME_52 (10)
1067 #define IL_PASSIVE_DWELL_BASE (100)
1068 #define IL_CHANNEL_TUNE_TIME 5
1071 il_send_scan_abort(struct il_priv *il)
1074 struct il_rx_pkt *pkt;
1075 struct il_host_cmd cmd = {
1077 .flags = CMD_WANT_SKB,
1080 /* Exit instantly with error when device is not ready
1081 * to receive scan abort command or it does not perform
1082 * hardware scan currently */
1083 if (!test_bit(S_READY, &il->status) ||
1084 !test_bit(S_GEO_CONFIGURED, &il->status) ||
1085 !test_bit(S_SCAN_HW, &il->status) ||
1086 test_bit(S_FW_ERROR, &il->status) ||
1087 test_bit(S_EXIT_PENDING, &il->status))
1090 ret = il_send_cmd_sync(il, &cmd);
1094 pkt = (struct il_rx_pkt *)cmd.reply_page;
1095 if (pkt->u.status != CAN_ABORT_STATUS) {
1096 /* The scan abort will return 1 for success or
1097 * 2 for "failure". A failure condition can be
1098 * due to simply not being in an active scan which
1099 * can occur if we send the scan abort before we
1100 * the microcode has notified us that a scan is
1102 D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status);
1106 il_free_pages(il, cmd.reply_page);
1111 il_complete_scan(struct il_priv *il, bool aborted)
1113 /* check if scan was requested from mac80211 */
1114 if (il->scan_request) {
1115 D_SCAN("Complete scan in mac80211\n");
1116 ieee80211_scan_completed(il->hw, aborted);
1119 il->scan_vif = NULL;
1120 il->scan_request = NULL;
1124 il_force_scan_end(struct il_priv *il)
1126 lockdep_assert_held(&il->mutex);
1128 if (!test_bit(S_SCANNING, &il->status)) {
1129 D_SCAN("Forcing scan end while not scanning\n");
1133 D_SCAN("Forcing scan end\n");
1134 clear_bit(S_SCANNING, &il->status);
1135 clear_bit(S_SCAN_HW, &il->status);
1136 clear_bit(S_SCAN_ABORTING, &il->status);
1137 il_complete_scan(il, true);
1141 il_do_scan_abort(struct il_priv *il)
1145 lockdep_assert_held(&il->mutex);
1147 if (!test_bit(S_SCANNING, &il->status)) {
1148 D_SCAN("Not performing scan to abort\n");
1152 if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) {
1153 D_SCAN("Scan abort in progress\n");
1157 ret = il_send_scan_abort(il);
1159 D_SCAN("Send scan abort failed %d\n", ret);
1160 il_force_scan_end(il);
1162 D_SCAN("Successfully send scan abort\n");
1166 * il_scan_cancel - Cancel any currently executing HW scan
1169 il_scan_cancel(struct il_priv *il)
1171 D_SCAN("Queuing abort scan\n");
1172 queue_work(il->workqueue, &il->abort_scan);
1176 EXPORT_SYMBOL(il_scan_cancel);
1179 * il_scan_cancel_timeout - Cancel any currently executing HW scan
1180 * @ms: amount of time to wait (in milliseconds) for scan to abort
1184 il_scan_cancel_timeout(struct il_priv *il, unsigned long ms)
1186 unsigned long timeout = jiffies + msecs_to_jiffies(ms);
1188 lockdep_assert_held(&il->mutex);
1190 D_SCAN("Scan cancel timeout\n");
1192 il_do_scan_abort(il);
1194 while (time_before_eq(jiffies, timeout)) {
1195 if (!test_bit(S_SCAN_HW, &il->status))
1200 return test_bit(S_SCAN_HW, &il->status);
1203 EXPORT_SYMBOL(il_scan_cancel_timeout);
1205 /* Service response to C_SCAN (0x80) */
1207 il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb)
1209 #ifdef CONFIG_IWLEGACY_DEBUG
1210 struct il_rx_pkt *pkt = rxb_addr(rxb);
1211 struct il_scanreq_notification *notif =
1212 (struct il_scanreq_notification *)pkt->u.raw;
1214 D_SCAN("Scan request status = 0x%x\n", notif->status);
1218 /* Service N_SCAN_START (0x82) */
1220 il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb)
1222 struct il_rx_pkt *pkt = rxb_addr(rxb);
1223 struct il_scanstart_notification *notif =
1224 (struct il_scanstart_notification *)pkt->u.raw;
1225 il->scan_start_tsf = le32_to_cpu(notif->tsf_low);
1226 D_SCAN("Scan start: " "%d [802.11%s] "
1227 "(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel,
1228 notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high),
1229 le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer);
1232 /* Service N_SCAN_RESULTS (0x83) */
1234 il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb)
1236 #ifdef CONFIG_IWLEGACY_DEBUG
1237 struct il_rx_pkt *pkt = rxb_addr(rxb);
1238 struct il_scanresults_notification *notif =
1239 (struct il_scanresults_notification *)pkt->u.raw;
1241 D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d "
1242 "elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a",
1243 le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low),
1244 le32_to_cpu(notif->stats[0]),
1245 le32_to_cpu(notif->tsf_low) - il->scan_start_tsf);
1249 /* Service N_SCAN_COMPLETE (0x84) */
1251 il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb)
1254 #ifdef CONFIG_IWLEGACY_DEBUG
1255 struct il_rx_pkt *pkt = rxb_addr(rxb);
1256 struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw;
1259 D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n",
1260 scan_notif->scanned_channels, scan_notif->tsf_low,
1261 scan_notif->tsf_high, scan_notif->status);
1263 /* The HW is no longer scanning */
1264 clear_bit(S_SCAN_HW, &il->status);
1266 D_SCAN("Scan on %sGHz took %dms\n",
1267 (il->scan_band == IEEE80211_BAND_2GHZ) ? "2.4" : "5.2",
1268 jiffies_to_msecs(jiffies - il->scan_start));
1270 queue_work(il->workqueue, &il->scan_completed);
1274 il_setup_rx_scan_handlers(struct il_priv *il)
1277 il->handlers[C_SCAN] = il_hdl_scan;
1278 il->handlers[N_SCAN_START] = il_hdl_scan_start;
1279 il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results;
1280 il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete;
1283 EXPORT_SYMBOL(il_setup_rx_scan_handlers);
1286 il_get_active_dwell_time(struct il_priv *il, enum ieee80211_band band,
1289 if (band == IEEE80211_BAND_5GHZ)
1290 return IL_ACTIVE_DWELL_TIME_52 +
1291 IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1);
1293 return IL_ACTIVE_DWELL_TIME_24 +
1294 IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1);
1297 EXPORT_SYMBOL(il_get_active_dwell_time);
1300 il_get_passive_dwell_time(struct il_priv * il, enum ieee80211_band band,
1301 struct ieee80211_vif * vif)
1303 struct il_rxon_context *ctx = &il->ctx;
1308 IEEE80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE +
1309 IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE +
1310 IL_PASSIVE_DWELL_TIME_52;
1312 if (il_is_any_associated(il)) {
1314 * If we're associated, we clamp the maximum passive
1315 * dwell time to be 98% of the smallest beacon interval
1316 * (minus 2 * channel tune time)
1318 value = ctx->vif ? ctx->vif->bss_conf.beacon_int : 0;
1319 if (value > IL_PASSIVE_DWELL_BASE || !value)
1320 value = IL_PASSIVE_DWELL_BASE;
1321 value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2;
1322 passive = min(value, passive);
1328 EXPORT_SYMBOL(il_get_passive_dwell_time);
1331 il_init_scan_params(struct il_priv *il)
1333 u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1;
1334 if (!il->scan_tx_ant[IEEE80211_BAND_5GHZ])
1335 il->scan_tx_ant[IEEE80211_BAND_5GHZ] = ant_idx;
1336 if (!il->scan_tx_ant[IEEE80211_BAND_2GHZ])
1337 il->scan_tx_ant[IEEE80211_BAND_2GHZ] = ant_idx;
1340 EXPORT_SYMBOL(il_init_scan_params);
1343 il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif)
1347 lockdep_assert_held(&il->mutex);
1349 if (WARN_ON(!il->cfg->ops->utils->request_scan))
1352 cancel_delayed_work(&il->scan_check);
1354 if (!il_is_ready_rf(il)) {
1355 IL_WARN("Request scan called when driver not ready.\n");
1359 if (test_bit(S_SCAN_HW, &il->status)) {
1360 D_SCAN("Multiple concurrent scan requests in parallel.\n");
1364 if (test_bit(S_SCAN_ABORTING, &il->status)) {
1365 D_SCAN("Scan request while abort pending.\n");
1369 D_SCAN("Starting scan...\n");
1371 set_bit(S_SCANNING, &il->status);
1372 il->scan_start = jiffies;
1374 ret = il->cfg->ops->utils->request_scan(il, vif);
1376 clear_bit(S_SCANNING, &il->status);
1380 queue_delayed_work(il->workqueue, &il->scan_check,
1381 IL_SCAN_CHECK_WATCHDOG);
1387 il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1388 struct cfg80211_scan_request *req)
1390 struct il_priv *il = hw->priv;
1393 D_MAC80211("enter\n");
1395 if (req->n_channels == 0)
1398 mutex_lock(&il->mutex);
1400 if (test_bit(S_SCANNING, &il->status)) {
1401 D_SCAN("Scan already in progress.\n");
1406 /* mac80211 will only ask for one band at a time */
1407 il->scan_request = req;
1409 il->scan_band = req->channels[0]->band;
1411 ret = il_scan_initiate(il, vif);
1413 D_MAC80211("leave\n");
1416 mutex_unlock(&il->mutex);
1421 EXPORT_SYMBOL(il_mac_hw_scan);
1424 il_bg_scan_check(struct work_struct *data)
1426 struct il_priv *il =
1427 container_of(data, struct il_priv, scan_check.work);
1429 D_SCAN("Scan check work\n");
1431 /* Since we are here firmware does not finish scan and
1432 * most likely is in bad shape, so we don't bother to
1433 * send abort command, just force scan complete to mac80211 */
1434 mutex_lock(&il->mutex);
1435 il_force_scan_end(il);
1436 mutex_unlock(&il->mutex);
1440 * il_fill_probe_req - fill in all required fields and IE for probe request
1444 il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
1445 const u8 * ta, const u8 * ies, int ie_len, int left)
1450 /* Make sure there is enough space for the probe request,
1451 * two mandatory IEs and the data */
1456 frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
1457 memcpy(frame->da, il_bcast_addr, ETH_ALEN);
1458 memcpy(frame->sa, ta, ETH_ALEN);
1459 memcpy(frame->bssid, il_bcast_addr, ETH_ALEN);
1460 frame->seq_ctrl = 0;
1465 pos = &frame->u.probe_req.variable[0];
1467 /* fill in our indirect SSID IE */
1471 *pos++ = WLAN_EID_SSID;
1476 if (WARN_ON(left < ie_len))
1479 if (ies && ie_len) {
1480 memcpy(pos, ies, ie_len);
1487 EXPORT_SYMBOL(il_fill_probe_req);
1490 il_bg_abort_scan(struct work_struct *work)
1492 struct il_priv *il = container_of(work, struct il_priv, abort_scan);
1494 D_SCAN("Abort scan work\n");
1496 /* We keep scan_check work queued in case when firmware will not
1497 * report back scan completed notification */
1498 mutex_lock(&il->mutex);
1499 il_scan_cancel_timeout(il, 200);
1500 mutex_unlock(&il->mutex);
1504 il_bg_scan_completed(struct work_struct *work)
1506 struct il_priv *il = container_of(work, struct il_priv, scan_completed);
1509 D_SCAN("Completed scan.\n");
1511 cancel_delayed_work(&il->scan_check);
1513 mutex_lock(&il->mutex);
1515 aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status);
1517 D_SCAN("Aborted scan completed.\n");
1519 if (!test_and_clear_bit(S_SCANNING, &il->status)) {
1520 D_SCAN("Scan already completed.\n");
1524 il_complete_scan(il, aborted);
1527 /* Can we still talk to firmware ? */
1528 if (!il_is_ready_rf(il))
1532 * We do not commit power settings while scan is pending,
1533 * do it now if the settings changed.
1535 il_power_set_mode(il, &il->power_data.sleep_cmd_next, false);
1536 il_set_tx_power(il, il->tx_power_next, false);
1538 il->cfg->ops->utils->post_scan(il);
1541 mutex_unlock(&il->mutex);
1545 il_setup_scan_deferred_work(struct il_priv *il)
1547 INIT_WORK(&il->scan_completed, il_bg_scan_completed);
1548 INIT_WORK(&il->abort_scan, il_bg_abort_scan);
1549 INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check);
1552 EXPORT_SYMBOL(il_setup_scan_deferred_work);
1555 il_cancel_scan_deferred_work(struct il_priv *il)
1557 cancel_work_sync(&il->abort_scan);
1558 cancel_work_sync(&il->scan_completed);
1560 if (cancel_delayed_work_sync(&il->scan_check)) {
1561 mutex_lock(&il->mutex);
1562 il_force_scan_end(il);
1563 mutex_unlock(&il->mutex);
1567 EXPORT_SYMBOL(il_cancel_scan_deferred_work);
1569 /* il->sta_lock must be held */
1571 il_sta_ucode_activate(struct il_priv *il, u8 sta_id)
1574 if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE))
1575 IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n",
1576 sta_id, il->stations[sta_id].sta.sta.addr);
1578 if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) {
1579 D_ASSOC("STA id %u addr %pM already present"
1580 " in uCode (according to driver)\n", sta_id,
1581 il->stations[sta_id].sta.sta.addr);
1583 il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE;
1584 D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id,
1585 il->stations[sta_id].sta.sta.addr);
1590 il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta,
1591 struct il_rx_pkt *pkt, bool sync)
1593 u8 sta_id = addsta->sta.sta_id;
1594 unsigned long flags;
1597 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
1598 IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags);
1602 D_INFO("Processing response for adding station %u\n", sta_id);
1604 spin_lock_irqsave(&il->sta_lock, flags);
1606 switch (pkt->u.add_sta.status) {
1607 case ADD_STA_SUCCESS_MSK:
1608 D_INFO("C_ADD_STA PASSED\n");
1609 il_sta_ucode_activate(il, sta_id);
1612 case ADD_STA_NO_ROOM_IN_TBL:
1613 IL_ERR("Adding station %d failed, no room in table.\n", sta_id);
1615 case ADD_STA_NO_BLOCK_ACK_RESOURCE:
1616 IL_ERR("Adding station %d failed, no block ack resource.\n",
1619 case ADD_STA_MODIFY_NON_EXIST_STA:
1620 IL_ERR("Attempting to modify non-existing station %d\n",
1624 D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status);
1628 D_INFO("%s station id %u addr %pM\n",
1629 il->stations[sta_id].sta.mode ==
1630 STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id,
1631 il->stations[sta_id].sta.sta.addr);
1634 * XXX: The MAC address in the command buffer is often changed from
1635 * the original sent to the device. That is, the MAC address
1636 * written to the command buffer often is not the same MAC address
1637 * read from the command buffer when the command returns. This
1638 * issue has not yet been resolved and this debugging is left to
1639 * observe the problem.
1641 D_INFO("%s station according to cmd buffer %pM\n",
1642 il->stations[sta_id].sta.mode ==
1643 STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr);
1644 spin_unlock_irqrestore(&il->sta_lock, flags);
1650 il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd,
1651 struct il_rx_pkt *pkt)
1653 struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload;
1655 il_process_add_sta_resp(il, addsta, pkt, false);
1660 il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags)
1662 struct il_rx_pkt *pkt = NULL;
1664 u8 data[sizeof(*sta)];
1665 struct il_host_cmd cmd = {
1670 u8 sta_id __maybe_unused = sta->sta.sta_id;
1672 D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr,
1673 flags & CMD_ASYNC ? "a" : "");
1675 if (flags & CMD_ASYNC)
1676 cmd.callback = il_add_sta_callback;
1678 cmd.flags |= CMD_WANT_SKB;
1682 cmd.len = il->cfg->ops->utils->build_addsta_hcmd(sta, data);
1683 ret = il_send_cmd(il, &cmd);
1685 if (ret || (flags & CMD_ASYNC))
1689 pkt = (struct il_rx_pkt *)cmd.reply_page;
1690 ret = il_process_add_sta_resp(il, sta, pkt, true);
1692 il_free_pages(il, cmd.reply_page);
1697 EXPORT_SYMBOL(il_send_add_sta);
1700 il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta,
1701 struct il_rxon_context *ctx)
1703 struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap;
1707 if (!sta || !sta_ht_inf->ht_supported)
1710 mimo_ps_mode = (sta_ht_inf->cap & IEEE80211_HT_CAP_SM_PS) >> 2;
1711 D_ASSOC("spatial multiplexing power save mode: %s\n",
1713 WLAN_HT_CAP_SM_PS_STATIC) ? "static" : (mimo_ps_mode ==
1714 WLAN_HT_CAP_SM_PS_DYNAMIC)
1715 ? "dynamic" : "disabled");
1717 sta_flags = il->stations[idx].sta.station_flags;
1719 sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK);
1721 switch (mimo_ps_mode) {
1722 case WLAN_HT_CAP_SM_PS_STATIC:
1723 sta_flags |= STA_FLG_MIMO_DIS_MSK;
1725 case WLAN_HT_CAP_SM_PS_DYNAMIC:
1726 sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
1728 case WLAN_HT_CAP_SM_PS_DISABLED:
1731 IL_WARN("Invalid MIMO PS mode %d\n", mimo_ps_mode);
1736 cpu_to_le32((u32) sta_ht_inf->
1737 ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
1740 cpu_to_le32((u32) sta_ht_inf->
1741 ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
1743 if (il_is_ht40_tx_allowed(il, ctx, &sta->ht_cap))
1744 sta_flags |= STA_FLG_HT40_EN_MSK;
1746 sta_flags &= ~STA_FLG_HT40_EN_MSK;
1748 il->stations[idx].sta.station_flags = sta_flags;
1754 * il_prep_station - Prepare station information for addition
1756 * should be called with sta_lock held
1759 il_prep_station(struct il_priv * il, struct il_rxon_context * ctx,
1760 const u8 * addr, bool is_ap, struct ieee80211_sta * sta)
1762 struct il_station_entry *station;
1764 u8 sta_id = IL_INVALID_STATION;
1768 sta_id = ctx->ap_sta_id;
1769 else if (is_broadcast_ether_addr(addr))
1770 sta_id = ctx->bcast_sta_id;
1772 for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) {
1773 if (!compare_ether_addr
1774 (il->stations[i].sta.sta.addr, addr)) {
1779 if (!il->stations[i].used &&
1780 sta_id == IL_INVALID_STATION)
1785 * These two conditions have the same outcome, but keep them
1788 if (unlikely(sta_id == IL_INVALID_STATION))
1792 * uCode is not able to deal with multiple requests to add a
1793 * station. Keep track if one is in progress so that we do not send
1796 if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
1797 D_INFO("STA %d already in process of being added.\n", sta_id);
1801 if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
1802 (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) &&
1803 !compare_ether_addr(il->stations[sta_id].sta.sta.addr, addr)) {
1804 D_ASSOC("STA %d (%pM) already added, not adding again.\n",
1809 station = &il->stations[sta_id];
1810 station->used = IL_STA_DRIVER_ACTIVE;
1811 D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr);
1814 /* Set up the C_ADD_STA command to send to device */
1815 memset(&station->sta, 0, sizeof(struct il_addsta_cmd));
1816 memcpy(station->sta.sta.addr, addr, ETH_ALEN);
1817 station->sta.mode = 0;
1818 station->sta.sta.sta_id = sta_id;
1819 station->sta.station_flags = ctx->station_flags;
1820 station->ctxid = ctx->ctxid;
1823 struct il_station_priv_common *sta_priv;
1825 sta_priv = (void *)sta->drv_priv;
1826 sta_priv->ctx = ctx;
1830 * OK to call unconditionally, since local stations (IBSS BSSID
1831 * STA and broadcast STA) pass in a NULL sta, and mac80211
1832 * doesn't allow HT IBSS.
1834 il_set_ht_add_station(il, sta_id, sta, ctx);
1837 rate = (il->band == IEEE80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP;
1838 /* Turn on both antennas for the station... */
1839 station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK);
1845 EXPORT_SYMBOL_GPL(il_prep_station);
1847 #define STA_WAIT_TIMEOUT (HZ/2)
1850 * il_add_station_common -
1853 il_add_station_common(struct il_priv *il, struct il_rxon_context *ctx,
1854 const u8 * addr, bool is_ap, struct ieee80211_sta *sta,
1857 unsigned long flags_spin;
1860 struct il_addsta_cmd sta_cmd;
1863 spin_lock_irqsave(&il->sta_lock, flags_spin);
1864 sta_id = il_prep_station(il, ctx, addr, is_ap, sta);
1865 if (sta_id == IL_INVALID_STATION) {
1866 IL_ERR("Unable to prepare station %pM for addition\n", addr);
1867 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1872 * uCode is not able to deal with multiple requests to add a
1873 * station. Keep track if one is in progress so that we do not send
1876 if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
1877 D_INFO("STA %d already in process of being added.\n", sta_id);
1878 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1882 if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
1883 (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
1884 D_ASSOC("STA %d (%pM) already added, not adding again.\n",
1886 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1890 il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS;
1891 memcpy(&sta_cmd, &il->stations[sta_id].sta,
1892 sizeof(struct il_addsta_cmd));
1893 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1895 /* Add station to device's station table */
1896 ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
1898 spin_lock_irqsave(&il->sta_lock, flags_spin);
1899 IL_ERR("Adding station %pM failed.\n",
1900 il->stations[sta_id].sta.sta.addr);
1901 il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
1902 il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
1903 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1909 EXPORT_SYMBOL(il_add_station_common);
1912 * il_sta_ucode_deactivate - deactivate ucode status for a station
1914 * il->sta_lock must be held
1917 il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id)
1919 /* Ucode must be active and driver must be non active */
1920 if ((il->stations[sta_id].
1921 used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) !=
1922 IL_STA_UCODE_ACTIVE)
1923 IL_ERR("removed non active STA %u\n", sta_id);
1925 il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE;
1927 memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry));
1928 D_ASSOC("Removed STA %u\n", sta_id);
1932 il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id,
1935 struct il_rx_pkt *pkt;
1938 unsigned long flags_spin;
1939 struct il_rem_sta_cmd rm_sta_cmd;
1941 struct il_host_cmd cmd = {
1943 .len = sizeof(struct il_rem_sta_cmd),
1945 .data = &rm_sta_cmd,
1948 memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
1949 rm_sta_cmd.num_sta = 1;
1950 memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN);
1952 cmd.flags |= CMD_WANT_SKB;
1954 ret = il_send_cmd(il, &cmd);
1959 pkt = (struct il_rx_pkt *)cmd.reply_page;
1960 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
1961 IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags);
1966 switch (pkt->u.rem_sta.status) {
1967 case REM_STA_SUCCESS_MSK:
1969 spin_lock_irqsave(&il->sta_lock, flags_spin);
1970 il_sta_ucode_deactivate(il, sta_id);
1971 spin_unlock_irqrestore(&il->sta_lock,
1974 D_ASSOC("C_REM_STA PASSED\n");
1978 IL_ERR("C_REM_STA failed\n");
1982 il_free_pages(il, cmd.reply_page);
1988 * il_remove_station - Remove driver's knowledge of station.
1991 il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr)
1993 unsigned long flags;
1995 if (!il_is_ready(il)) {
1996 D_INFO("Unable to remove station %pM, device not ready.\n",
1999 * It is typical for stations to be removed when we are
2000 * going down. Return success since device will be down
2006 D_ASSOC("Removing STA from driver:%d %pM\n", sta_id, addr);
2008 if (WARN_ON(sta_id == IL_INVALID_STATION))
2011 spin_lock_irqsave(&il->sta_lock, flags);
2013 if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2014 D_INFO("Removing %pM but non DRIVER active\n", addr);
2018 if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2019 D_INFO("Removing %pM but non UCODE active\n", addr);
2023 if (il->stations[sta_id].used & IL_STA_LOCAL) {
2024 kfree(il->stations[sta_id].lq);
2025 il->stations[sta_id].lq = NULL;
2028 il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2032 BUG_ON(il->num_stations < 0);
2034 spin_unlock_irqrestore(&il->sta_lock, flags);
2036 return il_send_remove_station(il, addr, sta_id, false);
2038 spin_unlock_irqrestore(&il->sta_lock, flags);
2042 EXPORT_SYMBOL_GPL(il_remove_station);
2045 * il_clear_ucode_stations - clear ucode station table bits
2047 * This function clears all the bits in the driver indicating
2048 * which stations are active in the ucode. Call when something
2049 * other than explicit station management would cause this in
2050 * the ucode, e.g. unassociated RXON.
2053 il_clear_ucode_stations(struct il_priv *il, struct il_rxon_context *ctx)
2056 unsigned long flags_spin;
2057 bool cleared = false;
2059 D_INFO("Clearing ucode stations in driver\n");
2061 spin_lock_irqsave(&il->sta_lock, flags_spin);
2062 for (i = 0; i < il->hw_params.max_stations; i++) {
2063 if (ctx && ctx->ctxid != il->stations[i].ctxid)
2066 if (il->stations[i].used & IL_STA_UCODE_ACTIVE) {
2067 D_INFO("Clearing ucode active for station %d\n", i);
2068 il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2072 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2075 D_INFO("No active stations found to be cleared\n");
2078 EXPORT_SYMBOL(il_clear_ucode_stations);
2081 * il_restore_stations() - Restore driver known stations to device
2083 * All stations considered active by driver, but not present in ucode, is
2089 il_restore_stations(struct il_priv *il, struct il_rxon_context *ctx)
2091 struct il_addsta_cmd sta_cmd;
2092 struct il_link_quality_cmd lq;
2093 unsigned long flags_spin;
2099 if (!il_is_ready(il)) {
2100 D_INFO("Not ready yet, not restoring any stations.\n");
2104 D_ASSOC("Restoring all known stations ... start.\n");
2105 spin_lock_irqsave(&il->sta_lock, flags_spin);
2106 for (i = 0; i < il->hw_params.max_stations; i++) {
2107 if (ctx->ctxid != il->stations[i].ctxid)
2109 if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) &&
2110 !(il->stations[i].used & IL_STA_UCODE_ACTIVE)) {
2111 D_ASSOC("Restoring sta %pM\n",
2112 il->stations[i].sta.sta.addr);
2113 il->stations[i].sta.mode = 0;
2114 il->stations[i].used |= IL_STA_UCODE_INPROGRESS;
2119 for (i = 0; i < il->hw_params.max_stations; i++) {
2120 if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) {
2121 memcpy(&sta_cmd, &il->stations[i].sta,
2122 sizeof(struct il_addsta_cmd));
2124 if (il->stations[i].lq) {
2125 memcpy(&lq, il->stations[i].lq,
2126 sizeof(struct il_link_quality_cmd));
2129 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2130 ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2132 spin_lock_irqsave(&il->sta_lock, flags_spin);
2133 IL_ERR("Adding station %pM failed.\n",
2134 il->stations[i].sta.sta.addr);
2135 il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE;
2136 il->stations[i].used &=
2137 ~IL_STA_UCODE_INPROGRESS;
2138 spin_unlock_irqrestore(&il->sta_lock,
2142 * Rate scaling has already been initialized, send
2143 * current LQ command
2146 il_send_lq_cmd(il, ctx, &lq, CMD_SYNC, true);
2147 spin_lock_irqsave(&il->sta_lock, flags_spin);
2148 il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS;
2152 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2154 D_INFO("Restoring all known stations"
2155 " .... no stations to be restored.\n");
2157 D_INFO("Restoring all known stations" " .... complete.\n");
2160 EXPORT_SYMBOL(il_restore_stations);
2163 il_get_free_ucode_key_idx(struct il_priv *il)
2167 for (i = 0; i < il->sta_key_max_num; i++)
2168 if (!test_and_set_bit(i, &il->ucode_key_table))
2171 return WEP_INVALID_OFFSET;
2174 EXPORT_SYMBOL(il_get_free_ucode_key_idx);
2177 il_dealloc_bcast_stations(struct il_priv *il)
2179 unsigned long flags;
2182 spin_lock_irqsave(&il->sta_lock, flags);
2183 for (i = 0; i < il->hw_params.max_stations; i++) {
2184 if (!(il->stations[i].used & IL_STA_BCAST))
2187 il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2189 BUG_ON(il->num_stations < 0);
2190 kfree(il->stations[i].lq);
2191 il->stations[i].lq = NULL;
2193 spin_unlock_irqrestore(&il->sta_lock, flags);
2196 EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations);
2198 #ifdef CONFIG_IWLEGACY_DEBUG
2200 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2203 D_RATE("lq station id 0x%x\n", lq->sta_id);
2204 D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk,
2205 lq->general_params.dual_stream_ant_msk);
2207 for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
2208 D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags);
2212 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2218 * il_is_lq_table_valid() - Test one aspect of LQ cmd for validity
2220 * It sometimes happens when a HT rate has been in use and we
2221 * loose connectivity with AP then mac80211 will first tell us that the
2222 * current channel is not HT anymore before removing the station. In such a
2223 * scenario the RXON flags will be updated to indicate we are not
2224 * communicating HT anymore, but the LQ command may still contain HT rates.
2225 * Test for this to prevent driver from sending LQ command between the time
2226 * RXON flags are updated and when LQ command is updated.
2229 il_is_lq_table_valid(struct il_priv *il, struct il_rxon_context *ctx,
2230 struct il_link_quality_cmd *lq)
2234 if (ctx->ht.enabled)
2237 D_INFO("Channel %u is not an HT channel\n", ctx->active.channel);
2238 for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
2239 if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) {
2240 D_INFO("idx %d of LQ expects HT channel\n", i);
2248 * il_send_lq_cmd() - Send link quality command
2249 * @init: This command is sent as part of station initialization right
2250 * after station has been added.
2252 * The link quality command is sent as the last step of station creation.
2253 * This is the special case in which init is set and we call a callback in
2254 * this case to clear the state indicating that station creation is in
2258 il_send_lq_cmd(struct il_priv *il, struct il_rxon_context *ctx,
2259 struct il_link_quality_cmd *lq, u8 flags, bool init)
2262 unsigned long flags_spin;
2264 struct il_host_cmd cmd = {
2265 .id = C_TX_LINK_QUALITY_CMD,
2266 .len = sizeof(struct il_link_quality_cmd),
2271 if (WARN_ON(lq->sta_id == IL_INVALID_STATION))
2274 spin_lock_irqsave(&il->sta_lock, flags_spin);
2275 if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2276 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2279 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2281 il_dump_lq_cmd(il, lq);
2282 BUG_ON(init && (cmd.flags & CMD_ASYNC));
2284 if (il_is_lq_table_valid(il, ctx, lq))
2285 ret = il_send_cmd(il, &cmd);
2289 if (cmd.flags & CMD_ASYNC)
2293 D_INFO("init LQ command complete,"
2294 " clearing sta addition status for sta %d\n",
2296 spin_lock_irqsave(&il->sta_lock, flags_spin);
2297 il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2298 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2303 EXPORT_SYMBOL(il_send_lq_cmd);
2306 il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2307 struct ieee80211_sta *sta)
2309 struct il_priv *il = hw->priv;
2310 struct il_station_priv_common *sta_common = (void *)sta->drv_priv;
2313 D_INFO("received request to remove station %pM\n", sta->addr);
2314 mutex_lock(&il->mutex);
2315 D_INFO("proceeding to remove station %pM\n", sta->addr);
2316 ret = il_remove_station(il, sta_common->sta_id, sta->addr);
2318 IL_ERR("Error removing station %pM\n", sta->addr);
2319 mutex_unlock(&il->mutex);
2323 EXPORT_SYMBOL(il_mac_sta_remove);
2325 /************************** RX-FUNCTIONS ****************************/
2327 * Rx theory of operation
2329 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
2330 * each of which point to Receive Buffers to be filled by the NIC. These get
2331 * used not only for Rx frames, but for any command response or notification
2332 * from the NIC. The driver and NIC manage the Rx buffers by means
2333 * of idxes into the circular buffer.
2336 * The host/firmware share two idx registers for managing the Rx buffers.
2338 * The READ idx maps to the first position that the firmware may be writing
2339 * to -- the driver can read up to (but not including) this position and get
2341 * The READ idx is managed by the firmware once the card is enabled.
2343 * The WRITE idx maps to the last position the driver has read from -- the
2344 * position preceding WRITE is the last slot the firmware can place a packet.
2346 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
2349 * During initialization, the host sets up the READ queue position to the first
2350 * IDX position, and WRITE to the last (READ - 1 wrapped)
2352 * When the firmware places a packet in a buffer, it will advance the READ idx
2353 * and fire the RX interrupt. The driver can then query the READ idx and
2354 * process as many packets as possible, moving the WRITE idx forward as it
2355 * resets the Rx queue buffers with new memory.
2357 * The management in the driver is as follows:
2358 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
2359 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
2360 * to replenish the iwl->rxq->rx_free.
2361 * + In il_rx_replenish (scheduled) if 'processed' != 'read' then the
2362 * iwl->rxq is replenished and the READ IDX is updated (updating the
2363 * 'processed' and 'read' driver idxes as well)
2364 * + A received packet is processed and handed to the kernel network stack,
2365 * detached from the iwl->rxq. The driver 'processed' idx is updated.
2366 * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
2367 * list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
2368 * IDX is not incremented and iwl->status(RX_STALLED) is set. If there
2369 * were enough free buffers and RX_STALLED is set it is cleared.
2374 * il_rx_queue_alloc() Allocates rx_free
2375 * il_rx_replenish() Replenishes rx_free list from rx_used, and calls
2376 * il_rx_queue_restock
2377 * il_rx_queue_restock() Moves available buffers from rx_free into Rx
2378 * queue, updates firmware pointers, and updates
2379 * the WRITE idx. If insufficient rx_free buffers
2380 * are available, schedules il_rx_replenish
2382 * -- enable interrupts --
2383 * ISR - il_rx() Detach il_rx_bufs from pool up to the
2384 * READ IDX, detaching the SKB from the pool.
2385 * Moves the packet buffer from queue to rx_used.
2386 * Calls il_rx_queue_restock to refill any empty
2393 * il_rx_queue_space - Return number of free slots available in queue.
2396 il_rx_queue_space(const struct il_rx_queue *q)
2398 int s = q->read - q->write;
2401 /* keep some buffer to not confuse full and empty queue */
2408 EXPORT_SYMBOL(il_rx_queue_space);
2411 * il_rx_queue_update_write_ptr - Update the write pointer for the RX queue
2414 il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q)
2416 unsigned long flags;
2417 u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg;
2420 spin_lock_irqsave(&q->lock, flags);
2422 if (q->need_update == 0)
2425 /* If power-saving is in use, make sure device is awake */
2426 if (test_bit(S_POWER_PMI, &il->status)) {
2427 reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2429 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2430 D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n",
2432 il_set_bit(il, CSR_GP_CNTRL,
2433 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2437 q->write_actual = (q->write & ~0x7);
2438 il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2440 /* Else device is assumed to be awake */
2442 /* Device expects a multiple of 8 */
2443 q->write_actual = (q->write & ~0x7);
2444 il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2450 spin_unlock_irqrestore(&q->lock, flags);
2453 EXPORT_SYMBOL(il_rx_queue_update_write_ptr);
2456 il_rx_queue_alloc(struct il_priv *il)
2458 struct il_rx_queue *rxq = &il->rxq;
2459 struct device *dev = &il->pci_dev->dev;
2462 spin_lock_init(&rxq->lock);
2463 INIT_LIST_HEAD(&rxq->rx_free);
2464 INIT_LIST_HEAD(&rxq->rx_used);
2466 /* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
2468 dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma,
2474 dma_alloc_coherent(dev, sizeof(struct il_rb_status),
2475 &rxq->rb_stts_dma, GFP_KERNEL);
2479 /* Fill the rx_used queue with _all_ of the Rx buffers */
2480 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
2481 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
2483 /* Set us so that we have processed and used all buffers, but have
2484 * not restocked the Rx queue with fresh buffers */
2485 rxq->read = rxq->write = 0;
2486 rxq->write_actual = 0;
2487 rxq->free_count = 0;
2488 rxq->need_update = 0;
2492 dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
2498 EXPORT_SYMBOL(il_rx_queue_alloc);
2501 il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb)
2503 struct il_rx_pkt *pkt = rxb_addr(rxb);
2504 struct il_spectrum_notification *report = &(pkt->u.spectrum_notif);
2506 if (!report->state) {
2507 D_11H("Spectrum Measure Notification: Start\n");
2511 memcpy(&il->measure_report, report, sizeof(*report));
2512 il->measurement_status |= MEASUREMENT_READY;
2515 EXPORT_SYMBOL(il_hdl_spectrum_measurement);
2518 * returns non-zero if packet should be dropped
2521 il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr,
2522 u32 decrypt_res, struct ieee80211_rx_status *stats)
2524 u16 fc = le16_to_cpu(hdr->frame_control);
2527 * All contexts have the same setting here due to it being
2528 * a module parameter, so OK to check any context.
2530 if (il->ctx.active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
2533 if (!(fc & IEEE80211_FCTL_PROTECTED))
2536 D_RX("decrypt_res:0x%x\n", decrypt_res);
2537 switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
2538 case RX_RES_STATUS_SEC_TYPE_TKIP:
2539 /* The uCode has got a bad phase 1 Key, pushes the packet.
2540 * Decryption will be done in SW. */
2541 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2542 RX_RES_STATUS_BAD_KEY_TTAK)
2545 case RX_RES_STATUS_SEC_TYPE_WEP:
2546 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2547 RX_RES_STATUS_BAD_ICV_MIC) {
2548 /* bad ICV, the packet is destroyed since the
2549 * decryption is inplace, drop it */
2550 D_RX("Packet destroyed\n");
2553 case RX_RES_STATUS_SEC_TYPE_CCMP:
2554 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2555 RX_RES_STATUS_DECRYPT_OK) {
2556 D_RX("hw decrypt successfully!!!\n");
2557 stats->flag |= RX_FLAG_DECRYPTED;
2567 EXPORT_SYMBOL(il_set_decrypted_flag);
2570 * il_txq_update_write_ptr - Send new write idx to hardware
2573 il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq)
2576 int txq_id = txq->q.id;
2578 if (txq->need_update == 0)
2581 /* if we're trying to save power */
2582 if (test_bit(S_POWER_PMI, &il->status)) {
2583 /* wake up nic if it's powered down ...
2584 * uCode will wake up, and interrupt us again, so next
2585 * time we'll skip this part. */
2586 reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2588 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2589 D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n",
2591 il_set_bit(il, CSR_GP_CNTRL,
2592 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2596 il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2599 * else not in power-save mode,
2600 * uCode will never sleep when we're
2601 * trying to tx (during RFKILL, we're not trying to tx).
2604 _il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2605 txq->need_update = 0;
2608 EXPORT_SYMBOL(il_txq_update_write_ptr);
2611 * il_tx_queue_unmap - Unmap any remaining DMA mappings and free skb's
2614 il_tx_queue_unmap(struct il_priv *il, int txq_id)
2616 struct il_tx_queue *txq = &il->txq[txq_id];
2617 struct il_queue *q = &txq->q;
2622 while (q->write_ptr != q->read_ptr) {
2623 il->cfg->ops->lib->txq_free_tfd(il, txq);
2624 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2628 EXPORT_SYMBOL(il_tx_queue_unmap);
2631 * il_tx_queue_free - Deallocate DMA queue.
2632 * @txq: Transmit queue to deallocate.
2634 * Empty queue by removing and destroying all BD's.
2636 * 0-fill, but do not free "txq" descriptor structure.
2639 il_tx_queue_free(struct il_priv *il, int txq_id)
2641 struct il_tx_queue *txq = &il->txq[txq_id];
2642 struct device *dev = &il->pci_dev->dev;
2645 il_tx_queue_unmap(il, txq_id);
2647 /* De-alloc array of command/tx buffers */
2648 for (i = 0; i < TFD_TX_CMD_SLOTS; i++)
2651 /* De-alloc circular buffer of TFDs */
2653 dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2654 txq->tfds, txq->q.dma_addr);
2656 /* De-alloc array of per-TFD driver data */
2660 /* deallocate arrays */
2666 /* 0-fill queue descriptor structure */
2667 memset(txq, 0, sizeof(*txq));
2670 EXPORT_SYMBOL(il_tx_queue_free);
2673 * il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue
2676 il_cmd_queue_unmap(struct il_priv *il)
2678 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2679 struct il_queue *q = &txq->q;
2685 while (q->read_ptr != q->write_ptr) {
2686 i = il_get_cmd_idx(q, q->read_ptr, 0);
2688 if (txq->meta[i].flags & CMD_MAPPED) {
2689 pci_unmap_single(il->pci_dev,
2690 dma_unmap_addr(&txq->meta[i], mapping),
2691 dma_unmap_len(&txq->meta[i], len),
2692 PCI_DMA_BIDIRECTIONAL);
2693 txq->meta[i].flags = 0;
2696 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2700 if (txq->meta[i].flags & CMD_MAPPED) {
2701 pci_unmap_single(il->pci_dev,
2702 dma_unmap_addr(&txq->meta[i], mapping),
2703 dma_unmap_len(&txq->meta[i], len),
2704 PCI_DMA_BIDIRECTIONAL);
2705 txq->meta[i].flags = 0;
2709 EXPORT_SYMBOL(il_cmd_queue_unmap);
2712 * il_cmd_queue_free - Deallocate DMA queue.
2713 * @txq: Transmit queue to deallocate.
2715 * Empty queue by removing and destroying all BD's.
2717 * 0-fill, but do not free "txq" descriptor structure.
2720 il_cmd_queue_free(struct il_priv *il)
2722 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2723 struct device *dev = &il->pci_dev->dev;
2726 il_cmd_queue_unmap(il);
2728 /* De-alloc array of command/tx buffers */
2729 for (i = 0; i <= TFD_CMD_SLOTS; i++)
2732 /* De-alloc circular buffer of TFDs */
2734 dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2735 txq->tfds, txq->q.dma_addr);
2737 /* deallocate arrays */
2743 /* 0-fill queue descriptor structure */
2744 memset(txq, 0, sizeof(*txq));
2747 EXPORT_SYMBOL(il_cmd_queue_free);
2749 /*************** DMA-QUEUE-GENERAL-FUNCTIONS *****
2752 * Theory of operation
2754 * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
2755 * of buffer descriptors, each of which points to one or more data buffers for
2756 * the device to read from or fill. Driver and device exchange status of each
2757 * queue via "read" and "write" pointers. Driver keeps minimum of 2 empty
2758 * entries in each circular buffer, to protect against confusing empty and full
2761 * The device reads or writes the data in the queues via the device's several
2762 * DMA/FIFO channels. Each queue is mapped to a single DMA channel.
2764 * For Tx queue, there are low mark and high mark limits. If, after queuing
2765 * the packet for Tx, free space become < low mark, Tx queue stopped. When
2766 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
2769 * See more detailed info in 4965.h.
2770 ***************************************************/
2773 il_queue_space(const struct il_queue *q)
2775 int s = q->read_ptr - q->write_ptr;
2777 if (q->read_ptr > q->write_ptr)
2782 /* keep some reserve to not confuse empty and full situations */
2789 EXPORT_SYMBOL(il_queue_space);
2793 * il_queue_init - Initialize queue's high/low-water and read/write idxes
2796 il_queue_init(struct il_priv *il, struct il_queue *q, int count, int slots_num,
2800 q->n_win = slots_num;
2803 /* count must be power-of-two size, otherwise il_queue_inc_wrap
2804 * and il_queue_dec_wrap are broken. */
2805 BUG_ON(!is_power_of_2(count));
2807 /* slots_num must be power-of-two size, otherwise
2808 * il_get_cmd_idx is broken. */
2809 BUG_ON(!is_power_of_2(slots_num));
2811 q->low_mark = q->n_win / 4;
2812 if (q->low_mark < 4)
2815 q->high_mark = q->n_win / 8;
2816 if (q->high_mark < 2)
2819 q->write_ptr = q->read_ptr = 0;
2825 * il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue
2828 il_tx_queue_alloc(struct il_priv *il, struct il_tx_queue *txq, u32 id)
2830 struct device *dev = &il->pci_dev->dev;
2831 size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX;
2833 /* Driver ilate data, only for Tx (not command) queues,
2834 * not shared with device. */
2835 if (id != il->cmd_queue) {
2837 kzalloc(sizeof(txq->txb[0]) * TFD_QUEUE_SIZE_MAX,
2840 IL_ERR("kmalloc for auxiliary BD "
2841 "structures failed\n");
2848 /* Circular buffer of transmit frame descriptors (TFDs),
2849 * shared with device */
2851 dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL);
2853 IL_ERR("pci_alloc_consistent(%zd) failed\n", tfd_sz);
2868 * il_tx_queue_init - Allocate and initialize one tx/cmd queue
2871 il_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq, int slots_num,
2876 int actual_slots = slots_num;
2879 * Alloc buffer array for commands (Tx or other types of commands).
2880 * For the command queue (#4/#9), allocate command space + one big
2881 * command for scan, since scan command is very huge; the system will
2882 * not have two scans at the same time, so only one is needed.
2883 * For normal Tx queues (all other queues), no super-size command
2886 if (txq_id == il->cmd_queue)
2890 kzalloc(sizeof(struct il_cmd_meta) * actual_slots, GFP_KERNEL);
2892 kzalloc(sizeof(struct il_device_cmd *) * actual_slots, GFP_KERNEL);
2894 if (!txq->meta || !txq->cmd)
2895 goto out_free_arrays;
2897 len = sizeof(struct il_device_cmd);
2898 for (i = 0; i < actual_slots; i++) {
2899 /* only happens for cmd queue */
2901 len = IL_MAX_CMD_SIZE;
2903 txq->cmd[i] = kmalloc(len, GFP_KERNEL);
2908 /* Alloc driver data array and TFD circular buffer */
2909 ret = il_tx_queue_alloc(il, txq, txq_id);
2913 txq->need_update = 0;
2916 * For the default queues 0-3, set up the swq_id
2917 * already -- all others need to get one later
2918 * (if they need one at all).
2921 il_set_swq_id(txq, txq_id, txq_id);
2923 /* TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise
2924 * il_queue_inc_wrap and il_queue_dec_wrap are broken. */
2925 BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1));
2927 /* Initialize queue's high/low-water marks, and head/tail idxes */
2928 il_queue_init(il, &txq->q, TFD_QUEUE_SIZE_MAX, slots_num, txq_id);
2930 /* Tell device where to find queue */
2931 il->cfg->ops->lib->txq_init(il, txq);
2935 for (i = 0; i < actual_slots; i++)
2944 EXPORT_SYMBOL(il_tx_queue_init);
2947 il_tx_queue_reset(struct il_priv *il, struct il_tx_queue *txq, int slots_num,
2950 int actual_slots = slots_num;
2952 if (txq_id == il->cmd_queue)
2955 memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots);
2957 txq->need_update = 0;
2959 /* Initialize queue's high/low-water marks, and head/tail idxes */
2960 il_queue_init(il, &txq->q, TFD_QUEUE_SIZE_MAX, slots_num, txq_id);
2962 /* Tell device where to find queue */
2963 il->cfg->ops->lib->txq_init(il, txq);
2966 EXPORT_SYMBOL(il_tx_queue_reset);
2968 /*************** HOST COMMAND QUEUE FUNCTIONS *****/
2971 * il_enqueue_hcmd - enqueue a uCode command
2972 * @il: device ilate data point
2973 * @cmd: a point to the ucode command structure
2975 * The function returns < 0 values to indicate the operation is
2976 * failed. On success, it turns the idx (> 0) of command in the
2980 il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
2982 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2983 struct il_queue *q = &txq->q;
2984 struct il_device_cmd *out_cmd;
2985 struct il_cmd_meta *out_meta;
2986 dma_addr_t phys_addr;
2987 unsigned long flags;
2992 cmd->len = il->cfg->ops->utils->get_hcmd_size(cmd->id, cmd->len);
2993 fix_size = (u16) (cmd->len + sizeof(out_cmd->hdr));
2995 /* If any of the command structures end up being larger than
2996 * the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then
2997 * we will need to increase the size of the TFD entries
2998 * Also, check to see if command buffer should not exceed the size
2999 * of device_cmd and max_cmd_size. */
3000 BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) &&
3001 !(cmd->flags & CMD_SIZE_HUGE));
3002 BUG_ON(fix_size > IL_MAX_CMD_SIZE);
3004 if (il_is_rfkill(il) || il_is_ctkill(il)) {
3005 IL_WARN("Not sending command - %s KILL\n",
3006 il_is_rfkill(il) ? "RF" : "CT");
3010 spin_lock_irqsave(&il->hcmd_lock, flags);
3012 if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
3013 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3015 IL_ERR("Restarting adapter due to command queue full\n");
3016 queue_work(il->workqueue, &il->restart);
3020 idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE);
3021 out_cmd = txq->cmd[idx];
3022 out_meta = &txq->meta[idx];
3024 if (WARN_ON(out_meta->flags & CMD_MAPPED)) {
3025 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3029 memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */
3030 out_meta->flags = cmd->flags | CMD_MAPPED;
3031 if (cmd->flags & CMD_WANT_SKB)
3032 out_meta->source = cmd;
3033 if (cmd->flags & CMD_ASYNC)
3034 out_meta->callback = cmd->callback;
3036 out_cmd->hdr.cmd = cmd->id;
3037 memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len);
3039 /* At this point, the out_cmd now has all of the incoming cmd
3042 out_cmd->hdr.flags = 0;
3043 out_cmd->hdr.sequence =
3044 cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) | IDX_TO_SEQ(q->write_ptr));
3045 if (cmd->flags & CMD_SIZE_HUGE)
3046 out_cmd->hdr.sequence |= SEQ_HUGE_FRAME;
3047 len = sizeof(struct il_device_cmd);
3048 if (idx == TFD_CMD_SLOTS)
3049 len = IL_MAX_CMD_SIZE;
3051 #ifdef CONFIG_IWLEGACY_DEBUG
3052 switch (out_cmd->hdr.cmd) {
3053 case C_TX_LINK_QUALITY_CMD:
3055 D_HC_DUMP("Sending command %s (#%x), seq: 0x%04X, "
3056 "%d bytes at %d[%d]:%d\n",
3057 il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3058 le16_to_cpu(out_cmd->hdr.sequence), fix_size,
3059 q->write_ptr, idx, il->cmd_queue);
3062 D_HC("Sending command %s (#%x), seq: 0x%04X, "
3063 "%d bytes at %d[%d]:%d\n",
3064 il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3065 le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr,
3066 idx, il->cmd_queue);
3069 txq->need_update = 1;
3071 if (il->cfg->ops->lib->txq_update_byte_cnt_tbl)
3072 /* Set up entry in queue's byte count circular buffer */
3073 il->cfg->ops->lib->txq_update_byte_cnt_tbl(il, txq, 0);
3076 pci_map_single(il->pci_dev, &out_cmd->hdr, fix_size,
3077 PCI_DMA_BIDIRECTIONAL);
3078 dma_unmap_addr_set(out_meta, mapping, phys_addr);
3079 dma_unmap_len_set(out_meta, len, fix_size);
3081 il->cfg->ops->lib->txq_attach_buf_to_tfd(il, txq, phys_addr, fix_size,
3082 1, U32_PAD(cmd->len));
3084 /* Increment and update queue's write idx */
3085 q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd);
3086 il_txq_update_write_ptr(il, txq);
3088 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3093 * il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd
3095 * When FW advances 'R' idx, all entries between old and new 'R' idx
3096 * need to be reclaimed. As result, some free space forms. If there is
3097 * enough free space (> low mark), wake the stack that feeds us.
3100 il_hcmd_queue_reclaim(struct il_priv *il, int txq_id, int idx, int cmd_idx)
3102 struct il_tx_queue *txq = &il->txq[txq_id];
3103 struct il_queue *q = &txq->q;
3106 if (idx >= q->n_bd || il_queue_used(q, idx) == 0) {
3107 IL_ERR("Read idx for DMA queue txq id (%d), idx %d, "
3108 "is out of range [0-%d] %d %d.\n", txq_id, idx, q->n_bd,
3109 q->write_ptr, q->read_ptr);
3113 for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
3114 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
3117 IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx,
3118 q->write_ptr, q->read_ptr);
3119 queue_work(il->workqueue, &il->restart);
3126 * il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them
3127 * @rxb: Rx buffer to reclaim
3129 * If an Rx buffer has an async callback associated with it the callback
3130 * will be executed. The attached skb (if present) will only be freed
3131 * if the callback returns 1
3134 il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb)
3136 struct il_rx_pkt *pkt = rxb_addr(rxb);
3137 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
3138 int txq_id = SEQ_TO_QUEUE(sequence);
3139 int idx = SEQ_TO_IDX(sequence);
3141 bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME);
3142 struct il_device_cmd *cmd;
3143 struct il_cmd_meta *meta;
3144 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3145 unsigned long flags;
3147 /* If a Tx command is being handled and it isn't in the actual
3148 * command queue then there a command routing bug has been introduced
3149 * in the queue management code. */
3151 (txq_id != il->cmd_queue,
3152 "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
3153 txq_id, il->cmd_queue, sequence, il->txq[il->cmd_queue].q.read_ptr,
3154 il->txq[il->cmd_queue].q.write_ptr)) {
3155 il_print_hex_error(il, pkt, 32);
3159 cmd_idx = il_get_cmd_idx(&txq->q, idx, huge);
3160 cmd = txq->cmd[cmd_idx];
3161 meta = &txq->meta[cmd_idx];
3163 txq->time_stamp = jiffies;
3165 pci_unmap_single(il->pci_dev, dma_unmap_addr(meta, mapping),
3166 dma_unmap_len(meta, len), PCI_DMA_BIDIRECTIONAL);
3168 /* Input error checking is done when commands are added to queue. */
3169 if (meta->flags & CMD_WANT_SKB) {
3170 meta->source->reply_page = (unsigned long)rxb_addr(rxb);
3172 } else if (meta->callback)
3173 meta->callback(il, cmd, pkt);
3175 spin_lock_irqsave(&il->hcmd_lock, flags);
3177 il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx);
3179 if (!(meta->flags & CMD_ASYNC)) {
3180 clear_bit(S_HCMD_ACTIVE, &il->status);
3181 D_INFO("Clearing HCMD_ACTIVE for command %s\n",
3182 il_get_cmd_string(cmd->hdr.cmd));
3183 wake_up(&il->wait_command_queue);
3186 /* Mark as unmapped */
3189 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3191 EXPORT_SYMBOL(il_tx_cmd_complete);
3193 MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965");
3194 MODULE_VERSION(IWLWIFI_VERSION);
3195 MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
3196 MODULE_LICENSE("GPL");
3199 * set bt_coex_active to true, uCode will do kill/defer
3200 * every time the priority line is asserted (BT is sending signals on the
3201 * priority line in the PCIx).
3202 * set bt_coex_active to false, uCode will ignore the BT activity and
3203 * perform the normal operation
3205 * User might experience transmit issue on some platform due to WiFi/BT
3206 * co-exist problem. The possible behaviors are:
3207 * Able to scan and finding all the available AP
3208 * Not able to associate with any AP
3209 * On those platforms, WiFi communication can be restored by set
3210 * "bt_coex_active" module parameter to "false"
3212 * default: bt_coex_active = true (BT_COEX_ENABLE)
3214 static bool bt_coex_active = true;
3215 module_param(bt_coex_active, bool, S_IRUGO);
3216 MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist");
3219 EXPORT_SYMBOL(il_debug_level);
3221 const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3223 EXPORT_SYMBOL(il_bcast_addr);
3225 /* This function both allocates and initializes hw and il. */
3226 struct ieee80211_hw *
3227 il_alloc_all(struct il_cfg *cfg)
3230 /* mac80211 allocates memory for this device instance, including
3231 * space for this driver's ilate structure */
3232 struct ieee80211_hw *hw;
3234 hw = ieee80211_alloc_hw(sizeof(struct il_priv),
3235 cfg->ops->ieee80211_ops);
3237 pr_err("%s: Can not allocate network device\n", cfg->name);
3248 EXPORT_SYMBOL(il_alloc_all);
3250 #define MAX_BIT_RATE_40_MHZ 150 /* Mbps */
3251 #define MAX_BIT_RATE_20_MHZ 72 /* Mbps */
3253 il_init_ht_hw_capab(const struct il_priv *il,
3254 struct ieee80211_sta_ht_cap *ht_info,
3255 enum ieee80211_band band)
3257 u16 max_bit_rate = 0;
3258 u8 rx_chains_num = il->hw_params.rx_chains_num;
3259 u8 tx_chains_num = il->hw_params.tx_chains_num;
3262 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
3264 ht_info->ht_supported = true;
3266 ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
3267 max_bit_rate = MAX_BIT_RATE_20_MHZ;
3268 if (il->hw_params.ht40_channel & BIT(band)) {
3269 ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
3270 ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
3271 ht_info->mcs.rx_mask[4] = 0x01;
3272 max_bit_rate = MAX_BIT_RATE_40_MHZ;
3275 if (il->cfg->mod_params->amsdu_size_8K)
3276 ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
3278 ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
3279 ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
3281 ht_info->mcs.rx_mask[0] = 0xFF;
3282 if (rx_chains_num >= 2)
3283 ht_info->mcs.rx_mask[1] = 0xFF;
3284 if (rx_chains_num >= 3)
3285 ht_info->mcs.rx_mask[2] = 0xFF;
3287 /* Highest supported Rx data rate */
3288 max_bit_rate *= rx_chains_num;
3289 WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
3290 ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
3292 /* Tx MCS capabilities */
3293 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
3294 if (tx_chains_num != rx_chains_num) {
3295 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
3296 ht_info->mcs.tx_params |=
3298 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
3303 * il_init_geos - Initialize mac80211's geo/channel info based from eeprom
3306 il_init_geos(struct il_priv *il)
3308 struct il_channel_info *ch;
3309 struct ieee80211_supported_band *sband;
3310 struct ieee80211_channel *channels;
3311 struct ieee80211_channel *geo_ch;
3312 struct ieee80211_rate *rates;
3314 s8 max_tx_power = 0;
3316 if (il->bands[IEEE80211_BAND_2GHZ].n_bitrates ||
3317 il->bands[IEEE80211_BAND_5GHZ].n_bitrates) {
3318 D_INFO("Geography modes already initialized.\n");
3319 set_bit(S_GEO_CONFIGURED, &il->status);
3324 kzalloc(sizeof(struct ieee80211_channel) * il->channel_count,
3330 kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY),
3337 /* 5.2GHz channels start after the 2.4GHz channels */
3338 sband = &il->bands[IEEE80211_BAND_5GHZ];
3339 sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)];
3341 sband->bitrates = &rates[IL_FIRST_OFDM_RATE];
3342 sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE;
3344 if (il->cfg->sku & IL_SKU_N)
3345 il_init_ht_hw_capab(il, &sband->ht_cap, IEEE80211_BAND_5GHZ);
3347 sband = &il->bands[IEEE80211_BAND_2GHZ];
3348 sband->channels = channels;
3350 sband->bitrates = rates;
3351 sband->n_bitrates = RATE_COUNT_LEGACY;
3353 if (il->cfg->sku & IL_SKU_N)
3354 il_init_ht_hw_capab(il, &sband->ht_cap, IEEE80211_BAND_2GHZ);
3356 il->ieee_channels = channels;
3357 il->ieee_rates = rates;
3359 for (i = 0; i < il->channel_count; i++) {
3360 ch = &il->channel_info[i];
3362 if (!il_is_channel_valid(ch))
3365 sband = &il->bands[ch->band];
3367 geo_ch = &sband->channels[sband->n_channels++];
3369 geo_ch->center_freq =
3370 ieee80211_channel_to_frequency(ch->channel, ch->band);
3371 geo_ch->max_power = ch->max_power_avg;
3372 geo_ch->max_antenna_gain = 0xff;
3373 geo_ch->hw_value = ch->channel;
3375 if (il_is_channel_valid(ch)) {
3376 if (!(ch->flags & EEPROM_CHANNEL_IBSS))
3377 geo_ch->flags |= IEEE80211_CHAN_NO_IBSS;
3379 if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
3380 geo_ch->flags |= IEEE80211_CHAN_PASSIVE_SCAN;
3382 if (ch->flags & EEPROM_CHANNEL_RADAR)
3383 geo_ch->flags |= IEEE80211_CHAN_RADAR;
3385 geo_ch->flags |= ch->ht40_extension_channel;
3387 if (ch->max_power_avg > max_tx_power)
3388 max_tx_power = ch->max_power_avg;
3390 geo_ch->flags |= IEEE80211_CHAN_DISABLED;
3393 D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel,
3394 geo_ch->center_freq,
3395 il_is_channel_a_band(ch) ? "5.2" : "2.4",
3397 flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid",
3401 il->tx_power_device_lmt = max_tx_power;
3402 il->tx_power_user_lmt = max_tx_power;
3403 il->tx_power_next = max_tx_power;
3405 if (il->bands[IEEE80211_BAND_5GHZ].n_channels == 0 &&
3406 (il->cfg->sku & IL_SKU_A)) {
3407 IL_INFO("Incorrectly detected BG card as ABG. "
3408 "Please send your PCI ID 0x%04X:0x%04X to maintainer.\n",
3409 il->pci_dev->device, il->pci_dev->subsystem_device);
3410 il->cfg->sku &= ~IL_SKU_A;
3413 IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n",
3414 il->bands[IEEE80211_BAND_2GHZ].n_channels,
3415 il->bands[IEEE80211_BAND_5GHZ].n_channels);
3417 set_bit(S_GEO_CONFIGURED, &il->status);
3422 EXPORT_SYMBOL(il_init_geos);
3425 * il_free_geos - undo allocations in il_init_geos
3428 il_free_geos(struct il_priv *il)
3430 kfree(il->ieee_channels);
3431 kfree(il->ieee_rates);
3432 clear_bit(S_GEO_CONFIGURED, &il->status);
3435 EXPORT_SYMBOL(il_free_geos);
3438 il_is_channel_extension(struct il_priv *il, enum ieee80211_band band,
3439 u16 channel, u8 extension_chan_offset)
3441 const struct il_channel_info *ch_info;
3443 ch_info = il_get_channel_info(il, band, channel);
3444 if (!il_is_channel_valid(ch_info))
3447 if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
3449 ht40_extension_channel & IEEE80211_CHAN_NO_HT40PLUS);
3450 else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
3452 ht40_extension_channel & IEEE80211_CHAN_NO_HT40MINUS);
3458 il_is_ht40_tx_allowed(struct il_priv * il, struct il_rxon_context * ctx,
3459 struct ieee80211_sta_ht_cap * ht_cap)
3461 if (!ctx->ht.enabled || !ctx->ht.is_40mhz)
3465 * We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40
3466 * the bit will not set if it is pure 40MHz case
3468 if (ht_cap && !ht_cap->ht_supported)
3471 #ifdef CONFIG_IWLEGACY_DEBUGFS
3472 if (il->disable_ht40)
3476 return il_is_channel_extension(il, il->band,
3477 le16_to_cpu(ctx->staging.channel),
3478 ctx->ht.extension_chan_offset);
3481 EXPORT_SYMBOL(il_is_ht40_tx_allowed);
3484 il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val)
3490 * If mac80211 hasn't given us a beacon interval, program
3491 * the default into the device.
3494 return DEFAULT_BEACON_INTERVAL;
3497 * If the beacon interval we obtained from the peer
3498 * is too large, we'll have to wake up more often
3499 * (and in IBSS case, we'll beacon too much)
3501 * For example, if max_beacon_val is 4096, and the
3502 * requested beacon interval is 7000, we'll have to
3503 * use 3500 to be able to wake up on the beacons.
3505 * This could badly influence beacon detection stats.
3508 beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val;
3509 new_val = beacon_val / beacon_factor;
3512 new_val = max_beacon_val;
3518 il_send_rxon_timing(struct il_priv *il, struct il_rxon_context *ctx)
3521 s32 interval_tm, rem;
3522 struct ieee80211_conf *conf = NULL;
3524 struct ieee80211_vif *vif = ctx->vif;
3526 conf = &il->hw->conf;
3528 lockdep_assert_held(&il->mutex);
3530 memset(&ctx->timing, 0, sizeof(struct il_rxon_time_cmd));
3532 ctx->timing.timestamp = cpu_to_le64(il->timestamp);
3533 ctx->timing.listen_interval = cpu_to_le16(conf->listen_interval);
3535 beacon_int = vif ? vif->bss_conf.beacon_int : 0;
3538 * TODO: For IBSS we need to get atim_win from mac80211,
3539 * for now just always use 0
3541 ctx->timing.atim_win = 0;
3544 il_adjust_beacon_interval(beacon_int,
3545 il->hw_params.max_beacon_itrvl *
3547 ctx->timing.beacon_interval = cpu_to_le16(beacon_int);
3549 tsf = il->timestamp; /* tsf is modifed by do_div: copy it */
3550 interval_tm = beacon_int * TIME_UNIT;
3551 rem = do_div(tsf, interval_tm);
3552 ctx->timing.beacon_init_val = cpu_to_le32(interval_tm - rem);
3554 ctx->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ? : 1) : 1;
3556 D_ASSOC("beacon interval %d beacon timer %d beacon tim %d\n",
3557 le16_to_cpu(ctx->timing.beacon_interval),
3558 le32_to_cpu(ctx->timing.beacon_init_val),
3559 le16_to_cpu(ctx->timing.atim_win));
3561 return il_send_cmd_pdu(il, ctx->rxon_timing_cmd, sizeof(ctx->timing),
3565 EXPORT_SYMBOL(il_send_rxon_timing);
3568 il_set_rxon_hwcrypto(struct il_priv *il, struct il_rxon_context *ctx,
3571 struct il_rxon_cmd *rxon = &ctx->staging;
3574 rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK;
3576 rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK;
3580 EXPORT_SYMBOL(il_set_rxon_hwcrypto);
3582 /* validate RXON structure is valid */
3584 il_check_rxon_cmd(struct il_priv *il, struct il_rxon_context *ctx)
3586 struct il_rxon_cmd *rxon = &ctx->staging;
3589 if (rxon->flags & RXON_FLG_BAND_24G_MSK) {
3590 if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) {
3591 IL_WARN("check 2.4G: wrong narrow\n");
3594 if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) {
3595 IL_WARN("check 2.4G: wrong radar\n");
3599 if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) {
3600 IL_WARN("check 5.2G: not short slot!\n");
3603 if (rxon->flags & RXON_FLG_CCK_MSK) {
3604 IL_WARN("check 5.2G: CCK!\n");
3608 if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) {
3609 IL_WARN("mac/bssid mcast!\n");
3613 /* make sure basic rates 6Mbps and 1Mbps are supported */
3614 if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 &&
3615 (rxon->cck_basic_rates & RATE_1M_MASK) == 0) {
3616 IL_WARN("neither 1 nor 6 are basic\n");
3620 if (le16_to_cpu(rxon->assoc_id) > 2007) {
3621 IL_WARN("aid > 2007\n");
3625 if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) ==
3626 (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) {
3627 IL_WARN("CCK and short slot\n");
3631 if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) ==
3632 (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) {
3633 IL_WARN("CCK and auto detect");
3638 flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) ==
3639 RXON_FLG_TGG_PROTECT_MSK) {
3640 IL_WARN("TGg but no auto-detect\n");
3645 IL_WARN("Tuning to channel %d\n", le16_to_cpu(rxon->channel));
3648 IL_ERR("Invalid RXON\n");
3654 EXPORT_SYMBOL(il_check_rxon_cmd);
3657 * il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed
3658 * @il: staging_rxon is compared to active_rxon
3660 * If the RXON structure is changing enough to require a new tune,
3661 * or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that
3662 * a new tune (full RXON command, rather than RXON_ASSOC cmd) is required.
3665 il_full_rxon_required(struct il_priv *il, struct il_rxon_context *ctx)
3667 const struct il_rxon_cmd *staging = &ctx->staging;
3668 const struct il_rxon_cmd *active = &ctx->active;
3672 D_INFO("need full RXON - " #cond "\n"); \
3676 #define CHK_NEQ(c1, c2) \
3677 if ((c1) != (c2)) { \
3678 D_INFO("need full RXON - " \
3679 #c1 " != " #c2 " - %d != %d\n", \
3684 /* These items are only settable from the full RXON command */
3685 CHK(!il_is_associated_ctx(ctx));
3686 CHK(compare_ether_addr(staging->bssid_addr, active->bssid_addr));
3687 CHK(compare_ether_addr(staging->node_addr, active->node_addr));
3688 CHK(compare_ether_addr
3689 (staging->wlap_bssid_addr, active->wlap_bssid_addr));
3690 CHK_NEQ(staging->dev_type, active->dev_type);
3691 CHK_NEQ(staging->channel, active->channel);
3692 CHK_NEQ(staging->air_propagation, active->air_propagation);
3693 CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates,
3694 active->ofdm_ht_single_stream_basic_rates);
3695 CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates,
3696 active->ofdm_ht_dual_stream_basic_rates);
3697 CHK_NEQ(staging->assoc_id, active->assoc_id);
3699 /* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can
3700 * be updated with the RXON_ASSOC command -- however only some
3701 * flag transitions are allowed using RXON_ASSOC */
3703 /* Check if we are not switching bands */
3704 CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK,
3705 active->flags & RXON_FLG_BAND_24G_MSK);
3707 /* Check if we are switching association toggle */
3708 CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK,
3709 active->filter_flags & RXON_FILTER_ASSOC_MSK);
3717 EXPORT_SYMBOL(il_full_rxon_required);
3720 il_get_lowest_plcp(struct il_priv * il, struct il_rxon_context * ctx)
3723 * Assign the lowest rate -- should really get this from
3724 * the beacon skb from mac80211.
3726 if (ctx->staging.flags & RXON_FLG_BAND_24G_MSK)
3727 return RATE_1M_PLCP;
3729 return RATE_6M_PLCP;
3732 EXPORT_SYMBOL(il_get_lowest_plcp);
3735 _il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf,
3736 struct il_rxon_context *ctx)
3738 struct il_rxon_cmd *rxon = &ctx->staging;
3740 if (!ctx->ht.enabled) {
3742 ~(RXON_FLG_CHANNEL_MODE_MSK |
3743 RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | RXON_FLG_HT40_PROT_MSK
3744 | RXON_FLG_HT_PROT_MSK);
3749 cpu_to_le32(ctx->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS);
3751 /* Set up channel bandwidth:
3752 * 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */
3753 /* clear the HT channel mode before set the mode */
3755 ~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3756 if (il_is_ht40_tx_allowed(il, ctx, NULL)) {
3758 if (ctx->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) {
3759 rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40;
3760 /* Note: control channel is opposite of extension channel */
3761 switch (ctx->ht.extension_chan_offset) {
3762 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3764 ~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3766 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3767 rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3771 /* Note: control channel is opposite of extension channel */