Merge remote-tracking branch 'regulator/topic/gpio' into regulator-next
[~shefty/rdma-dev.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         const char *dev_name;   /* The dev_name() for the consumer */
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         unsigned int always_on:1;
80         unsigned int bypass:1;
81         int uA_load;
82         int min_uV;
83         int max_uV;
84         char *supply_name;
85         struct device_attribute dev_attr;
86         struct regulator_dev *rdev;
87         struct dentry *debugfs;
88 };
89
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96                                   unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98                                      int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100                                           struct device *dev,
101                                           const char *supply_name);
102
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105         if (rdev->constraints && rdev->constraints->name)
106                 return rdev->constraints->name;
107         else if (rdev->desc->name)
108                 return rdev->desc->name;
109         else
110                 return "";
111 }
112
113 /**
114  * of_get_regulator - get a regulator device node based on supply name
115  * @dev: Device pointer for the consumer (of regulator) device
116  * @supply: regulator supply name
117  *
118  * Extract the regulator device node corresponding to the supply name.
119  * retruns the device node corresponding to the regulator if found, else
120  * returns NULL.
121  */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124         struct device_node *regnode = NULL;
125         char prop_name[32]; /* 32 is max size of property name */
126
127         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129         snprintf(prop_name, 32, "%s-supply", supply);
130         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132         if (!regnode) {
133                 dev_dbg(dev, "Looking up %s property in node %s failed",
134                                 prop_name, dev->of_node->full_name);
135                 return NULL;
136         }
137         return regnode;
138 }
139
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142         if (!rdev->constraints)
143                 return 0;
144
145         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146                 return 1;
147         else
148                 return 0;
149 }
150
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153                                    int *min_uV, int *max_uV)
154 {
155         BUG_ON(*min_uV > *max_uV);
156
157         if (!rdev->constraints) {
158                 rdev_err(rdev, "no constraints\n");
159                 return -ENODEV;
160         }
161         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162                 rdev_err(rdev, "operation not allowed\n");
163                 return -EPERM;
164         }
165
166         if (*max_uV > rdev->constraints->max_uV)
167                 *max_uV = rdev->constraints->max_uV;
168         if (*min_uV < rdev->constraints->min_uV)
169                 *min_uV = rdev->constraints->min_uV;
170
171         if (*min_uV > *max_uV) {
172                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173                          *min_uV, *max_uV);
174                 return -EINVAL;
175         }
176
177         return 0;
178 }
179
180 /* Make sure we select a voltage that suits the needs of all
181  * regulator consumers
182  */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184                                      int *min_uV, int *max_uV)
185 {
186         struct regulator *regulator;
187
188         list_for_each_entry(regulator, &rdev->consumer_list, list) {
189                 /*
190                  * Assume consumers that didn't say anything are OK
191                  * with anything in the constraint range.
192                  */
193                 if (!regulator->min_uV && !regulator->max_uV)
194                         continue;
195
196                 if (*max_uV > regulator->max_uV)
197                         *max_uV = regulator->max_uV;
198                 if (*min_uV < regulator->min_uV)
199                         *min_uV = regulator->min_uV;
200         }
201
202         if (*min_uV > *max_uV) {
203                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
204                         *min_uV, *max_uV);
205                 return -EINVAL;
206         }
207
208         return 0;
209 }
210
211 /* current constraint check */
212 static int regulator_check_current_limit(struct regulator_dev *rdev,
213                                         int *min_uA, int *max_uA)
214 {
215         BUG_ON(*min_uA > *max_uA);
216
217         if (!rdev->constraints) {
218                 rdev_err(rdev, "no constraints\n");
219                 return -ENODEV;
220         }
221         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222                 rdev_err(rdev, "operation not allowed\n");
223                 return -EPERM;
224         }
225
226         if (*max_uA > rdev->constraints->max_uA)
227                 *max_uA = rdev->constraints->max_uA;
228         if (*min_uA < rdev->constraints->min_uA)
229                 *min_uA = rdev->constraints->min_uA;
230
231         if (*min_uA > *max_uA) {
232                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233                          *min_uA, *max_uA);
234                 return -EINVAL;
235         }
236
237         return 0;
238 }
239
240 /* operating mode constraint check */
241 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242 {
243         switch (*mode) {
244         case REGULATOR_MODE_FAST:
245         case REGULATOR_MODE_NORMAL:
246         case REGULATOR_MODE_IDLE:
247         case REGULATOR_MODE_STANDBY:
248                 break;
249         default:
250                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
251                 return -EINVAL;
252         }
253
254         if (!rdev->constraints) {
255                 rdev_err(rdev, "no constraints\n");
256                 return -ENODEV;
257         }
258         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259                 rdev_err(rdev, "operation not allowed\n");
260                 return -EPERM;
261         }
262
263         /* The modes are bitmasks, the most power hungry modes having
264          * the lowest values. If the requested mode isn't supported
265          * try higher modes. */
266         while (*mode) {
267                 if (rdev->constraints->valid_modes_mask & *mode)
268                         return 0;
269                 *mode /= 2;
270         }
271
272         return -EINVAL;
273 }
274
275 /* dynamic regulator mode switching constraint check */
276 static int regulator_check_drms(struct regulator_dev *rdev)
277 {
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283                 rdev_err(rdev, "operation not allowed\n");
284                 return -EPERM;
285         }
286         return 0;
287 }
288
289 static ssize_t regulator_uV_show(struct device *dev,
290                                 struct device_attribute *attr, char *buf)
291 {
292         struct regulator_dev *rdev = dev_get_drvdata(dev);
293         ssize_t ret;
294
295         mutex_lock(&rdev->mutex);
296         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
297         mutex_unlock(&rdev->mutex);
298
299         return ret;
300 }
301 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302
303 static ssize_t regulator_uA_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307
308         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
309 }
310 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311
312 static ssize_t regulator_name_show(struct device *dev,
313                              struct device_attribute *attr, char *buf)
314 {
315         struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317         return sprintf(buf, "%s\n", rdev_get_name(rdev));
318 }
319
320 static ssize_t regulator_print_opmode(char *buf, int mode)
321 {
322         switch (mode) {
323         case REGULATOR_MODE_FAST:
324                 return sprintf(buf, "fast\n");
325         case REGULATOR_MODE_NORMAL:
326                 return sprintf(buf, "normal\n");
327         case REGULATOR_MODE_IDLE:
328                 return sprintf(buf, "idle\n");
329         case REGULATOR_MODE_STANDBY:
330                 return sprintf(buf, "standby\n");
331         }
332         return sprintf(buf, "unknown\n");
333 }
334
335 static ssize_t regulator_opmode_show(struct device *dev,
336                                     struct device_attribute *attr, char *buf)
337 {
338         struct regulator_dev *rdev = dev_get_drvdata(dev);
339
340         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
341 }
342 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
343
344 static ssize_t regulator_print_state(char *buf, int state)
345 {
346         if (state > 0)
347                 return sprintf(buf, "enabled\n");
348         else if (state == 0)
349                 return sprintf(buf, "disabled\n");
350         else
351                 return sprintf(buf, "unknown\n");
352 }
353
354 static ssize_t regulator_state_show(struct device *dev,
355                                    struct device_attribute *attr, char *buf)
356 {
357         struct regulator_dev *rdev = dev_get_drvdata(dev);
358         ssize_t ret;
359
360         mutex_lock(&rdev->mutex);
361         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
362         mutex_unlock(&rdev->mutex);
363
364         return ret;
365 }
366 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
367
368 static ssize_t regulator_status_show(struct device *dev,
369                                    struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372         int status;
373         char *label;
374
375         status = rdev->desc->ops->get_status(rdev);
376         if (status < 0)
377                 return status;
378
379         switch (status) {
380         case REGULATOR_STATUS_OFF:
381                 label = "off";
382                 break;
383         case REGULATOR_STATUS_ON:
384                 label = "on";
385                 break;
386         case REGULATOR_STATUS_ERROR:
387                 label = "error";
388                 break;
389         case REGULATOR_STATUS_FAST:
390                 label = "fast";
391                 break;
392         case REGULATOR_STATUS_NORMAL:
393                 label = "normal";
394                 break;
395         case REGULATOR_STATUS_IDLE:
396                 label = "idle";
397                 break;
398         case REGULATOR_STATUS_STANDBY:
399                 label = "standby";
400                 break;
401         case REGULATOR_STATUS_BYPASS:
402                 label = "bypass";
403                 break;
404         case REGULATOR_STATUS_UNDEFINED:
405                 label = "undefined";
406                 break;
407         default:
408                 return -ERANGE;
409         }
410
411         return sprintf(buf, "%s\n", label);
412 }
413 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
414
415 static ssize_t regulator_min_uA_show(struct device *dev,
416                                     struct device_attribute *attr, char *buf)
417 {
418         struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420         if (!rdev->constraints)
421                 return sprintf(buf, "constraint not defined\n");
422
423         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
424 }
425 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426
427 static ssize_t regulator_max_uA_show(struct device *dev,
428                                     struct device_attribute *attr, char *buf)
429 {
430         struct regulator_dev *rdev = dev_get_drvdata(dev);
431
432         if (!rdev->constraints)
433                 return sprintf(buf, "constraint not defined\n");
434
435         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
436 }
437 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438
439 static ssize_t regulator_min_uV_show(struct device *dev,
440                                     struct device_attribute *attr, char *buf)
441 {
442         struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444         if (!rdev->constraints)
445                 return sprintf(buf, "constraint not defined\n");
446
447         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
448 }
449 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450
451 static ssize_t regulator_max_uV_show(struct device *dev,
452                                     struct device_attribute *attr, char *buf)
453 {
454         struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456         if (!rdev->constraints)
457                 return sprintf(buf, "constraint not defined\n");
458
459         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
460 }
461 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462
463 static ssize_t regulator_total_uA_show(struct device *dev,
464                                       struct device_attribute *attr, char *buf)
465 {
466         struct regulator_dev *rdev = dev_get_drvdata(dev);
467         struct regulator *regulator;
468         int uA = 0;
469
470         mutex_lock(&rdev->mutex);
471         list_for_each_entry(regulator, &rdev->consumer_list, list)
472                 uA += regulator->uA_load;
473         mutex_unlock(&rdev->mutex);
474         return sprintf(buf, "%d\n", uA);
475 }
476 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477
478 static ssize_t regulator_num_users_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         return sprintf(buf, "%d\n", rdev->use_count);
483 }
484
485 static ssize_t regulator_type_show(struct device *dev,
486                                   struct device_attribute *attr, char *buf)
487 {
488         struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490         switch (rdev->desc->type) {
491         case REGULATOR_VOLTAGE:
492                 return sprintf(buf, "voltage\n");
493         case REGULATOR_CURRENT:
494                 return sprintf(buf, "current\n");
495         }
496         return sprintf(buf, "unknown\n");
497 }
498
499 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
500                                 struct device_attribute *attr, char *buf)
501 {
502         struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
505 }
506 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
507                 regulator_suspend_mem_uV_show, NULL);
508
509 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
510                                 struct device_attribute *attr, char *buf)
511 {
512         struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
515 }
516 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
517                 regulator_suspend_disk_uV_show, NULL);
518
519 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
520                                 struct device_attribute *attr, char *buf)
521 {
522         struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
525 }
526 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
527                 regulator_suspend_standby_uV_show, NULL);
528
529 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
530                                 struct device_attribute *attr, char *buf)
531 {
532         struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534         return regulator_print_opmode(buf,
535                 rdev->constraints->state_mem.mode);
536 }
537 static DEVICE_ATTR(suspend_mem_mode, 0444,
538                 regulator_suspend_mem_mode_show, NULL);
539
540 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return regulator_print_opmode(buf,
546                 rdev->constraints->state_disk.mode);
547 }
548 static DEVICE_ATTR(suspend_disk_mode, 0444,
549                 regulator_suspend_disk_mode_show, NULL);
550
551 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
552                                 struct device_attribute *attr, char *buf)
553 {
554         struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556         return regulator_print_opmode(buf,
557                 rdev->constraints->state_standby.mode);
558 }
559 static DEVICE_ATTR(suspend_standby_mode, 0444,
560                 regulator_suspend_standby_mode_show, NULL);
561
562 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
563                                    struct device_attribute *attr, char *buf)
564 {
565         struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567         return regulator_print_state(buf,
568                         rdev->constraints->state_mem.enabled);
569 }
570 static DEVICE_ATTR(suspend_mem_state, 0444,
571                 regulator_suspend_mem_state_show, NULL);
572
573 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
574                                    struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return regulator_print_state(buf,
579                         rdev->constraints->state_disk.enabled);
580 }
581 static DEVICE_ATTR(suspend_disk_state, 0444,
582                 regulator_suspend_disk_state_show, NULL);
583
584 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
585                                    struct device_attribute *attr, char *buf)
586 {
587         struct regulator_dev *rdev = dev_get_drvdata(dev);
588
589         return regulator_print_state(buf,
590                         rdev->constraints->state_standby.enabled);
591 }
592 static DEVICE_ATTR(suspend_standby_state, 0444,
593                 regulator_suspend_standby_state_show, NULL);
594
595 static ssize_t regulator_bypass_show(struct device *dev,
596                                      struct device_attribute *attr, char *buf)
597 {
598         struct regulator_dev *rdev = dev_get_drvdata(dev);
599         const char *report;
600         bool bypass;
601         int ret;
602
603         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
604
605         if (ret != 0)
606                 report = "unknown";
607         else if (bypass)
608                 report = "enabled";
609         else
610                 report = "disabled";
611
612         return sprintf(buf, "%s\n", report);
613 }
614 static DEVICE_ATTR(bypass, 0444,
615                    regulator_bypass_show, NULL);
616
617 /*
618  * These are the only attributes are present for all regulators.
619  * Other attributes are a function of regulator functionality.
620  */
621 static struct device_attribute regulator_dev_attrs[] = {
622         __ATTR(name, 0444, regulator_name_show, NULL),
623         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
624         __ATTR(type, 0444, regulator_type_show, NULL),
625         __ATTR_NULL,
626 };
627
628 static void regulator_dev_release(struct device *dev)
629 {
630         struct regulator_dev *rdev = dev_get_drvdata(dev);
631         kfree(rdev);
632 }
633
634 static struct class regulator_class = {
635         .name = "regulator",
636         .dev_release = regulator_dev_release,
637         .dev_attrs = regulator_dev_attrs,
638 };
639
640 /* Calculate the new optimum regulator operating mode based on the new total
641  * consumer load. All locks held by caller */
642 static void drms_uA_update(struct regulator_dev *rdev)
643 {
644         struct regulator *sibling;
645         int current_uA = 0, output_uV, input_uV, err;
646         unsigned int mode;
647
648         err = regulator_check_drms(rdev);
649         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650             (!rdev->desc->ops->get_voltage &&
651              !rdev->desc->ops->get_voltage_sel) ||
652             !rdev->desc->ops->set_mode)
653                 return;
654
655         /* get output voltage */
656         output_uV = _regulator_get_voltage(rdev);
657         if (output_uV <= 0)
658                 return;
659
660         /* get input voltage */
661         input_uV = 0;
662         if (rdev->supply)
663                 input_uV = regulator_get_voltage(rdev->supply);
664         if (input_uV <= 0)
665                 input_uV = rdev->constraints->input_uV;
666         if (input_uV <= 0)
667                 return;
668
669         /* calc total requested load */
670         list_for_each_entry(sibling, &rdev->consumer_list, list)
671                 current_uA += sibling->uA_load;
672
673         /* now get the optimum mode for our new total regulator load */
674         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
675                                                   output_uV, current_uA);
676
677         /* check the new mode is allowed */
678         err = regulator_mode_constrain(rdev, &mode);
679         if (err == 0)
680                 rdev->desc->ops->set_mode(rdev, mode);
681 }
682
683 static int suspend_set_state(struct regulator_dev *rdev,
684         struct regulator_state *rstate)
685 {
686         int ret = 0;
687
688         /* If we have no suspend mode configration don't set anything;
689          * only warn if the driver implements set_suspend_voltage or
690          * set_suspend_mode callback.
691          */
692         if (!rstate->enabled && !rstate->disabled) {
693                 if (rdev->desc->ops->set_suspend_voltage ||
694                     rdev->desc->ops->set_suspend_mode)
695                         rdev_warn(rdev, "No configuration\n");
696                 return 0;
697         }
698
699         if (rstate->enabled && rstate->disabled) {
700                 rdev_err(rdev, "invalid configuration\n");
701                 return -EINVAL;
702         }
703
704         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705                 ret = rdev->desc->ops->set_suspend_enable(rdev);
706         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707                 ret = rdev->desc->ops->set_suspend_disable(rdev);
708         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
709                 ret = 0;
710
711         if (ret < 0) {
712                 rdev_err(rdev, "failed to enabled/disable\n");
713                 return ret;
714         }
715
716         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718                 if (ret < 0) {
719                         rdev_err(rdev, "failed to set voltage\n");
720                         return ret;
721                 }
722         }
723
724         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726                 if (ret < 0) {
727                         rdev_err(rdev, "failed to set mode\n");
728                         return ret;
729                 }
730         }
731         return ret;
732 }
733
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737         if (!rdev->constraints)
738                 return -EINVAL;
739
740         switch (state) {
741         case PM_SUSPEND_STANDBY:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_standby);
744         case PM_SUSPEND_MEM:
745                 return suspend_set_state(rdev,
746                         &rdev->constraints->state_mem);
747         case PM_SUSPEND_MAX:
748                 return suspend_set_state(rdev,
749                         &rdev->constraints->state_disk);
750         default:
751                 return -EINVAL;
752         }
753 }
754
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757         struct regulation_constraints *constraints = rdev->constraints;
758         char buf[80] = "";
759         int count = 0;
760         int ret;
761
762         if (constraints->min_uV && constraints->max_uV) {
763                 if (constraints->min_uV == constraints->max_uV)
764                         count += sprintf(buf + count, "%d mV ",
765                                          constraints->min_uV / 1000);
766                 else
767                         count += sprintf(buf + count, "%d <--> %d mV ",
768                                          constraints->min_uV / 1000,
769                                          constraints->max_uV / 1000);
770         }
771
772         if (!constraints->min_uV ||
773             constraints->min_uV != constraints->max_uV) {
774                 ret = _regulator_get_voltage(rdev);
775                 if (ret > 0)
776                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
777         }
778
779         if (constraints->uV_offset)
780                 count += sprintf(buf, "%dmV offset ",
781                                  constraints->uV_offset / 1000);
782
783         if (constraints->min_uA && constraints->max_uA) {
784                 if (constraints->min_uA == constraints->max_uA)
785                         count += sprintf(buf + count, "%d mA ",
786                                          constraints->min_uA / 1000);
787                 else
788                         count += sprintf(buf + count, "%d <--> %d mA ",
789                                          constraints->min_uA / 1000,
790                                          constraints->max_uA / 1000);
791         }
792
793         if (!constraints->min_uA ||
794             constraints->min_uA != constraints->max_uA) {
795                 ret = _regulator_get_current_limit(rdev);
796                 if (ret > 0)
797                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
798         }
799
800         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801                 count += sprintf(buf + count, "fast ");
802         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803                 count += sprintf(buf + count, "normal ");
804         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805                 count += sprintf(buf + count, "idle ");
806         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807                 count += sprintf(buf + count, "standby");
808
809         if (!count)
810                 sprintf(buf, "no parameters");
811
812         rdev_info(rdev, "%s\n", buf);
813
814         if ((constraints->min_uV != constraints->max_uV) &&
815             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
816                 rdev_warn(rdev,
817                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818 }
819
820 static int machine_constraints_voltage(struct regulator_dev *rdev,
821         struct regulation_constraints *constraints)
822 {
823         struct regulator_ops *ops = rdev->desc->ops;
824         int ret;
825
826         /* do we need to apply the constraint voltage */
827         if (rdev->constraints->apply_uV &&
828             rdev->constraints->min_uV == rdev->constraints->max_uV) {
829                 ret = _regulator_do_set_voltage(rdev,
830                                                 rdev->constraints->min_uV,
831                                                 rdev->constraints->max_uV);
832                 if (ret < 0) {
833                         rdev_err(rdev, "failed to apply %duV constraint\n",
834                                  rdev->constraints->min_uV);
835                         return ret;
836                 }
837         }
838
839         /* constrain machine-level voltage specs to fit
840          * the actual range supported by this regulator.
841          */
842         if (ops->list_voltage && rdev->desc->n_voltages) {
843                 int     count = rdev->desc->n_voltages;
844                 int     i;
845                 int     min_uV = INT_MAX;
846                 int     max_uV = INT_MIN;
847                 int     cmin = constraints->min_uV;
848                 int     cmax = constraints->max_uV;
849
850                 /* it's safe to autoconfigure fixed-voltage supplies
851                    and the constraints are used by list_voltage. */
852                 if (count == 1 && !cmin) {
853                         cmin = 1;
854                         cmax = INT_MAX;
855                         constraints->min_uV = cmin;
856                         constraints->max_uV = cmax;
857                 }
858
859                 /* voltage constraints are optional */
860                 if ((cmin == 0) && (cmax == 0))
861                         return 0;
862
863                 /* else require explicit machine-level constraints */
864                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865                         rdev_err(rdev, "invalid voltage constraints\n");
866                         return -EINVAL;
867                 }
868
869                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
870                 for (i = 0; i < count; i++) {
871                         int     value;
872
873                         value = ops->list_voltage(rdev, i);
874                         if (value <= 0)
875                                 continue;
876
877                         /* maybe adjust [min_uV..max_uV] */
878                         if (value >= cmin && value < min_uV)
879                                 min_uV = value;
880                         if (value <= cmax && value > max_uV)
881                                 max_uV = value;
882                 }
883
884                 /* final: [min_uV..max_uV] valid iff constraints valid */
885                 if (max_uV < min_uV) {
886                         rdev_err(rdev,
887                                  "unsupportable voltage constraints %u-%uuV\n",
888                                  min_uV, max_uV);
889                         return -EINVAL;
890                 }
891
892                 /* use regulator's subset of machine constraints */
893                 if (constraints->min_uV < min_uV) {
894                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
895                                  constraints->min_uV, min_uV);
896                         constraints->min_uV = min_uV;
897                 }
898                 if (constraints->max_uV > max_uV) {
899                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
900                                  constraints->max_uV, max_uV);
901                         constraints->max_uV = max_uV;
902                 }
903         }
904
905         return 0;
906 }
907
908 /**
909  * set_machine_constraints - sets regulator constraints
910  * @rdev: regulator source
911  * @constraints: constraints to apply
912  *
913  * Allows platform initialisation code to define and constrain
914  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
915  * Constraints *must* be set by platform code in order for some
916  * regulator operations to proceed i.e. set_voltage, set_current_limit,
917  * set_mode.
918  */
919 static int set_machine_constraints(struct regulator_dev *rdev,
920         const struct regulation_constraints *constraints)
921 {
922         int ret = 0;
923         struct regulator_ops *ops = rdev->desc->ops;
924
925         if (constraints)
926                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
927                                             GFP_KERNEL);
928         else
929                 rdev->constraints = kzalloc(sizeof(*constraints),
930                                             GFP_KERNEL);
931         if (!rdev->constraints)
932                 return -ENOMEM;
933
934         ret = machine_constraints_voltage(rdev, rdev->constraints);
935         if (ret != 0)
936                 goto out;
937
938         /* do we need to setup our suspend state */
939         if (rdev->constraints->initial_state) {
940                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941                 if (ret < 0) {
942                         rdev_err(rdev, "failed to set suspend state\n");
943                         goto out;
944                 }
945         }
946
947         if (rdev->constraints->initial_mode) {
948                 if (!ops->set_mode) {
949                         rdev_err(rdev, "no set_mode operation\n");
950                         ret = -EINVAL;
951                         goto out;
952                 }
953
954                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955                 if (ret < 0) {
956                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957                         goto out;
958                 }
959         }
960
961         /* If the constraints say the regulator should be on at this point
962          * and we have control then make sure it is enabled.
963          */
964         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
965             ops->enable) {
966                 ret = ops->enable(rdev);
967                 if (ret < 0) {
968                         rdev_err(rdev, "failed to enable\n");
969                         goto out;
970                 }
971         }
972
973         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
974                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
975                 if (ret < 0) {
976                         rdev_err(rdev, "failed to set ramp_delay\n");
977                         goto out;
978                 }
979         }
980
981         print_constraints(rdev);
982         return 0;
983 out:
984         kfree(rdev->constraints);
985         rdev->constraints = NULL;
986         return ret;
987 }
988
989 /**
990  * set_supply - set regulator supply regulator
991  * @rdev: regulator name
992  * @supply_rdev: supply regulator name
993  *
994  * Called by platform initialisation code to set the supply regulator for this
995  * regulator. This ensures that a regulators supply will also be enabled by the
996  * core if it's child is enabled.
997  */
998 static int set_supply(struct regulator_dev *rdev,
999                       struct regulator_dev *supply_rdev)
1000 {
1001         int err;
1002
1003         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1004
1005         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006         if (rdev->supply == NULL) {
1007                 err = -ENOMEM;
1008                 return err;
1009         }
1010         supply_rdev->open_count++;
1011
1012         return 0;
1013 }
1014
1015 /**
1016  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017  * @rdev:         regulator source
1018  * @consumer_dev_name: dev_name() string for device supply applies to
1019  * @supply:       symbolic name for supply
1020  *
1021  * Allows platform initialisation code to map physical regulator
1022  * sources to symbolic names for supplies for use by devices.  Devices
1023  * should use these symbolic names to request regulators, avoiding the
1024  * need to provide board-specific regulator names as platform data.
1025  */
1026 static int set_consumer_device_supply(struct regulator_dev *rdev,
1027                                       const char *consumer_dev_name,
1028                                       const char *supply)
1029 {
1030         struct regulator_map *node;
1031         int has_dev;
1032
1033         if (supply == NULL)
1034                 return -EINVAL;
1035
1036         if (consumer_dev_name != NULL)
1037                 has_dev = 1;
1038         else
1039                 has_dev = 0;
1040
1041         list_for_each_entry(node, &regulator_map_list, list) {
1042                 if (node->dev_name && consumer_dev_name) {
1043                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1044                                 continue;
1045                 } else if (node->dev_name || consumer_dev_name) {
1046                         continue;
1047                 }
1048
1049                 if (strcmp(node->supply, supply) != 0)
1050                         continue;
1051
1052                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1053                          consumer_dev_name,
1054                          dev_name(&node->regulator->dev),
1055                          node->regulator->desc->name,
1056                          supply,
1057                          dev_name(&rdev->dev), rdev_get_name(rdev));
1058                 return -EBUSY;
1059         }
1060
1061         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062         if (node == NULL)
1063                 return -ENOMEM;
1064
1065         node->regulator = rdev;
1066         node->supply = supply;
1067
1068         if (has_dev) {
1069                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1070                 if (node->dev_name == NULL) {
1071                         kfree(node);
1072                         return -ENOMEM;
1073                 }
1074         }
1075
1076         list_add(&node->list, &regulator_map_list);
1077         return 0;
1078 }
1079
1080 static void unset_regulator_supplies(struct regulator_dev *rdev)
1081 {
1082         struct regulator_map *node, *n;
1083
1084         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1085                 if (rdev == node->regulator) {
1086                         list_del(&node->list);
1087                         kfree(node->dev_name);
1088                         kfree(node);
1089                 }
1090         }
1091 }
1092
1093 #define REG_STR_SIZE    64
1094
1095 static struct regulator *create_regulator(struct regulator_dev *rdev,
1096                                           struct device *dev,
1097                                           const char *supply_name)
1098 {
1099         struct regulator *regulator;
1100         char buf[REG_STR_SIZE];
1101         int err, size;
1102
1103         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1104         if (regulator == NULL)
1105                 return NULL;
1106
1107         mutex_lock(&rdev->mutex);
1108         regulator->rdev = rdev;
1109         list_add(&regulator->list, &rdev->consumer_list);
1110
1111         if (dev) {
1112                 regulator->dev = dev;
1113
1114                 /* Add a link to the device sysfs entry */
1115                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116                                  dev->kobj.name, supply_name);
1117                 if (size >= REG_STR_SIZE)
1118                         goto overflow_err;
1119
1120                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121                 if (regulator->supply_name == NULL)
1122                         goto overflow_err;
1123
1124                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125                                         buf);
1126                 if (err) {
1127                         rdev_warn(rdev, "could not add device link %s err %d\n",
1128                                   dev->kobj.name, err);
1129                         /* non-fatal */
1130                 }
1131         } else {
1132                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133                 if (regulator->supply_name == NULL)
1134                         goto overflow_err;
1135         }
1136
1137         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1138                                                 rdev->debugfs);
1139         if (!regulator->debugfs) {
1140                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1141         } else {
1142                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1143                                    &regulator->uA_load);
1144                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1145                                    &regulator->min_uV);
1146                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1147                                    &regulator->max_uV);
1148         }
1149
1150         /*
1151          * Check now if the regulator is an always on regulator - if
1152          * it is then we don't need to do nearly so much work for
1153          * enable/disable calls.
1154          */
1155         if (!_regulator_can_change_status(rdev) &&
1156             _regulator_is_enabled(rdev))
1157                 regulator->always_on = true;
1158
1159         mutex_unlock(&rdev->mutex);
1160         return regulator;
1161 overflow_err:
1162         list_del(&regulator->list);
1163         kfree(regulator);
1164         mutex_unlock(&rdev->mutex);
1165         return NULL;
1166 }
1167
1168 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169 {
1170         if (!rdev->desc->ops->enable_time)
1171                 return rdev->desc->enable_time;
1172         return rdev->desc->ops->enable_time(rdev);
1173 }
1174
1175 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176                                                   const char *supply,
1177                                                   int *ret)
1178 {
1179         struct regulator_dev *r;
1180         struct device_node *node;
1181         struct regulator_map *map;
1182         const char *devname = NULL;
1183
1184         /* first do a dt based lookup */
1185         if (dev && dev->of_node) {
1186                 node = of_get_regulator(dev, supply);
1187                 if (node) {
1188                         list_for_each_entry(r, &regulator_list, list)
1189                                 if (r->dev.parent &&
1190                                         node == r->dev.of_node)
1191                                         return r;
1192                 } else {
1193                         /*
1194                          * If we couldn't even get the node then it's
1195                          * not just that the device didn't register
1196                          * yet, there's no node and we'll never
1197                          * succeed.
1198                          */
1199                         *ret = -ENODEV;
1200                 }
1201         }
1202
1203         /* if not found, try doing it non-dt way */
1204         if (dev)
1205                 devname = dev_name(dev);
1206
1207         list_for_each_entry(r, &regulator_list, list)
1208                 if (strcmp(rdev_get_name(r), supply) == 0)
1209                         return r;
1210
1211         list_for_each_entry(map, &regulator_map_list, list) {
1212                 /* If the mapping has a device set up it must match */
1213                 if (map->dev_name &&
1214                     (!devname || strcmp(map->dev_name, devname)))
1215                         continue;
1216
1217                 if (strcmp(map->supply, supply) == 0)
1218                         return map->regulator;
1219         }
1220
1221
1222         return NULL;
1223 }
1224
1225 /* Internal regulator request function */
1226 static struct regulator *_regulator_get(struct device *dev, const char *id,
1227                                         int exclusive)
1228 {
1229         struct regulator_dev *rdev;
1230         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231         const char *devname = NULL;
1232         int ret;
1233
1234         if (id == NULL) {
1235                 pr_err("get() with no identifier\n");
1236                 return regulator;
1237         }
1238
1239         if (dev)
1240                 devname = dev_name(dev);
1241
1242         mutex_lock(&regulator_list_mutex);
1243
1244         rdev = regulator_dev_lookup(dev, id, &ret);
1245         if (rdev)
1246                 goto found;
1247
1248         if (board_wants_dummy_regulator) {
1249                 rdev = dummy_regulator_rdev;
1250                 goto found;
1251         }
1252
1253 #ifdef CONFIG_REGULATOR_DUMMY
1254         if (!devname)
1255                 devname = "deviceless";
1256
1257         /* If the board didn't flag that it was fully constrained then
1258          * substitute in a dummy regulator so consumers can continue.
1259          */
1260         if (!has_full_constraints) {
1261                 pr_warn("%s supply %s not found, using dummy regulator\n",
1262                         devname, id);
1263                 rdev = dummy_regulator_rdev;
1264                 goto found;
1265         }
1266 #endif
1267
1268         mutex_unlock(&regulator_list_mutex);
1269         return regulator;
1270
1271 found:
1272         if (rdev->exclusive) {
1273                 regulator = ERR_PTR(-EPERM);
1274                 goto out;
1275         }
1276
1277         if (exclusive && rdev->open_count) {
1278                 regulator = ERR_PTR(-EBUSY);
1279                 goto out;
1280         }
1281
1282         if (!try_module_get(rdev->owner))
1283                 goto out;
1284
1285         regulator = create_regulator(rdev, dev, id);
1286         if (regulator == NULL) {
1287                 regulator = ERR_PTR(-ENOMEM);
1288                 module_put(rdev->owner);
1289                 goto out;
1290         }
1291
1292         rdev->open_count++;
1293         if (exclusive) {
1294                 rdev->exclusive = 1;
1295
1296                 ret = _regulator_is_enabled(rdev);
1297                 if (ret > 0)
1298                         rdev->use_count = 1;
1299                 else
1300                         rdev->use_count = 0;
1301         }
1302
1303 out:
1304         mutex_unlock(&regulator_list_mutex);
1305
1306         return regulator;
1307 }
1308
1309 /**
1310  * regulator_get - lookup and obtain a reference to a regulator.
1311  * @dev: device for regulator "consumer"
1312  * @id: Supply name or regulator ID.
1313  *
1314  * Returns a struct regulator corresponding to the regulator producer,
1315  * or IS_ERR() condition containing errno.
1316  *
1317  * Use of supply names configured via regulator_set_device_supply() is
1318  * strongly encouraged.  It is recommended that the supply name used
1319  * should match the name used for the supply and/or the relevant
1320  * device pins in the datasheet.
1321  */
1322 struct regulator *regulator_get(struct device *dev, const char *id)
1323 {
1324         return _regulator_get(dev, id, 0);
1325 }
1326 EXPORT_SYMBOL_GPL(regulator_get);
1327
1328 static void devm_regulator_release(struct device *dev, void *res)
1329 {
1330         regulator_put(*(struct regulator **)res);
1331 }
1332
1333 /**
1334  * devm_regulator_get - Resource managed regulator_get()
1335  * @dev: device for regulator "consumer"
1336  * @id: Supply name or regulator ID.
1337  *
1338  * Managed regulator_get(). Regulators returned from this function are
1339  * automatically regulator_put() on driver detach. See regulator_get() for more
1340  * information.
1341  */
1342 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1343 {
1344         struct regulator **ptr, *regulator;
1345
1346         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1347         if (!ptr)
1348                 return ERR_PTR(-ENOMEM);
1349
1350         regulator = regulator_get(dev, id);
1351         if (!IS_ERR(regulator)) {
1352                 *ptr = regulator;
1353                 devres_add(dev, ptr);
1354         } else {
1355                 devres_free(ptr);
1356         }
1357
1358         return regulator;
1359 }
1360 EXPORT_SYMBOL_GPL(devm_regulator_get);
1361
1362 /**
1363  * regulator_get_exclusive - obtain exclusive access to a regulator.
1364  * @dev: device for regulator "consumer"
1365  * @id: Supply name or regulator ID.
1366  *
1367  * Returns a struct regulator corresponding to the regulator producer,
1368  * or IS_ERR() condition containing errno.  Other consumers will be
1369  * unable to obtain this reference is held and the use count for the
1370  * regulator will be initialised to reflect the current state of the
1371  * regulator.
1372  *
1373  * This is intended for use by consumers which cannot tolerate shared
1374  * use of the regulator such as those which need to force the
1375  * regulator off for correct operation of the hardware they are
1376  * controlling.
1377  *
1378  * Use of supply names configured via regulator_set_device_supply() is
1379  * strongly encouraged.  It is recommended that the supply name used
1380  * should match the name used for the supply and/or the relevant
1381  * device pins in the datasheet.
1382  */
1383 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1384 {
1385         return _regulator_get(dev, id, 1);
1386 }
1387 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1388
1389 /* Locks held by regulator_put() */
1390 static void _regulator_put(struct regulator *regulator)
1391 {
1392         struct regulator_dev *rdev;
1393
1394         if (regulator == NULL || IS_ERR(regulator))
1395                 return;
1396
1397         rdev = regulator->rdev;
1398
1399         debugfs_remove_recursive(regulator->debugfs);
1400
1401         /* remove any sysfs entries */
1402         if (regulator->dev)
1403                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404         kfree(regulator->supply_name);
1405         list_del(&regulator->list);
1406         kfree(regulator);
1407
1408         rdev->open_count--;
1409         rdev->exclusive = 0;
1410
1411         module_put(rdev->owner);
1412 }
1413
1414 /**
1415  * regulator_put - "free" the regulator source
1416  * @regulator: regulator source
1417  *
1418  * Note: drivers must ensure that all regulator_enable calls made on this
1419  * regulator source are balanced by regulator_disable calls prior to calling
1420  * this function.
1421  */
1422 void regulator_put(struct regulator *regulator)
1423 {
1424         mutex_lock(&regulator_list_mutex);
1425         _regulator_put(regulator);
1426         mutex_unlock(&regulator_list_mutex);
1427 }
1428 EXPORT_SYMBOL_GPL(regulator_put);
1429
1430 static int devm_regulator_match(struct device *dev, void *res, void *data)
1431 {
1432         struct regulator **r = res;
1433         if (!r || !*r) {
1434                 WARN_ON(!r || !*r);
1435                 return 0;
1436         }
1437         return *r == data;
1438 }
1439
1440 /**
1441  * devm_regulator_put - Resource managed regulator_put()
1442  * @regulator: regulator to free
1443  *
1444  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1445  * this function will not need to be called and the resource management
1446  * code will ensure that the resource is freed.
1447  */
1448 void devm_regulator_put(struct regulator *regulator)
1449 {
1450         int rc;
1451
1452         rc = devres_release(regulator->dev, devm_regulator_release,
1453                             devm_regulator_match, regulator);
1454         if (rc != 0)
1455                 WARN_ON(rc);
1456 }
1457 EXPORT_SYMBOL_GPL(devm_regulator_put);
1458
1459 static int _regulator_do_enable(struct regulator_dev *rdev)
1460 {
1461         int ret, delay;
1462
1463         /* Query before enabling in case configuration dependent.  */
1464         ret = _regulator_get_enable_time(rdev);
1465         if (ret >= 0) {
1466                 delay = ret;
1467         } else {
1468                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1469                 delay = 0;
1470         }
1471
1472         trace_regulator_enable(rdev_get_name(rdev));
1473
1474         if (rdev->ena_gpio) {
1475                 gpio_set_value_cansleep(rdev->ena_gpio,
1476                                         !rdev->ena_gpio_invert);
1477                 rdev->ena_gpio_state = 1;
1478         } else if (rdev->desc->ops->enable) {
1479                 ret = rdev->desc->ops->enable(rdev);
1480                 if (ret < 0)
1481                         return ret;
1482         } else {
1483                 return -EINVAL;
1484         }
1485
1486         /* Allow the regulator to ramp; it would be useful to extend
1487          * this for bulk operations so that the regulators can ramp
1488          * together.  */
1489         trace_regulator_enable_delay(rdev_get_name(rdev));
1490
1491         if (delay >= 1000) {
1492                 mdelay(delay / 1000);
1493                 udelay(delay % 1000);
1494         } else if (delay) {
1495                 udelay(delay);
1496         }
1497
1498         trace_regulator_enable_complete(rdev_get_name(rdev));
1499
1500         return 0;
1501 }
1502
1503 /* locks held by regulator_enable() */
1504 static int _regulator_enable(struct regulator_dev *rdev)
1505 {
1506         int ret;
1507
1508         /* check voltage and requested load before enabling */
1509         if (rdev->constraints &&
1510             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1511                 drms_uA_update(rdev);
1512
1513         if (rdev->use_count == 0) {
1514                 /* The regulator may on if it's not switchable or left on */
1515                 ret = _regulator_is_enabled(rdev);
1516                 if (ret == -EINVAL || ret == 0) {
1517                         if (!_regulator_can_change_status(rdev))
1518                                 return -EPERM;
1519
1520                         ret = _regulator_do_enable(rdev);
1521                         if (ret < 0)
1522                                 return ret;
1523
1524                 } else if (ret < 0) {
1525                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526                         return ret;
1527                 }
1528                 /* Fallthrough on positive return values - already enabled */
1529         }
1530
1531         rdev->use_count++;
1532
1533         return 0;
1534 }
1535
1536 /**
1537  * regulator_enable - enable regulator output
1538  * @regulator: regulator source
1539  *
1540  * Request that the regulator be enabled with the regulator output at
1541  * the predefined voltage or current value.  Calls to regulator_enable()
1542  * must be balanced with calls to regulator_disable().
1543  *
1544  * NOTE: the output value can be set by other drivers, boot loader or may be
1545  * hardwired in the regulator.
1546  */
1547 int regulator_enable(struct regulator *regulator)
1548 {
1549         struct regulator_dev *rdev = regulator->rdev;
1550         int ret = 0;
1551
1552         if (regulator->always_on)
1553                 return 0;
1554
1555         if (rdev->supply) {
1556                 ret = regulator_enable(rdev->supply);
1557                 if (ret != 0)
1558                         return ret;
1559         }
1560
1561         mutex_lock(&rdev->mutex);
1562         ret = _regulator_enable(rdev);
1563         mutex_unlock(&rdev->mutex);
1564
1565         if (ret != 0 && rdev->supply)
1566                 regulator_disable(rdev->supply);
1567
1568         return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_enable);
1571
1572 static int _regulator_do_disable(struct regulator_dev *rdev)
1573 {
1574         int ret;
1575
1576         trace_regulator_disable(rdev_get_name(rdev));
1577
1578         if (rdev->ena_gpio) {
1579                 gpio_set_value_cansleep(rdev->ena_gpio,
1580                                         rdev->ena_gpio_invert);
1581                 rdev->ena_gpio_state = 0;
1582
1583         } else if (rdev->desc->ops->disable) {
1584                 ret = rdev->desc->ops->disable(rdev);
1585                 if (ret != 0)
1586                         return ret;
1587         }
1588
1589         trace_regulator_disable_complete(rdev_get_name(rdev));
1590
1591         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1592                              NULL);
1593         return 0;
1594 }
1595
1596 /* locks held by regulator_disable() */
1597 static int _regulator_disable(struct regulator_dev *rdev)
1598 {
1599         int ret = 0;
1600
1601         if (WARN(rdev->use_count <= 0,
1602                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1603                 return -EIO;
1604
1605         /* are we the last user and permitted to disable ? */
1606         if (rdev->use_count == 1 &&
1607             (rdev->constraints && !rdev->constraints->always_on)) {
1608
1609                 /* we are last user */
1610                 if (_regulator_can_change_status(rdev)) {
1611                         ret = _regulator_do_disable(rdev);
1612                         if (ret < 0) {
1613                                 rdev_err(rdev, "failed to disable\n");
1614                                 return ret;
1615                         }
1616                 }
1617
1618                 rdev->use_count = 0;
1619         } else if (rdev->use_count > 1) {
1620
1621                 if (rdev->constraints &&
1622                         (rdev->constraints->valid_ops_mask &
1623                         REGULATOR_CHANGE_DRMS))
1624                         drms_uA_update(rdev);
1625
1626                 rdev->use_count--;
1627         }
1628
1629         return ret;
1630 }
1631
1632 /**
1633  * regulator_disable - disable regulator output
1634  * @regulator: regulator source
1635  *
1636  * Disable the regulator output voltage or current.  Calls to
1637  * regulator_enable() must be balanced with calls to
1638  * regulator_disable().
1639  *
1640  * NOTE: this will only disable the regulator output if no other consumer
1641  * devices have it enabled, the regulator device supports disabling and
1642  * machine constraints permit this operation.
1643  */
1644 int regulator_disable(struct regulator *regulator)
1645 {
1646         struct regulator_dev *rdev = regulator->rdev;
1647         int ret = 0;
1648
1649         if (regulator->always_on)
1650                 return 0;
1651
1652         mutex_lock(&rdev->mutex);
1653         ret = _regulator_disable(rdev);
1654         mutex_unlock(&rdev->mutex);
1655
1656         if (ret == 0 && rdev->supply)
1657                 regulator_disable(rdev->supply);
1658
1659         return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(regulator_disable);
1662
1663 /* locks held by regulator_force_disable() */
1664 static int _regulator_force_disable(struct regulator_dev *rdev)
1665 {
1666         int ret = 0;
1667
1668         /* force disable */
1669         if (rdev->desc->ops->disable) {
1670                 /* ah well, who wants to live forever... */
1671                 ret = rdev->desc->ops->disable(rdev);
1672                 if (ret < 0) {
1673                         rdev_err(rdev, "failed to force disable\n");
1674                         return ret;
1675                 }
1676                 /* notify other consumers that power has been forced off */
1677                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1678                         REGULATOR_EVENT_DISABLE, NULL);
1679         }
1680
1681         return ret;
1682 }
1683
1684 /**
1685  * regulator_force_disable - force disable regulator output
1686  * @regulator: regulator source
1687  *
1688  * Forcibly disable the regulator output voltage or current.
1689  * NOTE: this *will* disable the regulator output even if other consumer
1690  * devices have it enabled. This should be used for situations when device
1691  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1692  */
1693 int regulator_force_disable(struct regulator *regulator)
1694 {
1695         struct regulator_dev *rdev = regulator->rdev;
1696         int ret;
1697
1698         mutex_lock(&rdev->mutex);
1699         regulator->uA_load = 0;
1700         ret = _regulator_force_disable(regulator->rdev);
1701         mutex_unlock(&rdev->mutex);
1702
1703         if (rdev->supply)
1704                 while (rdev->open_count--)
1705                         regulator_disable(rdev->supply);
1706
1707         return ret;
1708 }
1709 EXPORT_SYMBOL_GPL(regulator_force_disable);
1710
1711 static void regulator_disable_work(struct work_struct *work)
1712 {
1713         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1714                                                   disable_work.work);
1715         int count, i, ret;
1716
1717         mutex_lock(&rdev->mutex);
1718
1719         BUG_ON(!rdev->deferred_disables);
1720
1721         count = rdev->deferred_disables;
1722         rdev->deferred_disables = 0;
1723
1724         for (i = 0; i < count; i++) {
1725                 ret = _regulator_disable(rdev);
1726                 if (ret != 0)
1727                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1728         }
1729
1730         mutex_unlock(&rdev->mutex);
1731
1732         if (rdev->supply) {
1733                 for (i = 0; i < count; i++) {
1734                         ret = regulator_disable(rdev->supply);
1735                         if (ret != 0) {
1736                                 rdev_err(rdev,
1737                                          "Supply disable failed: %d\n", ret);
1738                         }
1739                 }
1740         }
1741 }
1742
1743 /**
1744  * regulator_disable_deferred - disable regulator output with delay
1745  * @regulator: regulator source
1746  * @ms: miliseconds until the regulator is disabled
1747  *
1748  * Execute regulator_disable() on the regulator after a delay.  This
1749  * is intended for use with devices that require some time to quiesce.
1750  *
1751  * NOTE: this will only disable the regulator output if no other consumer
1752  * devices have it enabled, the regulator device supports disabling and
1753  * machine constraints permit this operation.
1754  */
1755 int regulator_disable_deferred(struct regulator *regulator, int ms)
1756 {
1757         struct regulator_dev *rdev = regulator->rdev;
1758         int ret;
1759
1760         if (regulator->always_on)
1761                 return 0;
1762
1763         if (!ms)
1764                 return regulator_disable(regulator);
1765
1766         mutex_lock(&rdev->mutex);
1767         rdev->deferred_disables++;
1768         mutex_unlock(&rdev->mutex);
1769
1770         ret = schedule_delayed_work(&rdev->disable_work,
1771                                     msecs_to_jiffies(ms));
1772         if (ret < 0)
1773                 return ret;
1774         else
1775                 return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1778
1779 /**
1780  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1781  *
1782  * @rdev: regulator to operate on
1783  *
1784  * Regulators that use regmap for their register I/O can set the
1785  * enable_reg and enable_mask fields in their descriptor and then use
1786  * this as their is_enabled operation, saving some code.
1787  */
1788 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1789 {
1790         unsigned int val;
1791         int ret;
1792
1793         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1794         if (ret != 0)
1795                 return ret;
1796
1797         return (val & rdev->desc->enable_mask) != 0;
1798 }
1799 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1800
1801 /**
1802  * regulator_enable_regmap - standard enable() for regmap users
1803  *
1804  * @rdev: regulator to operate on
1805  *
1806  * Regulators that use regmap for their register I/O can set the
1807  * enable_reg and enable_mask fields in their descriptor and then use
1808  * this as their enable() operation, saving some code.
1809  */
1810 int regulator_enable_regmap(struct regulator_dev *rdev)
1811 {
1812         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1813                                   rdev->desc->enable_mask,
1814                                   rdev->desc->enable_mask);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1817
1818 /**
1819  * regulator_disable_regmap - standard disable() for regmap users
1820  *
1821  * @rdev: regulator to operate on
1822  *
1823  * Regulators that use regmap for their register I/O can set the
1824  * enable_reg and enable_mask fields in their descriptor and then use
1825  * this as their disable() operation, saving some code.
1826  */
1827 int regulator_disable_regmap(struct regulator_dev *rdev)
1828 {
1829         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1830                                   rdev->desc->enable_mask, 0);
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1833
1834 static int _regulator_is_enabled(struct regulator_dev *rdev)
1835 {
1836         /* A GPIO control always takes precedence */
1837         if (rdev->ena_gpio)
1838                 return rdev->ena_gpio_state;
1839
1840         /* If we don't know then assume that the regulator is always on */
1841         if (!rdev->desc->ops->is_enabled)
1842                 return 1;
1843
1844         return rdev->desc->ops->is_enabled(rdev);
1845 }
1846
1847 /**
1848  * regulator_is_enabled - is the regulator output enabled
1849  * @regulator: regulator source
1850  *
1851  * Returns positive if the regulator driver backing the source/client
1852  * has requested that the device be enabled, zero if it hasn't, else a
1853  * negative errno code.
1854  *
1855  * Note that the device backing this regulator handle can have multiple
1856  * users, so it might be enabled even if regulator_enable() was never
1857  * called for this particular source.
1858  */
1859 int regulator_is_enabled(struct regulator *regulator)
1860 {
1861         int ret;
1862
1863         if (regulator->always_on)
1864                 return 1;
1865
1866         mutex_lock(&regulator->rdev->mutex);
1867         ret = _regulator_is_enabled(regulator->rdev);
1868         mutex_unlock(&regulator->rdev->mutex);
1869
1870         return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1873
1874 /**
1875  * regulator_can_change_voltage - check if regulator can change voltage
1876  * @regulator: regulator source
1877  *
1878  * Returns positive if the regulator driver backing the source/client
1879  * can change its voltage, false otherwise. Usefull for detecting fixed
1880  * or dummy regulators and disabling voltage change logic in the client
1881  * driver.
1882  */
1883 int regulator_can_change_voltage(struct regulator *regulator)
1884 {
1885         struct regulator_dev    *rdev = regulator->rdev;
1886
1887         if (rdev->constraints &&
1888             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1889                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
1890                         return 1;
1891
1892                 if (rdev->desc->continuous_voltage_range &&
1893                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
1894                     rdev->constraints->min_uV != rdev->constraints->max_uV)
1895                         return 1;
1896         }
1897
1898         return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1901
1902 /**
1903  * regulator_count_voltages - count regulator_list_voltage() selectors
1904  * @regulator: regulator source
1905  *
1906  * Returns number of selectors, or negative errno.  Selectors are
1907  * numbered starting at zero, and typically correspond to bitfields
1908  * in hardware registers.
1909  */
1910 int regulator_count_voltages(struct regulator *regulator)
1911 {
1912         struct regulator_dev    *rdev = regulator->rdev;
1913
1914         return rdev->desc->n_voltages ? : -EINVAL;
1915 }
1916 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1917
1918 /**
1919  * regulator_list_voltage_linear - List voltages with simple calculation
1920  *
1921  * @rdev: Regulator device
1922  * @selector: Selector to convert into a voltage
1923  *
1924  * Regulators with a simple linear mapping between voltages and
1925  * selectors can set min_uV and uV_step in the regulator descriptor
1926  * and then use this function as their list_voltage() operation,
1927  */
1928 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1929                                   unsigned int selector)
1930 {
1931         if (selector >= rdev->desc->n_voltages)
1932                 return -EINVAL;
1933         if (selector < rdev->desc->linear_min_sel)
1934                 return 0;
1935
1936         selector -= rdev->desc->linear_min_sel;
1937
1938         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1939 }
1940 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1941
1942 /**
1943  * regulator_list_voltage_table - List voltages with table based mapping
1944  *
1945  * @rdev: Regulator device
1946  * @selector: Selector to convert into a voltage
1947  *
1948  * Regulators with table based mapping between voltages and
1949  * selectors can set volt_table in the regulator descriptor
1950  * and then use this function as their list_voltage() operation.
1951  */
1952 int regulator_list_voltage_table(struct regulator_dev *rdev,
1953                                  unsigned int selector)
1954 {
1955         if (!rdev->desc->volt_table) {
1956                 BUG_ON(!rdev->desc->volt_table);
1957                 return -EINVAL;
1958         }
1959
1960         if (selector >= rdev->desc->n_voltages)
1961                 return -EINVAL;
1962
1963         return rdev->desc->volt_table[selector];
1964 }
1965 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1966
1967 /**
1968  * regulator_list_voltage - enumerate supported voltages
1969  * @regulator: regulator source
1970  * @selector: identify voltage to list
1971  * Context: can sleep
1972  *
1973  * Returns a voltage that can be passed to @regulator_set_voltage(),
1974  * zero if this selector code can't be used on this system, or a
1975  * negative errno.
1976  */
1977 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1978 {
1979         struct regulator_dev    *rdev = regulator->rdev;
1980         struct regulator_ops    *ops = rdev->desc->ops;
1981         int                     ret;
1982
1983         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1984                 return -EINVAL;
1985
1986         mutex_lock(&rdev->mutex);
1987         ret = ops->list_voltage(rdev, selector);
1988         mutex_unlock(&rdev->mutex);
1989
1990         if (ret > 0) {
1991                 if (ret < rdev->constraints->min_uV)
1992                         ret = 0;
1993                 else if (ret > rdev->constraints->max_uV)
1994                         ret = 0;
1995         }
1996
1997         return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2000
2001 /**
2002  * regulator_is_supported_voltage - check if a voltage range can be supported
2003  *
2004  * @regulator: Regulator to check.
2005  * @min_uV: Minimum required voltage in uV.
2006  * @max_uV: Maximum required voltage in uV.
2007  *
2008  * Returns a boolean or a negative error code.
2009  */
2010 int regulator_is_supported_voltage(struct regulator *regulator,
2011                                    int min_uV, int max_uV)
2012 {
2013         struct regulator_dev *rdev = regulator->rdev;
2014         int i, voltages, ret;
2015
2016         /* If we can't change voltage check the current voltage */
2017         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2018                 ret = regulator_get_voltage(regulator);
2019                 if (ret >= 0)
2020                         return (min_uV <= ret && ret <= max_uV);
2021                 else
2022                         return ret;
2023         }
2024
2025         /* Any voltage within constrains range is fine? */
2026         if (rdev->desc->continuous_voltage_range)
2027                 return min_uV >= rdev->constraints->min_uV &&
2028                                 max_uV <= rdev->constraints->max_uV;
2029
2030         ret = regulator_count_voltages(regulator);
2031         if (ret < 0)
2032                 return ret;
2033         voltages = ret;
2034
2035         for (i = 0; i < voltages; i++) {
2036                 ret = regulator_list_voltage(regulator, i);
2037
2038                 if (ret >= min_uV && ret <= max_uV)
2039                         return 1;
2040         }
2041
2042         return 0;
2043 }
2044 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2045
2046 /**
2047  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2048  *
2049  * @rdev: regulator to operate on
2050  *
2051  * Regulators that use regmap for their register I/O can set the
2052  * vsel_reg and vsel_mask fields in their descriptor and then use this
2053  * as their get_voltage_vsel operation, saving some code.
2054  */
2055 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2056 {
2057         unsigned int val;
2058         int ret;
2059
2060         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2061         if (ret != 0)
2062                 return ret;
2063
2064         val &= rdev->desc->vsel_mask;
2065         val >>= ffs(rdev->desc->vsel_mask) - 1;
2066
2067         return val;
2068 }
2069 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2070
2071 /**
2072  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2073  *
2074  * @rdev: regulator to operate on
2075  * @sel: Selector to set
2076  *
2077  * Regulators that use regmap for their register I/O can set the
2078  * vsel_reg and vsel_mask fields in their descriptor and then use this
2079  * as their set_voltage_vsel operation, saving some code.
2080  */
2081 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2082 {
2083         int ret;
2084
2085         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2086
2087         ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2088                                   rdev->desc->vsel_mask, sel);
2089         if (ret)
2090                 return ret;
2091
2092         if (rdev->desc->apply_bit)
2093                 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2094                                          rdev->desc->apply_bit,
2095                                          rdev->desc->apply_bit);
2096         return ret;
2097 }
2098 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2099
2100 /**
2101  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2102  *
2103  * @rdev: Regulator to operate on
2104  * @min_uV: Lower bound for voltage
2105  * @max_uV: Upper bound for voltage
2106  *
2107  * Drivers implementing set_voltage_sel() and list_voltage() can use
2108  * this as their map_voltage() operation.  It will find a suitable
2109  * voltage by calling list_voltage() until it gets something in bounds
2110  * for the requested voltages.
2111  */
2112 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2113                                   int min_uV, int max_uV)
2114 {
2115         int best_val = INT_MAX;
2116         int selector = 0;
2117         int i, ret;
2118
2119         /* Find the smallest voltage that falls within the specified
2120          * range.
2121          */
2122         for (i = 0; i < rdev->desc->n_voltages; i++) {
2123                 ret = rdev->desc->ops->list_voltage(rdev, i);
2124                 if (ret < 0)
2125                         continue;
2126
2127                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2128                         best_val = ret;
2129                         selector = i;
2130                 }
2131         }
2132
2133         if (best_val != INT_MAX)
2134                 return selector;
2135         else
2136                 return -EINVAL;
2137 }
2138 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2139
2140 /**
2141  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2142  *
2143  * @rdev: Regulator to operate on
2144  * @min_uV: Lower bound for voltage
2145  * @max_uV: Upper bound for voltage
2146  *
2147  * Drivers providing min_uV and uV_step in their regulator_desc can
2148  * use this as their map_voltage() operation.
2149  */
2150 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2151                                  int min_uV, int max_uV)
2152 {
2153         int ret, voltage;
2154
2155         /* Allow uV_step to be 0 for fixed voltage */
2156         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2157                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2158                         return 0;
2159                 else
2160                         return -EINVAL;
2161         }
2162
2163         if (!rdev->desc->uV_step) {
2164                 BUG_ON(!rdev->desc->uV_step);
2165                 return -EINVAL;
2166         }
2167
2168         if (min_uV < rdev->desc->min_uV)
2169                 min_uV = rdev->desc->min_uV;
2170
2171         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2172         if (ret < 0)
2173                 return ret;
2174
2175         ret += rdev->desc->linear_min_sel;
2176
2177         /* Map back into a voltage to verify we're still in bounds */
2178         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2179         if (voltage < min_uV || voltage > max_uV)
2180                 return -EINVAL;
2181
2182         return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2185
2186 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2187                                      int min_uV, int max_uV)
2188 {
2189         int ret;
2190         int delay = 0;
2191         int best_val = 0;
2192         unsigned int selector;
2193         int old_selector = -1;
2194
2195         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2196
2197         min_uV += rdev->constraints->uV_offset;
2198         max_uV += rdev->constraints->uV_offset;
2199
2200         /*
2201          * If we can't obtain the old selector there is not enough
2202          * info to call set_voltage_time_sel().
2203          */
2204         if (_regulator_is_enabled(rdev) &&
2205             rdev->desc->ops->set_voltage_time_sel &&
2206             rdev->desc->ops->get_voltage_sel) {
2207                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2208                 if (old_selector < 0)
2209                         return old_selector;
2210         }
2211
2212         if (rdev->desc->ops->set_voltage) {
2213                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2214                                                    &selector);
2215
2216                 if (ret >= 0) {
2217                         if (rdev->desc->ops->list_voltage)
2218                                 best_val = rdev->desc->ops->list_voltage(rdev,
2219                                                                          selector);
2220                         else
2221                                 best_val = _regulator_get_voltage(rdev);
2222                 }
2223
2224         } else if (rdev->desc->ops->set_voltage_sel) {
2225                 if (rdev->desc->ops->map_voltage) {
2226                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2227                                                            max_uV);
2228                 } else {
2229                         if (rdev->desc->ops->list_voltage ==
2230                             regulator_list_voltage_linear)
2231                                 ret = regulator_map_voltage_linear(rdev,
2232                                                                 min_uV, max_uV);
2233                         else
2234                                 ret = regulator_map_voltage_iterate(rdev,
2235                                                                 min_uV, max_uV);
2236                 }
2237
2238                 if (ret >= 0) {
2239                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2240                         if (min_uV <= best_val && max_uV >= best_val) {
2241                                 selector = ret;
2242                                 if (old_selector == selector)
2243                                         ret = 0;
2244                                 else
2245                                         ret = rdev->desc->ops->set_voltage_sel(
2246                                                                 rdev, ret);
2247                         } else {
2248                                 ret = -EINVAL;
2249                         }
2250                 }
2251         } else {
2252                 ret = -EINVAL;
2253         }
2254
2255         /* Call set_voltage_time_sel if successfully obtained old_selector */
2256         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2257             old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2258
2259                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2260                                                 old_selector, selector);
2261                 if (delay < 0) {
2262                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2263                                   delay);
2264                         delay = 0;
2265                 }
2266
2267                 /* Insert any necessary delays */
2268                 if (delay >= 1000) {
2269                         mdelay(delay / 1000);
2270                         udelay(delay % 1000);
2271                 } else if (delay) {
2272                         udelay(delay);
2273                 }
2274         }
2275
2276         if (ret == 0 && best_val >= 0) {
2277                 unsigned long data = best_val;
2278
2279                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2280                                      (void *)data);
2281         }
2282
2283         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2284
2285         return ret;
2286 }
2287
2288 /**
2289  * regulator_set_voltage - set regulator output voltage
2290  * @regulator: regulator source
2291  * @min_uV: Minimum required voltage in uV
2292  * @max_uV: Maximum acceptable voltage in uV
2293  *
2294  * Sets a voltage regulator to the desired output voltage. This can be set
2295  * during any regulator state. IOW, regulator can be disabled or enabled.
2296  *
2297  * If the regulator is enabled then the voltage will change to the new value
2298  * immediately otherwise if the regulator is disabled the regulator will
2299  * output at the new voltage when enabled.
2300  *
2301  * NOTE: If the regulator is shared between several devices then the lowest
2302  * request voltage that meets the system constraints will be used.
2303  * Regulator system constraints must be set for this regulator before
2304  * calling this function otherwise this call will fail.
2305  */
2306 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2307 {
2308         struct regulator_dev *rdev = regulator->rdev;
2309         int ret = 0;
2310         int old_min_uV, old_max_uV;
2311
2312         mutex_lock(&rdev->mutex);
2313
2314         /* If we're setting the same range as last time the change
2315          * should be a noop (some cpufreq implementations use the same
2316          * voltage for multiple frequencies, for example).
2317          */
2318         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2319                 goto out;
2320
2321         /* sanity check */
2322         if (!rdev->desc->ops->set_voltage &&
2323             !rdev->desc->ops->set_voltage_sel) {
2324                 ret = -EINVAL;
2325                 goto out;
2326         }
2327
2328         /* constraints check */
2329         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2330         if (ret < 0)
2331                 goto out;
2332         
2333         /* restore original values in case of error */
2334         old_min_uV = regulator->min_uV;
2335         old_max_uV = regulator->max_uV;
2336         regulator->min_uV = min_uV;
2337         regulator->max_uV = max_uV;
2338
2339         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2340         if (ret < 0)
2341                 goto out2;
2342
2343         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2344         if (ret < 0)
2345                 goto out2;
2346         
2347 out:
2348         mutex_unlock(&rdev->mutex);
2349         return ret;
2350 out2:
2351         regulator->min_uV = old_min_uV;
2352         regulator->max_uV = old_max_uV;
2353         mutex_unlock(&rdev->mutex);
2354         return ret;
2355 }
2356 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2357
2358 /**
2359  * regulator_set_voltage_time - get raise/fall time
2360  * @regulator: regulator source
2361  * @old_uV: starting voltage in microvolts
2362  * @new_uV: target voltage in microvolts
2363  *
2364  * Provided with the starting and ending voltage, this function attempts to
2365  * calculate the time in microseconds required to rise or fall to this new
2366  * voltage.
2367  */
2368 int regulator_set_voltage_time(struct regulator *regulator,
2369                                int old_uV, int new_uV)
2370 {
2371         struct regulator_dev    *rdev = regulator->rdev;
2372         struct regulator_ops    *ops = rdev->desc->ops;
2373         int old_sel = -1;
2374         int new_sel = -1;
2375         int voltage;
2376         int i;
2377
2378         /* Currently requires operations to do this */
2379         if (!ops->list_voltage || !ops->set_voltage_time_sel
2380             || !rdev->desc->n_voltages)
2381                 return -EINVAL;
2382
2383         for (i = 0; i < rdev->desc->n_voltages; i++) {
2384                 /* We only look for exact voltage matches here */
2385                 voltage = regulator_list_voltage(regulator, i);
2386                 if (voltage < 0)
2387                         return -EINVAL;
2388                 if (voltage == 0)
2389                         continue;
2390                 if (voltage == old_uV)
2391                         old_sel = i;
2392                 if (voltage == new_uV)
2393                         new_sel = i;
2394         }
2395
2396         if (old_sel < 0 || new_sel < 0)
2397                 return -EINVAL;
2398
2399         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2400 }
2401 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2402
2403 /**
2404  * regulator_set_voltage_time_sel - get raise/fall time
2405  * @rdev: regulator source device
2406  * @old_selector: selector for starting voltage
2407  * @new_selector: selector for target voltage
2408  *
2409  * Provided with the starting and target voltage selectors, this function
2410  * returns time in microseconds required to rise or fall to this new voltage
2411  *
2412  * Drivers providing ramp_delay in regulation_constraints can use this as their
2413  * set_voltage_time_sel() operation.
2414  */
2415 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2416                                    unsigned int old_selector,
2417                                    unsigned int new_selector)
2418 {
2419         unsigned int ramp_delay = 0;
2420         int old_volt, new_volt;
2421
2422         if (rdev->constraints->ramp_delay)
2423                 ramp_delay = rdev->constraints->ramp_delay;
2424         else if (rdev->desc->ramp_delay)
2425                 ramp_delay = rdev->desc->ramp_delay;
2426
2427         if (ramp_delay == 0) {
2428                 rdev_warn(rdev, "ramp_delay not set\n");
2429                 return 0;
2430         }
2431
2432         /* sanity check */
2433         if (!rdev->desc->ops->list_voltage)
2434                 return -EINVAL;
2435
2436         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2437         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2438
2439         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2440 }
2441 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2442
2443 /**
2444  * regulator_sync_voltage - re-apply last regulator output voltage
2445  * @regulator: regulator source
2446  *
2447  * Re-apply the last configured voltage.  This is intended to be used
2448  * where some external control source the consumer is cooperating with
2449  * has caused the configured voltage to change.
2450  */
2451 int regulator_sync_voltage(struct regulator *regulator)
2452 {
2453         struct regulator_dev *rdev = regulator->rdev;
2454         int ret, min_uV, max_uV;
2455
2456         mutex_lock(&rdev->mutex);
2457
2458         if (!rdev->desc->ops->set_voltage &&
2459             !rdev->desc->ops->set_voltage_sel) {
2460                 ret = -EINVAL;
2461                 goto out;
2462         }
2463
2464         /* This is only going to work if we've had a voltage configured. */
2465         if (!regulator->min_uV && !regulator->max_uV) {
2466                 ret = -EINVAL;
2467                 goto out;
2468         }
2469
2470         min_uV = regulator->min_uV;
2471         max_uV = regulator->max_uV;
2472
2473         /* This should be a paranoia check... */
2474         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2475         if (ret < 0)
2476                 goto out;
2477
2478         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2479         if (ret < 0)
2480                 goto out;
2481
2482         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2483
2484 out:
2485         mutex_unlock(&rdev->mutex);
2486         return ret;
2487 }
2488 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2489
2490 static int _regulator_get_voltage(struct regulator_dev *rdev)
2491 {
2492         int sel, ret;
2493
2494         if (rdev->desc->ops->get_voltage_sel) {
2495                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2496                 if (sel < 0)
2497                         return sel;
2498                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2499         } else if (rdev->desc->ops->get_voltage) {
2500                 ret = rdev->desc->ops->get_voltage(rdev);
2501         } else if (rdev->desc->ops->list_voltage) {
2502                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2503         } else {
2504                 return -EINVAL;
2505         }
2506
2507         if (ret < 0)
2508                 return ret;
2509         return ret - rdev->constraints->uV_offset;
2510 }
2511
2512 /**
2513  * regulator_get_voltage - get regulator output voltage
2514  * @regulator: regulator source
2515  *
2516  * This returns the current regulator voltage in uV.
2517  *
2518  * NOTE: If the regulator is disabled it will return the voltage value. This
2519  * function should not be used to determine regulator state.
2520  */
2521 int regulator_get_voltage(struct regulator *regulator)
2522 {
2523         int ret;
2524
2525         mutex_lock(&regulator->rdev->mutex);
2526
2527         ret = _regulator_get_voltage(regulator->rdev);
2528
2529         mutex_unlock(&regulator->rdev->mutex);
2530
2531         return ret;
2532 }
2533 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2534
2535 /**
2536  * regulator_set_current_limit - set regulator output current limit
2537  * @regulator: regulator source
2538  * @min_uA: Minimuum supported current in uA
2539  * @max_uA: Maximum supported current in uA
2540  *
2541  * Sets current sink to the desired output current. This can be set during
2542  * any regulator state. IOW, regulator can be disabled or enabled.
2543  *
2544  * If the regulator is enabled then the current will change to the new value
2545  * immediately otherwise if the regulator is disabled the regulator will
2546  * output at the new current when enabled.
2547  *
2548  * NOTE: Regulator system constraints must be set for this regulator before
2549  * calling this function otherwise this call will fail.
2550  */
2551 int regulator_set_current_limit(struct regulator *regulator,
2552                                int min_uA, int max_uA)
2553 {
2554         struct regulator_dev *rdev = regulator->rdev;
2555         int ret;
2556
2557         mutex_lock(&rdev->mutex);
2558
2559         /* sanity check */
2560         if (!rdev->desc->ops->set_current_limit) {
2561                 ret = -EINVAL;
2562                 goto out;
2563         }
2564
2565         /* constraints check */
2566         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2567         if (ret < 0)
2568                 goto out;
2569
2570         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2571 out:
2572         mutex_unlock(&rdev->mutex);
2573         return ret;
2574 }
2575 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2576
2577 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2578 {
2579         int ret;
2580
2581         mutex_lock(&rdev->mutex);
2582
2583         /* sanity check */
2584         if (!rdev->desc->ops->get_current_limit) {
2585                 ret = -EINVAL;
2586                 goto out;
2587         }
2588
2589         ret = rdev->desc->ops->get_current_limit(rdev);
2590 out:
2591         mutex_unlock(&rdev->mutex);
2592         return ret;
2593 }
2594
2595 /**
2596  * regulator_get_current_limit - get regulator output current
2597  * @regulator: regulator source
2598  *
2599  * This returns the current supplied by the specified current sink in uA.
2600  *
2601  * NOTE: If the regulator is disabled it will return the current value. This
2602  * function should not be used to determine regulator state.
2603  */
2604 int regulator_get_current_limit(struct regulator *regulator)
2605 {
2606         return _regulator_get_current_limit(regulator->rdev);
2607 }
2608 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2609
2610 /**
2611  * regulator_set_mode - set regulator operating mode
2612  * @regulator: regulator source
2613  * @mode: operating mode - one of the REGULATOR_MODE constants
2614  *
2615  * Set regulator operating mode to increase regulator efficiency or improve
2616  * regulation performance.
2617  *
2618  * NOTE: Regulator system constraints must be set for this regulator before
2619  * calling this function otherwise this call will fail.
2620  */
2621 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2622 {
2623         struct regulator_dev *rdev = regulator->rdev;
2624         int ret;
2625         int regulator_curr_mode;
2626
2627         mutex_lock(&rdev->mutex);
2628
2629         /* sanity check */
2630         if (!rdev->desc->ops->set_mode) {
2631                 ret = -EINVAL;
2632                 goto out;
2633         }
2634
2635         /* return if the same mode is requested */
2636         if (rdev->desc->ops->get_mode) {
2637                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2638                 if (regulator_curr_mode == mode) {
2639                         ret = 0;
2640                         goto out;
2641                 }
2642         }
2643
2644         /* constraints check */
2645         ret = regulator_mode_constrain(rdev, &mode);
2646         if (ret < 0)
2647                 goto out;
2648
2649         ret = rdev->desc->ops->set_mode(rdev, mode);
2650 out:
2651         mutex_unlock(&rdev->mutex);
2652         return ret;
2653 }
2654 EXPORT_SYMBOL_GPL(regulator_set_mode);
2655
2656 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2657 {
2658         int ret;
2659
2660         mutex_lock(&rdev->mutex);
2661
2662         /* sanity check */
2663         if (!rdev->desc->ops->get_mode) {
2664                 ret = -EINVAL;
2665                 goto out;
2666         }
2667
2668         ret = rdev->desc->ops->get_mode(rdev);
2669 out:
2670         mutex_unlock(&rdev->mutex);
2671         return ret;
2672 }
2673
2674 /**
2675  * regulator_get_mode - get regulator operating mode
2676  * @regulator: regulator source
2677  *
2678  * Get the current regulator operating mode.
2679  */
2680 unsigned int regulator_get_mode(struct regulator *regulator)
2681 {
2682         return _regulator_get_mode(regulator->rdev);
2683 }
2684 EXPORT_SYMBOL_GPL(regulator_get_mode);
2685
2686 /**
2687  * regulator_set_optimum_mode - set regulator optimum operating mode
2688  * @regulator: regulator source
2689  * @uA_load: load current
2690  *
2691  * Notifies the regulator core of a new device load. This is then used by
2692  * DRMS (if enabled by constraints) to set the most efficient regulator
2693  * operating mode for the new regulator loading.
2694  *
2695  * Consumer devices notify their supply regulator of the maximum power
2696  * they will require (can be taken from device datasheet in the power
2697  * consumption tables) when they change operational status and hence power
2698  * state. Examples of operational state changes that can affect power
2699  * consumption are :-
2700  *
2701  *    o Device is opened / closed.
2702  *    o Device I/O is about to begin or has just finished.
2703  *    o Device is idling in between work.
2704  *
2705  * This information is also exported via sysfs to userspace.
2706  *
2707  * DRMS will sum the total requested load on the regulator and change
2708  * to the most efficient operating mode if platform constraints allow.
2709  *
2710  * Returns the new regulator mode or error.
2711  */
2712 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2713 {
2714         struct regulator_dev *rdev = regulator->rdev;
2715         struct regulator *consumer;
2716         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2717         unsigned int mode;
2718
2719         if (rdev->supply)
2720                 input_uV = regulator_get_voltage(rdev->supply);
2721
2722         mutex_lock(&rdev->mutex);
2723
2724         /*
2725          * first check to see if we can set modes at all, otherwise just
2726          * tell the consumer everything is OK.
2727          */
2728         regulator->uA_load = uA_load;
2729         ret = regulator_check_drms(rdev);
2730         if (ret < 0) {
2731                 ret = 0;
2732                 goto out;
2733         }
2734
2735         if (!rdev->desc->ops->get_optimum_mode)
2736                 goto out;
2737
2738         /*
2739          * we can actually do this so any errors are indicators of
2740          * potential real failure.
2741          */
2742         ret = -EINVAL;
2743
2744         if (!rdev->desc->ops->set_mode)
2745                 goto out;
2746
2747         /* get output voltage */
2748         output_uV = _regulator_get_voltage(rdev);
2749         if (output_uV <= 0) {
2750                 rdev_err(rdev, "invalid output voltage found\n");
2751                 goto out;
2752         }
2753
2754         /* No supply? Use constraint voltage */
2755         if (input_uV <= 0)
2756                 input_uV = rdev->constraints->input_uV;
2757         if (input_uV <= 0) {
2758                 rdev_err(rdev, "invalid input voltage found\n");
2759                 goto out;
2760         }
2761
2762         /* calc total requested load for this regulator */
2763         list_for_each_entry(consumer, &rdev->consumer_list, list)
2764                 total_uA_load += consumer->uA_load;
2765
2766         mode = rdev->desc->ops->get_optimum_mode(rdev,
2767                                                  input_uV, output_uV,
2768                                                  total_uA_load);
2769         ret = regulator_mode_constrain(rdev, &mode);
2770         if (ret < 0) {
2771                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2772                          total_uA_load, input_uV, output_uV);
2773                 goto out;
2774         }
2775
2776         ret = rdev->desc->ops->set_mode(rdev, mode);
2777         if (ret < 0) {
2778                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2779                 goto out;
2780         }
2781         ret = mode;
2782 out:
2783         mutex_unlock(&rdev->mutex);
2784         return ret;
2785 }
2786 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2787
2788 /**
2789  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2790  *
2791  * @rdev: device to operate on.
2792  * @enable: state to set.
2793  */
2794 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2795 {
2796         unsigned int val;
2797
2798         if (enable)
2799                 val = rdev->desc->bypass_mask;
2800         else
2801                 val = 0;
2802
2803         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2804                                   rdev->desc->bypass_mask, val);
2805 }
2806 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2807
2808 /**
2809  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2810  *
2811  * @rdev: device to operate on.
2812  * @enable: current state.
2813  */
2814 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2815 {
2816         unsigned int val;
2817         int ret;
2818
2819         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2820         if (ret != 0)
2821                 return ret;
2822
2823         *enable = val & rdev->desc->bypass_mask;
2824
2825         return 0;
2826 }
2827 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2828
2829 /**
2830  * regulator_allow_bypass - allow the regulator to go into bypass mode
2831  *
2832  * @regulator: Regulator to configure
2833  * @allow: enable or disable bypass mode
2834  *
2835  * Allow the regulator to go into bypass mode if all other consumers
2836  * for the regulator also enable bypass mode and the machine
2837  * constraints allow this.  Bypass mode means that the regulator is
2838  * simply passing the input directly to the output with no regulation.
2839  */
2840 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2841 {
2842         struct regulator_dev *rdev = regulator->rdev;
2843         int ret = 0;
2844
2845         if (!rdev->desc->ops->set_bypass)
2846                 return 0;
2847
2848         if (rdev->constraints &&
2849             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2850                 return 0;
2851
2852         mutex_lock(&rdev->mutex);
2853
2854         if (enable && !regulator->bypass) {
2855                 rdev->bypass_count++;
2856
2857                 if (rdev->bypass_count == rdev->open_count) {
2858                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2859                         if (ret != 0)
2860                                 rdev->bypass_count--;
2861                 }
2862
2863         } else if (!enable && regulator->bypass) {
2864                 rdev->bypass_count--;
2865
2866                 if (rdev->bypass_count != rdev->open_count) {
2867                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2868                         if (ret != 0)
2869                                 rdev->bypass_count++;
2870                 }
2871         }
2872
2873         if (ret == 0)
2874                 regulator->bypass = enable;
2875
2876         mutex_unlock(&rdev->mutex);
2877
2878         return ret;
2879 }
2880 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2881
2882 /**
2883  * regulator_register_notifier - register regulator event notifier
2884  * @regulator: regulator source
2885  * @nb: notifier block
2886  *
2887  * Register notifier block to receive regulator events.
2888  */
2889 int regulator_register_notifier(struct regulator *regulator,
2890                               struct notifier_block *nb)
2891 {
2892         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2893                                                 nb);
2894 }
2895 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2896
2897 /**
2898  * regulator_unregister_notifier - unregister regulator event notifier
2899  * @regulator: regulator source
2900  * @nb: notifier block
2901  *
2902  * Unregister regulator event notifier block.
2903  */
2904 int regulator_unregister_notifier(struct regulator *regulator,
2905                                 struct notifier_block *nb)
2906 {
2907         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2908                                                   nb);
2909 }
2910 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2911
2912 /* notify regulator consumers and downstream regulator consumers.
2913  * Note mutex must be held by caller.
2914  */
2915 static void _notifier_call_chain(struct regulator_dev *rdev,
2916                                   unsigned long event, void *data)
2917 {
2918         /* call rdev chain first */
2919         blocking_notifier_call_chain(&rdev->notifier, event, data);
2920 }
2921
2922 /**
2923  * regulator_bulk_get - get multiple regulator consumers
2924  *
2925  * @dev:           Device to supply
2926  * @num_consumers: Number of consumers to register
2927  * @consumers:     Configuration of consumers; clients are stored here.
2928  *
2929  * @return 0 on success, an errno on failure.
2930  *
2931  * This helper function allows drivers to get several regulator
2932  * consumers in one operation.  If any of the regulators cannot be
2933  * acquired then any regulators that were allocated will be freed
2934  * before returning to the caller.
2935  */
2936 int regulator_bulk_get(struct device *dev, int num_consumers,
2937                        struct regulator_bulk_data *consumers)
2938 {
2939         int i;
2940         int ret;
2941
2942         for (i = 0; i < num_consumers; i++)
2943                 consumers[i].consumer = NULL;
2944
2945         for (i = 0; i < num_consumers; i++) {
2946                 consumers[i].consumer = regulator_get(dev,
2947                                                       consumers[i].supply);
2948                 if (IS_ERR(consumers[i].consumer)) {
2949                         ret = PTR_ERR(consumers[i].consumer);
2950                         dev_err(dev, "Failed to get supply '%s': %d\n",
2951                                 consumers[i].supply, ret);
2952                         consumers[i].consumer = NULL;
2953                         goto err;
2954                 }
2955         }
2956
2957         return 0;
2958
2959 err:
2960         while (--i >= 0)
2961                 regulator_put(consumers[i].consumer);
2962
2963         return ret;
2964 }
2965 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2966
2967 /**
2968  * devm_regulator_bulk_get - managed get multiple regulator consumers
2969  *
2970  * @dev:           Device to supply
2971  * @num_consumers: Number of consumers to register
2972  * @consumers:     Configuration of consumers; clients are stored here.
2973  *
2974  * @return 0 on success, an errno on failure.
2975  *
2976  * This helper function allows drivers to get several regulator
2977  * consumers in one operation with management, the regulators will
2978  * automatically be freed when the device is unbound.  If any of the
2979  * regulators cannot be acquired then any regulators that were
2980  * allocated will be freed before returning to the caller.
2981  */
2982 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2983                             struct regulator_bulk_data *consumers)
2984 {
2985         int i;
2986         int ret;
2987
2988         for (i = 0; i < num_consumers; i++)
2989                 consumers[i].consumer = NULL;
2990
2991         for (i = 0; i < num_consumers; i++) {
2992                 consumers[i].consumer = devm_regulator_get(dev,
2993                                                            consumers[i].supply);
2994                 if (IS_ERR(consumers[i].consumer)) {
2995                         ret = PTR_ERR(consumers[i].consumer);
2996                         dev_err(dev, "Failed to get supply '%s': %d\n",
2997                                 consumers[i].supply, ret);
2998                         consumers[i].consumer = NULL;
2999                         goto err;
3000                 }
3001         }
3002
3003         return 0;
3004
3005 err:
3006         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3007                 devm_regulator_put(consumers[i].consumer);
3008
3009         return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3012
3013 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3014 {
3015         struct regulator_bulk_data *bulk = data;
3016
3017         bulk->ret = regulator_enable(bulk->consumer);
3018 }
3019
3020 /**
3021  * regulator_bulk_enable - enable multiple regulator consumers
3022  *
3023  * @num_consumers: Number of consumers
3024  * @consumers:     Consumer data; clients are stored here.
3025  * @return         0 on success, an errno on failure
3026  *
3027  * This convenience API allows consumers to enable multiple regulator
3028  * clients in a single API call.  If any consumers cannot be enabled
3029  * then any others that were enabled will be disabled again prior to
3030  * return.
3031  */
3032 int regulator_bulk_enable(int num_consumers,
3033                           struct regulator_bulk_data *consumers)
3034 {
3035         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3036         int i;
3037         int ret = 0;
3038
3039         for (i = 0; i < num_consumers; i++) {
3040                 if (consumers[i].consumer->always_on)
3041                         consumers[i].ret = 0;
3042                 else
3043                         async_schedule_domain(regulator_bulk_enable_async,
3044                                               &consumers[i], &async_domain);
3045         }
3046
3047         async_synchronize_full_domain(&async_domain);
3048
3049         /* If any consumer failed we need to unwind any that succeeded */
3050         for (i = 0; i < num_consumers; i++) {
3051                 if (consumers[i].ret != 0) {
3052                         ret = consumers[i].ret;
3053                         goto err;
3054                 }
3055         }
3056
3057         return 0;
3058
3059 err:
3060         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3061         while (--i >= 0)
3062                 regulator_disable(consumers[i].consumer);
3063
3064         return ret;
3065 }
3066 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3067
3068 /**
3069  * regulator_bulk_disable - disable multiple regulator consumers
3070  *
3071  * @num_consumers: Number of consumers
3072  * @consumers:     Consumer data; clients are stored here.
3073  * @return         0 on success, an errno on failure
3074  *
3075  * This convenience API allows consumers to disable multiple regulator
3076  * clients in a single API call.  If any consumers cannot be disabled
3077  * then any others that were disabled will be enabled again prior to
3078  * return.
3079  */
3080 int regulator_bulk_disable(int num_consumers,
3081                            struct regulator_bulk_data *consumers)
3082 {
3083         int i;
3084         int ret, r;
3085
3086         for (i = num_consumers - 1; i >= 0; --i) {
3087                 ret = regulator_disable(consumers[i].consumer);
3088                 if (ret != 0)
3089                         goto err;
3090         }
3091
3092         return 0;
3093
3094 err:
3095         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3096         for (++i; i < num_consumers; ++i) {
3097                 r = regulator_enable(consumers[i].consumer);
3098                 if (r != 0)
3099                         pr_err("Failed to reename %s: %d\n",
3100                                consumers[i].supply, r);
3101         }
3102
3103         return ret;
3104 }
3105 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3106
3107 /**
3108  * regulator_bulk_force_disable - force disable multiple regulator consumers
3109  *
3110  * @num_consumers: Number of consumers
3111  * @consumers:     Consumer data; clients are stored here.
3112  * @return         0 on success, an errno on failure
3113  *
3114  * This convenience API allows consumers to forcibly disable multiple regulator
3115  * clients in a single API call.
3116  * NOTE: This should be used for situations when device damage will
3117  * likely occur if the regulators are not disabled (e.g. over temp).
3118  * Although regulator_force_disable function call for some consumers can
3119  * return error numbers, the function is called for all consumers.
3120  */
3121 int regulator_bulk_force_disable(int num_consumers,
3122                            struct regulator_bulk_data *consumers)
3123 {
3124         int i;
3125         int ret;
3126
3127         for (i = 0; i < num_consumers; i++)
3128                 consumers[i].ret =
3129                             regulator_force_disable(consumers[i].consumer);
3130
3131         for (i = 0; i < num_consumers; i++) {
3132                 if (consumers[i].ret != 0) {
3133                         ret = consumers[i].ret;
3134                         goto out;
3135                 }
3136         }
3137
3138         return 0;
3139 out:
3140         return ret;
3141 }
3142 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3143
3144 /**
3145  * regulator_bulk_free - free multiple regulator consumers
3146  *
3147  * @num_consumers: Number of consumers
3148  * @consumers:     Consumer data; clients are stored here.
3149  *
3150  * This convenience API allows consumers to free multiple regulator
3151  * clients in a single API call.
3152  */
3153 void regulator_bulk_free(int num_consumers,
3154                          struct regulator_bulk_data *consumers)
3155 {
3156         int i;
3157
3158         for (i = 0; i < num_consumers; i++) {
3159                 regulator_put(consumers[i].consumer);
3160                 consumers[i].consumer = NULL;
3161         }
3162 }
3163 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3164
3165 /**
3166  * regulator_notifier_call_chain - call regulator event notifier
3167  * @rdev: regulator source
3168  * @event: notifier block
3169  * @data: callback-specific data.
3170  *
3171  * Called by regulator drivers to notify clients a regulator event has
3172  * occurred. We also notify regulator clients downstream.
3173  * Note lock must be held by caller.
3174  */
3175 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3176                                   unsigned long event, void *data)
3177 {
3178         _notifier_call_chain(rdev, event, data);
3179         return NOTIFY_DONE;
3180
3181 }
3182 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3183
3184 /**
3185  * regulator_mode_to_status - convert a regulator mode into a status
3186  *
3187  * @mode: Mode to convert
3188  *
3189  * Convert a regulator mode into a status.
3190  */
3191 int regulator_mode_to_status(unsigned int mode)
3192 {
3193         switch (mode) {
3194         case REGULATOR_MODE_FAST:
3195                 return REGULATOR_STATUS_FAST;
3196         case REGULATOR_MODE_NORMAL:
3197                 return REGULATOR_STATUS_NORMAL;
3198         case REGULATOR_MODE_IDLE:
3199                 return REGULATOR_STATUS_IDLE;
3200         case REGULATOR_MODE_STANDBY:
3201                 return REGULATOR_STATUS_STANDBY;
3202         default:
3203                 return REGULATOR_STATUS_UNDEFINED;
3204         }
3205 }
3206 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3207
3208 /*
3209  * To avoid cluttering sysfs (and memory) with useless state, only
3210  * create attributes that can be meaningfully displayed.
3211  */
3212 static int add_regulator_attributes(struct regulator_dev *rdev)
3213 {
3214         struct device           *dev = &rdev->dev;
3215         struct regulator_ops    *ops = rdev->desc->ops;
3216         int                     status = 0;
3217
3218         /* some attributes need specific methods to be displayed */
3219         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3220             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3221             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3222                 status = device_create_file(dev, &dev_attr_microvolts);
3223                 if (status < 0)
3224                         return status;
3225         }
3226         if (ops->get_current_limit) {
3227                 status = device_create_file(dev, &dev_attr_microamps);
3228                 if (status < 0)
3229                         return status;
3230         }
3231         if (ops->get_mode) {
3232                 status = device_create_file(dev, &dev_attr_opmode);
3233                 if (status < 0)
3234                         return status;
3235         }
3236         if (rdev->ena_gpio || ops->is_enabled) {
3237                 status = device_create_file(dev, &dev_attr_state);
3238                 if (status < 0)
3239                         return status;
3240         }
3241         if (ops->get_status) {
3242                 status = device_create_file(dev, &dev_attr_status);
3243                 if (status < 0)
3244                         return status;
3245         }
3246         if (ops->get_bypass) {
3247                 status = device_create_file(dev, &dev_attr_bypass);
3248                 if (status < 0)
3249                         return status;
3250         }
3251
3252         /* some attributes are type-specific */
3253         if (rdev->desc->type == REGULATOR_CURRENT) {
3254                 status = device_create_file(dev, &dev_attr_requested_microamps);
3255                 if (status < 0)
3256                         return status;
3257         }
3258
3259         /* all the other attributes exist to support constraints;
3260          * don't show them if there are no constraints, or if the
3261          * relevant supporting methods are missing.
3262          */
3263         if (!rdev->constraints)
3264                 return status;
3265
3266         /* constraints need specific supporting methods */
3267         if (ops->set_voltage || ops->set_voltage_sel) {
3268                 status = device_create_file(dev, &dev_attr_min_microvolts);
3269                 if (status < 0)
3270                         return status;
3271                 status = device_create_file(dev, &dev_attr_max_microvolts);
3272                 if (status < 0)
3273                         return status;
3274         }
3275         if (ops->set_current_limit) {
3276                 status = device_create_file(dev, &dev_attr_min_microamps);
3277                 if (status < 0)
3278                         return status;
3279                 status = device_create_file(dev, &dev_attr_max_microamps);
3280                 if (status < 0)
3281                         return status;
3282         }
3283
3284         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3285         if (status < 0)
3286                 return status;
3287         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3288         if (status < 0)
3289                 return status;
3290         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3291         if (status < 0)
3292                 return status;
3293
3294         if (ops->set_suspend_voltage) {
3295                 status = device_create_file(dev,
3296                                 &dev_attr_suspend_standby_microvolts);
3297                 if (status < 0)
3298                         return status;
3299                 status = device_create_file(dev,
3300                                 &dev_attr_suspend_mem_microvolts);
3301                 if (status < 0)
3302                         return status;
3303                 status = device_create_file(dev,
3304                                 &dev_attr_suspend_disk_microvolts);
3305                 if (status < 0)
3306                         return status;
3307         }
3308
3309         if (ops->set_suspend_mode) {
3310                 status = device_create_file(dev,
3311                                 &dev_attr_suspend_standby_mode);
3312                 if (status < 0)
3313                         return status;
3314                 status = device_create_file(dev,
3315                                 &dev_attr_suspend_mem_mode);
3316                 if (status < 0)
3317                         return status;
3318                 status = device_create_file(dev,
3319                                 &dev_attr_suspend_disk_mode);
3320                 if (status < 0)
3321                         return status;
3322         }
3323
3324         return status;
3325 }
3326
3327 static void rdev_init_debugfs(struct regulator_dev *rdev)
3328 {
3329         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3330         if (!rdev->debugfs) {
3331                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3332                 return;
3333         }
3334
3335         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3336                            &rdev->use_count);
3337         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3338                            &rdev->open_count);
3339         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3340                            &rdev->bypass_count);
3341 }
3342
3343 /**
3344  * regulator_register - register regulator
3345  * @regulator_desc: regulator to register
3346  * @config: runtime configuration for regulator
3347  *
3348  * Called by regulator drivers to register a regulator.
3349  * Returns a valid pointer to struct regulator_dev on success
3350  * or an ERR_PTR() on error.
3351  */
3352 struct regulator_dev *
3353 regulator_register(const struct regulator_desc *regulator_desc,
3354                    const struct regulator_config *config)
3355 {
3356         const struct regulation_constraints *constraints = NULL;
3357         const struct regulator_init_data *init_data;
3358         static atomic_t regulator_no = ATOMIC_INIT(0);
3359         struct regulator_dev *rdev;
3360         struct device *dev;
3361         int ret, i;
3362         const char *supply = NULL;
3363
3364         if (regulator_desc == NULL || config == NULL)
3365                 return ERR_PTR(-EINVAL);
3366
3367         dev = config->dev;
3368         WARN_ON(!dev);
3369
3370         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3371                 return ERR_PTR(-EINVAL);
3372
3373         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3374             regulator_desc->type != REGULATOR_CURRENT)
3375                 return ERR_PTR(-EINVAL);
3376
3377         /* Only one of each should be implemented */
3378         WARN_ON(regulator_desc->ops->get_voltage &&
3379                 regulator_desc->ops->get_voltage_sel);
3380         WARN_ON(regulator_desc->ops->set_voltage &&
3381                 regulator_desc->ops->set_voltage_sel);
3382
3383         /* If we're using selectors we must implement list_voltage. */
3384         if (regulator_desc->ops->get_voltage_sel &&
3385             !regulator_desc->ops->list_voltage) {
3386                 return ERR_PTR(-EINVAL);
3387         }
3388         if (regulator_desc->ops->set_voltage_sel &&
3389             !regulator_desc->ops->list_voltage) {
3390                 return ERR_PTR(-EINVAL);
3391         }
3392
3393         init_data = config->init_data;
3394
3395         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3396         if (rdev == NULL)
3397                 return ERR_PTR(-ENOMEM);
3398
3399         mutex_lock(&regulator_list_mutex);
3400
3401         mutex_init(&rdev->mutex);
3402         rdev->reg_data = config->driver_data;
3403         rdev->owner = regulator_desc->owner;
3404         rdev->desc = regulator_desc;
3405         if (config->regmap)
3406                 rdev->regmap = config->regmap;
3407         else if (dev_get_regmap(dev, NULL))
3408                 rdev->regmap = dev_get_regmap(dev, NULL);
3409         else if (dev->parent)
3410                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3411         INIT_LIST_HEAD(&rdev->consumer_list);
3412         INIT_LIST_HEAD(&rdev->list);
3413         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3414         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3415
3416         /* preform any regulator specific init */