]> git.openfabrics.org - ~shefty/rdma-dev.git/blob - drivers/regulator/core.c
regulator: core - Rework machine API to remove string based functions.
[~shefty/rdma-dev.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /**
33  * struct regulator_dev
34  *
35  * Voltage / Current regulator class device. One for each regulator.
36  */
37 struct regulator_dev {
38         struct regulator_desc *desc;
39         int use_count;
40
41         /* lists we belong to */
42         struct list_head list; /* list of all regulators */
43         struct list_head slist; /* list of supplied regulators */
44
45         /* lists we own */
46         struct list_head consumer_list; /* consumers we supply */
47         struct list_head supply_list; /* regulators we supply */
48
49         struct blocking_notifier_head notifier;
50         struct mutex mutex; /* consumer lock */
51         struct module *owner;
52         struct device dev;
53         struct regulation_constraints *constraints;
54         struct regulator_dev *supply;   /* for tree */
55
56         void *reg_data;         /* regulator_dev data */
57 };
58
59 /**
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         struct device *dev;
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         int uA_load;
80         int min_uV;
81         int max_uV;
82         int enabled; /* client has called enabled */
83         char *supply_name;
84         struct device_attribute dev_attr;
85         struct regulator_dev *rdev;
86 };
87
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94                                   unsigned long event, void *data);
95
96 /* gets the regulator for a given consumer device */
97 static struct regulator *get_device_regulator(struct device *dev)
98 {
99         struct regulator *regulator = NULL;
100         struct regulator_dev *rdev;
101
102         mutex_lock(&regulator_list_mutex);
103         list_for_each_entry(rdev, &regulator_list, list) {
104                 mutex_lock(&rdev->mutex);
105                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
106                         if (regulator->dev == dev) {
107                                 mutex_unlock(&rdev->mutex);
108                                 mutex_unlock(&regulator_list_mutex);
109                                 return regulator;
110                         }
111                 }
112                 mutex_unlock(&rdev->mutex);
113         }
114         mutex_unlock(&regulator_list_mutex);
115         return NULL;
116 }
117
118 /* Platform voltage constraint check */
119 static int regulator_check_voltage(struct regulator_dev *rdev,
120                                    int *min_uV, int *max_uV)
121 {
122         BUG_ON(*min_uV > *max_uV);
123
124         if (!rdev->constraints) {
125                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126                        rdev->desc->name);
127                 return -ENODEV;
128         }
129         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130                 printk(KERN_ERR "%s: operation not allowed for %s\n",
131                        __func__, rdev->desc->name);
132                 return -EPERM;
133         }
134
135         if (*max_uV > rdev->constraints->max_uV)
136                 *max_uV = rdev->constraints->max_uV;
137         if (*min_uV < rdev->constraints->min_uV)
138                 *min_uV = rdev->constraints->min_uV;
139
140         if (*min_uV > *max_uV)
141                 return -EINVAL;
142
143         return 0;
144 }
145
146 /* current constraint check */
147 static int regulator_check_current_limit(struct regulator_dev *rdev,
148                                         int *min_uA, int *max_uA)
149 {
150         BUG_ON(*min_uA > *max_uA);
151
152         if (!rdev->constraints) {
153                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154                        rdev->desc->name);
155                 return -ENODEV;
156         }
157         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158                 printk(KERN_ERR "%s: operation not allowed for %s\n",
159                        __func__, rdev->desc->name);
160                 return -EPERM;
161         }
162
163         if (*max_uA > rdev->constraints->max_uA)
164                 *max_uA = rdev->constraints->max_uA;
165         if (*min_uA < rdev->constraints->min_uA)
166                 *min_uA = rdev->constraints->min_uA;
167
168         if (*min_uA > *max_uA)
169                 return -EINVAL;
170
171         return 0;
172 }
173
174 /* operating mode constraint check */
175 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176 {
177         if (!rdev->constraints) {
178                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
179                        rdev->desc->name);
180                 return -ENODEV;
181         }
182         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
183                 printk(KERN_ERR "%s: operation not allowed for %s\n",
184                        __func__, rdev->desc->name);
185                 return -EPERM;
186         }
187         if (!(rdev->constraints->valid_modes_mask & mode)) {
188                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
189                        __func__, mode, rdev->desc->name);
190                 return -EINVAL;
191         }
192         return 0;
193 }
194
195 /* dynamic regulator mode switching constraint check */
196 static int regulator_check_drms(struct regulator_dev *rdev)
197 {
198         if (!rdev->constraints) {
199                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
200                        rdev->desc->name);
201                 return -ENODEV;
202         }
203         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
204                 printk(KERN_ERR "%s: operation not allowed for %s\n",
205                        __func__, rdev->desc->name);
206                 return -EPERM;
207         }
208         return 0;
209 }
210
211 static ssize_t device_requested_uA_show(struct device *dev,
212                              struct device_attribute *attr, char *buf)
213 {
214         struct regulator *regulator;
215
216         regulator = get_device_regulator(dev);
217         if (regulator == NULL)
218                 return 0;
219
220         return sprintf(buf, "%d\n", regulator->uA_load);
221 }
222
223 static ssize_t regulator_uV_show(struct device *dev,
224                                 struct device_attribute *attr, char *buf)
225 {
226         struct regulator_dev *rdev = dev_get_drvdata(dev);
227         ssize_t ret;
228
229         mutex_lock(&rdev->mutex);
230         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
231         mutex_unlock(&rdev->mutex);
232
233         return ret;
234 }
235
236 static ssize_t regulator_uA_show(struct device *dev,
237                                 struct device_attribute *attr, char *buf)
238 {
239         struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242 }
243
244 static ssize_t regulator_opmode_show(struct device *dev,
245                                     struct device_attribute *attr, char *buf)
246 {
247         struct regulator_dev *rdev = dev_get_drvdata(dev);
248         int mode = _regulator_get_mode(rdev);
249
250         switch (mode) {
251         case REGULATOR_MODE_FAST:
252                 return sprintf(buf, "fast\n");
253         case REGULATOR_MODE_NORMAL:
254                 return sprintf(buf, "normal\n");
255         case REGULATOR_MODE_IDLE:
256                 return sprintf(buf, "idle\n");
257         case REGULATOR_MODE_STANDBY:
258                 return sprintf(buf, "standby\n");
259         }
260         return sprintf(buf, "unknown\n");
261 }
262
263 static ssize_t regulator_state_show(struct device *dev,
264                                    struct device_attribute *attr, char *buf)
265 {
266         struct regulator_dev *rdev = dev_get_drvdata(dev);
267         int state = _regulator_is_enabled(rdev);
268
269         if (state > 0)
270                 return sprintf(buf, "enabled\n");
271         else if (state == 0)
272                 return sprintf(buf, "disabled\n");
273         else
274                 return sprintf(buf, "unknown\n");
275 }
276
277 static ssize_t regulator_min_uA_show(struct device *dev,
278                                     struct device_attribute *attr, char *buf)
279 {
280         struct regulator_dev *rdev = dev_get_drvdata(dev);
281
282         if (!rdev->constraints)
283                 return sprintf(buf, "constraint not defined\n");
284
285         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
286 }
287
288 static ssize_t regulator_max_uA_show(struct device *dev,
289                                     struct device_attribute *attr, char *buf)
290 {
291         struct regulator_dev *rdev = dev_get_drvdata(dev);
292
293         if (!rdev->constraints)
294                 return sprintf(buf, "constraint not defined\n");
295
296         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
297 }
298
299 static ssize_t regulator_min_uV_show(struct device *dev,
300                                     struct device_attribute *attr, char *buf)
301 {
302         struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304         if (!rdev->constraints)
305                 return sprintf(buf, "constraint not defined\n");
306
307         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
308 }
309
310 static ssize_t regulator_max_uV_show(struct device *dev,
311                                     struct device_attribute *attr, char *buf)
312 {
313         struct regulator_dev *rdev = dev_get_drvdata(dev);
314
315         if (!rdev->constraints)
316                 return sprintf(buf, "constraint not defined\n");
317
318         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
319 }
320
321 static ssize_t regulator_total_uA_show(struct device *dev,
322                                       struct device_attribute *attr, char *buf)
323 {
324         struct regulator_dev *rdev = dev_get_drvdata(dev);
325         struct regulator *regulator;
326         int uA = 0;
327
328         mutex_lock(&rdev->mutex);
329         list_for_each_entry(regulator, &rdev->consumer_list, list)
330             uA += regulator->uA_load;
331         mutex_unlock(&rdev->mutex);
332         return sprintf(buf, "%d\n", uA);
333 }
334
335 static ssize_t regulator_num_users_show(struct device *dev,
336                                       struct device_attribute *attr, char *buf)
337 {
338         struct regulator_dev *rdev = dev_get_drvdata(dev);
339         return sprintf(buf, "%d\n", rdev->use_count);
340 }
341
342 static ssize_t regulator_type_show(struct device *dev,
343                                   struct device_attribute *attr, char *buf)
344 {
345         struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347         switch (rdev->desc->type) {
348         case REGULATOR_VOLTAGE:
349                 return sprintf(buf, "voltage\n");
350         case REGULATOR_CURRENT:
351                 return sprintf(buf, "current\n");
352         }
353         return sprintf(buf, "unknown\n");
354 }
355
356 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
357                                 struct device_attribute *attr, char *buf)
358 {
359         struct regulator_dev *rdev = dev_get_drvdata(dev);
360
361         if (!rdev->constraints)
362                 return sprintf(buf, "not defined\n");
363         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
364 }
365
366 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
367                                 struct device_attribute *attr, char *buf)
368 {
369         struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371         if (!rdev->constraints)
372                 return sprintf(buf, "not defined\n");
373         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
374 }
375
376 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
377                                 struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380
381         if (!rdev->constraints)
382                 return sprintf(buf, "not defined\n");
383         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
384 }
385
386 static ssize_t suspend_opmode_show(struct regulator_dev *rdev,
387         unsigned int mode, char *buf)
388 {
389         switch (mode) {
390         case REGULATOR_MODE_FAST:
391                 return sprintf(buf, "fast\n");
392         case REGULATOR_MODE_NORMAL:
393                 return sprintf(buf, "normal\n");
394         case REGULATOR_MODE_IDLE:
395                 return sprintf(buf, "idle\n");
396         case REGULATOR_MODE_STANDBY:
397                 return sprintf(buf, "standby\n");
398         }
399         return sprintf(buf, "unknown\n");
400 }
401
402 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
403                                 struct device_attribute *attr, char *buf)
404 {
405         struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407         if (!rdev->constraints)
408                 return sprintf(buf, "not defined\n");
409         return suspend_opmode_show(rdev,
410                 rdev->constraints->state_mem.mode, buf);
411 }
412
413 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
414                                 struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418         if (!rdev->constraints)
419                 return sprintf(buf, "not defined\n");
420         return suspend_opmode_show(rdev,
421                 rdev->constraints->state_disk.mode, buf);
422 }
423
424 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
425                                 struct device_attribute *attr, char *buf)
426 {
427         struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429         if (!rdev->constraints)
430                 return sprintf(buf, "not defined\n");
431         return suspend_opmode_show(rdev,
432                 rdev->constraints->state_standby.mode, buf);
433 }
434
435 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
436                                    struct device_attribute *attr, char *buf)
437 {
438         struct regulator_dev *rdev = dev_get_drvdata(dev);
439
440         if (!rdev->constraints)
441                 return sprintf(buf, "not defined\n");
442
443         if (rdev->constraints->state_mem.enabled)
444                 return sprintf(buf, "enabled\n");
445         else
446                 return sprintf(buf, "disabled\n");
447 }
448
449 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
450                                    struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454         if (!rdev->constraints)
455                 return sprintf(buf, "not defined\n");
456
457         if (rdev->constraints->state_disk.enabled)
458                 return sprintf(buf, "enabled\n");
459         else
460                 return sprintf(buf, "disabled\n");
461 }
462
463 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
464                                    struct device_attribute *attr, char *buf)
465 {
466         struct regulator_dev *rdev = dev_get_drvdata(dev);
467
468         if (!rdev->constraints)
469                 return sprintf(buf, "not defined\n");
470
471         if (rdev->constraints->state_standby.enabled)
472                 return sprintf(buf, "enabled\n");
473         else
474                 return sprintf(buf, "disabled\n");
475 }
476 static struct device_attribute regulator_dev_attrs[] = {
477         __ATTR(microvolts, 0444, regulator_uV_show, NULL),
478         __ATTR(microamps, 0444, regulator_uA_show, NULL),
479         __ATTR(opmode, 0444, regulator_opmode_show, NULL),
480         __ATTR(state, 0444, regulator_state_show, NULL),
481         __ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL),
482         __ATTR(min_microamps, 0444, regulator_min_uA_show, NULL),
483         __ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL),
484         __ATTR(max_microamps, 0444, regulator_max_uA_show, NULL),
485         __ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL),
486         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
487         __ATTR(type, 0444, regulator_type_show, NULL),
488         __ATTR(suspend_mem_microvolts, 0444,
489                 regulator_suspend_mem_uV_show, NULL),
490         __ATTR(suspend_disk_microvolts, 0444,
491                 regulator_suspend_disk_uV_show, NULL),
492         __ATTR(suspend_standby_microvolts, 0444,
493                 regulator_suspend_standby_uV_show, NULL),
494         __ATTR(suspend_mem_mode, 0444,
495                 regulator_suspend_mem_mode_show, NULL),
496         __ATTR(suspend_disk_mode, 0444,
497                 regulator_suspend_disk_mode_show, NULL),
498         __ATTR(suspend_standby_mode, 0444,
499                 regulator_suspend_standby_mode_show, NULL),
500         __ATTR(suspend_mem_state, 0444,
501                 regulator_suspend_mem_state_show, NULL),
502         __ATTR(suspend_disk_state, 0444,
503                 regulator_suspend_disk_state_show, NULL),
504         __ATTR(suspend_standby_state, 0444,
505                 regulator_suspend_standby_state_show, NULL),
506         __ATTR_NULL,
507 };
508
509 static void regulator_dev_release(struct device *dev)
510 {
511         struct regulator_dev *rdev = dev_get_drvdata(dev);
512         kfree(rdev);
513 }
514
515 static struct class regulator_class = {
516         .name = "regulator",
517         .dev_release = regulator_dev_release,
518         .dev_attrs = regulator_dev_attrs,
519 };
520
521 /* Calculate the new optimum regulator operating mode based on the new total
522  * consumer load. All locks held by caller */
523 static void drms_uA_update(struct regulator_dev *rdev)
524 {
525         struct regulator *sibling;
526         int current_uA = 0, output_uV, input_uV, err;
527         unsigned int mode;
528
529         err = regulator_check_drms(rdev);
530         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
531             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
532         return;
533
534         /* get output voltage */
535         output_uV = rdev->desc->ops->get_voltage(rdev);
536         if (output_uV <= 0)
537                 return;
538
539         /* get input voltage */
540         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
541                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
542         else
543                 input_uV = rdev->constraints->input_uV;
544         if (input_uV <= 0)
545                 return;
546
547         /* calc total requested load */
548         list_for_each_entry(sibling, &rdev->consumer_list, list)
549             current_uA += sibling->uA_load;
550
551         /* now get the optimum mode for our new total regulator load */
552         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
553                                                   output_uV, current_uA);
554
555         /* check the new mode is allowed */
556         err = regulator_check_mode(rdev, mode);
557         if (err == 0)
558                 rdev->desc->ops->set_mode(rdev, mode);
559 }
560
561 static int suspend_set_state(struct regulator_dev *rdev,
562         struct regulator_state *rstate)
563 {
564         int ret = 0;
565
566         /* enable & disable are mandatory for suspend control */
567         if (!rdev->desc->ops->set_suspend_enable ||
568                 !rdev->desc->ops->set_suspend_disable) {
569                 printk(KERN_ERR "%s: no way to set suspend state\n",
570                         __func__);
571                 return -EINVAL;
572         }
573
574         if (rstate->enabled)
575                 ret = rdev->desc->ops->set_suspend_enable(rdev);
576         else
577                 ret = rdev->desc->ops->set_suspend_disable(rdev);
578         if (ret < 0) {
579                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
580                 return ret;
581         }
582
583         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
584                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
585                 if (ret < 0) {
586                         printk(KERN_ERR "%s: failed to set voltage\n",
587                                 __func__);
588                         return ret;
589                 }
590         }
591
592         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
593                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
594                 if (ret < 0) {
595                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
596                         return ret;
597                 }
598         }
599         return ret;
600 }
601
602 /* locks held by caller */
603 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
604 {
605         if (!rdev->constraints)
606                 return -EINVAL;
607
608         switch (state) {
609         case PM_SUSPEND_STANDBY:
610                 return suspend_set_state(rdev,
611                         &rdev->constraints->state_standby);
612         case PM_SUSPEND_MEM:
613                 return suspend_set_state(rdev,
614                         &rdev->constraints->state_mem);
615         case PM_SUSPEND_MAX:
616                 return suspend_set_state(rdev,
617                         &rdev->constraints->state_disk);
618         default:
619                 return -EINVAL;
620         }
621 }
622
623 static void print_constraints(struct regulator_dev *rdev)
624 {
625         struct regulation_constraints *constraints = rdev->constraints;
626         char buf[80];
627         int count;
628
629         if (rdev->desc->type == REGULATOR_VOLTAGE) {
630                 if (constraints->min_uV == constraints->max_uV)
631                         count = sprintf(buf, "%d mV ",
632                                         constraints->min_uV / 1000);
633                 else
634                         count = sprintf(buf, "%d <--> %d mV ",
635                                         constraints->min_uV / 1000,
636                                         constraints->max_uV / 1000);
637         } else {
638                 if (constraints->min_uA == constraints->max_uA)
639                         count = sprintf(buf, "%d mA ",
640                                         constraints->min_uA / 1000);
641                 else
642                         count = sprintf(buf, "%d <--> %d mA ",
643                                         constraints->min_uA / 1000,
644                                         constraints->max_uA / 1000);
645         }
646         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
647                 count += sprintf(buf + count, "fast ");
648         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
649                 count += sprintf(buf + count, "normal ");
650         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
651                 count += sprintf(buf + count, "idle ");
652         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
653                 count += sprintf(buf + count, "standby");
654
655         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
656 }
657
658 /**
659  * set_machine_constraints - sets regulator constraints
660  * @regulator: regulator source
661  *
662  * Allows platform initialisation code to define and constrain
663  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
664  * Constraints *must* be set by platform code in order for some
665  * regulator operations to proceed i.e. set_voltage, set_current_limit,
666  * set_mode.
667  */
668 static int set_machine_constraints(struct regulator_dev *rdev,
669         struct regulation_constraints *constraints)
670 {
671         int ret = 0;
672
673         rdev->constraints = constraints;
674
675         /* do we need to apply the constraint voltage */
676         if (rdev->constraints->apply_uV &&
677                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
678                 rdev->desc->ops->set_voltage) {
679                 ret = rdev->desc->ops->set_voltage(rdev,
680                         rdev->constraints->min_uV, rdev->constraints->max_uV);
681                         if (ret < 0) {
682                                 printk(KERN_ERR "%s: failed to apply %duV"
683                                         " constraint\n", __func__,
684                                         rdev->constraints->min_uV);
685                                 rdev->constraints = NULL;
686                                 goto out;
687                         }
688         }
689
690         /* are we enabled at boot time by firmware / bootloader */
691         if (rdev->constraints->boot_on)
692                 rdev->use_count = 1;
693
694         /* do we need to setup our suspend state */
695         if (constraints->initial_state)
696                 ret = suspend_prepare(rdev, constraints->initial_state);
697
698         print_constraints(rdev);
699 out:
700         return ret;
701 }
702
703 /**
704  * set_supply - set regulator supply regulator
705  * @regulator: regulator name
706  * @supply: supply regulator name
707  *
708  * Called by platform initialisation code to set the supply regulator for this
709  * regulator. This ensures that a regulators supply will also be enabled by the
710  * core if it's child is enabled.
711  */
712 static int set_supply(struct regulator_dev *rdev,
713         struct regulator_dev *supply_rdev)
714 {
715         int err;
716
717         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
718                                 "supply");
719         if (err) {
720                 printk(KERN_ERR
721                        "%s: could not add device link %s err %d\n",
722                        __func__, supply_rdev->dev.kobj.name, err);
723                        goto out;
724         }
725         rdev->supply = supply_rdev;
726         list_add(&rdev->slist, &supply_rdev->supply_list);
727 out:
728         return err;
729 }
730
731 /**
732  * set_consumer_device_supply: Bind a regulator to a symbolic supply
733  * @regulator: regulator source
734  * @dev:       device the supply applies to
735  * @supply:    symbolic name for supply
736  *
737  * Allows platform initialisation code to map physical regulator
738  * sources to symbolic names for supplies for use by devices.  Devices
739  * should use these symbolic names to request regulators, avoiding the
740  * need to provide board-specific regulator names as platform data.
741  */
742 static int set_consumer_device_supply(struct regulator_dev *rdev,
743         struct device *consumer_dev, const char *supply)
744 {
745         struct regulator_map *node;
746
747         if (supply == NULL)
748                 return -EINVAL;
749
750         node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
751         if (node == NULL)
752                 return -ENOMEM;
753
754         node->regulator = rdev;
755         node->dev = consumer_dev;
756         node->supply = supply;
757
758         list_add(&node->list, &regulator_map_list);
759         return 0;
760 }
761
762 static void unset_consumer_device_supply(struct regulator_dev *rdev,
763         struct device *consumer_dev)
764 {
765         struct regulator_map *node, *n;
766
767         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
768                 if (rdev == node->regulator &&
769                         consumer_dev == node->dev) {
770                         list_del(&node->list);
771                         kfree(node);
772                         return;
773                 }
774         }
775 }
776
777 #define REG_STR_SIZE    32
778
779 static struct regulator *create_regulator(struct regulator_dev *rdev,
780                                           struct device *dev,
781                                           const char *supply_name)
782 {
783         struct regulator *regulator;
784         char buf[REG_STR_SIZE];
785         int err, size;
786
787         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
788         if (regulator == NULL)
789                 return NULL;
790
791         mutex_lock(&rdev->mutex);
792         regulator->rdev = rdev;
793         list_add(&regulator->list, &rdev->consumer_list);
794
795         if (dev) {
796                 /* create a 'requested_microamps_name' sysfs entry */
797                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
798                         supply_name);
799                 if (size >= REG_STR_SIZE)
800                         goto overflow_err;
801
802                 regulator->dev = dev;
803                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
804                 if (regulator->dev_attr.attr.name == NULL)
805                         goto attr_name_err;
806
807                 regulator->dev_attr.attr.owner = THIS_MODULE;
808                 regulator->dev_attr.attr.mode = 0444;
809                 regulator->dev_attr.show = device_requested_uA_show;
810                 err = device_create_file(dev, &regulator->dev_attr);
811                 if (err < 0) {
812                         printk(KERN_WARNING "%s: could not add regulator_dev"
813                                 " load sysfs\n", __func__);
814                         goto attr_name_err;
815                 }
816
817                 /* also add a link to the device sysfs entry */
818                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
819                                  dev->kobj.name, supply_name);
820                 if (size >= REG_STR_SIZE)
821                         goto attr_err;
822
823                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
824                 if (regulator->supply_name == NULL)
825                         goto attr_err;
826
827                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
828                                         buf);
829                 if (err) {
830                         printk(KERN_WARNING
831                                "%s: could not add device link %s err %d\n",
832                                __func__, dev->kobj.name, err);
833                         device_remove_file(dev, &regulator->dev_attr);
834                         goto link_name_err;
835                 }
836         }
837         mutex_unlock(&rdev->mutex);
838         return regulator;
839 link_name_err:
840         kfree(regulator->supply_name);
841 attr_err:
842         device_remove_file(regulator->dev, &regulator->dev_attr);
843 attr_name_err:
844         kfree(regulator->dev_attr.attr.name);
845 overflow_err:
846         list_del(&regulator->list);
847         kfree(regulator);
848         mutex_unlock(&rdev->mutex);
849         return NULL;
850 }
851
852 /**
853  * regulator_get - lookup and obtain a reference to a regulator.
854  * @dev: device for regulator "consumer"
855  * @id: Supply name or regulator ID.
856  *
857  * Returns a struct regulator corresponding to the regulator producer,
858  * or IS_ERR() condition containing errno.  Use of supply names
859  * configured via regulator_set_device_supply() is strongly
860  * encouraged.
861  */
862 struct regulator *regulator_get(struct device *dev, const char *id)
863 {
864         struct regulator_dev *rdev;
865         struct regulator_map *map;
866         struct regulator *regulator = ERR_PTR(-ENODEV);
867
868         if (id == NULL) {
869                 printk(KERN_ERR "regulator: get() with no identifier\n");
870                 return regulator;
871         }
872
873         mutex_lock(&regulator_list_mutex);
874
875         list_for_each_entry(map, &regulator_map_list, list) {
876                 if (dev == map->dev &&
877                     strcmp(map->supply, id) == 0) {
878                         rdev = map->regulator;
879                         goto found;
880                 }
881         }
882         printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
883                id);
884         mutex_unlock(&regulator_list_mutex);
885         return regulator;
886
887 found:
888         if (!try_module_get(rdev->owner))
889                 goto out;
890
891         regulator = create_regulator(rdev, dev, id);
892         if (regulator == NULL) {
893                 regulator = ERR_PTR(-ENOMEM);
894                 module_put(rdev->owner);
895         }
896
897 out:
898         mutex_unlock(&regulator_list_mutex);
899         return regulator;
900 }
901 EXPORT_SYMBOL_GPL(regulator_get);
902
903 /**
904  * regulator_put - "free" the regulator source
905  * @regulator: regulator source
906  *
907  * Note: drivers must ensure that all regulator_enable calls made on this
908  * regulator source are balanced by regulator_disable calls prior to calling
909  * this function.
910  */
911 void regulator_put(struct regulator *regulator)
912 {
913         struct regulator_dev *rdev;
914
915         if (regulator == NULL || IS_ERR(regulator))
916                 return;
917
918         if (regulator->enabled) {
919                 printk(KERN_WARNING "Releasing supply %s while enabled\n",
920                        regulator->supply_name);
921                 WARN_ON(regulator->enabled);
922                 regulator_disable(regulator);
923         }
924
925         mutex_lock(&regulator_list_mutex);
926         rdev = regulator->rdev;
927
928         /* remove any sysfs entries */
929         if (regulator->dev) {
930                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
931                 kfree(regulator->supply_name);
932                 device_remove_file(regulator->dev, &regulator->dev_attr);
933                 kfree(regulator->dev_attr.attr.name);
934         }
935         list_del(&regulator->list);
936         kfree(regulator);
937
938         module_put(rdev->owner);
939         mutex_unlock(&regulator_list_mutex);
940 }
941 EXPORT_SYMBOL_GPL(regulator_put);
942
943 /* locks held by regulator_enable() */
944 static int _regulator_enable(struct regulator_dev *rdev)
945 {
946         int ret = -EINVAL;
947
948         if (!rdev->constraints) {
949                 printk(KERN_ERR "%s: %s has no constraints\n",
950                        __func__, rdev->desc->name);
951                 return ret;
952         }
953
954         /* do we need to enable the supply regulator first */
955         if (rdev->supply) {
956                 ret = _regulator_enable(rdev->supply);
957                 if (ret < 0) {
958                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
959                                __func__, rdev->desc->name, ret);
960                         return ret;
961                 }
962         }
963
964         /* check voltage and requested load before enabling */
965         if (rdev->desc->ops->enable) {
966
967                 if (rdev->constraints &&
968                         (rdev->constraints->valid_ops_mask &
969                         REGULATOR_CHANGE_DRMS))
970                         drms_uA_update(rdev);
971
972                 ret = rdev->desc->ops->enable(rdev);
973                 if (ret < 0) {
974                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
975                                __func__, rdev->desc->name, ret);
976                         return ret;
977                 }
978                 rdev->use_count++;
979                 return ret;
980         }
981
982         return ret;
983 }
984
985 /**
986  * regulator_enable - enable regulator output
987  * @regulator: regulator source
988  *
989  * Enable the regulator output at the predefined voltage or current value.
990  * NOTE: the output value can be set by other drivers, boot loader or may be
991  * hardwired in the regulator.
992  * NOTE: calls to regulator_enable() must be balanced with calls to
993  * regulator_disable().
994  */
995 int regulator_enable(struct regulator *regulator)
996 {
997         int ret;
998
999         if (regulator->enabled) {
1000                 printk(KERN_CRIT "Regulator %s already enabled\n",
1001                        regulator->supply_name);
1002                 WARN_ON(regulator->enabled);
1003                 return 0;
1004         }
1005
1006         mutex_lock(&regulator->rdev->mutex);
1007         regulator->enabled = 1;
1008         ret = _regulator_enable(regulator->rdev);
1009         if (ret != 0)
1010                 regulator->enabled = 0;
1011         mutex_unlock(&regulator->rdev->mutex);
1012         return ret;
1013 }
1014 EXPORT_SYMBOL_GPL(regulator_enable);
1015
1016 /* locks held by regulator_disable() */
1017 static int _regulator_disable(struct regulator_dev *rdev)
1018 {
1019         int ret = 0;
1020
1021         /* are we the last user and permitted to disable ? */
1022         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1023
1024                 /* we are last user */
1025                 if (rdev->desc->ops->disable) {
1026                         ret = rdev->desc->ops->disable(rdev);
1027                         if (ret < 0) {
1028                                 printk(KERN_ERR "%s: failed to disable %s\n",
1029                                        __func__, rdev->desc->name);
1030                                 return ret;
1031                         }
1032                 }
1033
1034                 /* decrease our supplies ref count and disable if required */
1035                 if (rdev->supply)
1036                         _regulator_disable(rdev->supply);
1037
1038                 rdev->use_count = 0;
1039         } else if (rdev->use_count > 1) {
1040
1041                 if (rdev->constraints &&
1042                         (rdev->constraints->valid_ops_mask &
1043                         REGULATOR_CHANGE_DRMS))
1044                         drms_uA_update(rdev);
1045
1046                 rdev->use_count--;
1047         }
1048         return ret;
1049 }
1050
1051 /**
1052  * regulator_disable - disable regulator output
1053  * @regulator: regulator source
1054  *
1055  * Disable the regulator output voltage or current.
1056  * NOTE: this will only disable the regulator output if no other consumer
1057  * devices have it enabled.
1058  * NOTE: calls to regulator_enable() must be balanced with calls to
1059  * regulator_disable().
1060  */
1061 int regulator_disable(struct regulator *regulator)
1062 {
1063         int ret;
1064
1065         if (!regulator->enabled) {
1066                 printk(KERN_ERR "%s: not in use by this consumer\n",
1067                         __func__);
1068                 return 0;
1069         }
1070
1071         mutex_lock(&regulator->rdev->mutex);
1072         regulator->enabled = 0;
1073         regulator->uA_load = 0;
1074         ret = _regulator_disable(regulator->rdev);
1075         mutex_unlock(&regulator->rdev->mutex);
1076         return ret;
1077 }
1078 EXPORT_SYMBOL_GPL(regulator_disable);
1079
1080 /* locks held by regulator_force_disable() */
1081 static int _regulator_force_disable(struct regulator_dev *rdev)
1082 {
1083         int ret = 0;
1084
1085         /* force disable */
1086         if (rdev->desc->ops->disable) {
1087                 /* ah well, who wants to live forever... */
1088                 ret = rdev->desc->ops->disable(rdev);
1089                 if (ret < 0) {
1090                         printk(KERN_ERR "%s: failed to force disable %s\n",
1091                                __func__, rdev->desc->name);
1092                         return ret;
1093                 }
1094                 /* notify other consumers that power has been forced off */
1095                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1096                         NULL);
1097         }
1098
1099         /* decrease our supplies ref count and disable if required */
1100         if (rdev->supply)
1101                 _regulator_disable(rdev->supply);
1102
1103         rdev->use_count = 0;
1104         return ret;
1105 }
1106
1107 /**
1108  * regulator_force_disable - force disable regulator output
1109  * @regulator: regulator source
1110  *
1111  * Forcibly disable the regulator output voltage or current.
1112  * NOTE: this *will* disable the regulator output even if other consumer
1113  * devices have it enabled. This should be used for situations when device
1114  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1115  */
1116 int regulator_force_disable(struct regulator *regulator)
1117 {
1118         int ret;
1119
1120         mutex_lock(&regulator->rdev->mutex);
1121         regulator->enabled = 0;
1122         regulator->uA_load = 0;
1123         ret = _regulator_force_disable(regulator->rdev);
1124         mutex_unlock(&regulator->rdev->mutex);
1125         return ret;
1126 }
1127 EXPORT_SYMBOL_GPL(regulator_force_disable);
1128
1129 static int _regulator_is_enabled(struct regulator_dev *rdev)
1130 {
1131         int ret;
1132
1133         mutex_lock(&rdev->mutex);
1134
1135         /* sanity check */
1136         if (!rdev->desc->ops->is_enabled) {
1137                 ret = -EINVAL;
1138                 goto out;
1139         }
1140
1141         ret = rdev->desc->ops->is_enabled(rdev);
1142 out:
1143         mutex_unlock(&rdev->mutex);
1144         return ret;
1145 }
1146
1147 /**
1148  * regulator_is_enabled - is the regulator output enabled
1149  * @regulator: regulator source
1150  *
1151  * Returns zero for disabled otherwise return number of enable requests.
1152  */
1153 int regulator_is_enabled(struct regulator *regulator)
1154 {
1155         return _regulator_is_enabled(regulator->rdev);
1156 }
1157 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1158
1159 /**
1160  * regulator_set_voltage - set regulator output voltage
1161  * @regulator: regulator source
1162  * @min_uV: Minimum required voltage in uV
1163  * @max_uV: Maximum acceptable voltage in uV
1164  *
1165  * Sets a voltage regulator to the desired output voltage. This can be set
1166  * during any regulator state. IOW, regulator can be disabled or enabled.
1167  *
1168  * If the regulator is enabled then the voltage will change to the new value
1169  * immediately otherwise if the regulator is disabled the regulator will
1170  * output at the new voltage when enabled.
1171  *
1172  * NOTE: If the regulator is shared between several devices then the lowest
1173  * request voltage that meets the system constraints will be used.
1174  * NOTE: Regulator system constraints must be set for this regulator before
1175  * calling this function otherwise this call will fail.
1176  */
1177 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1178 {
1179         struct regulator_dev *rdev = regulator->rdev;
1180         int ret;
1181
1182         mutex_lock(&rdev->mutex);
1183
1184         /* sanity check */
1185         if (!rdev->desc->ops->set_voltage) {
1186                 ret = -EINVAL;
1187                 goto out;
1188         }
1189
1190         /* constraints check */
1191         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1192         if (ret < 0)
1193                 goto out;
1194         regulator->min_uV = min_uV;
1195         regulator->max_uV = max_uV;
1196         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1197
1198 out:
1199         mutex_unlock(&rdev->mutex);
1200         return ret;
1201 }
1202 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1203
1204 static int _regulator_get_voltage(struct regulator_dev *rdev)
1205 {
1206         /* sanity check */
1207         if (rdev->desc->ops->get_voltage)
1208                 return rdev->desc->ops->get_voltage(rdev);
1209         else
1210                 return -EINVAL;
1211 }
1212
1213 /**
1214  * regulator_get_voltage - get regulator output voltage
1215  * @regulator: regulator source
1216  *
1217  * This returns the current regulator voltage in uV.
1218  *
1219  * NOTE: If the regulator is disabled it will return the voltage value. This
1220  * function should not be used to determine regulator state.
1221  */
1222 int regulator_get_voltage(struct regulator *regulator)
1223 {
1224         int ret;
1225
1226         mutex_lock(&regulator->rdev->mutex);
1227
1228         ret = _regulator_get_voltage(regulator->rdev);
1229
1230         mutex_unlock(&regulator->rdev->mutex);
1231
1232         return ret;
1233 }
1234 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1235
1236 /**
1237  * regulator_set_current_limit - set regulator output current limit
1238  * @regulator: regulator source
1239  * @min_uA: Minimuum supported current in uA
1240  * @max_uA: Maximum supported current in uA
1241  *
1242  * Sets current sink to the desired output current. This can be set during
1243  * any regulator state. IOW, regulator can be disabled or enabled.
1244  *
1245  * If the regulator is enabled then the current will change to the new value
1246  * immediately otherwise if the regulator is disabled the regulator will
1247  * output at the new current when enabled.
1248  *
1249  * NOTE: Regulator system constraints must be set for this regulator before
1250  * calling this function otherwise this call will fail.
1251  */
1252 int regulator_set_current_limit(struct regulator *regulator,
1253                                int min_uA, int max_uA)
1254 {
1255         struct regulator_dev *rdev = regulator->rdev;
1256         int ret;
1257
1258         mutex_lock(&rdev->mutex);
1259
1260         /* sanity check */
1261         if (!rdev->desc->ops->set_current_limit) {
1262                 ret = -EINVAL;
1263                 goto out;
1264         }
1265
1266         /* constraints check */
1267         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1268         if (ret < 0)
1269                 goto out;
1270
1271         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1272 out:
1273         mutex_unlock(&rdev->mutex);
1274         return ret;
1275 }
1276 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1277
1278 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1279 {
1280         int ret;
1281
1282         mutex_lock(&rdev->mutex);
1283
1284         /* sanity check */
1285         if (!rdev->desc->ops->get_current_limit) {
1286                 ret = -EINVAL;
1287                 goto out;
1288         }
1289
1290         ret = rdev->desc->ops->get_current_limit(rdev);
1291 out:
1292         mutex_unlock(&rdev->mutex);
1293         return ret;
1294 }
1295
1296 /**
1297  * regulator_get_current_limit - get regulator output current
1298  * @regulator: regulator source
1299  *
1300  * This returns the current supplied by the specified current sink in uA.
1301  *
1302  * NOTE: If the regulator is disabled it will return the current value. This
1303  * function should not be used to determine regulator state.
1304  */
1305 int regulator_get_current_limit(struct regulator *regulator)
1306 {
1307         return _regulator_get_current_limit(regulator->rdev);
1308 }
1309 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1310
1311 /**
1312  * regulator_set_mode - set regulator operating mode
1313  * @regulator: regulator source
1314  * @mode: operating mode - one of the REGULATOR_MODE constants
1315  *
1316  * Set regulator operating mode to increase regulator efficiency or improve
1317  * regulation performance.
1318  *
1319  * NOTE: Regulator system constraints must be set for this regulator before
1320  * calling this function otherwise this call will fail.
1321  */
1322 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1323 {
1324         struct regulator_dev *rdev = regulator->rdev;
1325         int ret;
1326
1327         mutex_lock(&rdev->mutex);
1328
1329         /* sanity check */
1330         if (!rdev->desc->ops->set_mode) {
1331                 ret = -EINVAL;
1332                 goto out;
1333         }
1334
1335         /* constraints check */
1336         ret = regulator_check_mode(rdev, mode);
1337         if (ret < 0)
1338                 goto out;
1339
1340         ret = rdev->desc->ops->set_mode(rdev, mode);
1341 out:
1342         mutex_unlock(&rdev->mutex);
1343         return ret;
1344 }
1345 EXPORT_SYMBOL_GPL(regulator_set_mode);
1346
1347 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1348 {
1349         int ret;
1350
1351         mutex_lock(&rdev->mutex);
1352
1353         /* sanity check */
1354         if (!rdev->desc->ops->get_mode) {
1355                 ret = -EINVAL;
1356                 goto out;
1357         }
1358
1359         ret = rdev->desc->ops->get_mode(rdev);
1360 out:
1361         mutex_unlock(&rdev->mutex);
1362         return ret;
1363 }
1364
1365 /**
1366  * regulator_get_mode - get regulator operating mode
1367  * @regulator: regulator source
1368  *
1369  * Get the current regulator operating mode.
1370  */
1371 unsigned int regulator_get_mode(struct regulator *regulator)
1372 {
1373         return _regulator_get_mode(regulator->rdev);
1374 }
1375 EXPORT_SYMBOL_GPL(regulator_get_mode);
1376
1377 /**
1378  * regulator_set_optimum_mode - set regulator optimum operating mode
1379  * @regulator: regulator source
1380  * @uA_load: load current
1381  *
1382  * Notifies the regulator core of a new device load. This is then used by
1383  * DRMS (if enabled by constraints) to set the most efficient regulator
1384  * operating mode for the new regulator loading.
1385  *
1386  * Consumer devices notify their supply regulator of the maximum power
1387  * they will require (can be taken from device datasheet in the power
1388  * consumption tables) when they change operational status and hence power
1389  * state. Examples of operational state changes that can affect power
1390  * consumption are :-
1391  *
1392  *    o Device is opened / closed.
1393  *    o Device I/O is about to begin or has just finished.
1394  *    o Device is idling in between work.
1395  *
1396  * This information is also exported via sysfs to userspace.
1397  *
1398  * DRMS will sum the total requested load on the regulator and change
1399  * to the most efficient operating mode if platform constraints allow.
1400  *
1401  * Returns the new regulator mode or error.
1402  */
1403 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1404 {
1405         struct regulator_dev *rdev = regulator->rdev;
1406         struct regulator *consumer;
1407         int ret, output_uV, input_uV, total_uA_load = 0;
1408         unsigned int mode;
1409
1410         mutex_lock(&rdev->mutex);
1411
1412         regulator->uA_load = uA_load;
1413         ret = regulator_check_drms(rdev);
1414         if (ret < 0)
1415                 goto out;
1416         ret = -EINVAL;
1417
1418         /* sanity check */
1419         if (!rdev->desc->ops->get_optimum_mode)
1420                 goto out;
1421
1422         /* get output voltage */
1423         output_uV = rdev->desc->ops->get_voltage(rdev);
1424         if (output_uV <= 0) {
1425                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1426                         __func__, rdev->desc->name);
1427                 goto out;
1428         }
1429
1430         /* get input voltage */
1431         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1432                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1433         else
1434                 input_uV = rdev->constraints->input_uV;
1435         if (input_uV <= 0) {
1436                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1437                         __func__, rdev->desc->name);
1438                 goto out;
1439         }
1440
1441         /* calc total requested load for this regulator */
1442         list_for_each_entry(consumer, &rdev->consumer_list, list)
1443             total_uA_load += consumer->uA_load;
1444
1445         mode = rdev->desc->ops->get_optimum_mode(rdev,
1446                                                  input_uV, output_uV,
1447                                                  total_uA_load);
1448         if (ret <= 0) {
1449                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1450                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1451                         total_uA_load, input_uV, output_uV);
1452                 goto out;
1453         }
1454
1455         ret = rdev->desc->ops->set_mode(rdev, mode);
1456         if (ret <= 0) {
1457                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1458                         __func__, mode, rdev->desc->name);
1459                 goto out;
1460         }
1461         ret = mode;
1462 out:
1463         mutex_unlock(&rdev->mutex);
1464         return ret;
1465 }
1466 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1467
1468 /**
1469  * regulator_register_notifier - register regulator event notifier
1470  * @regulator: regulator source
1471  * @notifier_block: notifier block
1472  *
1473  * Register notifier block to receive regulator events.
1474  */
1475 int regulator_register_notifier(struct regulator *regulator,
1476                               struct notifier_block *nb)
1477 {
1478         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1479                                                 nb);
1480 }
1481 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1482
1483 /**
1484  * regulator_unregister_notifier - unregister regulator event notifier
1485  * @regulator: regulator source
1486  * @notifier_block: notifier block
1487  *
1488  * Unregister regulator event notifier block.
1489  */
1490 int regulator_unregister_notifier(struct regulator *regulator,
1491                                 struct notifier_block *nb)
1492 {
1493         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1494                                                   nb);
1495 }
1496 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1497
1498 /* notify regulator consumers and downstream regulator consumers */
1499 static void _notifier_call_chain(struct regulator_dev *rdev,
1500                                   unsigned long event, void *data)
1501 {
1502         struct regulator_dev *_rdev;
1503
1504         /* call rdev chain first */
1505         mutex_lock(&rdev->mutex);
1506         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1507         mutex_unlock(&rdev->mutex);
1508
1509         /* now notify regulator we supply */
1510         list_for_each_entry(_rdev, &rdev->supply_list, slist)
1511                 _notifier_call_chain(_rdev, event, data);
1512 }
1513
1514 /**
1515  * regulator_bulk_get - get multiple regulator consumers
1516  *
1517  * @dev:           Device to supply
1518  * @num_consumers: Number of consumers to register
1519  * @consumers:     Configuration of consumers; clients are stored here.
1520  *
1521  * @return 0 on success, an errno on failure.
1522  *
1523  * This helper function allows drivers to get several regulator
1524  * consumers in one operation.  If any of the regulators cannot be
1525  * acquired then any regulators that were allocated will be freed
1526  * before returning to the caller.
1527  */
1528 int regulator_bulk_get(struct device *dev, int num_consumers,
1529                        struct regulator_bulk_data *consumers)
1530 {
1531         int i;
1532         int ret;
1533
1534         for (i = 0; i < num_consumers; i++)
1535                 consumers[i].consumer = NULL;
1536
1537         for (i = 0; i < num_consumers; i++) {
1538                 consumers[i].consumer = regulator_get(dev,
1539                                                       consumers[i].supply);
1540                 if (IS_ERR(consumers[i].consumer)) {
1541                         dev_err(dev, "Failed to get supply '%s'\n",
1542                                 consumers[i].supply);
1543                         ret = PTR_ERR(consumers[i].consumer);
1544                         consumers[i].consumer = NULL;
1545                         goto err;
1546                 }
1547         }
1548
1549         return 0;
1550
1551 err:
1552         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1553                 regulator_put(consumers[i].consumer);
1554
1555         return ret;
1556 }
1557 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1558
1559 /**
1560  * regulator_bulk_enable - enable multiple regulator consumers
1561  *
1562  * @num_consumers: Number of consumers
1563  * @consumers:     Consumer data; clients are stored here.
1564  * @return         0 on success, an errno on failure
1565  *
1566  * This convenience API allows consumers to enable multiple regulator
1567  * clients in a single API call.  If any consumers cannot be enabled
1568  * then any others that were enabled will be disabled again prior to
1569  * return.
1570  */
1571 int regulator_bulk_enable(int num_consumers,
1572                           struct regulator_bulk_data *consumers)
1573 {
1574         int i;
1575         int ret;
1576
1577         for (i = 0; i < num_consumers; i++) {
1578                 ret = regulator_enable(consumers[i].consumer);
1579                 if (ret != 0)
1580                         goto err;
1581         }
1582
1583         return 0;
1584
1585 err:
1586         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1587         for (i = 0; i < num_consumers; i++)
1588                 regulator_disable(consumers[i].consumer);
1589
1590         return ret;
1591 }
1592 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1593
1594 /**
1595  * regulator_bulk_disable - disable multiple regulator consumers
1596  *
1597  * @num_consumers: Number of consumers
1598  * @consumers:     Consumer data; clients are stored here.
1599  * @return         0 on success, an errno on failure
1600  *
1601  * This convenience API allows consumers to disable multiple regulator
1602  * clients in a single API call.  If any consumers cannot be enabled
1603  * then any others that were disabled will be disabled again prior to
1604  * return.
1605  */
1606 int regulator_bulk_disable(int num_consumers,
1607                            struct regulator_bulk_data *consumers)
1608 {
1609         int i;
1610         int ret;
1611
1612         for (i = 0; i < num_consumers; i++) {
1613                 ret = regulator_disable(consumers[i].consumer);
1614                 if (ret != 0)
1615                         goto err;
1616         }
1617
1618         return 0;
1619
1620 err:
1621         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1622         for (i = 0; i < num_consumers; i++)
1623                 regulator_enable(consumers[i].consumer);
1624
1625         return ret;
1626 }
1627 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1628
1629 /**
1630  * regulator_bulk_free - free multiple regulator consumers
1631  *
1632  * @num_consumers: Number of consumers
1633  * @consumers:     Consumer data; clients are stored here.
1634  *
1635  * This convenience API allows consumers to free multiple regulator
1636  * clients in a single API call.
1637  */
1638 void regulator_bulk_free(int num_consumers,
1639                          struct regulator_bulk_data *consumers)
1640 {
1641         int i;
1642
1643         for (i = 0; i < num_consumers; i++) {
1644                 regulator_put(consumers[i].consumer);
1645                 consumers[i].consumer = NULL;
1646         }
1647 }
1648 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1649
1650 /**
1651  * regulator_notifier_call_chain - call regulator event notifier
1652  * @regulator: regulator source
1653  * @event: notifier block
1654  * @data:
1655  *
1656  * Called by regulator drivers to notify clients a regulator event has
1657  * occurred. We also notify regulator clients downstream.
1658  */
1659 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1660                                   unsigned long event, void *data)
1661 {
1662         _notifier_call_chain(rdev, event, data);
1663         return NOTIFY_DONE;
1664
1665 }
1666 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1667
1668 /**
1669  * regulator_register - register regulator
1670  * @regulator: regulator source
1671  * @reg_data: private regulator data
1672  *
1673  * Called by regulator drivers to register a regulator.
1674  * Returns 0 on success.
1675  */
1676 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1677         struct device *dev, void *driver_data)
1678 {
1679         static atomic_t regulator_no = ATOMIC_INIT(0);
1680         struct regulator_dev *rdev;
1681         struct regulator_init_data *init_data = dev->platform_data;
1682         int ret, i;
1683
1684         if (regulator_desc == NULL)
1685                 return ERR_PTR(-EINVAL);
1686
1687         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1688                 return ERR_PTR(-EINVAL);
1689
1690         if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1691             !regulator_desc->type == REGULATOR_CURRENT)
1692                 return ERR_PTR(-EINVAL);
1693
1694         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1695         if (rdev == NULL)
1696                 return ERR_PTR(-ENOMEM);
1697
1698         mutex_lock(&regulator_list_mutex);
1699
1700         mutex_init(&rdev->mutex);
1701         rdev->reg_data = driver_data;
1702         rdev->owner = regulator_desc->owner;
1703         rdev->desc = regulator_desc;
1704         INIT_LIST_HEAD(&rdev->consumer_list);
1705         INIT_LIST_HEAD(&rdev->supply_list);
1706         INIT_LIST_HEAD(&rdev->list);
1707         INIT_LIST_HEAD(&rdev->slist);
1708         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1709
1710         /* preform any regulator specific init */
1711         if (init_data->regulator_init) {
1712                 ret = init_data->regulator_init(rdev->reg_data);
1713                 if (ret < 0) {
1714                         kfree(rdev);
1715                         rdev = ERR_PTR(ret);
1716                         goto out;
1717                 }
1718         }
1719
1720         /* set regulator constraints */
1721         ret = set_machine_constraints(rdev, &init_data->constraints);
1722         if (ret < 0) {
1723                 kfree(rdev);
1724                 rdev = ERR_PTR(ret);
1725                 goto out;
1726         }
1727
1728         /* register with sysfs */
1729         rdev->dev.class = &regulator_class;
1730         rdev->dev.parent = dev;
1731         snprintf(rdev->dev.bus_id, sizeof(rdev->dev.bus_id),
1732                  "regulator.%d", atomic_inc_return(&regulator_no) - 1);
1733         ret = device_register(&rdev->dev);
1734         if (ret != 0) {
1735                 kfree(rdev);
1736                 rdev = ERR_PTR(ret);
1737                 goto out;
1738         }
1739
1740         dev_set_drvdata(&rdev->dev, rdev);
1741
1742         /* set supply regulator if it exists */
1743         if (init_data->supply_regulator_dev) {
1744                 ret = set_supply(rdev,
1745                         dev_get_drvdata(init_data->supply_regulator_dev));
1746                 if (ret < 0) {
1747                         device_unregister(&rdev->dev);
1748                         kfree(rdev);
1749                         rdev = ERR_PTR(ret);
1750                         goto out;
1751                 }
1752         }
1753
1754         /* add consumers devices */
1755         for (i = 0; i < init_data->num_consumer_supplies; i++) {
1756                 ret = set_consumer_device_supply(rdev,
1757                         init_data->consumer_supplies[i].dev,
1758                         init_data->consumer_supplies[i].supply);
1759                 if (ret < 0) {
1760                         for (--i; i >= 0; i--)
1761                                 unset_consumer_device_supply(rdev,
1762                                         init_data->consumer_supplies[i].dev);
1763                         device_unregister(&rdev->dev);
1764                         kfree(rdev);
1765                         rdev = ERR_PTR(ret);
1766                         goto out;
1767                 }
1768         }
1769
1770         list_add(&rdev->list, &regulator_list);
1771 out:
1772         mutex_unlock(&regulator_list_mutex);
1773         return rdev;
1774 }
1775 EXPORT_SYMBOL_GPL(regulator_register);
1776
1777 /**
1778  * regulator_unregister - unregister regulator
1779  * @regulator: regulator source
1780  *
1781  * Called by regulator drivers to unregister a regulator.
1782  */
1783 void regulator_unregister(struct regulator_dev *rdev)
1784 {
1785         if (rdev == NULL)
1786                 return;
1787
1788         mutex_lock(&regulator_list_mutex);
1789         list_del(&rdev->list);
1790         if (rdev->supply)
1791                 sysfs_remove_link(&rdev->dev.kobj, "supply");
1792         device_unregister(&rdev->dev);
1793         mutex_unlock(&regulator_list_mutex);
1794 }
1795 EXPORT_SYMBOL_GPL(regulator_unregister);
1796
1797 /**
1798  * regulator_suspend_prepare: prepare regulators for system wide suspend
1799  * @state: system suspend state
1800  *
1801  * Configure each regulator with it's suspend operating parameters for state.
1802  * This will usually be called by machine suspend code prior to supending.
1803  */
1804 int regulator_suspend_prepare(suspend_state_t state)
1805 {
1806         struct regulator_dev *rdev;
1807         int ret = 0;
1808
1809         /* ON is handled by regulator active state */
1810         if (state == PM_SUSPEND_ON)
1811                 return -EINVAL;
1812
1813         mutex_lock(&regulator_list_mutex);
1814         list_for_each_entry(rdev, &regulator_list, list) {
1815
1816                 mutex_lock(&rdev->mutex);
1817                 ret = suspend_prepare(rdev, state);
1818                 mutex_unlock(&rdev->mutex);
1819
1820                 if (ret < 0) {
1821                         printk(KERN_ERR "%s: failed to prepare %s\n",
1822                                 __func__, rdev->desc->name);
1823                         goto out;
1824                 }
1825         }
1826 out:
1827         mutex_unlock(&regulator_list_mutex);
1828         return ret;
1829 }
1830 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
1831
1832 /**
1833  * rdev_get_drvdata - get rdev regulator driver data
1834  * @regulator: regulator
1835  *
1836  * Get rdev regulator driver private data. This call can be used in the
1837  * regulator driver context.
1838  */
1839 void *rdev_get_drvdata(struct regulator_dev *rdev)
1840 {
1841         return rdev->reg_data;
1842 }
1843 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
1844
1845 /**
1846  * regulator_get_drvdata - get regulator driver data
1847  * @regulator: regulator
1848  *
1849  * Get regulator driver private data. This call can be used in the consumer
1850  * driver context when non API regulator specific functions need to be called.
1851  */
1852 void *regulator_get_drvdata(struct regulator *regulator)
1853 {
1854         return regulator->rdev->reg_data;
1855 }
1856 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
1857
1858 /**
1859  * regulator_set_drvdata - set regulator driver data
1860  * @regulator: regulator
1861  * @data: data
1862  */
1863 void regulator_set_drvdata(struct regulator *regulator, void *data)
1864 {
1865         regulator->rdev->reg_data = data;
1866 }
1867 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
1868
1869 /**
1870  * regulator_get_id - get regulator ID
1871  * @regulator: regulator
1872  */
1873 int rdev_get_id(struct regulator_dev *rdev)
1874 {
1875         return rdev->desc->id;
1876 }
1877 EXPORT_SYMBOL_GPL(rdev_get_id);
1878
1879 struct device *rdev_get_dev(struct regulator_dev *rdev)
1880 {
1881         return &rdev->dev;
1882 }
1883 EXPORT_SYMBOL_GPL(rdev_get_dev);
1884
1885 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
1886 {
1887         return reg_init_data->driver_data;
1888 }
1889 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
1890
1891 static int __init regulator_init(void)
1892 {
1893         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
1894         return class_register(&regulator_class);
1895 }
1896
1897 /* init early to allow our consumers to complete system booting */
1898 core_initcall(regulator_init);