2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
31 #include "print-tree.h"
32 #include "transaction.h"
35 #include "free-space-cache.h"
38 #undef SCRAMBLE_DELAYED_REFS
41 * control flags for do_chunk_alloc's force field
42 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
43 * if we really need one.
45 * CHUNK_ALLOC_LIMITED means to only try and allocate one
46 * if we have very few chunks already allocated. This is
47 * used as part of the clustering code to help make sure
48 * we have a good pool of storage to cluster in, without
49 * filling the FS with empty chunks
51 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 CHUNK_ALLOC_NO_FORCE = 0,
56 CHUNK_ALLOC_LIMITED = 1,
57 CHUNK_ALLOC_FORCE = 2,
61 * Control how reservations are dealt with.
63 * RESERVE_FREE - freeing a reservation.
64 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
67 * bytes_may_use as the ENOSPC accounting is done elsewhere
72 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 static int update_block_group(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
108 block_group_cache_done(struct btrfs_block_group_cache *cache)
111 return cache->cached == BTRFS_CACHE_FINISHED;
114 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
116 return (cache->flags & bits) == bits;
119 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
121 atomic_inc(&cache->count);
124 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
126 if (atomic_dec_and_test(&cache->count)) {
127 WARN_ON(cache->pinned > 0);
128 WARN_ON(cache->reserved > 0);
129 kfree(cache->free_space_ctl);
135 * this adds the block group to the fs_info rb tree for the block group
138 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
139 struct btrfs_block_group_cache *block_group)
142 struct rb_node *parent = NULL;
143 struct btrfs_block_group_cache *cache;
145 spin_lock(&info->block_group_cache_lock);
146 p = &info->block_group_cache_tree.rb_node;
150 cache = rb_entry(parent, struct btrfs_block_group_cache,
152 if (block_group->key.objectid < cache->key.objectid) {
154 } else if (block_group->key.objectid > cache->key.objectid) {
157 spin_unlock(&info->block_group_cache_lock);
162 rb_link_node(&block_group->cache_node, parent, p);
163 rb_insert_color(&block_group->cache_node,
164 &info->block_group_cache_tree);
165 spin_unlock(&info->block_group_cache_lock);
171 * This will return the block group at or after bytenr if contains is 0, else
172 * it will return the block group that contains the bytenr
174 static struct btrfs_block_group_cache *
175 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
178 struct btrfs_block_group_cache *cache, *ret = NULL;
182 spin_lock(&info->block_group_cache_lock);
183 n = info->block_group_cache_tree.rb_node;
186 cache = rb_entry(n, struct btrfs_block_group_cache,
188 end = cache->key.objectid + cache->key.offset - 1;
189 start = cache->key.objectid;
191 if (bytenr < start) {
192 if (!contains && (!ret || start < ret->key.objectid))
195 } else if (bytenr > start) {
196 if (contains && bytenr <= end) {
207 btrfs_get_block_group(ret);
208 spin_unlock(&info->block_group_cache_lock);
213 static int add_excluded_extent(struct btrfs_root *root,
214 u64 start, u64 num_bytes)
216 u64 end = start + num_bytes - 1;
217 set_extent_bits(&root->fs_info->freed_extents[0],
218 start, end, EXTENT_UPTODATE, GFP_NOFS);
219 set_extent_bits(&root->fs_info->freed_extents[1],
220 start, end, EXTENT_UPTODATE, GFP_NOFS);
224 static void free_excluded_extents(struct btrfs_root *root,
225 struct btrfs_block_group_cache *cache)
229 start = cache->key.objectid;
230 end = start + cache->key.offset - 1;
232 clear_extent_bits(&root->fs_info->freed_extents[0],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 clear_extent_bits(&root->fs_info->freed_extents[1],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 static int exclude_super_stripes(struct btrfs_root *root,
239 struct btrfs_block_group_cache *cache)
246 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
247 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
248 cache->bytes_super += stripe_len;
249 ret = add_excluded_extent(root, cache->key.objectid,
251 BUG_ON(ret); /* -ENOMEM */
254 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
255 bytenr = btrfs_sb_offset(i);
256 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
257 cache->key.objectid, bytenr,
258 0, &logical, &nr, &stripe_len);
259 BUG_ON(ret); /* -ENOMEM */
262 cache->bytes_super += stripe_len;
263 ret = add_excluded_extent(root, logical[nr],
265 BUG_ON(ret); /* -ENOMEM */
273 static struct btrfs_caching_control *
274 get_caching_control(struct btrfs_block_group_cache *cache)
276 struct btrfs_caching_control *ctl;
278 spin_lock(&cache->lock);
279 if (cache->cached != BTRFS_CACHE_STARTED) {
280 spin_unlock(&cache->lock);
284 /* We're loading it the fast way, so we don't have a caching_ctl. */
285 if (!cache->caching_ctl) {
286 spin_unlock(&cache->lock);
290 ctl = cache->caching_ctl;
291 atomic_inc(&ctl->count);
292 spin_unlock(&cache->lock);
296 static void put_caching_control(struct btrfs_caching_control *ctl)
298 if (atomic_dec_and_test(&ctl->count))
303 * this is only called by cache_block_group, since we could have freed extents
304 * we need to check the pinned_extents for any extents that can't be used yet
305 * since their free space will be released as soon as the transaction commits.
307 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
308 struct btrfs_fs_info *info, u64 start, u64 end)
310 u64 extent_start, extent_end, size, total_added = 0;
313 while (start < end) {
314 ret = find_first_extent_bit(info->pinned_extents, start,
315 &extent_start, &extent_end,
316 EXTENT_DIRTY | EXTENT_UPTODATE,
321 if (extent_start <= start) {
322 start = extent_end + 1;
323 } else if (extent_start > start && extent_start < end) {
324 size = extent_start - start;
326 ret = btrfs_add_free_space(block_group, start,
328 BUG_ON(ret); /* -ENOMEM or logic error */
329 start = extent_end + 1;
338 ret = btrfs_add_free_space(block_group, start, size);
339 BUG_ON(ret); /* -ENOMEM or logic error */
345 static noinline void caching_thread(struct btrfs_work *work)
347 struct btrfs_block_group_cache *block_group;
348 struct btrfs_fs_info *fs_info;
349 struct btrfs_caching_control *caching_ctl;
350 struct btrfs_root *extent_root;
351 struct btrfs_path *path;
352 struct extent_buffer *leaf;
353 struct btrfs_key key;
359 caching_ctl = container_of(work, struct btrfs_caching_control, work);
360 block_group = caching_ctl->block_group;
361 fs_info = block_group->fs_info;
362 extent_root = fs_info->extent_root;
364 path = btrfs_alloc_path();
368 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
371 * We don't want to deadlock with somebody trying to allocate a new
372 * extent for the extent root while also trying to search the extent
373 * root to add free space. So we skip locking and search the commit
374 * root, since its read-only
376 path->skip_locking = 1;
377 path->search_commit_root = 1;
382 key.type = BTRFS_EXTENT_ITEM_KEY;
384 mutex_lock(&caching_ctl->mutex);
385 /* need to make sure the commit_root doesn't disappear */
386 down_read(&fs_info->extent_commit_sem);
388 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
392 leaf = path->nodes[0];
393 nritems = btrfs_header_nritems(leaf);
396 if (btrfs_fs_closing(fs_info) > 1) {
401 if (path->slots[0] < nritems) {
402 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
404 ret = find_next_key(path, 0, &key);
408 if (need_resched() ||
409 btrfs_next_leaf(extent_root, path)) {
410 caching_ctl->progress = last;
411 btrfs_release_path(path);
412 up_read(&fs_info->extent_commit_sem);
413 mutex_unlock(&caching_ctl->mutex);
417 leaf = path->nodes[0];
418 nritems = btrfs_header_nritems(leaf);
422 if (key.objectid < block_group->key.objectid) {
427 if (key.objectid >= block_group->key.objectid +
428 block_group->key.offset)
431 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
432 total_found += add_new_free_space(block_group,
435 last = key.objectid + key.offset;
437 if (total_found > (1024 * 1024 * 2)) {
439 wake_up(&caching_ctl->wait);
446 total_found += add_new_free_space(block_group, fs_info, last,
447 block_group->key.objectid +
448 block_group->key.offset);
449 caching_ctl->progress = (u64)-1;
451 spin_lock(&block_group->lock);
452 block_group->caching_ctl = NULL;
453 block_group->cached = BTRFS_CACHE_FINISHED;
454 spin_unlock(&block_group->lock);
457 btrfs_free_path(path);
458 up_read(&fs_info->extent_commit_sem);
460 free_excluded_extents(extent_root, block_group);
462 mutex_unlock(&caching_ctl->mutex);
464 wake_up(&caching_ctl->wait);
466 put_caching_control(caching_ctl);
467 btrfs_put_block_group(block_group);
470 static int cache_block_group(struct btrfs_block_group_cache *cache,
471 struct btrfs_trans_handle *trans,
472 struct btrfs_root *root,
476 struct btrfs_fs_info *fs_info = cache->fs_info;
477 struct btrfs_caching_control *caching_ctl;
480 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
484 INIT_LIST_HEAD(&caching_ctl->list);
485 mutex_init(&caching_ctl->mutex);
486 init_waitqueue_head(&caching_ctl->wait);
487 caching_ctl->block_group = cache;
488 caching_ctl->progress = cache->key.objectid;
489 atomic_set(&caching_ctl->count, 1);
490 caching_ctl->work.func = caching_thread;
492 spin_lock(&cache->lock);
494 * This should be a rare occasion, but this could happen I think in the
495 * case where one thread starts to load the space cache info, and then
496 * some other thread starts a transaction commit which tries to do an
497 * allocation while the other thread is still loading the space cache
498 * info. The previous loop should have kept us from choosing this block
499 * group, but if we've moved to the state where we will wait on caching
500 * block groups we need to first check if we're doing a fast load here,
501 * so we can wait for it to finish, otherwise we could end up allocating
502 * from a block group who's cache gets evicted for one reason or
505 while (cache->cached == BTRFS_CACHE_FAST) {
506 struct btrfs_caching_control *ctl;
508 ctl = cache->caching_ctl;
509 atomic_inc(&ctl->count);
510 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
511 spin_unlock(&cache->lock);
515 finish_wait(&ctl->wait, &wait);
516 put_caching_control(ctl);
517 spin_lock(&cache->lock);
520 if (cache->cached != BTRFS_CACHE_NO) {
521 spin_unlock(&cache->lock);
525 WARN_ON(cache->caching_ctl);
526 cache->caching_ctl = caching_ctl;
527 cache->cached = BTRFS_CACHE_FAST;
528 spin_unlock(&cache->lock);
531 * We can't do the read from on-disk cache during a commit since we need
532 * to have the normal tree locking. Also if we are currently trying to
533 * allocate blocks for the tree root we can't do the fast caching since
534 * we likely hold important locks.
536 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
537 ret = load_free_space_cache(fs_info, cache);
539 spin_lock(&cache->lock);
541 cache->caching_ctl = NULL;
542 cache->cached = BTRFS_CACHE_FINISHED;
543 cache->last_byte_to_unpin = (u64)-1;
545 if (load_cache_only) {
546 cache->caching_ctl = NULL;
547 cache->cached = BTRFS_CACHE_NO;
549 cache->cached = BTRFS_CACHE_STARTED;
552 spin_unlock(&cache->lock);
553 wake_up(&caching_ctl->wait);
555 put_caching_control(caching_ctl);
556 free_excluded_extents(fs_info->extent_root, cache);
561 * We are not going to do the fast caching, set cached to the
562 * appropriate value and wakeup any waiters.
564 spin_lock(&cache->lock);
565 if (load_cache_only) {
566 cache->caching_ctl = NULL;
567 cache->cached = BTRFS_CACHE_NO;
569 cache->cached = BTRFS_CACHE_STARTED;
571 spin_unlock(&cache->lock);
572 wake_up(&caching_ctl->wait);
575 if (load_cache_only) {
576 put_caching_control(caching_ctl);
580 down_write(&fs_info->extent_commit_sem);
581 atomic_inc(&caching_ctl->count);
582 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
583 up_write(&fs_info->extent_commit_sem);
585 btrfs_get_block_group(cache);
587 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
593 * return the block group that starts at or after bytenr
595 static struct btrfs_block_group_cache *
596 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
598 struct btrfs_block_group_cache *cache;
600 cache = block_group_cache_tree_search(info, bytenr, 0);
606 * return the block group that contains the given bytenr
608 struct btrfs_block_group_cache *btrfs_lookup_block_group(
609 struct btrfs_fs_info *info,
612 struct btrfs_block_group_cache *cache;
614 cache = block_group_cache_tree_search(info, bytenr, 1);
619 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
622 struct list_head *head = &info->space_info;
623 struct btrfs_space_info *found;
625 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
628 list_for_each_entry_rcu(found, head, list) {
629 if (found->flags & flags) {
639 * after adding space to the filesystem, we need to clear the full flags
640 * on all the space infos.
642 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
644 struct list_head *head = &info->space_info;
645 struct btrfs_space_info *found;
648 list_for_each_entry_rcu(found, head, list)
653 u64 btrfs_find_block_group(struct btrfs_root *root,
654 u64 search_start, u64 search_hint, int owner)
656 struct btrfs_block_group_cache *cache;
658 u64 last = max(search_hint, search_start);
665 cache = btrfs_lookup_first_block_group(root->fs_info, last);
669 spin_lock(&cache->lock);
670 last = cache->key.objectid + cache->key.offset;
671 used = btrfs_block_group_used(&cache->item);
673 if ((full_search || !cache->ro) &&
674 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
675 if (used + cache->pinned + cache->reserved <
676 div_factor(cache->key.offset, factor)) {
677 group_start = cache->key.objectid;
678 spin_unlock(&cache->lock);
679 btrfs_put_block_group(cache);
683 spin_unlock(&cache->lock);
684 btrfs_put_block_group(cache);
692 if (!full_search && factor < 10) {
702 /* simple helper to search for an existing extent at a given offset */
703 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
706 struct btrfs_key key;
707 struct btrfs_path *path;
709 path = btrfs_alloc_path();
713 key.objectid = start;
715 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
716 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
718 btrfs_free_path(path);
723 * helper function to lookup reference count and flags of extent.
725 * the head node for delayed ref is used to store the sum of all the
726 * reference count modifications queued up in the rbtree. the head
727 * node may also store the extent flags to set. This way you can check
728 * to see what the reference count and extent flags would be if all of
729 * the delayed refs are not processed.
731 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
732 struct btrfs_root *root, u64 bytenr,
733 u64 num_bytes, u64 *refs, u64 *flags)
735 struct btrfs_delayed_ref_head *head;
736 struct btrfs_delayed_ref_root *delayed_refs;
737 struct btrfs_path *path;
738 struct btrfs_extent_item *ei;
739 struct extent_buffer *leaf;
740 struct btrfs_key key;
746 path = btrfs_alloc_path();
750 key.objectid = bytenr;
751 key.type = BTRFS_EXTENT_ITEM_KEY;
752 key.offset = num_bytes;
754 path->skip_locking = 1;
755 path->search_commit_root = 1;
758 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
764 leaf = path->nodes[0];
765 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
766 if (item_size >= sizeof(*ei)) {
767 ei = btrfs_item_ptr(leaf, path->slots[0],
768 struct btrfs_extent_item);
769 num_refs = btrfs_extent_refs(leaf, ei);
770 extent_flags = btrfs_extent_flags(leaf, ei);
772 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
773 struct btrfs_extent_item_v0 *ei0;
774 BUG_ON(item_size != sizeof(*ei0));
775 ei0 = btrfs_item_ptr(leaf, path->slots[0],
776 struct btrfs_extent_item_v0);
777 num_refs = btrfs_extent_refs_v0(leaf, ei0);
778 /* FIXME: this isn't correct for data */
779 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
784 BUG_ON(num_refs == 0);
794 delayed_refs = &trans->transaction->delayed_refs;
795 spin_lock(&delayed_refs->lock);
796 head = btrfs_find_delayed_ref_head(trans, bytenr);
798 if (!mutex_trylock(&head->mutex)) {
799 atomic_inc(&head->node.refs);
800 spin_unlock(&delayed_refs->lock);
802 btrfs_release_path(path);
805 * Mutex was contended, block until it's released and try
808 mutex_lock(&head->mutex);
809 mutex_unlock(&head->mutex);
810 btrfs_put_delayed_ref(&head->node);
813 if (head->extent_op && head->extent_op->update_flags)
814 extent_flags |= head->extent_op->flags_to_set;
816 BUG_ON(num_refs == 0);
818 num_refs += head->node.ref_mod;
819 mutex_unlock(&head->mutex);
821 spin_unlock(&delayed_refs->lock);
823 WARN_ON(num_refs == 0);
827 *flags = extent_flags;
829 btrfs_free_path(path);
834 * Back reference rules. Back refs have three main goals:
836 * 1) differentiate between all holders of references to an extent so that
837 * when a reference is dropped we can make sure it was a valid reference
838 * before freeing the extent.
840 * 2) Provide enough information to quickly find the holders of an extent
841 * if we notice a given block is corrupted or bad.
843 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
844 * maintenance. This is actually the same as #2, but with a slightly
845 * different use case.
847 * There are two kinds of back refs. The implicit back refs is optimized
848 * for pointers in non-shared tree blocks. For a given pointer in a block,
849 * back refs of this kind provide information about the block's owner tree
850 * and the pointer's key. These information allow us to find the block by
851 * b-tree searching. The full back refs is for pointers in tree blocks not
852 * referenced by their owner trees. The location of tree block is recorded
853 * in the back refs. Actually the full back refs is generic, and can be
854 * used in all cases the implicit back refs is used. The major shortcoming
855 * of the full back refs is its overhead. Every time a tree block gets
856 * COWed, we have to update back refs entry for all pointers in it.
858 * For a newly allocated tree block, we use implicit back refs for
859 * pointers in it. This means most tree related operations only involve
860 * implicit back refs. For a tree block created in old transaction, the
861 * only way to drop a reference to it is COW it. So we can detect the
862 * event that tree block loses its owner tree's reference and do the
863 * back refs conversion.
865 * When a tree block is COW'd through a tree, there are four cases:
867 * The reference count of the block is one and the tree is the block's
868 * owner tree. Nothing to do in this case.
870 * The reference count of the block is one and the tree is not the
871 * block's owner tree. In this case, full back refs is used for pointers
872 * in the block. Remove these full back refs, add implicit back refs for
873 * every pointers in the new block.
875 * The reference count of the block is greater than one and the tree is
876 * the block's owner tree. In this case, implicit back refs is used for
877 * pointers in the block. Add full back refs for every pointers in the
878 * block, increase lower level extents' reference counts. The original
879 * implicit back refs are entailed to the new block.
881 * The reference count of the block is greater than one and the tree is
882 * not the block's owner tree. Add implicit back refs for every pointer in
883 * the new block, increase lower level extents' reference count.
885 * Back Reference Key composing:
887 * The key objectid corresponds to the first byte in the extent,
888 * The key type is used to differentiate between types of back refs.
889 * There are different meanings of the key offset for different types
892 * File extents can be referenced by:
894 * - multiple snapshots, subvolumes, or different generations in one subvol
895 * - different files inside a single subvolume
896 * - different offsets inside a file (bookend extents in file.c)
898 * The extent ref structure for the implicit back refs has fields for:
900 * - Objectid of the subvolume root
901 * - objectid of the file holding the reference
902 * - original offset in the file
903 * - how many bookend extents
905 * The key offset for the implicit back refs is hash of the first
908 * The extent ref structure for the full back refs has field for:
910 * - number of pointers in the tree leaf
912 * The key offset for the implicit back refs is the first byte of
915 * When a file extent is allocated, The implicit back refs is used.
916 * the fields are filled in:
918 * (root_key.objectid, inode objectid, offset in file, 1)
920 * When a file extent is removed file truncation, we find the
921 * corresponding implicit back refs and check the following fields:
923 * (btrfs_header_owner(leaf), inode objectid, offset in file)
925 * Btree extents can be referenced by:
927 * - Different subvolumes
929 * Both the implicit back refs and the full back refs for tree blocks
930 * only consist of key. The key offset for the implicit back refs is
931 * objectid of block's owner tree. The key offset for the full back refs
932 * is the first byte of parent block.
934 * When implicit back refs is used, information about the lowest key and
935 * level of the tree block are required. These information are stored in
936 * tree block info structure.
939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
940 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
941 struct btrfs_root *root,
942 struct btrfs_path *path,
943 u64 owner, u32 extra_size)
945 struct btrfs_extent_item *item;
946 struct btrfs_extent_item_v0 *ei0;
947 struct btrfs_extent_ref_v0 *ref0;
948 struct btrfs_tree_block_info *bi;
949 struct extent_buffer *leaf;
950 struct btrfs_key key;
951 struct btrfs_key found_key;
952 u32 new_size = sizeof(*item);
956 leaf = path->nodes[0];
957 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
959 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
960 ei0 = btrfs_item_ptr(leaf, path->slots[0],
961 struct btrfs_extent_item_v0);
962 refs = btrfs_extent_refs_v0(leaf, ei0);
964 if (owner == (u64)-1) {
966 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
967 ret = btrfs_next_leaf(root, path);
970 BUG_ON(ret > 0); /* Corruption */
971 leaf = path->nodes[0];
973 btrfs_item_key_to_cpu(leaf, &found_key,
975 BUG_ON(key.objectid != found_key.objectid);
976 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
980 ref0 = btrfs_item_ptr(leaf, path->slots[0],
981 struct btrfs_extent_ref_v0);
982 owner = btrfs_ref_objectid_v0(leaf, ref0);
986 btrfs_release_path(path);
988 if (owner < BTRFS_FIRST_FREE_OBJECTID)
989 new_size += sizeof(*bi);
991 new_size -= sizeof(*ei0);
992 ret = btrfs_search_slot(trans, root, &key, path,
993 new_size + extra_size, 1);
996 BUG_ON(ret); /* Corruption */
998 btrfs_extend_item(trans, root, path, new_size);
1000 leaf = path->nodes[0];
1001 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1002 btrfs_set_extent_refs(leaf, item, refs);
1003 /* FIXME: get real generation */
1004 btrfs_set_extent_generation(leaf, item, 0);
1005 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1006 btrfs_set_extent_flags(leaf, item,
1007 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1008 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1009 bi = (struct btrfs_tree_block_info *)(item + 1);
1010 /* FIXME: get first key of the block */
1011 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1012 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1014 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1016 btrfs_mark_buffer_dirty(leaf);
1021 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1023 u32 high_crc = ~(u32)0;
1024 u32 low_crc = ~(u32)0;
1027 lenum = cpu_to_le64(root_objectid);
1028 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1029 lenum = cpu_to_le64(owner);
1030 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1031 lenum = cpu_to_le64(offset);
1032 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1034 return ((u64)high_crc << 31) ^ (u64)low_crc;
1037 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1038 struct btrfs_extent_data_ref *ref)
1040 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1041 btrfs_extent_data_ref_objectid(leaf, ref),
1042 btrfs_extent_data_ref_offset(leaf, ref));
1045 static int match_extent_data_ref(struct extent_buffer *leaf,
1046 struct btrfs_extent_data_ref *ref,
1047 u64 root_objectid, u64 owner, u64 offset)
1049 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1050 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1051 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1056 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1057 struct btrfs_root *root,
1058 struct btrfs_path *path,
1059 u64 bytenr, u64 parent,
1061 u64 owner, u64 offset)
1063 struct btrfs_key key;
1064 struct btrfs_extent_data_ref *ref;
1065 struct extent_buffer *leaf;
1071 key.objectid = bytenr;
1073 key.type = BTRFS_SHARED_DATA_REF_KEY;
1074 key.offset = parent;
1076 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1077 key.offset = hash_extent_data_ref(root_objectid,
1082 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1091 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1092 key.type = BTRFS_EXTENT_REF_V0_KEY;
1093 btrfs_release_path(path);
1094 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105 leaf = path->nodes[0];
1106 nritems = btrfs_header_nritems(leaf);
1108 if (path->slots[0] >= nritems) {
1109 ret = btrfs_next_leaf(root, path);
1115 leaf = path->nodes[0];
1116 nritems = btrfs_header_nritems(leaf);
1120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1121 if (key.objectid != bytenr ||
1122 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1125 ref = btrfs_item_ptr(leaf, path->slots[0],
1126 struct btrfs_extent_data_ref);
1128 if (match_extent_data_ref(leaf, ref, root_objectid,
1131 btrfs_release_path(path);
1143 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1144 struct btrfs_root *root,
1145 struct btrfs_path *path,
1146 u64 bytenr, u64 parent,
1147 u64 root_objectid, u64 owner,
1148 u64 offset, int refs_to_add)
1150 struct btrfs_key key;
1151 struct extent_buffer *leaf;
1156 key.objectid = bytenr;
1158 key.type = BTRFS_SHARED_DATA_REF_KEY;
1159 key.offset = parent;
1160 size = sizeof(struct btrfs_shared_data_ref);
1162 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1163 key.offset = hash_extent_data_ref(root_objectid,
1165 size = sizeof(struct btrfs_extent_data_ref);
1168 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1169 if (ret && ret != -EEXIST)
1172 leaf = path->nodes[0];
1174 struct btrfs_shared_data_ref *ref;
1175 ref = btrfs_item_ptr(leaf, path->slots[0],
1176 struct btrfs_shared_data_ref);
1178 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1180 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1181 num_refs += refs_to_add;
1182 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1185 struct btrfs_extent_data_ref *ref;
1186 while (ret == -EEXIST) {
1187 ref = btrfs_item_ptr(leaf, path->slots[0],
1188 struct btrfs_extent_data_ref);
1189 if (match_extent_data_ref(leaf, ref, root_objectid,
1192 btrfs_release_path(path);
1194 ret = btrfs_insert_empty_item(trans, root, path, &key,
1196 if (ret && ret != -EEXIST)
1199 leaf = path->nodes[0];
1201 ref = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_extent_data_ref);
1204 btrfs_set_extent_data_ref_root(leaf, ref,
1206 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1207 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1208 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1210 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1211 num_refs += refs_to_add;
1212 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1215 btrfs_mark_buffer_dirty(leaf);
1218 btrfs_release_path(path);
1222 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1223 struct btrfs_root *root,
1224 struct btrfs_path *path,
1227 struct btrfs_key key;
1228 struct btrfs_extent_data_ref *ref1 = NULL;
1229 struct btrfs_shared_data_ref *ref2 = NULL;
1230 struct extent_buffer *leaf;
1234 leaf = path->nodes[0];
1235 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1237 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1238 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_extent_data_ref);
1240 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1241 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1242 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1243 struct btrfs_shared_data_ref);
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1246 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1247 struct btrfs_extent_ref_v0 *ref0;
1248 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1249 struct btrfs_extent_ref_v0);
1250 num_refs = btrfs_ref_count_v0(leaf, ref0);
1256 BUG_ON(num_refs < refs_to_drop);
1257 num_refs -= refs_to_drop;
1259 if (num_refs == 0) {
1260 ret = btrfs_del_item(trans, root, path);
1262 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1263 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1264 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1265 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1268 struct btrfs_extent_ref_v0 *ref0;
1269 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_ref_v0);
1271 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1274 btrfs_mark_buffer_dirty(leaf);
1279 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1280 struct btrfs_path *path,
1281 struct btrfs_extent_inline_ref *iref)
1283 struct btrfs_key key;
1284 struct extent_buffer *leaf;
1285 struct btrfs_extent_data_ref *ref1;
1286 struct btrfs_shared_data_ref *ref2;
1289 leaf = path->nodes[0];
1290 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1292 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1293 BTRFS_EXTENT_DATA_REF_KEY) {
1294 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1295 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1297 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1300 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1309 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1310 struct btrfs_extent_ref_v0 *ref0;
1311 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1312 struct btrfs_extent_ref_v0);
1313 num_refs = btrfs_ref_count_v0(leaf, ref0);
1321 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1322 struct btrfs_root *root,
1323 struct btrfs_path *path,
1324 u64 bytenr, u64 parent,
1327 struct btrfs_key key;
1330 key.objectid = bytenr;
1332 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1333 key.offset = parent;
1335 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1336 key.offset = root_objectid;
1339 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1342 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1343 if (ret == -ENOENT && parent) {
1344 btrfs_release_path(path);
1345 key.type = BTRFS_EXTENT_REF_V0_KEY;
1346 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1354 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1355 struct btrfs_root *root,
1356 struct btrfs_path *path,
1357 u64 bytenr, u64 parent,
1360 struct btrfs_key key;
1363 key.objectid = bytenr;
1365 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1366 key.offset = parent;
1368 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1369 key.offset = root_objectid;
1372 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1373 btrfs_release_path(path);
1377 static inline int extent_ref_type(u64 parent, u64 owner)
1380 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1382 type = BTRFS_SHARED_BLOCK_REF_KEY;
1384 type = BTRFS_TREE_BLOCK_REF_KEY;
1387 type = BTRFS_SHARED_DATA_REF_KEY;
1389 type = BTRFS_EXTENT_DATA_REF_KEY;
1394 static int find_next_key(struct btrfs_path *path, int level,
1395 struct btrfs_key *key)
1398 for (; level < BTRFS_MAX_LEVEL; level++) {
1399 if (!path->nodes[level])
1401 if (path->slots[level] + 1 >=
1402 btrfs_header_nritems(path->nodes[level]))
1405 btrfs_item_key_to_cpu(path->nodes[level], key,
1406 path->slots[level] + 1);
1408 btrfs_node_key_to_cpu(path->nodes[level], key,
1409 path->slots[level] + 1);
1416 * look for inline back ref. if back ref is found, *ref_ret is set
1417 * to the address of inline back ref, and 0 is returned.
1419 * if back ref isn't found, *ref_ret is set to the address where it
1420 * should be inserted, and -ENOENT is returned.
1422 * if insert is true and there are too many inline back refs, the path
1423 * points to the extent item, and -EAGAIN is returned.
1425 * NOTE: inline back refs are ordered in the same way that back ref
1426 * items in the tree are ordered.
1428 static noinline_for_stack
1429 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1430 struct btrfs_root *root,
1431 struct btrfs_path *path,
1432 struct btrfs_extent_inline_ref **ref_ret,
1433 u64 bytenr, u64 num_bytes,
1434 u64 parent, u64 root_objectid,
1435 u64 owner, u64 offset, int insert)
1437 struct btrfs_key key;
1438 struct extent_buffer *leaf;
1439 struct btrfs_extent_item *ei;
1440 struct btrfs_extent_inline_ref *iref;
1451 key.objectid = bytenr;
1452 key.type = BTRFS_EXTENT_ITEM_KEY;
1453 key.offset = num_bytes;
1455 want = extent_ref_type(parent, owner);
1457 extra_size = btrfs_extent_inline_ref_size(want);
1458 path->keep_locks = 1;
1461 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1466 if (ret && !insert) {
1470 BUG_ON(ret); /* Corruption */
1472 leaf = path->nodes[0];
1473 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1474 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1475 if (item_size < sizeof(*ei)) {
1480 ret = convert_extent_item_v0(trans, root, path, owner,
1486 leaf = path->nodes[0];
1487 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1490 BUG_ON(item_size < sizeof(*ei));
1492 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1493 flags = btrfs_extent_flags(leaf, ei);
1495 ptr = (unsigned long)(ei + 1);
1496 end = (unsigned long)ei + item_size;
1498 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1499 ptr += sizeof(struct btrfs_tree_block_info);
1502 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1511 iref = (struct btrfs_extent_inline_ref *)ptr;
1512 type = btrfs_extent_inline_ref_type(leaf, iref);
1516 ptr += btrfs_extent_inline_ref_size(type);
1520 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1521 struct btrfs_extent_data_ref *dref;
1522 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1523 if (match_extent_data_ref(leaf, dref, root_objectid,
1528 if (hash_extent_data_ref_item(leaf, dref) <
1529 hash_extent_data_ref(root_objectid, owner, offset))
1533 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1535 if (parent == ref_offset) {
1539 if (ref_offset < parent)
1542 if (root_objectid == ref_offset) {
1546 if (ref_offset < root_objectid)
1550 ptr += btrfs_extent_inline_ref_size(type);
1552 if (err == -ENOENT && insert) {
1553 if (item_size + extra_size >=
1554 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1559 * To add new inline back ref, we have to make sure
1560 * there is no corresponding back ref item.
1561 * For simplicity, we just do not add new inline back
1562 * ref if there is any kind of item for this block
1564 if (find_next_key(path, 0, &key) == 0 &&
1565 key.objectid == bytenr &&
1566 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1571 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1574 path->keep_locks = 0;
1575 btrfs_unlock_up_safe(path, 1);
1581 * helper to add new inline back ref
1583 static noinline_for_stack
1584 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1585 struct btrfs_root *root,
1586 struct btrfs_path *path,
1587 struct btrfs_extent_inline_ref *iref,
1588 u64 parent, u64 root_objectid,
1589 u64 owner, u64 offset, int refs_to_add,
1590 struct btrfs_delayed_extent_op *extent_op)
1592 struct extent_buffer *leaf;
1593 struct btrfs_extent_item *ei;
1596 unsigned long item_offset;
1601 leaf = path->nodes[0];
1602 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1603 item_offset = (unsigned long)iref - (unsigned long)ei;
1605 type = extent_ref_type(parent, owner);
1606 size = btrfs_extent_inline_ref_size(type);
1608 btrfs_extend_item(trans, root, path, size);
1610 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1611 refs = btrfs_extent_refs(leaf, ei);
1612 refs += refs_to_add;
1613 btrfs_set_extent_refs(leaf, ei, refs);
1615 __run_delayed_extent_op(extent_op, leaf, ei);
1617 ptr = (unsigned long)ei + item_offset;
1618 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1619 if (ptr < end - size)
1620 memmove_extent_buffer(leaf, ptr + size, ptr,
1623 iref = (struct btrfs_extent_inline_ref *)ptr;
1624 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1625 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1626 struct btrfs_extent_data_ref *dref;
1627 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1628 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1629 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1630 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1631 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1632 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1633 struct btrfs_shared_data_ref *sref;
1634 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1635 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1636 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1637 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1638 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1640 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1642 btrfs_mark_buffer_dirty(leaf);
1645 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1646 struct btrfs_root *root,
1647 struct btrfs_path *path,
1648 struct btrfs_extent_inline_ref **ref_ret,
1649 u64 bytenr, u64 num_bytes, u64 parent,
1650 u64 root_objectid, u64 owner, u64 offset)
1654 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1655 bytenr, num_bytes, parent,
1656 root_objectid, owner, offset, 0);
1660 btrfs_release_path(path);
1663 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1664 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1667 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1668 root_objectid, owner, offset);
1674 * helper to update/remove inline back ref
1676 static noinline_for_stack
1677 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1678 struct btrfs_root *root,
1679 struct btrfs_path *path,
1680 struct btrfs_extent_inline_ref *iref,
1682 struct btrfs_delayed_extent_op *extent_op)
1684 struct extent_buffer *leaf;
1685 struct btrfs_extent_item *ei;
1686 struct btrfs_extent_data_ref *dref = NULL;
1687 struct btrfs_shared_data_ref *sref = NULL;
1695 leaf = path->nodes[0];
1696 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1697 refs = btrfs_extent_refs(leaf, ei);
1698 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1699 refs += refs_to_mod;
1700 btrfs_set_extent_refs(leaf, ei, refs);
1702 __run_delayed_extent_op(extent_op, leaf, ei);
1704 type = btrfs_extent_inline_ref_type(leaf, iref);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1708 refs = btrfs_extent_data_ref_count(leaf, dref);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 refs = btrfs_shared_data_ref_count(leaf, sref);
1714 BUG_ON(refs_to_mod != -1);
1717 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1718 refs += refs_to_mod;
1721 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1722 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1724 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1726 size = btrfs_extent_inline_ref_size(type);
1727 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1728 ptr = (unsigned long)iref;
1729 end = (unsigned long)ei + item_size;
1730 if (ptr + size < end)
1731 memmove_extent_buffer(leaf, ptr, ptr + size,
1734 btrfs_truncate_item(trans, root, path, item_size, 1);
1736 btrfs_mark_buffer_dirty(leaf);
1739 static noinline_for_stack
1740 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1741 struct btrfs_root *root,
1742 struct btrfs_path *path,
1743 u64 bytenr, u64 num_bytes, u64 parent,
1744 u64 root_objectid, u64 owner,
1745 u64 offset, int refs_to_add,
1746 struct btrfs_delayed_extent_op *extent_op)
1748 struct btrfs_extent_inline_ref *iref;
1751 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1752 bytenr, num_bytes, parent,
1753 root_objectid, owner, offset, 1);
1755 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1756 update_inline_extent_backref(trans, root, path, iref,
1757 refs_to_add, extent_op);
1758 } else if (ret == -ENOENT) {
1759 setup_inline_extent_backref(trans, root, path, iref, parent,
1760 root_objectid, owner, offset,
1761 refs_to_add, extent_op);
1767 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1768 struct btrfs_root *root,
1769 struct btrfs_path *path,
1770 u64 bytenr, u64 parent, u64 root_objectid,
1771 u64 owner, u64 offset, int refs_to_add)
1774 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1775 BUG_ON(refs_to_add != 1);
1776 ret = insert_tree_block_ref(trans, root, path, bytenr,
1777 parent, root_objectid);
1779 ret = insert_extent_data_ref(trans, root, path, bytenr,
1780 parent, root_objectid,
1781 owner, offset, refs_to_add);
1786 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1787 struct btrfs_root *root,
1788 struct btrfs_path *path,
1789 struct btrfs_extent_inline_ref *iref,
1790 int refs_to_drop, int is_data)
1794 BUG_ON(!is_data && refs_to_drop != 1);
1796 update_inline_extent_backref(trans, root, path, iref,
1797 -refs_to_drop, NULL);
1798 } else if (is_data) {
1799 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1801 ret = btrfs_del_item(trans, root, path);
1806 static int btrfs_issue_discard(struct block_device *bdev,
1809 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1812 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1813 u64 num_bytes, u64 *actual_bytes)
1816 u64 discarded_bytes = 0;
1817 struct btrfs_bio *bbio = NULL;
1820 /* Tell the block device(s) that the sectors can be discarded */
1821 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1822 bytenr, &num_bytes, &bbio, 0);
1823 /* Error condition is -ENOMEM */
1825 struct btrfs_bio_stripe *stripe = bbio->stripes;
1829 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1830 if (!stripe->dev->can_discard)
1833 ret = btrfs_issue_discard(stripe->dev->bdev,
1837 discarded_bytes += stripe->length;
1838 else if (ret != -EOPNOTSUPP)
1839 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1842 * Just in case we get back EOPNOTSUPP for some reason,
1843 * just ignore the return value so we don't screw up
1844 * people calling discard_extent.
1852 *actual_bytes = discarded_bytes;
1858 /* Can return -ENOMEM */
1859 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1860 struct btrfs_root *root,
1861 u64 bytenr, u64 num_bytes, u64 parent,
1862 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1865 struct btrfs_fs_info *fs_info = root->fs_info;
1867 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1868 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1870 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1871 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1873 parent, root_objectid, (int)owner,
1874 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1876 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1878 parent, root_objectid, owner, offset,
1879 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1884 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1885 struct btrfs_root *root,
1886 u64 bytenr, u64 num_bytes,
1887 u64 parent, u64 root_objectid,
1888 u64 owner, u64 offset, int refs_to_add,
1889 struct btrfs_delayed_extent_op *extent_op)
1891 struct btrfs_path *path;
1892 struct extent_buffer *leaf;
1893 struct btrfs_extent_item *item;
1898 path = btrfs_alloc_path();
1903 path->leave_spinning = 1;
1904 /* this will setup the path even if it fails to insert the back ref */
1905 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1906 path, bytenr, num_bytes, parent,
1907 root_objectid, owner, offset,
1908 refs_to_add, extent_op);
1912 if (ret != -EAGAIN) {
1917 leaf = path->nodes[0];
1918 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1919 refs = btrfs_extent_refs(leaf, item);
1920 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1922 __run_delayed_extent_op(extent_op, leaf, item);
1924 btrfs_mark_buffer_dirty(leaf);
1925 btrfs_release_path(path);
1928 path->leave_spinning = 1;
1930 /* now insert the actual backref */
1931 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1932 path, bytenr, parent, root_objectid,
1933 owner, offset, refs_to_add);
1935 btrfs_abort_transaction(trans, root, ret);
1937 btrfs_free_path(path);
1941 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 struct btrfs_delayed_ref_node *node,
1944 struct btrfs_delayed_extent_op *extent_op,
1945 int insert_reserved)
1948 struct btrfs_delayed_data_ref *ref;
1949 struct btrfs_key ins;
1954 ins.objectid = node->bytenr;
1955 ins.offset = node->num_bytes;
1956 ins.type = BTRFS_EXTENT_ITEM_KEY;
1958 ref = btrfs_delayed_node_to_data_ref(node);
1959 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1960 parent = ref->parent;
1962 ref_root = ref->root;
1964 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1966 BUG_ON(extent_op->update_key);
1967 flags |= extent_op->flags_to_set;
1969 ret = alloc_reserved_file_extent(trans, root,
1970 parent, ref_root, flags,
1971 ref->objectid, ref->offset,
1972 &ins, node->ref_mod);
1973 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1974 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1975 node->num_bytes, parent,
1976 ref_root, ref->objectid,
1977 ref->offset, node->ref_mod,
1979 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1980 ret = __btrfs_free_extent(trans, root, node->bytenr,
1981 node->num_bytes, parent,
1982 ref_root, ref->objectid,
1983 ref->offset, node->ref_mod,
1991 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1992 struct extent_buffer *leaf,
1993 struct btrfs_extent_item *ei)
1995 u64 flags = btrfs_extent_flags(leaf, ei);
1996 if (extent_op->update_flags) {
1997 flags |= extent_op->flags_to_set;
1998 btrfs_set_extent_flags(leaf, ei, flags);
2001 if (extent_op->update_key) {
2002 struct btrfs_tree_block_info *bi;
2003 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2004 bi = (struct btrfs_tree_block_info *)(ei + 1);
2005 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2009 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 struct btrfs_delayed_ref_node *node,
2012 struct btrfs_delayed_extent_op *extent_op)
2014 struct btrfs_key key;
2015 struct btrfs_path *path;
2016 struct btrfs_extent_item *ei;
2017 struct extent_buffer *leaf;
2025 path = btrfs_alloc_path();
2029 key.objectid = node->bytenr;
2030 key.type = BTRFS_EXTENT_ITEM_KEY;
2031 key.offset = node->num_bytes;
2034 path->leave_spinning = 1;
2035 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2046 leaf = path->nodes[0];
2047 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2048 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2049 if (item_size < sizeof(*ei)) {
2050 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2056 leaf = path->nodes[0];
2057 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2060 BUG_ON(item_size < sizeof(*ei));
2061 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2062 __run_delayed_extent_op(extent_op, leaf, ei);
2064 btrfs_mark_buffer_dirty(leaf);
2066 btrfs_free_path(path);
2070 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2071 struct btrfs_root *root,
2072 struct btrfs_delayed_ref_node *node,
2073 struct btrfs_delayed_extent_op *extent_op,
2074 int insert_reserved)
2077 struct btrfs_delayed_tree_ref *ref;
2078 struct btrfs_key ins;
2082 ins.objectid = node->bytenr;
2083 ins.offset = node->num_bytes;
2084 ins.type = BTRFS_EXTENT_ITEM_KEY;
2086 ref = btrfs_delayed_node_to_tree_ref(node);
2087 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2088 parent = ref->parent;
2090 ref_root = ref->root;
2092 BUG_ON(node->ref_mod != 1);
2093 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2094 BUG_ON(!extent_op || !extent_op->update_flags ||
2095 !extent_op->update_key);
2096 ret = alloc_reserved_tree_block(trans, root,
2098 extent_op->flags_to_set,
2101 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2102 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2103 node->num_bytes, parent, ref_root,
2104 ref->level, 0, 1, extent_op);
2105 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2106 ret = __btrfs_free_extent(trans, root, node->bytenr,
2107 node->num_bytes, parent, ref_root,
2108 ref->level, 0, 1, extent_op);
2115 /* helper function to actually process a single delayed ref entry */
2116 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2117 struct btrfs_root *root,
2118 struct btrfs_delayed_ref_node *node,
2119 struct btrfs_delayed_extent_op *extent_op,
2120 int insert_reserved)
2127 if (btrfs_delayed_ref_is_head(node)) {
2128 struct btrfs_delayed_ref_head *head;
2130 * we've hit the end of the chain and we were supposed
2131 * to insert this extent into the tree. But, it got
2132 * deleted before we ever needed to insert it, so all
2133 * we have to do is clean up the accounting
2136 head = btrfs_delayed_node_to_head(node);
2137 if (insert_reserved) {
2138 btrfs_pin_extent(root, node->bytenr,
2139 node->num_bytes, 1);
2140 if (head->is_data) {
2141 ret = btrfs_del_csums(trans, root,
2146 mutex_unlock(&head->mutex);
2150 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2151 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2152 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2154 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2155 node->type == BTRFS_SHARED_DATA_REF_KEY)
2156 ret = run_delayed_data_ref(trans, root, node, extent_op,
2163 static noinline struct btrfs_delayed_ref_node *
2164 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2166 struct rb_node *node;
2167 struct btrfs_delayed_ref_node *ref;
2168 int action = BTRFS_ADD_DELAYED_REF;
2171 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2172 * this prevents ref count from going down to zero when
2173 * there still are pending delayed ref.
2175 node = rb_prev(&head->node.rb_node);
2179 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2181 if (ref->bytenr != head->node.bytenr)
2183 if (ref->action == action)
2185 node = rb_prev(node);
2187 if (action == BTRFS_ADD_DELAYED_REF) {
2188 action = BTRFS_DROP_DELAYED_REF;
2195 * Returns 0 on success or if called with an already aborted transaction.
2196 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2198 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *root,
2200 struct list_head *cluster)
2202 struct btrfs_delayed_ref_root *delayed_refs;
2203 struct btrfs_delayed_ref_node *ref;
2204 struct btrfs_delayed_ref_head *locked_ref = NULL;
2205 struct btrfs_delayed_extent_op *extent_op;
2206 struct btrfs_fs_info *fs_info = root->fs_info;
2209 int must_insert_reserved = 0;
2211 delayed_refs = &trans->transaction->delayed_refs;
2214 /* pick a new head ref from the cluster list */
2215 if (list_empty(cluster))
2218 locked_ref = list_entry(cluster->next,
2219 struct btrfs_delayed_ref_head, cluster);
2221 /* grab the lock that says we are going to process
2222 * all the refs for this head */
2223 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2226 * we may have dropped the spin lock to get the head
2227 * mutex lock, and that might have given someone else
2228 * time to free the head. If that's true, it has been
2229 * removed from our list and we can move on.
2231 if (ret == -EAGAIN) {
2239 * We need to try and merge add/drops of the same ref since we
2240 * can run into issues with relocate dropping the implicit ref
2241 * and then it being added back again before the drop can
2242 * finish. If we merged anything we need to re-loop so we can
2245 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2249 * locked_ref is the head node, so we have to go one
2250 * node back for any delayed ref updates
2252 ref = select_delayed_ref(locked_ref);
2254 if (ref && ref->seq &&
2255 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2257 * there are still refs with lower seq numbers in the
2258 * process of being added. Don't run this ref yet.
2260 list_del_init(&locked_ref->cluster);
2261 mutex_unlock(&locked_ref->mutex);
2263 delayed_refs->num_heads_ready++;
2264 spin_unlock(&delayed_refs->lock);
2266 spin_lock(&delayed_refs->lock);
2271 * record the must insert reserved flag before we
2272 * drop the spin lock.
2274 must_insert_reserved = locked_ref->must_insert_reserved;
2275 locked_ref->must_insert_reserved = 0;
2277 extent_op = locked_ref->extent_op;
2278 locked_ref->extent_op = NULL;
2281 /* All delayed refs have been processed, Go ahead
2282 * and send the head node to run_one_delayed_ref,
2283 * so that any accounting fixes can happen
2285 ref = &locked_ref->node;
2287 if (extent_op && must_insert_reserved) {
2293 spin_unlock(&delayed_refs->lock);
2295 ret = run_delayed_extent_op(trans, root,
2300 list_del_init(&locked_ref->cluster);
2301 mutex_unlock(&locked_ref->mutex);
2303 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2304 spin_lock(&delayed_refs->lock);
2311 list_del_init(&locked_ref->cluster);
2316 rb_erase(&ref->rb_node, &delayed_refs->root);
2317 delayed_refs->num_entries--;
2320 * when we play the delayed ref, also correct the
2323 switch (ref->action) {
2324 case BTRFS_ADD_DELAYED_REF:
2325 case BTRFS_ADD_DELAYED_EXTENT:
2326 locked_ref->node.ref_mod -= ref->ref_mod;
2328 case BTRFS_DROP_DELAYED_REF:
2329 locked_ref->node.ref_mod += ref->ref_mod;
2335 spin_unlock(&delayed_refs->lock);
2337 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2338 must_insert_reserved);
2340 btrfs_put_delayed_ref(ref);
2346 list_del_init(&locked_ref->cluster);
2347 mutex_unlock(&locked_ref->mutex);
2349 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2350 spin_lock(&delayed_refs->lock);
2356 spin_lock(&delayed_refs->lock);
2361 #ifdef SCRAMBLE_DELAYED_REFS
2363 * Normally delayed refs get processed in ascending bytenr order. This
2364 * correlates in most cases to the order added. To expose dependencies on this
2365 * order, we start to process the tree in the middle instead of the beginning
2367 static u64 find_middle(struct rb_root *root)
2369 struct rb_node *n = root->rb_node;
2370 struct btrfs_delayed_ref_node *entry;
2373 u64 first = 0, last = 0;
2377 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2378 first = entry->bytenr;
2382 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2383 last = entry->bytenr;
2388 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2389 WARN_ON(!entry->in_tree);
2391 middle = entry->bytenr;
2404 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2405 struct btrfs_fs_info *fs_info)
2407 struct qgroup_update *qgroup_update;
2410 if (list_empty(&trans->qgroup_ref_list) !=
2411 !trans->delayed_ref_elem.seq) {
2412 /* list without seq or seq without list */
2413 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2414 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2415 trans->delayed_ref_elem.seq);
2419 if (!trans->delayed_ref_elem.seq)
2422 while (!list_empty(&trans->qgroup_ref_list)) {
2423 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2424 struct qgroup_update, list);
2425 list_del(&qgroup_update->list);
2427 ret = btrfs_qgroup_account_ref(
2428 trans, fs_info, qgroup_update->node,
2429 qgroup_update->extent_op);
2430 kfree(qgroup_update);
2433 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2439 * this starts processing the delayed reference count updates and
2440 * extent insertions we have queued up so far. count can be
2441 * 0, which means to process everything in the tree at the start
2442 * of the run (but not newly added entries), or it can be some target
2443 * number you'd like to process.
2445 * Returns 0 on success or if called with an aborted transaction
2446 * Returns <0 on error and aborts the transaction
2448 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2449 struct btrfs_root *root, unsigned long count)
2451 struct rb_node *node;
2452 struct btrfs_delayed_ref_root *delayed_refs;
2453 struct btrfs_delayed_ref_node *ref;
2454 struct list_head cluster;
2457 int run_all = count == (unsigned long)-1;
2461 /* We'll clean this up in btrfs_cleanup_transaction */
2465 if (root == root->fs_info->extent_root)
2466 root = root->fs_info->tree_root;
2468 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2470 delayed_refs = &trans->transaction->delayed_refs;
2471 INIT_LIST_HEAD(&cluster);
2474 spin_lock(&delayed_refs->lock);
2476 #ifdef SCRAMBLE_DELAYED_REFS
2477 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2481 count = delayed_refs->num_entries * 2;
2485 if (!(run_all || run_most) &&
2486 delayed_refs->num_heads_ready < 64)
2490 * go find something we can process in the rbtree. We start at
2491 * the beginning of the tree, and then build a cluster
2492 * of refs to process starting at the first one we are able to
2495 delayed_start = delayed_refs->run_delayed_start;
2496 ret = btrfs_find_ref_cluster(trans, &cluster,
2497 delayed_refs->run_delayed_start);
2501 ret = run_clustered_refs(trans, root, &cluster);
2503 spin_unlock(&delayed_refs->lock);
2504 btrfs_abort_transaction(trans, root, ret);
2508 count -= min_t(unsigned long, ret, count);
2513 if (delayed_start >= delayed_refs->run_delayed_start) {
2516 * btrfs_find_ref_cluster looped. let's do one
2517 * more cycle. if we don't run any delayed ref
2518 * during that cycle (because we can't because
2519 * all of them are blocked), bail out.
2524 * no runnable refs left, stop trying
2531 /* refs were run, let's reset staleness detection */
2537 if (!list_empty(&trans->new_bgs)) {
2538 spin_unlock(&delayed_refs->lock);
2539 btrfs_create_pending_block_groups(trans, root);
2540 spin_lock(&delayed_refs->lock);
2543 node = rb_first(&delayed_refs->root);
2546 count = (unsigned long)-1;
2549 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2551 if (btrfs_delayed_ref_is_head(ref)) {
2552 struct btrfs_delayed_ref_head *head;
2554 head = btrfs_delayed_node_to_head(ref);
2555 atomic_inc(&ref->refs);
2557 spin_unlock(&delayed_refs->lock);
2559 * Mutex was contended, block until it's
2560 * released and try again
2562 mutex_lock(&head->mutex);
2563 mutex_unlock(&head->mutex);
2565 btrfs_put_delayed_ref(ref);
2569 node = rb_next(node);
2571 spin_unlock(&delayed_refs->lock);
2572 schedule_timeout(1);
2576 spin_unlock(&delayed_refs->lock);
2577 assert_qgroups_uptodate(trans);
2581 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2582 struct btrfs_root *root,
2583 u64 bytenr, u64 num_bytes, u64 flags,
2586 struct btrfs_delayed_extent_op *extent_op;
2589 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2593 extent_op->flags_to_set = flags;
2594 extent_op->update_flags = 1;
2595 extent_op->update_key = 0;
2596 extent_op->is_data = is_data ? 1 : 0;
2598 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2599 num_bytes, extent_op);
2605 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2606 struct btrfs_root *root,
2607 struct btrfs_path *path,
2608 u64 objectid, u64 offset, u64 bytenr)
2610 struct btrfs_delayed_ref_head *head;
2611 struct btrfs_delayed_ref_node *ref;
2612 struct btrfs_delayed_data_ref *data_ref;
2613 struct btrfs_delayed_ref_root *delayed_refs;
2614 struct rb_node *node;
2618 delayed_refs = &trans->transaction->delayed_refs;
2619 spin_lock(&delayed_refs->lock);
2620 head = btrfs_find_delayed_ref_head(trans, bytenr);
2624 if (!mutex_trylock(&head->mutex)) {
2625 atomic_inc(&head->node.refs);
2626 spin_unlock(&delayed_refs->lock);
2628 btrfs_release_path(path);
2631 * Mutex was contended, block until it's released and let
2634 mutex_lock(&head->mutex);
2635 mutex_unlock(&head->mutex);
2636 btrfs_put_delayed_ref(&head->node);
2640 node = rb_prev(&head->node.rb_node);
2644 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2646 if (ref->bytenr != bytenr)
2650 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2653 data_ref = btrfs_delayed_node_to_data_ref(ref);
2655 node = rb_prev(node);
2659 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2660 if (ref->bytenr == bytenr && ref->seq == seq)
2664 if (data_ref->root != root->root_key.objectid ||
2665 data_ref->objectid != objectid || data_ref->offset != offset)
2670 mutex_unlock(&head->mutex);
2672 spin_unlock(&delayed_refs->lock);
2676 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2677 struct btrfs_root *root,
2678 struct btrfs_path *path,
2679 u64 objectid, u64 offset, u64 bytenr)
2681 struct btrfs_root *extent_root = root->fs_info->extent_root;
2682 struct extent_buffer *leaf;
2683 struct btrfs_extent_data_ref *ref;
2684 struct btrfs_extent_inline_ref *iref;
2685 struct btrfs_extent_item *ei;
2686 struct btrfs_key key;
2690 key.objectid = bytenr;
2691 key.offset = (u64)-1;
2692 key.type = BTRFS_EXTENT_ITEM_KEY;
2694 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2697 BUG_ON(ret == 0); /* Corruption */
2700 if (path->slots[0] == 0)
2704 leaf = path->nodes[0];
2705 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2707 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2711 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2712 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2713 if (item_size < sizeof(*ei)) {
2714 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2718 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2720 if (item_size != sizeof(*ei) +
2721 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2724 if (btrfs_extent_generation(leaf, ei) <=
2725 btrfs_root_last_snapshot(&root->root_item))
2728 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2729 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2730 BTRFS_EXTENT_DATA_REF_KEY)
2733 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2734 if (btrfs_extent_refs(leaf, ei) !=
2735 btrfs_extent_data_ref_count(leaf, ref) ||
2736 btrfs_extent_data_ref_root(leaf, ref) !=
2737 root->root_key.objectid ||
2738 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2739 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2747 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2748 struct btrfs_root *root,
2749 u64 objectid, u64 offset, u64 bytenr)
2751 struct btrfs_path *path;
2755 path = btrfs_alloc_path();
2760 ret = check_committed_ref(trans, root, path, objectid,
2762 if (ret && ret != -ENOENT)
2765 ret2 = check_delayed_ref(trans, root, path, objectid,
2767 } while (ret2 == -EAGAIN);
2769 if (ret2 && ret2 != -ENOENT) {
2774 if (ret != -ENOENT || ret2 != -ENOENT)
2777 btrfs_free_path(path);
2778 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2783 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2784 struct btrfs_root *root,
2785 struct extent_buffer *buf,
2786 int full_backref, int inc, int for_cow)
2793 struct btrfs_key key;
2794 struct btrfs_file_extent_item *fi;
2798 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2799 u64, u64, u64, u64, u64, u64, int);
2801 ref_root = btrfs_header_owner(buf);
2802 nritems = btrfs_header_nritems(buf);
2803 level = btrfs_header_level(buf);
2805 if (!root->ref_cows && level == 0)
2809 process_func = btrfs_inc_extent_ref;
2811 process_func = btrfs_free_extent;
2814 parent = buf->start;
2818 for (i = 0; i < nritems; i++) {
2820 btrfs_item_key_to_cpu(buf, &key, i);
2821 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2823 fi = btrfs_item_ptr(buf, i,
2824 struct btrfs_file_extent_item);
2825 if (btrfs_file_extent_type(buf, fi) ==
2826 BTRFS_FILE_EXTENT_INLINE)
2828 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2832 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2833 key.offset -= btrfs_file_extent_offset(buf, fi);
2834 ret = process_func(trans, root, bytenr, num_bytes,
2835 parent, ref_root, key.objectid,
2836 key.offset, for_cow);
2840 bytenr = btrfs_node_blockptr(buf, i);
2841 num_bytes = btrfs_level_size(root, level - 1);
2842 ret = process_func(trans, root, bytenr, num_bytes,
2843 parent, ref_root, level - 1, 0,
2854 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2855 struct extent_buffer *buf, int full_backref, int for_cow)
2857 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2860 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2861 struct extent_buffer *buf, int full_backref, int for_cow)
2863 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2866 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2867 struct btrfs_root *root,
2868 struct btrfs_path *path,
2869 struct btrfs_block_group_cache *cache)
2872 struct btrfs_root *extent_root = root->fs_info->extent_root;
2874 struct extent_buffer *leaf;
2876 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2879 BUG_ON(ret); /* Corruption */
2881 leaf = path->nodes[0];
2882 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2883 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2884 btrfs_mark_buffer_dirty(leaf);
2885 btrfs_release_path(path);
2888 btrfs_abort_transaction(trans, root, ret);
2895 static struct btrfs_block_group_cache *
2896 next_block_group(struct btrfs_root *root,
2897 struct btrfs_block_group_cache *cache)
2899 struct rb_node *node;
2900 spin_lock(&root->fs_info->block_group_cache_lock);
2901 node = rb_next(&cache->cache_node);
2902 btrfs_put_block_group(cache);
2904 cache = rb_entry(node, struct btrfs_block_group_cache,
2906 btrfs_get_block_group(cache);
2909 spin_unlock(&root->fs_info->block_group_cache_lock);
2913 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2914 struct btrfs_trans_handle *trans,
2915 struct btrfs_path *path)
2917 struct btrfs_root *root = block_group->fs_info->tree_root;
2918 struct inode *inode = NULL;
2920 int dcs = BTRFS_DC_ERROR;
2926 * If this block group is smaller than 100 megs don't bother caching the
2929 if (block_group->key.offset < (100 * 1024 * 1024)) {
2930 spin_lock(&block_group->lock);
2931 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2932 spin_unlock(&block_group->lock);
2937 inode = lookup_free_space_inode(root, block_group, path);
2938 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2939 ret = PTR_ERR(inode);
2940 btrfs_release_path(path);
2944 if (IS_ERR(inode)) {
2948 if (block_group->ro)
2951 ret = create_free_space_inode(root, trans, block_group, path);
2957 /* We've already setup this transaction, go ahead and exit */
2958 if (block_group->cache_generation == trans->transid &&
2959 i_size_read(inode)) {
2960 dcs = BTRFS_DC_SETUP;
2965 * We want to set the generation to 0, that way if anything goes wrong
2966 * from here on out we know not to trust this cache when we load up next
2969 BTRFS_I(inode)->generation = 0;
2970 ret = btrfs_update_inode(trans, root, inode);
2973 if (i_size_read(inode) > 0) {
2974 ret = btrfs_truncate_free_space_cache(root, trans, path,
2980 spin_lock(&block_group->lock);
2981 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2982 !btrfs_test_opt(root, SPACE_CACHE)) {
2984 * don't bother trying to write stuff out _if_
2985 * a) we're not cached,
2986 * b) we're with nospace_cache mount option.
2988 dcs = BTRFS_DC_WRITTEN;
2989 spin_unlock(&block_group->lock);
2992 spin_unlock(&block_group->lock);
2995 * Try to preallocate enough space based on how big the block group is.
2996 * Keep in mind this has to include any pinned space which could end up
2997 * taking up quite a bit since it's not folded into the other space
3000 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3005 num_pages *= PAGE_CACHE_SIZE;
3007 ret = btrfs_check_data_free_space(inode, num_pages);
3011 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3012 num_pages, num_pages,
3015 dcs = BTRFS_DC_SETUP;
3016 btrfs_free_reserved_data_space(inode, num_pages);
3021 btrfs_release_path(path);
3023 spin_lock(&block_group->lock);
3024 if (!ret && dcs == BTRFS_DC_SETUP)
3025 block_group->cache_generation = trans->transid;
3026 block_group->disk_cache_state = dcs;
3027 spin_unlock(&block_group->lock);
3032 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3033 struct btrfs_root *root)
3035 struct btrfs_block_group_cache *cache;
3037 struct btrfs_path *path;
3040 path = btrfs_alloc_path();
3046 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3048 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3050 cache = next_block_group(root, cache);
3058 err = cache_save_setup(cache, trans, path);
3059 last = cache->key.objectid + cache->key.offset;
3060 btrfs_put_block_group(cache);
3065 err = btrfs_run_delayed_refs(trans, root,
3067 if (err) /* File system offline */
3071 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3073 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3074 btrfs_put_block_group(cache);
3080 cache = next_block_group(root, cache);
3089 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3090 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3092 last = cache->key.objectid + cache->key.offset;
3094 err = write_one_cache_group(trans, root, path, cache);
3095 if (err) /* File system offline */
3098 btrfs_put_block_group(cache);
3103 * I don't think this is needed since we're just marking our
3104 * preallocated extent as written, but just in case it can't
3108 err = btrfs_run_delayed_refs(trans, root,
3110 if (err) /* File system offline */
3114 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3117 * Really this shouldn't happen, but it could if we
3118 * couldn't write the entire preallocated extent and
3119 * splitting the extent resulted in a new block.
3122 btrfs_put_block_group(cache);
3125 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3127 cache = next_block_group(root, cache);
3136 err = btrfs_write_out_cache(root, trans, cache, path);
3139 * If we didn't have an error then the cache state is still
3140 * NEED_WRITE, so we can set it to WRITTEN.
3142 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3143 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3144 last = cache->key.objectid + cache->key.offset;
3145 btrfs_put_block_group(cache);
3149 btrfs_free_path(path);
3153 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3155 struct btrfs_block_group_cache *block_group;
3158 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3159 if (!block_group || block_group->ro)