sh: boards: mach-se: use IS_ERR() instead of NULL check
[~shefty/rdma-dev.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include "extent_io.h"
14 #include "extent_map.h"
15 #include "compat.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18
19 static struct kmem_cache *extent_state_cache;
20 static struct kmem_cache *extent_buffer_cache;
21
22 static LIST_HEAD(buffers);
23 static LIST_HEAD(states);
24
25 #define LEAK_DEBUG 0
26 #if LEAK_DEBUG
27 static DEFINE_SPINLOCK(leak_lock);
28 #endif
29
30 #define BUFFER_LRU_MAX 64
31
32 struct tree_entry {
33         u64 start;
34         u64 end;
35         struct rb_node rb_node;
36 };
37
38 struct extent_page_data {
39         struct bio *bio;
40         struct extent_io_tree *tree;
41         get_extent_t *get_extent;
42
43         /* tells writepage not to lock the state bits for this range
44          * it still does the unlocking
45          */
46         unsigned int extent_locked:1;
47
48         /* tells the submit_bio code to use a WRITE_SYNC */
49         unsigned int sync_io:1;
50 };
51
52 int __init extent_io_init(void)
53 {
54         extent_state_cache = kmem_cache_create("extent_state",
55                         sizeof(struct extent_state), 0,
56                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
57         if (!extent_state_cache)
58                 return -ENOMEM;
59
60         extent_buffer_cache = kmem_cache_create("extent_buffers",
61                         sizeof(struct extent_buffer), 0,
62                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
63         if (!extent_buffer_cache)
64                 goto free_state_cache;
65         return 0;
66
67 free_state_cache:
68         kmem_cache_destroy(extent_state_cache);
69         return -ENOMEM;
70 }
71
72 void extent_io_exit(void)
73 {
74         struct extent_state *state;
75         struct extent_buffer *eb;
76
77         while (!list_empty(&states)) {
78                 state = list_entry(states.next, struct extent_state, leak_list);
79                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
80                        "state %lu in tree %p refs %d\n",
81                        (unsigned long long)state->start,
82                        (unsigned long long)state->end,
83                        state->state, state->tree, atomic_read(&state->refs));
84                 list_del(&state->leak_list);
85                 kmem_cache_free(extent_state_cache, state);
86
87         }
88
89         while (!list_empty(&buffers)) {
90                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
91                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
92                        "refs %d\n", (unsigned long long)eb->start,
93                        eb->len, atomic_read(&eb->refs));
94                 list_del(&eb->leak_list);
95                 kmem_cache_free(extent_buffer_cache, eb);
96         }
97         if (extent_state_cache)
98                 kmem_cache_destroy(extent_state_cache);
99         if (extent_buffer_cache)
100                 kmem_cache_destroy(extent_buffer_cache);
101 }
102
103 void extent_io_tree_init(struct extent_io_tree *tree,
104                           struct address_space *mapping, gfp_t mask)
105 {
106         tree->state = RB_ROOT;
107         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
108         tree->ops = NULL;
109         tree->dirty_bytes = 0;
110         spin_lock_init(&tree->lock);
111         spin_lock_init(&tree->buffer_lock);
112         tree->mapping = mapping;
113 }
114
115 static struct extent_state *alloc_extent_state(gfp_t mask)
116 {
117         struct extent_state *state;
118 #if LEAK_DEBUG
119         unsigned long flags;
120 #endif
121
122         state = kmem_cache_alloc(extent_state_cache, mask);
123         if (!state)
124                 return state;
125         state->state = 0;
126         state->private = 0;
127         state->tree = NULL;
128 #if LEAK_DEBUG
129         spin_lock_irqsave(&leak_lock, flags);
130         list_add(&state->leak_list, &states);
131         spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133         atomic_set(&state->refs, 1);
134         init_waitqueue_head(&state->wq);
135         return state;
136 }
137
138 void free_extent_state(struct extent_state *state)
139 {
140         if (!state)
141                 return;
142         if (atomic_dec_and_test(&state->refs)) {
143 #if LEAK_DEBUG
144                 unsigned long flags;
145 #endif
146                 WARN_ON(state->tree);
147 #if LEAK_DEBUG
148                 spin_lock_irqsave(&leak_lock, flags);
149                 list_del(&state->leak_list);
150                 spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152                 kmem_cache_free(extent_state_cache, state);
153         }
154 }
155
156 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
157                                    struct rb_node *node)
158 {
159         struct rb_node **p = &root->rb_node;
160         struct rb_node *parent = NULL;
161         struct tree_entry *entry;
162
163         while (*p) {
164                 parent = *p;
165                 entry = rb_entry(parent, struct tree_entry, rb_node);
166
167                 if (offset < entry->start)
168                         p = &(*p)->rb_left;
169                 else if (offset > entry->end)
170                         p = &(*p)->rb_right;
171                 else
172                         return parent;
173         }
174
175         entry = rb_entry(node, struct tree_entry, rb_node);
176         rb_link_node(node, parent, p);
177         rb_insert_color(node, root);
178         return NULL;
179 }
180
181 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
182                                      struct rb_node **prev_ret,
183                                      struct rb_node **next_ret)
184 {
185         struct rb_root *root = &tree->state;
186         struct rb_node *n = root->rb_node;
187         struct rb_node *prev = NULL;
188         struct rb_node *orig_prev = NULL;
189         struct tree_entry *entry;
190         struct tree_entry *prev_entry = NULL;
191
192         while (n) {
193                 entry = rb_entry(n, struct tree_entry, rb_node);
194                 prev = n;
195                 prev_entry = entry;
196
197                 if (offset < entry->start)
198                         n = n->rb_left;
199                 else if (offset > entry->end)
200                         n = n->rb_right;
201                 else
202                         return n;
203         }
204
205         if (prev_ret) {
206                 orig_prev = prev;
207                 while (prev && offset > prev_entry->end) {
208                         prev = rb_next(prev);
209                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
210                 }
211                 *prev_ret = prev;
212                 prev = orig_prev;
213         }
214
215         if (next_ret) {
216                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217                 while (prev && offset < prev_entry->start) {
218                         prev = rb_prev(prev);
219                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220                 }
221                 *next_ret = prev;
222         }
223         return NULL;
224 }
225
226 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
227                                           u64 offset)
228 {
229         struct rb_node *prev = NULL;
230         struct rb_node *ret;
231
232         ret = __etree_search(tree, offset, &prev, NULL);
233         if (!ret)
234                 return prev;
235         return ret;
236 }
237
238 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
239                      struct extent_state *other)
240 {
241         if (tree->ops && tree->ops->merge_extent_hook)
242                 tree->ops->merge_extent_hook(tree->mapping->host, new,
243                                              other);
244 }
245
246 /*
247  * utility function to look for merge candidates inside a given range.
248  * Any extents with matching state are merged together into a single
249  * extent in the tree.  Extents with EXTENT_IO in their state field
250  * are not merged because the end_io handlers need to be able to do
251  * operations on them without sleeping (or doing allocations/splits).
252  *
253  * This should be called with the tree lock held.
254  */
255 static int merge_state(struct extent_io_tree *tree,
256                        struct extent_state *state)
257 {
258         struct extent_state *other;
259         struct rb_node *other_node;
260
261         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
262                 return 0;
263
264         other_node = rb_prev(&state->rb_node);
265         if (other_node) {
266                 other = rb_entry(other_node, struct extent_state, rb_node);
267                 if (other->end == state->start - 1 &&
268                     other->state == state->state) {
269                         merge_cb(tree, state, other);
270                         state->start = other->start;
271                         other->tree = NULL;
272                         rb_erase(&other->rb_node, &tree->state);
273                         free_extent_state(other);
274                 }
275         }
276         other_node = rb_next(&state->rb_node);
277         if (other_node) {
278                 other = rb_entry(other_node, struct extent_state, rb_node);
279                 if (other->start == state->end + 1 &&
280                     other->state == state->state) {
281                         merge_cb(tree, state, other);
282                         other->start = state->start;
283                         state->tree = NULL;
284                         rb_erase(&state->rb_node, &tree->state);
285                         free_extent_state(state);
286                         state = NULL;
287                 }
288         }
289
290         return 0;
291 }
292
293 static int set_state_cb(struct extent_io_tree *tree,
294                          struct extent_state *state, int *bits)
295 {
296         if (tree->ops && tree->ops->set_bit_hook) {
297                 return tree->ops->set_bit_hook(tree->mapping->host,
298                                                state, bits);
299         }
300
301         return 0;
302 }
303
304 static void clear_state_cb(struct extent_io_tree *tree,
305                            struct extent_state *state, int *bits)
306 {
307         if (tree->ops && tree->ops->clear_bit_hook)
308                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
309 }
310
311 /*
312  * insert an extent_state struct into the tree.  'bits' are set on the
313  * struct before it is inserted.
314  *
315  * This may return -EEXIST if the extent is already there, in which case the
316  * state struct is freed.
317  *
318  * The tree lock is not taken internally.  This is a utility function and
319  * probably isn't what you want to call (see set/clear_extent_bit).
320  */
321 static int insert_state(struct extent_io_tree *tree,
322                         struct extent_state *state, u64 start, u64 end,
323                         int *bits)
324 {
325         struct rb_node *node;
326         int bits_to_set = *bits & ~EXTENT_CTLBITS;
327         int ret;
328
329         if (end < start) {
330                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
331                        (unsigned long long)end,
332                        (unsigned long long)start);
333                 WARN_ON(1);
334         }
335         state->start = start;
336         state->end = end;
337         ret = set_state_cb(tree, state, bits);
338         if (ret)
339                 return ret;
340
341         if (bits_to_set & EXTENT_DIRTY)
342                 tree->dirty_bytes += end - start + 1;
343         state->state |= bits_to_set;
344         node = tree_insert(&tree->state, end, &state->rb_node);
345         if (node) {
346                 struct extent_state *found;
347                 found = rb_entry(node, struct extent_state, rb_node);
348                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
349                        "%llu %llu\n", (unsigned long long)found->start,
350                        (unsigned long long)found->end,
351                        (unsigned long long)start, (unsigned long long)end);
352                 free_extent_state(state);
353                 return -EEXIST;
354         }
355         state->tree = tree;
356         merge_state(tree, state);
357         return 0;
358 }
359
360 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
361                      u64 split)
362 {
363         if (tree->ops && tree->ops->split_extent_hook)
364                 return tree->ops->split_extent_hook(tree->mapping->host,
365                                                     orig, split);
366         return 0;
367 }
368
369 /*
370  * split a given extent state struct in two, inserting the preallocated
371  * struct 'prealloc' as the newly created second half.  'split' indicates an
372  * offset inside 'orig' where it should be split.
373  *
374  * Before calling,
375  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
376  * are two extent state structs in the tree:
377  * prealloc: [orig->start, split - 1]
378  * orig: [ split, orig->end ]
379  *
380  * The tree locks are not taken by this function. They need to be held
381  * by the caller.
382  */
383 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384                        struct extent_state *prealloc, u64 split)
385 {
386         struct rb_node *node;
387
388         split_cb(tree, orig, split);
389
390         prealloc->start = orig->start;
391         prealloc->end = split - 1;
392         prealloc->state = orig->state;
393         orig->start = split;
394
395         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
396         if (node) {
397                 free_extent_state(prealloc);
398                 return -EEXIST;
399         }
400         prealloc->tree = tree;
401         return 0;
402 }
403
404 /*
405  * utility function to clear some bits in an extent state struct.
406  * it will optionally wake up any one waiting on this state (wake == 1), or
407  * forcibly remove the state from the tree (delete == 1).
408  *
409  * If no bits are set on the state struct after clearing things, the
410  * struct is freed and removed from the tree
411  */
412 static int clear_state_bit(struct extent_io_tree *tree,
413                             struct extent_state *state,
414                             int *bits, int wake)
415 {
416         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
417         int ret = state->state & bits_to_clear;
418
419         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
420                 u64 range = state->end - state->start + 1;
421                 WARN_ON(range > tree->dirty_bytes);
422                 tree->dirty_bytes -= range;
423         }
424         clear_state_cb(tree, state, bits);
425         state->state &= ~bits_to_clear;
426         if (wake)
427                 wake_up(&state->wq);
428         if (state->state == 0) {
429                 if (state->tree) {
430                         rb_erase(&state->rb_node, &tree->state);
431                         state->tree = NULL;
432                         free_extent_state(state);
433                 } else {
434                         WARN_ON(1);
435                 }
436         } else {
437                 merge_state(tree, state);
438         }
439         return ret;
440 }
441
442 /*
443  * clear some bits on a range in the tree.  This may require splitting
444  * or inserting elements in the tree, so the gfp mask is used to
445  * indicate which allocations or sleeping are allowed.
446  *
447  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448  * the given range from the tree regardless of state (ie for truncate).
449  *
450  * the range [start, end] is inclusive.
451  *
452  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453  * bits were already set, or zero if none of the bits were already set.
454  */
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456                      int bits, int wake, int delete,
457                      struct extent_state **cached_state,
458                      gfp_t mask)
459 {
460         struct extent_state *state;
461         struct extent_state *cached;
462         struct extent_state *prealloc = NULL;
463         struct rb_node *next_node;
464         struct rb_node *node;
465         u64 last_end;
466         int err;
467         int set = 0;
468         int clear = 0;
469
470         if (delete)
471                 bits |= ~EXTENT_CTLBITS;
472         bits |= EXTENT_FIRST_DELALLOC;
473
474         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475                 clear = 1;
476 again:
477         if (!prealloc && (mask & __GFP_WAIT)) {
478                 prealloc = alloc_extent_state(mask);
479                 if (!prealloc)
480                         return -ENOMEM;
481         }
482
483         spin_lock(&tree->lock);
484         if (cached_state) {
485                 cached = *cached_state;
486
487                 if (clear) {
488                         *cached_state = NULL;
489                         cached_state = NULL;
490                 }
491
492                 if (cached && cached->tree && cached->start == start) {
493                         if (clear)
494                                 atomic_dec(&cached->refs);
495                         state = cached;
496                         goto hit_next;
497                 }
498                 if (clear)
499                         free_extent_state(cached);
500         }
501         /*
502          * this search will find the extents that end after
503          * our range starts
504          */
505         node = tree_search(tree, start);
506         if (!node)
507                 goto out;
508         state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510         if (state->start > end)
511                 goto out;
512         WARN_ON(state->end < start);
513         last_end = state->end;
514
515         /*
516          *     | ---- desired range ---- |
517          *  | state | or
518          *  | ------------- state -------------- |
519          *
520          * We need to split the extent we found, and may flip
521          * bits on second half.
522          *
523          * If the extent we found extends past our range, we
524          * just split and search again.  It'll get split again
525          * the next time though.
526          *
527          * If the extent we found is inside our range, we clear
528          * the desired bit on it.
529          */
530
531         if (state->start < start) {
532                 if (!prealloc)
533                         prealloc = alloc_extent_state(GFP_ATOMIC);
534                 err = split_state(tree, state, prealloc, start);
535                 BUG_ON(err == -EEXIST);
536                 prealloc = NULL;
537                 if (err)
538                         goto out;
539                 if (state->end <= end) {
540                         set |= clear_state_bit(tree, state, &bits, wake);
541                         if (last_end == (u64)-1)
542                                 goto out;
543                         start = last_end + 1;
544                 }
545                 goto search_again;
546         }
547         /*
548          * | ---- desired range ---- |
549          *                        | state |
550          * We need to split the extent, and clear the bit
551          * on the first half
552          */
553         if (state->start <= end && state->end > end) {
554                 if (!prealloc)
555                         prealloc = alloc_extent_state(GFP_ATOMIC);
556                 err = split_state(tree, state, prealloc, end + 1);
557                 BUG_ON(err == -EEXIST);
558                 if (wake)
559                         wake_up(&state->wq);
560
561                 set |= clear_state_bit(tree, prealloc, &bits, wake);
562
563                 prealloc = NULL;
564                 goto out;
565         }
566
567         if (state->end < end && prealloc && !need_resched())
568                 next_node = rb_next(&state->rb_node);
569         else
570                 next_node = NULL;
571
572         set |= clear_state_bit(tree, state, &bits, wake);
573         if (last_end == (u64)-1)
574                 goto out;
575         start = last_end + 1;
576         if (start <= end && next_node) {
577                 state = rb_entry(next_node, struct extent_state,
578                                  rb_node);
579                 if (state->start == start)
580                         goto hit_next;
581         }
582         goto search_again;
583
584 out:
585         spin_unlock(&tree->lock);
586         if (prealloc)
587                 free_extent_state(prealloc);
588
589         return set;
590
591 search_again:
592         if (start > end)
593                 goto out;
594         spin_unlock(&tree->lock);
595         if (mask & __GFP_WAIT)
596                 cond_resched();
597         goto again;
598 }
599
600 static int wait_on_state(struct extent_io_tree *tree,
601                          struct extent_state *state)
602                 __releases(tree->lock)
603                 __acquires(tree->lock)
604 {
605         DEFINE_WAIT(wait);
606         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607         spin_unlock(&tree->lock);
608         schedule();
609         spin_lock(&tree->lock);
610         finish_wait(&state->wq, &wait);
611         return 0;
612 }
613
614 /*
615  * waits for one or more bits to clear on a range in the state tree.
616  * The range [start, end] is inclusive.
617  * The tree lock is taken by this function
618  */
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
620 {
621         struct extent_state *state;
622         struct rb_node *node;
623
624         spin_lock(&tree->lock);
625 again:
626         while (1) {
627                 /*
628                  * this search will find all the extents that end after
629                  * our range starts
630                  */
631                 node = tree_search(tree, start);
632                 if (!node)
633                         break;
634
635                 state = rb_entry(node, struct extent_state, rb_node);
636
637                 if (state->start > end)
638                         goto out;
639
640                 if (state->state & bits) {
641                         start = state->start;
642                         atomic_inc(&state->refs);
643                         wait_on_state(tree, state);
644                         free_extent_state(state);
645                         goto again;
646                 }
647                 start = state->end + 1;
648
649                 if (start > end)
650                         break;
651
652                 if (need_resched()) {
653                         spin_unlock(&tree->lock);
654                         cond_resched();
655                         spin_lock(&tree->lock);
656                 }
657         }
658 out:
659         spin_unlock(&tree->lock);
660         return 0;
661 }
662
663 static int set_state_bits(struct extent_io_tree *tree,
664                            struct extent_state *state,
665                            int *bits)
666 {
667         int ret;
668         int bits_to_set = *bits & ~EXTENT_CTLBITS;
669
670         ret = set_state_cb(tree, state, bits);
671         if (ret)
672                 return ret;
673         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
674                 u64 range = state->end - state->start + 1;
675                 tree->dirty_bytes += range;
676         }
677         state->state |= bits_to_set;
678
679         return 0;
680 }
681
682 static void cache_state(struct extent_state *state,
683                         struct extent_state **cached_ptr)
684 {
685         if (cached_ptr && !(*cached_ptr)) {
686                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
687                         *cached_ptr = state;
688                         atomic_inc(&state->refs);
689                 }
690         }
691 }
692
693 /*
694  * set some bits on a range in the tree.  This may require allocations or
695  * sleeping, so the gfp mask is used to indicate what is allowed.
696  *
697  * If any of the exclusive bits are set, this will fail with -EEXIST if some
698  * part of the range already has the desired bits set.  The start of the
699  * existing range is returned in failed_start in this case.
700  *
701  * [start, end] is inclusive This takes the tree lock.
702  */
703
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705                    int bits, int exclusive_bits, u64 *failed_start,
706                    struct extent_state **cached_state, gfp_t mask)
707 {
708         struct extent_state *state;
709         struct extent_state *prealloc = NULL;
710         struct rb_node *node;
711         int err = 0;
712         u64 last_start;
713         u64 last_end;
714
715         bits |= EXTENT_FIRST_DELALLOC;
716 again:
717         if (!prealloc && (mask & __GFP_WAIT)) {
718                 prealloc = alloc_extent_state(mask);
719                 if (!prealloc)
720                         return -ENOMEM;
721         }
722
723         spin_lock(&tree->lock);
724         if (cached_state && *cached_state) {
725                 state = *cached_state;
726                 if (state->start == start && state->tree) {
727                         node = &state->rb_node;
728                         goto hit_next;
729                 }
730         }
731         /*
732          * this search will find all the extents that end after
733          * our range starts.
734          */
735         node = tree_search(tree, start);
736         if (!node) {
737                 err = insert_state(tree, prealloc, start, end, &bits);
738                 prealloc = NULL;
739                 BUG_ON(err == -EEXIST);
740                 goto out;
741         }
742         state = rb_entry(node, struct extent_state, rb_node);
743 hit_next:
744         last_start = state->start;
745         last_end = state->end;
746
747         /*
748          * | ---- desired range ---- |
749          * | state |
750          *
751          * Just lock what we found and keep going
752          */
753         if (state->start == start && state->end <= end) {
754                 struct rb_node *next_node;
755                 if (state->state & exclusive_bits) {
756                         *failed_start = state->start;
757                         err = -EEXIST;
758                         goto out;
759                 }
760
761                 err = set_state_bits(tree, state, &bits);
762                 if (err)
763                         goto out;
764
765                 cache_state(state, cached_state);
766                 merge_state(tree, state);
767                 if (last_end == (u64)-1)
768                         goto out;
769
770                 start = last_end + 1;
771                 if (start < end && prealloc && !need_resched()) {
772                         next_node = rb_next(node);
773                         if (next_node) {
774                                 state = rb_entry(next_node, struct extent_state,
775                                                  rb_node);
776                                 if (state->start == start)
777                                         goto hit_next;
778                         }
779                 }
780                 goto search_again;
781         }
782
783         /*
784          *     | ---- desired range ---- |
785          * | state |
786          *   or
787          * | ------------- state -------------- |
788          *
789          * We need to split the extent we found, and may flip bits on
790          * second half.
791          *
792          * If the extent we found extends past our
793          * range, we just split and search again.  It'll get split
794          * again the next time though.
795          *
796          * If the extent we found is inside our range, we set the
797          * desired bit on it.
798          */
799         if (state->start < start) {
800                 if (state->state & exclusive_bits) {
801                         *failed_start = start;
802                         err = -EEXIST;
803                         goto out;
804                 }
805                 err = split_state(tree, state, prealloc, start);
806                 BUG_ON(err == -EEXIST);
807                 prealloc = NULL;
808                 if (err)
809                         goto out;
810                 if (state->end <= end) {
811                         err = set_state_bits(tree, state, &bits);
812                         if (err)
813                                 goto out;
814                         cache_state(state, cached_state);
815                         merge_state(tree, state);
816                         if (last_end == (u64)-1)
817                                 goto out;
818                         start = last_end + 1;
819                 }
820                 goto search_again;
821         }
822         /*
823          * | ---- desired range ---- |
824          *     | state | or               | state |
825          *
826          * There's a hole, we need to insert something in it and
827          * ignore the extent we found.
828          */
829         if (state->start > start) {
830                 u64 this_end;
831                 if (end < last_start)
832                         this_end = end;
833                 else
834                         this_end = last_start - 1;
835                 err = insert_state(tree, prealloc, start, this_end,
836                                    &bits);
837                 BUG_ON(err == -EEXIST);
838                 if (err) {
839                         prealloc = NULL;
840                         goto out;
841                 }
842                 cache_state(prealloc, cached_state);
843                 prealloc = NULL;
844                 start = this_end + 1;
845                 goto search_again;
846         }
847         /*
848          * | ---- desired range ---- |
849          *                        | state |
850          * We need to split the extent, and set the bit
851          * on the first half
852          */
853         if (state->start <= end && state->end > end) {
854                 if (state->state & exclusive_bits) {
855                         *failed_start = start;
856                         err = -EEXIST;
857                         goto out;
858                 }
859                 err = split_state(tree, state, prealloc, end + 1);
860                 BUG_ON(err == -EEXIST);
861
862                 err = set_state_bits(tree, prealloc, &bits);
863                 if (err) {
864                         prealloc = NULL;
865                         goto out;
866                 }
867                 cache_state(prealloc, cached_state);
868                 merge_state(tree, prealloc);
869                 prealloc = NULL;
870                 goto out;
871         }
872
873         goto search_again;
874
875 out:
876         spin_unlock(&tree->lock);
877         if (prealloc)
878                 free_extent_state(prealloc);
879
880         return err;
881
882 search_again:
883         if (start > end)
884                 goto out;
885         spin_unlock(&tree->lock);
886         if (mask & __GFP_WAIT)
887                 cond_resched();
888         goto again;
889 }
890
891 /* wrappers around set/clear extent bit */
892 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
893                      gfp_t mask)
894 {
895         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
896                               NULL, mask);
897 }
898
899 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
900                     int bits, gfp_t mask)
901 {
902         return set_extent_bit(tree, start, end, bits, 0, NULL,
903                               NULL, mask);
904 }
905
906 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
907                       int bits, gfp_t mask)
908 {
909         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
910 }
911
912 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
913                         struct extent_state **cached_state, gfp_t mask)
914 {
915         return set_extent_bit(tree, start, end,
916                               EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
917                               0, NULL, cached_state, mask);
918 }
919
920 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
921                        gfp_t mask)
922 {
923         return clear_extent_bit(tree, start, end,
924                                 EXTENT_DIRTY | EXTENT_DELALLOC |
925                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
926 }
927
928 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
929                      gfp_t mask)
930 {
931         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
932                               NULL, mask);
933 }
934
935 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
936                        gfp_t mask)
937 {
938         return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
939                                 NULL, mask);
940 }
941
942 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
943                         gfp_t mask)
944 {
945         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
946                               NULL, mask);
947 }
948
949 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
950                                  u64 end, struct extent_state **cached_state,
951                                  gfp_t mask)
952 {
953         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
954                                 cached_state, mask);
955 }
956
957 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
958 {
959         return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
960 }
961
962 /*
963  * either insert or lock state struct between start and end use mask to tell
964  * us if waiting is desired.
965  */
966 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
967                      int bits, struct extent_state **cached_state, gfp_t mask)
968 {
969         int err;
970         u64 failed_start;
971         while (1) {
972                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
973                                      EXTENT_LOCKED, &failed_start,
974                                      cached_state, mask);
975                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
976                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
977                         start = failed_start;
978                 } else {
979                         break;
980                 }
981                 WARN_ON(start > end);
982         }
983         return err;
984 }
985
986 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
987 {
988         return lock_extent_bits(tree, start, end, 0, NULL, mask);
989 }
990
991 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
992                     gfp_t mask)
993 {
994         int err;
995         u64 failed_start;
996
997         err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
998                              &failed_start, NULL, mask);
999         if (err == -EEXIST) {
1000                 if (failed_start > start)
1001                         clear_extent_bit(tree, start, failed_start - 1,
1002                                          EXTENT_LOCKED, 1, 0, NULL, mask);
1003                 return 0;
1004         }
1005         return 1;
1006 }
1007
1008 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1009                          struct extent_state **cached, gfp_t mask)
1010 {
1011         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1012                                 mask);
1013 }
1014
1015 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1016                   gfp_t mask)
1017 {
1018         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1019                                 mask);
1020 }
1021
1022 /*
1023  * helper function to set pages and extents in the tree dirty
1024  */
1025 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1026 {
1027         unsigned long index = start >> PAGE_CACHE_SHIFT;
1028         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1029         struct page *page;
1030
1031         while (index <= end_index) {
1032                 page = find_get_page(tree->mapping, index);
1033                 BUG_ON(!page);
1034                 __set_page_dirty_nobuffers(page);
1035                 page_cache_release(page);
1036                 index++;
1037         }
1038         return 0;
1039 }
1040
1041 /*
1042  * helper function to set both pages and extents in the tree writeback
1043  */
1044 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1045 {
1046         unsigned long index = start >> PAGE_CACHE_SHIFT;
1047         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1048         struct page *page;
1049
1050         while (index <= end_index) {
1051                 page = find_get_page(tree->mapping, index);
1052                 BUG_ON(!page);
1053                 set_page_writeback(page);
1054                 page_cache_release(page);
1055                 index++;
1056         }
1057         return 0;
1058 }
1059
1060 /*
1061  * find the first offset in the io tree with 'bits' set. zero is
1062  * returned if we find something, and *start_ret and *end_ret are
1063  * set to reflect the state struct that was found.
1064  *
1065  * If nothing was found, 1 is returned, < 0 on error
1066  */
1067 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1068                           u64 *start_ret, u64 *end_ret, int bits)
1069 {
1070         struct rb_node *node;
1071         struct extent_state *state;
1072         int ret = 1;
1073
1074         spin_lock(&tree->lock);
1075         /*
1076          * this search will find all the extents that end after
1077          * our range starts.
1078          */
1079         node = tree_search(tree, start);
1080         if (!node)
1081                 goto out;
1082
1083         while (1) {
1084                 state = rb_entry(node, struct extent_state, rb_node);
1085                 if (state->end >= start && (state->state & bits)) {
1086                         *start_ret = state->start;
1087                         *end_ret = state->end;
1088                         ret = 0;
1089                         break;
1090                 }
1091                 node = rb_next(node);
1092                 if (!node)
1093                         break;
1094         }
1095 out:
1096         spin_unlock(&tree->lock);
1097         return ret;
1098 }
1099
1100 /* find the first state struct with 'bits' set after 'start', and
1101  * return it.  tree->lock must be held.  NULL will returned if
1102  * nothing was found after 'start'
1103  */
1104 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1105                                                  u64 start, int bits)
1106 {
1107         struct rb_node *node;
1108         struct extent_state *state;
1109
1110         /*
1111          * this search will find all the extents that end after
1112          * our range starts.
1113          */
1114         node = tree_search(tree, start);
1115         if (!node)
1116                 goto out;
1117
1118         while (1) {
1119                 state = rb_entry(node, struct extent_state, rb_node);
1120                 if (state->end >= start && (state->state & bits))
1121                         return state;
1122
1123                 node = rb_next(node);
1124                 if (!node)
1125                         break;
1126         }
1127 out:
1128         return NULL;
1129 }
1130
1131 /*
1132  * find a contiguous range of bytes in the file marked as delalloc, not
1133  * more than 'max_bytes'.  start and end are used to return the range,
1134  *
1135  * 1 is returned if we find something, 0 if nothing was in the tree
1136  */
1137 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1138                                         u64 *start, u64 *end, u64 max_bytes,
1139                                         struct extent_state **cached_state)
1140 {
1141         struct rb_node *node;
1142         struct extent_state *state;
1143         u64 cur_start = *start;
1144         u64 found = 0;
1145         u64 total_bytes = 0;
1146
1147         spin_lock(&tree->lock);
1148
1149         /*
1150          * this search will find all the extents that end after
1151          * our range starts.
1152          */
1153         node = tree_search(tree, cur_start);
1154         if (!node) {
1155                 if (!found)
1156                         *end = (u64)-1;
1157                 goto out;
1158         }
1159
1160         while (1) {
1161                 state = rb_entry(node, struct extent_state, rb_node);
1162                 if (found && (state->start != cur_start ||
1163                               (state->state & EXTENT_BOUNDARY))) {
1164                         goto out;
1165                 }
1166                 if (!(state->state & EXTENT_DELALLOC)) {
1167                         if (!found)
1168                                 *end = state->end;
1169                         goto out;
1170                 }
1171                 if (!found) {
1172                         *start = state->start;
1173                         *cached_state = state;
1174                         atomic_inc(&state->refs);
1175                 }
1176                 found++;
1177                 *end = state->end;
1178                 cur_start = state->end + 1;
1179                 node = rb_next(node);
1180                 if (!node)
1181                         break;
1182                 total_bytes += state->end - state->start + 1;
1183                 if (total_bytes >= max_bytes)
1184                         break;
1185         }
1186 out:
1187         spin_unlock(&tree->lock);
1188         return found;
1189 }
1190
1191 static noinline int __unlock_for_delalloc(struct inode *inode,
1192                                           struct page *locked_page,
1193                                           u64 start, u64 end)
1194 {
1195         int ret;
1196         struct page *pages[16];
1197         unsigned long index = start >> PAGE_CACHE_SHIFT;
1198         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1199         unsigned long nr_pages = end_index - index + 1;
1200         int i;
1201
1202         if (index == locked_page->index && end_index == index)
1203                 return 0;
1204
1205         while (nr_pages > 0) {
1206                 ret = find_get_pages_contig(inode->i_mapping, index,
1207                                      min_t(unsigned long, nr_pages,
1208                                      ARRAY_SIZE(pages)), pages);
1209                 for (i = 0; i < ret; i++) {
1210                         if (pages[i] != locked_page)
1211                                 unlock_page(pages[i]);
1212                         page_cache_release(pages[i]);
1213                 }
1214                 nr_pages -= ret;
1215                 index += ret;
1216                 cond_resched();
1217         }
1218         return 0;
1219 }
1220
1221 static noinline int lock_delalloc_pages(struct inode *inode,
1222                                         struct page *locked_page,
1223                                         u64 delalloc_start,
1224                                         u64 delalloc_end)
1225 {
1226         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1227         unsigned long start_index = index;
1228         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1229         unsigned long pages_locked = 0;
1230         struct page *pages[16];
1231         unsigned long nrpages;
1232         int ret;
1233         int i;
1234
1235         /* the caller is responsible for locking the start index */
1236         if (index == locked_page->index && index == end_index)
1237                 return 0;
1238
1239         /* skip the page at the start index */
1240         nrpages = end_index - index + 1;
1241         while (nrpages > 0) {
1242                 ret = find_get_pages_contig(inode->i_mapping, index,
1243                                      min_t(unsigned long,
1244                                      nrpages, ARRAY_SIZE(pages)), pages);
1245                 if (ret == 0) {
1246                         ret = -EAGAIN;
1247                         goto done;
1248                 }
1249                 /* now we have an array of pages, lock them all */
1250                 for (i = 0; i < ret; i++) {
1251                         /*
1252                          * the caller is taking responsibility for
1253                          * locked_page
1254                          */
1255                         if (pages[i] != locked_page) {
1256                                 lock_page(pages[i]);
1257                                 if (!PageDirty(pages[i]) ||
1258                                     pages[i]->mapping != inode->i_mapping) {
1259                                         ret = -EAGAIN;
1260                                         unlock_page(pages[i]);
1261                                         page_cache_release(pages[i]);
1262                                         goto done;
1263                                 }
1264                         }
1265                         page_cache_release(pages[i]);
1266                         pages_locked++;
1267                 }
1268                 nrpages -= ret;
1269                 index += ret;
1270                 cond_resched();
1271         }
1272         ret = 0;
1273 done:
1274         if (ret && pages_locked) {
1275                 __unlock_for_delalloc(inode, locked_page,
1276                               delalloc_start,
1277                               ((u64)(start_index + pages_locked - 1)) <<
1278                               PAGE_CACHE_SHIFT);
1279         }
1280         return ret;
1281 }
1282
1283 /*
1284  * find a contiguous range of bytes in the file marked as delalloc, not
1285  * more than 'max_bytes'.  start and end are used to return the range,
1286  *
1287  * 1 is returned if we find something, 0 if nothing was in the tree
1288  */
1289 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1290                                              struct extent_io_tree *tree,
1291                                              struct page *locked_page,
1292                                              u64 *start, u64 *end,
1293                                              u64 max_bytes)
1294 {
1295         u64 delalloc_start;
1296         u64 delalloc_end;
1297         u64 found;
1298         struct extent_state *cached_state = NULL;
1299         int ret;
1300         int loops = 0;
1301
1302 again:
1303         /* step one, find a bunch of delalloc bytes starting at start */
1304         delalloc_start = *start;
1305         delalloc_end = 0;
1306         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1307                                     max_bytes, &cached_state);
1308         if (!found || delalloc_end <= *start) {
1309                 *start = delalloc_start;
1310                 *end = delalloc_end;
1311                 free_extent_state(cached_state);
1312                 return found;
1313         }
1314
1315         /*
1316          * start comes from the offset of locked_page.  We have to lock
1317          * pages in order, so we can't process delalloc bytes before
1318          * locked_page
1319          */
1320         if (delalloc_start < *start)
1321                 delalloc_start = *start;
1322
1323         /*
1324          * make sure to limit the number of pages we try to lock down
1325          * if we're looping.
1326          */
1327         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1328                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1329
1330         /* step two, lock all the pages after the page that has start */
1331         ret = lock_delalloc_pages(inode, locked_page,
1332                                   delalloc_start, delalloc_end);
1333         if (ret == -EAGAIN) {
1334                 /* some of the pages are gone, lets avoid looping by
1335                  * shortening the size of the delalloc range we're searching
1336                  */
1337                 free_extent_state(cached_state);
1338                 if (!loops) {
1339                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1340                         max_bytes = PAGE_CACHE_SIZE - offset;
1341                         loops = 1;
1342                         goto again;
1343                 } else {
1344                         found = 0;
1345                         goto out_failed;
1346                 }
1347         }
1348         BUG_ON(ret);
1349
1350         /* step three, lock the state bits for the whole range */
1351         lock_extent_bits(tree, delalloc_start, delalloc_end,
1352                          0, &cached_state, GFP_NOFS);
1353
1354         /* then test to make sure it is all still delalloc */
1355         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1356                              EXTENT_DELALLOC, 1, cached_state);
1357         if (!ret) {
1358                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1359                                      &cached_state, GFP_NOFS);
1360                 __unlock_for_delalloc(inode, locked_page,
1361                               delalloc_start, delalloc_end);
1362                 cond_resched();
1363                 goto again;
1364         }
1365         free_extent_state(cached_state);
1366         *start = delalloc_start;
1367         *end = delalloc_end;
1368 out_failed:
1369         return found;
1370 }
1371
1372 int extent_clear_unlock_delalloc(struct inode *inode,
1373                                 struct extent_io_tree *tree,
1374                                 u64 start, u64 end, struct page *locked_page,
1375                                 unsigned long op)
1376 {
1377         int ret;
1378         struct page *pages[16];
1379         unsigned long index = start >> PAGE_CACHE_SHIFT;
1380         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381         unsigned long nr_pages = end_index - index + 1;
1382         int i;
1383         int clear_bits = 0;
1384
1385         if (op & EXTENT_CLEAR_UNLOCK)
1386                 clear_bits |= EXTENT_LOCKED;
1387         if (op & EXTENT_CLEAR_DIRTY)
1388                 clear_bits |= EXTENT_DIRTY;
1389
1390         if (op & EXTENT_CLEAR_DELALLOC)
1391                 clear_bits |= EXTENT_DELALLOC;
1392
1393         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1394         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1395                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1396                     EXTENT_SET_PRIVATE2)))
1397                 return 0;
1398
1399         while (nr_pages > 0) {
1400                 ret = find_get_pages_contig(inode->i_mapping, index,
1401                                      min_t(unsigned long,
1402                                      nr_pages, ARRAY_SIZE(pages)), pages);
1403                 for (i = 0; i < ret; i++) {
1404
1405                         if (op & EXTENT_SET_PRIVATE2)
1406                                 SetPagePrivate2(pages[i]);
1407
1408                         if (pages[i] == locked_page) {
1409                                 page_cache_release(pages[i]);
1410                                 continue;
1411                         }
1412                         if (op & EXTENT_CLEAR_DIRTY)
1413                                 clear_page_dirty_for_io(pages[i]);
1414                         if (op & EXTENT_SET_WRITEBACK)
1415                                 set_page_writeback(pages[i]);
1416                         if (op & EXTENT_END_WRITEBACK)
1417                                 end_page_writeback(pages[i]);
1418                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1419                                 unlock_page(pages[i]);
1420                         page_cache_release(pages[i]);
1421                 }
1422                 nr_pages -= ret;
1423                 index += ret;
1424                 cond_resched();
1425         }
1426         return 0;
1427 }
1428
1429 /*
1430  * count the number of bytes in the tree that have a given bit(s)
1431  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1432  * cached.  The total number found is returned.
1433  */
1434 u64 count_range_bits(struct extent_io_tree *tree,
1435                      u64 *start, u64 search_end, u64 max_bytes,
1436                      unsigned long bits)
1437 {
1438         struct rb_node *node;
1439         struct extent_state *state;
1440         u64 cur_start = *start;
1441         u64 total_bytes = 0;
1442         int found = 0;
1443
1444         if (search_end <= cur_start) {
1445                 WARN_ON(1);
1446                 return 0;
1447         }
1448
1449         spin_lock(&tree->lock);
1450         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1451                 total_bytes = tree->dirty_bytes;
1452                 goto out;
1453         }
1454         /*
1455          * this search will find all the extents that end after
1456          * our range starts.
1457          */
1458         node = tree_search(tree, cur_start);
1459         if (!node)
1460                 goto out;
1461
1462         while (1) {
1463                 state = rb_entry(node, struct extent_state, rb_node);
1464                 if (state->start > search_end)
1465                         break;
1466                 if (state->end >= cur_start && (state->state & bits)) {
1467                         total_bytes += min(search_end, state->end) + 1 -
1468                                        max(cur_start, state->start);
1469                         if (total_bytes >= max_bytes)
1470                                 break;
1471                         if (!found) {
1472                                 *start = state->start;
1473                                 found = 1;
1474                         }
1475                 }
1476                 node = rb_next(node);
1477                 if (!node)
1478                         break;
1479         }
1480 out:
1481         spin_unlock(&tree->lock);
1482         return total_bytes;
1483 }
1484
1485 /*
1486  * set the private field for a given byte offset in the tree.  If there isn't
1487  * an extent_state there already, this does nothing.
1488  */
1489 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1490 {
1491         struct rb_node *node;
1492         struct extent_state *state;
1493         int ret = 0;
1494
1495         spin_lock(&tree->lock);
1496         /*
1497          * this search will find all the extents that end after
1498          * our range starts.
1499          */
1500         node = tree_search(tree, start);
1501         if (!node) {
1502                 ret = -ENOENT;
1503                 goto out;
1504         }
1505         state = rb_entry(node, struct extent_state, rb_node);
1506         if (state->start != start) {
1507                 ret = -ENOENT;
1508                 goto out;
1509         }
1510         state->private = private;
1511 out:
1512         spin_unlock(&tree->lock);
1513         return ret;
1514 }
1515
1516 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1517 {
1518         struct rb_node *node;
1519         struct extent_state *state;
1520         int ret = 0;
1521
1522         spin_lock(&tree->lock);
1523         /*
1524          * this search will find all the extents that end after
1525          * our range starts.
1526          */
1527         node = tree_search(tree, start);
1528         if (!node) {
1529                 ret = -ENOENT;
1530                 goto out;
1531         }
1532         state = rb_entry(node, struct extent_state, rb_node);
1533         if (state->start != start) {
1534                 ret = -ENOENT;
1535                 goto out;
1536         }
1537         *private = state->private;
1538 out:
1539         spin_unlock(&tree->lock);
1540         return ret;
1541 }
1542
1543 /*
1544  * searches a range in the state tree for a given mask.
1545  * If 'filled' == 1, this returns 1 only if every extent in the tree
1546  * has the bits set.  Otherwise, 1 is returned if any bit in the
1547  * range is found set.
1548  */
1549 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1550                    int bits, int filled, struct extent_state *cached)
1551 {
1552         struct extent_state *state = NULL;
1553         struct rb_node *node;
1554         int bitset = 0;
1555
1556         spin_lock(&tree->lock);
1557         if (cached && cached->tree && cached->start == start)
1558                 node = &cached->rb_node;
1559         else
1560                 node = tree_search(tree, start);
1561         while (node && start <= end) {
1562                 state = rb_entry(node, struct extent_state, rb_node);
1563
1564                 if (filled && state->start > start) {
1565                         bitset = 0;
1566                         break;
1567                 }
1568
1569                 if (state->start > end)
1570                         break;
1571
1572                 if (state->state & bits) {
1573                         bitset = 1;
1574                         if (!filled)
1575                                 break;
1576                 } else if (filled) {
1577                         bitset = 0;
1578                         break;
1579                 }
1580
1581                 if (state->end == (u64)-1)
1582                         break;
1583
1584                 start = state->end + 1;
1585                 if (start > end)
1586                         break;
1587                 node = rb_next(node);
1588                 if (!node) {
1589                         if (filled)
1590                                 bitset = 0;
1591                         break;
1592                 }
1593         }
1594         spin_unlock(&tree->lock);
1595         return bitset;
1596 }
1597
1598 /*
1599  * helper function to set a given page up to date if all the
1600  * extents in the tree for that page are up to date
1601  */
1602 static int check_page_uptodate(struct extent_io_tree *tree,
1603                                struct page *page)
1604 {
1605         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1606         u64 end = start + PAGE_CACHE_SIZE - 1;
1607         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1608                 SetPageUptodate(page);
1609         return 0;
1610 }
1611
1612 /*
1613  * helper function to unlock a page if all the extents in the tree
1614  * for that page are unlocked
1615  */
1616 static int check_page_locked(struct extent_io_tree *tree,
1617                              struct page *page)
1618 {
1619         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1620         u64 end = start + PAGE_CACHE_SIZE - 1;
1621         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1622                 unlock_page(page);
1623         return 0;
1624 }
1625
1626 /*
1627  * helper function to end page writeback if all the extents
1628  * in the tree for that page are done with writeback
1629  */
1630 static int check_page_writeback(struct extent_io_tree *tree,
1631                              struct page *page)
1632 {
1633         end_page_writeback(page);
1634         return 0;
1635 }
1636
1637 /* lots and lots of room for performance fixes in the end_bio funcs */
1638
1639 /*
1640  * after a writepage IO is done, we need to:
1641  * clear the uptodate bits on error
1642  * clear the writeback bits in the extent tree for this IO
1643  * end_page_writeback if the page has no more pending IO
1644  *
1645  * Scheduling is not allowed, so the extent state tree is expected
1646  * to have one and only one object corresponding to this IO.
1647  */
1648 static void end_bio_extent_writepage(struct bio *bio, int err)
1649 {
1650         int uptodate = err == 0;
1651         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1652         struct extent_io_tree *tree;
1653         u64 start;
1654         u64 end;
1655         int whole_page;
1656         int ret;
1657
1658         do {
1659                 struct page *page = bvec->bv_page;
1660                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1661
1662                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1663                          bvec->bv_offset;
1664                 end = start + bvec->bv_len - 1;
1665
1666                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1667                         whole_page = 1;
1668                 else
1669                         whole_page = 0;
1670
1671                 if (--bvec >= bio->bi_io_vec)
1672                         prefetchw(&bvec->bv_page->flags);
1673                 if (tree->ops && tree->ops->writepage_end_io_hook) {
1674                         ret = tree->ops->writepage_end_io_hook(page, start,
1675                                                        end, NULL, uptodate);
1676                         if (ret)
1677                                 uptodate = 0;
1678                 }
1679
1680                 if (!uptodate && tree->ops &&
1681                     tree->ops->writepage_io_failed_hook) {
1682                         ret = tree->ops->writepage_io_failed_hook(bio, page,
1683                                                          start, end, NULL);
1684                         if (ret == 0) {
1685                                 uptodate = (err == 0);
1686                                 continue;
1687                         }
1688                 }
1689
1690                 if (!uptodate) {
1691                         clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1692                         ClearPageUptodate(page);
1693                         SetPageError(page);
1694                 }
1695
1696                 if (whole_page)
1697                         end_page_writeback(page);
1698                 else
1699                         check_page_writeback(tree, page);
1700         } while (bvec >= bio->bi_io_vec);
1701
1702         bio_put(bio);
1703 }
1704
1705 /*
1706  * after a readpage IO is done, we need to:
1707  * clear the uptodate bits on error
1708  * set the uptodate bits if things worked
1709  * set the page up to date if all extents in the tree are uptodate
1710  * clear the lock bit in the extent tree
1711  * unlock the page if there are no other extents locked for it
1712  *
1713  * Scheduling is not allowed, so the extent state tree is expected
1714  * to have one and only one object corresponding to this IO.
1715  */
1716 static void end_bio_extent_readpage(struct bio *bio, int err)
1717 {
1718         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1719         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1720         struct bio_vec *bvec = bio->bi_io_vec;
1721         struct extent_io_tree *tree;
1722         u64 start;
1723         u64 end;
1724         int whole_page;
1725         int ret;
1726
1727         if (err)
1728                 uptodate = 0;
1729
1730         do {
1731                 struct page *page = bvec->bv_page;
1732                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1733
1734                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1735                         bvec->bv_offset;
1736                 end = start + bvec->bv_len - 1;
1737
1738                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1739                         whole_page = 1;
1740                 else
1741                         whole_page = 0;
1742
1743                 if (++bvec <= bvec_end)
1744                         prefetchw(&bvec->bv_page->flags);
1745
1746                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1747                         ret = tree->ops->readpage_end_io_hook(page, start, end,
1748                                                               NULL);
1749                         if (ret)
1750                                 uptodate = 0;
1751                 }
1752                 if (!uptodate && tree->ops &&
1753                     tree->ops->readpage_io_failed_hook) {
1754                         ret = tree->ops->readpage_io_failed_hook(bio, page,
1755                                                          start, end, NULL);
1756                         if (ret == 0) {
1757                                 uptodate =
1758                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
1759                                 if (err)
1760                                         uptodate = 0;
1761                                 continue;
1762                         }
1763                 }
1764
1765                 if (uptodate) {
1766                         set_extent_uptodate(tree, start, end,
1767                                             GFP_ATOMIC);
1768                 }
1769                 unlock_extent(tree, start, end, GFP_ATOMIC);
1770
1771                 if (whole_page) {
1772                         if (uptodate) {
1773                                 SetPageUptodate(page);
1774                         } else {
1775                                 ClearPageUptodate(page);
1776                                 SetPageError(page);
1777                         }
1778                         unlock_page(page);
1779                 } else {
1780                         if (uptodate) {
1781                                 check_page_uptodate(tree, page);
1782                         } else {
1783                                 ClearPageUptodate(page);
1784                                 SetPageError(page);
1785                         }
1786                         check_page_locked(tree, page);
1787                 }
1788         } while (bvec <= bvec_end);
1789
1790         bio_put(bio);
1791 }
1792
1793 /*
1794  * IO done from prepare_write is pretty simple, we just unlock
1795  * the structs in the extent tree when done, and set the uptodate bits
1796  * as appropriate.
1797  */
1798 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1799 {
1800         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1801         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1802         struct extent_io_tree *tree;
1803         u64 start;
1804         u64 end;
1805
1806         do {
1807                 struct page *page = bvec->bv_page;
1808                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1809
1810                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1811                         bvec->bv_offset;
1812                 end = start + bvec->bv_len - 1;
1813
1814                 if (--bvec >= bio->bi_io_vec)
1815                         prefetchw(&bvec->bv_page->flags);
1816
1817                 if (uptodate) {
1818                         set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1819                 } else {
1820                         ClearPageUptodate(page);
1821                         SetPageError(page);
1822                 }
1823
1824                 unlock_extent(tree, start, end, GFP_ATOMIC);
1825
1826         } while (bvec >= bio->bi_io_vec);
1827
1828         bio_put(bio);
1829 }
1830
1831 static struct bio *
1832 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1833                  gfp_t gfp_flags)
1834 {
1835         struct bio *bio;
1836
1837         bio = bio_alloc(gfp_flags, nr_vecs);
1838
1839         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1840                 while (!bio && (nr_vecs /= 2))
1841                         bio = bio_alloc(gfp_flags, nr_vecs);
1842         }
1843
1844         if (bio) {
1845                 bio->bi_size = 0;
1846                 bio->bi_bdev = bdev;
1847                 bio->bi_sector = first_sector;
1848         }
1849         return bio;
1850 }
1851
1852 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1853                           unsigned long bio_flags)
1854 {
1855         int ret = 0;
1856         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1857         struct page *page = bvec->bv_page;
1858         struct extent_io_tree *tree = bio->bi_private;
1859         u64 start;
1860
1861         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1862
1863         bio->bi_private = NULL;
1864
1865         bio_get(bio);
1866
1867         if (tree->ops && tree->ops->submit_bio_hook)
1868                 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1869                                            mirror_num, bio_flags, start);
1870         else
1871                 submit_bio(rw, bio);
1872         if (bio_flagged(bio, BIO_EOPNOTSUPP))
1873                 ret = -EOPNOTSUPP;
1874         bio_put(bio);
1875         return ret;
1876 }
1877
1878 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1879                               struct page *page, sector_t sector,
1880                               size_t size, unsigned long offset,
1881                               struct block_device *bdev,
1882                               struct bio **bio_ret,
1883                               unsigned long max_pages,
1884                               bio_end_io_t end_io_func,
1885                               int mirror_num,
1886                               unsigned long prev_bio_flags,
1887                               unsigned long bio_flags)
1888 {
1889         int ret = 0;
1890         struct bio *bio;
1891         int nr;
1892         int contig = 0;
1893         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1894         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1895         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1896
1897         if (bio_ret && *bio_ret) {
1898                 bio = *bio_ret;
1899                 if (old_compressed)
1900                         contig = bio->bi_sector == sector;
1901                 else
1902                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
1903                                 sector;
1904
1905                 if (prev_bio_flags != bio_flags || !contig ||
1906                     (tree->ops && tree->ops->merge_bio_hook &&
1907                      tree->ops->merge_bio_hook(page, offset, page_size, bio,
1908                                                bio_flags)) ||
1909                     bio_add_page(bio, page, page_size, offset) < page_size) {
1910                         ret = submit_one_bio(rw, bio, mirror_num,
1911                                              prev_bio_flags);
1912                         bio = NULL;
1913                 } else {
1914                         return 0;
1915                 }
1916         }
1917         if (this_compressed)
1918                 nr = BIO_MAX_PAGES;
1919         else
1920                 nr = bio_get_nr_vecs(bdev);
1921
1922         bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1923
1924         bio_add_page(bio, page, page_size, offset);
1925         bio->bi_end_io = end_io_func;
1926         bio->bi_private = tree;
1927
1928         if (bio_ret)
1929                 *bio_ret = bio;
1930         else
1931                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1932
1933         return ret;
1934 }
1935
1936 void set_page_extent_mapped(struct page *page)
1937 {
1938         if (!PagePrivate(page)) {
1939                 SetPagePrivate(page);
1940                 page_cache_get(page);
1941                 set_page_private(page, EXTENT_PAGE_PRIVATE);
1942         }
1943 }
1944
1945 static void set_page_extent_head(struct page *page, unsigned long len)
1946 {
1947         set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1948 }
1949
1950 /*
1951  * basic readpage implementation.  Locked extent state structs are inserted
1952  * into the tree that are removed when the IO is done (by the end_io
1953  * handlers)
1954  */
1955 static int __extent_read_full_page(struct extent_io_tree *tree,
1956                                    struct page *page,
1957                                    get_extent_t *get_extent,
1958                                    struct bio **bio, int mirror_num,
1959                                    unsigned long *bio_flags)
1960 {
1961         struct inode *inode = page->mapping->host;
1962         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1963         u64 page_end = start + PAGE_CACHE_SIZE - 1;
1964         u64 end;
1965         u64 cur = start;
1966         u64 extent_offset;
1967         u64 last_byte = i_size_read(inode);
1968         u64 block_start;
1969         u64 cur_end;
1970         sector_t sector;
1971         struct extent_map *em;
1972         struct block_device *bdev;
1973         struct btrfs_ordered_extent *ordered;
1974         int ret;
1975         int nr = 0;
1976         size_t page_offset = 0;
1977         size_t iosize;
1978         size_t disk_io_size;
1979         size_t blocksize = inode->i_sb->s_blocksize;
1980         unsigned long this_bio_flag = 0;
1981
1982         set_page_extent_mapped(page);
1983
1984         end = page_end;
1985         while (1) {
1986                 lock_extent(tree, start, end, GFP_NOFS);
1987                 ordered = btrfs_lookup_ordered_extent(inode, start);
1988                 if (!ordered)
1989                         break;
1990                 unlock_extent(tree, start, end, GFP_NOFS);
1991                 btrfs_start_ordered_extent(inode, ordered, 1);
1992                 btrfs_put_ordered_extent(ordered);
1993         }
1994
1995         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1996                 char *userpage;
1997                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1998
1999                 if (zero_offset) {
2000                         iosize = PAGE_CACHE_SIZE - zero_offset;
2001                         userpage = kmap_atomic(page, KM_USER0);
2002                         memset(userpage + zero_offset, 0, iosize);
2003                         flush_dcache_page(page);
2004                         kunmap_atomic(userpage, KM_USER0);
2005                 }
2006         }
2007         while (cur <= end) {
2008                 if (cur >= last_byte) {
2009                         char *userpage;
2010                         iosize = PAGE_CACHE_SIZE - page_offset;
2011                         userpage = kmap_atomic(page, KM_USER0);
2012                         memset(userpage + page_offset, 0, iosize);
2013                         flush_dcache_page(page);
2014                         kunmap_atomic(userpage, KM_USER0);
2015                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2016                                             GFP_NOFS);
2017                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2018                         break;
2019                 }
2020                 em = get_extent(inode, page, page_offset, cur,
2021                                 end - cur + 1, 0);
2022                 if (IS_ERR(em) || !em) {
2023                         SetPageError(page);
2024                         unlock_extent(tree, cur, end, GFP_NOFS);
2025                         break;
2026                 }
2027                 extent_offset = cur - em->start;
2028                 BUG_ON(extent_map_end(em) <= cur);
2029                 BUG_ON(end < cur);
2030
2031                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2032                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2033
2034                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2035                 cur_end = min(extent_map_end(em) - 1, end);
2036                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2037                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2038                         disk_io_size = em->block_len;
2039                         sector = em->block_start >> 9;
2040                 } else {
2041                         sector = (em->block_start + extent_offset) >> 9;
2042                         disk_io_size = iosize;
2043                 }
2044                 bdev = em->bdev;
2045                 block_start = em->block_start;
2046                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2047                         block_start = EXTENT_MAP_HOLE;
2048                 free_extent_map(em);
2049                 em = NULL;
2050
2051                 /* we've found a hole, just zero and go on */
2052                 if (block_start == EXTENT_MAP_HOLE) {
2053                         char *userpage;
2054                         userpage = kmap_atomic(page, KM_USER0);
2055                         memset(userpage + page_offset, 0, iosize);
2056                         flush_dcache_page(page);
2057                         kunmap_atomic(userpage, KM_USER0);
2058
2059                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2060                                             GFP_NOFS);
2061                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2062                         cur = cur + iosize;
2063                         page_offset += iosize;
2064                         continue;
2065                 }
2066                 /* the get_extent function already copied into the page */
2067                 if (test_range_bit(tree, cur, cur_end,
2068                                    EXTENT_UPTODATE, 1, NULL)) {
2069                         check_page_uptodate(tree, page);
2070                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2071                         cur = cur + iosize;
2072                         page_offset += iosize;
2073                         continue;
2074                 }
2075                 /* we have an inline extent but it didn't get marked up
2076                  * to date.  Error out
2077                  */
2078                 if (block_start == EXTENT_MAP_INLINE) {
2079                         SetPageError(page);
2080                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2081                         cur = cur + iosize;
2082                         page_offset += iosize;
2083                         continue;
2084                 }
2085
2086                 ret = 0;
2087                 if (tree->ops && tree->ops->readpage_io_hook) {
2088                         ret = tree->ops->readpage_io_hook(page, cur,
2089                                                           cur + iosize - 1);
2090                 }
2091                 if (!ret) {
2092                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2093                         pnr -= page->index;
2094                         ret = submit_extent_page(READ, tree, page,
2095                                          sector, disk_io_size, page_offset,
2096                                          bdev, bio, pnr,
2097                                          end_bio_extent_readpage, mirror_num,
2098                                          *bio_flags,
2099                                          this_bio_flag);
2100                         nr++;
2101                         *bio_flags = this_bio_flag;
2102                 }
2103                 if (ret)
2104                         SetPageError(page);
2105                 cur = cur + iosize;
2106                 page_offset += iosize;
2107         }
2108         if (!nr) {
2109                 if (!PageError(page))
2110                         SetPageUptodate(page);
2111                 unlock_page(page);
2112         }
2113         return 0;
2114 }
2115
2116 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2117                             get_extent_t *get_extent)
2118 {
2119         struct bio *bio = NULL;
2120         unsigned long bio_flags = 0;
2121         int ret;
2122
2123         ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2124                                       &bio_flags);
2125         if (bio)
2126                 submit_one_bio(READ, bio, 0, bio_flags);
2127         return ret;
2128 }
2129
2130 static noinline void update_nr_written(struct page *page,
2131                                       struct writeback_control *wbc,
2132                                       unsigned long nr_written)
2133 {
2134         wbc->nr_to_write -= nr_written;
2135         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2136             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2137                 page->mapping->writeback_index = page->index + nr_written;
2138 }
2139
2140 /*
2141  * the writepage semantics are similar to regular writepage.  extent
2142  * records are inserted to lock ranges in the tree, and as dirty areas
2143  * are found, they are marked writeback.  Then the lock bits are removed
2144  * and the end_io handler clears the writeback ranges
2145  */
2146 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2147                               void *data)
2148 {
2149         struct inode *inode = page->mapping->host;
2150         struct extent_page_data *epd = data;
2151         struct extent_io_tree *tree = epd->tree;
2152         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2153         u64 delalloc_start;
2154         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2155         u64 end;
2156         u64 cur = start;
2157         u64 extent_offset;
2158         u64 last_byte = i_size_read(inode);
2159         u64 block_start;
2160         u64 iosize;
2161         sector_t sector;
2162         struct extent_state *cached_state = NULL;
2163         struct extent_map *em;
2164         struct block_device *bdev;
2165         int ret;
2166         int nr = 0;
2167         size_t pg_offset = 0;
2168         size_t blocksize;
2169         loff_t i_size = i_size_read(inode);
2170         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2171         u64 nr_delalloc;
2172         u64 delalloc_end;
2173         int page_started;
2174         int compressed;
2175         int write_flags;
2176         unsigned long nr_written = 0;
2177
2178         if (wbc->sync_mode == WB_SYNC_ALL)
2179                 write_flags = WRITE_SYNC_PLUG;
2180         else
2181                 write_flags = WRITE;
2182
2183         WARN_ON(!PageLocked(page));
2184         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2185         if (page->index > end_index ||
2186            (page->index == end_index && !pg_offset)) {
2187                 page->mapping->a_ops->invalidatepage(page, 0);
2188                 unlock_page(page);
2189                 return 0;
2190         }
2191
2192         if (page->index == end_index) {
2193                 char *userpage;
2194
2195                 userpage = kmap_atomic(page, KM_USER0);
2196                 memset(userpage + pg_offset, 0,
2197                        PAGE_CACHE_SIZE - pg_offset);
2198                 kunmap_atomic(userpage, KM_USER0);
2199                 flush_dcache_page(page);
2200         }
2201         pg_offset = 0;
2202
2203         set_page_extent_mapped(page);
2204
2205         delalloc_start = start;
2206         delalloc_end = 0;
2207         page_started = 0;
2208         if (!epd->extent_locked) {
2209                 u64 delalloc_to_write = 0;
2210                 /*
2211                  * make sure the wbc mapping index is at least updated
2212                  * to this page.
2213                  */
2214                 update_nr_written(page, wbc, 0);
2215
2216                 while (delalloc_end < page_end) {
2217                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2218                                                        page,
2219                                                        &delalloc_start,
2220                                                        &delalloc_end,
2221                                                        128 * 1024 * 1024);
2222                         if (nr_delalloc == 0) {
2223                                 delalloc_start = delalloc_end + 1;
2224                                 continue;
2225                         }
2226                         tree->ops->fill_delalloc(inode, page, delalloc_start,
2227                                                  delalloc_end, &page_started,
2228                                                  &nr_written);
2229                         /*
2230                          * delalloc_end is already one less than the total
2231                          * length, so we don't subtract one from
2232                          * PAGE_CACHE_SIZE
2233                          */
2234                         delalloc_to_write += (delalloc_end - delalloc_start +
2235                                               PAGE_CACHE_SIZE) >>
2236                                               PAGE_CACHE_SHIFT;
2237                         delalloc_start = delalloc_end + 1;
2238                 }
2239                 if (wbc->nr_to_write < delalloc_to_write) {
2240                         int thresh = 8192;
2241
2242                         if (delalloc_to_write < thresh * 2)
2243                                 thresh = delalloc_to_write;
2244                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2245                                                  thresh);
2246                 }
2247
2248                 /* did the fill delalloc function already unlock and start
2249                  * the IO?
2250                  */
2251                 if (page_started) {
2252                         ret = 0;
2253                         /*
2254                          * we've unlocked the page, so we can't update
2255                          * the mapping's writeback index, just update
2256                          * nr_to_write.
2257                          */
2258                         wbc->nr_to_write -= nr_written;
2259                         goto done_unlocked;
2260                 }
2261         }
2262         if (tree->ops && tree->ops->writepage_start_hook) {
2263                 ret = tree->ops->writepage_start_hook(page, start,
2264                                                       page_end);
2265                 if (ret == -EAGAIN) {
2266                         redirty_page_for_writepage(wbc, page);
2267                         update_nr_written(page, wbc, nr_written);
2268                         unlock_page(page);
2269                         ret = 0;
2270                         goto done_unlocked;
2271                 }
2272         }
2273
2274         /*
2275          * we don't want to touch the inode after unlocking the page,
2276          * so we update the mapping writeback index now
2277          */
2278         update_nr_written(page, wbc, nr_written + 1);
2279
2280         end = page_end;
2281         if (last_byte <= start) {
2282                 if (tree->ops && tree->ops->writepage_end_io_hook)
2283                         tree->ops->writepage_end_io_hook(page, start,
2284                                                          page_end, NULL, 1);
2285                 goto done;
2286         }
2287
2288         blocksize = inode->i_sb->s_blocksize;
2289
2290         while (cur <= end) {
2291                 if (cur >= last_byte) {
2292                         if (tree->ops && tree->ops->writepage_end_io_hook)
2293                                 tree->ops->writepage_end_io_hook(page, cur,
2294                                                          page_end, NULL, 1);
2295                         break;
2296                 }
2297                 em = epd->get_extent(inode, page, pg_offset, cur,
2298                                      end - cur + 1, 1);
2299                 if (IS_ERR(em) || !em) {
2300                         SetPageError(page);
2301                         break;
2302                 }
2303
2304                 extent_offset = cur - em->start;
2305                 BUG_ON(extent_map_end(em) <= cur);
2306                 BUG_ON(end < cur);
2307                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2308                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2309                 sector = (em->block_start + extent_offset) >> 9;
2310                 bdev = em->bdev;
2311                 block_start = em->block_start;
2312                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2313                 free_extent_map(em);
2314                 em = NULL;
2315
2316                 /*
2317                  * compressed and inline extents are written through other
2318                  * paths in the FS
2319                  */
2320                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2321                     block_start == EXTENT_MAP_INLINE) {
2322                         /*
2323                          * end_io notification does not happen here for
2324                          * compressed extents
2325                          */
2326                         if (!compressed && tree->ops &&
2327                             tree->ops->writepage_end_io_hook)
2328                                 tree->ops->writepage_end_io_hook(page, cur,
2329                                                          cur + iosize - 1,
2330                                                          NULL, 1);
2331                         else if (compressed) {
2332                                 /* we don't want to end_page_writeback on
2333                                  * a compressed extent.  this happens
2334                                  * elsewhere
2335                                  */
2336                                 nr++;
2337                         }
2338
2339                         cur += iosize;
2340                         pg_offset += iosize;
2341                         continue;
2342                 }
2343                 /* leave this out until we have a page_mkwrite call */
2344                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2345                                    EXTENT_DIRTY, 0, NULL)) {
2346                         cur = cur + iosize;
2347                         pg_offset += iosize;
2348                         continue;
2349                 }
2350
2351                 if (tree->ops && tree->ops->writepage_io_hook) {
2352                         ret = tree->ops->writepage_io_hook(page, cur,
2353                                                 cur + iosize - 1);
2354                 } else {
2355                         ret = 0;
2356                 }
2357                 if (ret) {
2358                         SetPageError(page);
2359                 } else {
2360                         unsigned long max_nr = end_index + 1;
2361
2362                         set_range_writeback(tree, cur, cur + iosize - 1);
2363                         if (!PageWriteback(page)) {
2364                                 printk(KERN_ERR "btrfs warning page %lu not "
2365                                        "writeback, cur %llu end %llu\n",
2366                                        page->index, (unsigned long long)cur,
2367                                        (unsigned long long)end);
2368                         }
2369
2370                         ret = submit_extent_page(write_flags, tree, page,
2371                                                  sector, iosize, pg_offset,
2372                                                  bdev, &epd->bio, max_nr,
2373                                                  end_bio_extent_writepage,
2374                                                  0, 0, 0);
2375                         if (ret)
2376                                 SetPageError(page);
2377                 }
2378                 cur = cur + iosize;
2379                 pg_offset += iosize;
2380                 nr++;
2381         }
2382 done:
2383         if (nr == 0) {
2384                 /* make sure the mapping tag for page dirty gets cleared */
2385                 set_page_writeback(page);
2386                 end_page_writeback(page);
2387         }
2388         unlock_page(page);
2389
2390 done_unlocked:
2391
2392         /* drop our reference on any cached states */
2393         free_extent_state(cached_state);
2394         return 0;
2395 }
2396
2397 /**
2398  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2399  * @mapping: address space structure to write
2400  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2401  * @writepage: function called for each page
2402  * @data: data passed to writepage function
2403  *
2404  * If a page is already under I/O, write_cache_pages() skips it, even
2405  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2406  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2407  * and msync() need to guarantee that all the data which was dirty at the time
2408  * the call was made get new I/O started against them.  If wbc->sync_mode is
2409  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2410  * existing IO to complete.
2411  */
2412 static int extent_write_cache_pages(struct extent_io_tree *tree,
2413                              struct address_space *mapping,
2414                              struct writeback_control *wbc,
2415                              writepage_t writepage, void *data,
2416                              void (*flush_fn)(void *))
2417 {
2418         int ret = 0;
2419         int done = 0;
2420         int nr_to_write_done = 0;
2421         struct pagevec pvec;
2422         int nr_pages;
2423         pgoff_t index;
2424         pgoff_t end;            /* Inclusive */
2425         int scanned = 0;
2426
2427         pagevec_init(&pvec, 0);
2428         if (wbc->range_cyclic) {
2429                 index = mapping->writeback_index; /* Start from prev offset */
2430                 end = -1;
2431         } else {
2432                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2433                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2434                 scanned = 1;
2435         }
2436 retry:
2437         while (!done && !nr_to_write_done && (index <= end) &&
2438                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2439                               PAGECACHE_TAG_DIRTY, min(end - index,
2440                                   (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2441                 unsigned i;
2442
2443                 scanned = 1;
2444                 for (i = 0; i < nr_pages; i++) {
2445                         struct page *page = pvec.pages[i];
2446
2447                         /*
2448                          * At this point we hold neither mapping->tree_lock nor
2449                          * lock on the page itself: the page may be truncated or
2450                          * invalidated (changing page->mapping to NULL), or even
2451                          * swizzled back from swapper_space to tmpfs file
2452                          * mapping
2453                          */
2454                         if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2455                                 tree->ops->write_cache_pages_lock_hook(page);
2456                         else
2457                                 lock_page(page);
2458
2459                         if (unlikely(page->mapping != mapping)) {
2460                                 unlock_page(page);
2461                                 continue;
2462                         }
2463
2464                         if (!wbc->range_cyclic && page->index > end) {
2465                                 done = 1;
2466                                 unlock_page(page);
2467                                 continue;
2468                         }
2469
2470                         if (wbc->sync_mode != WB_SYNC_NONE) {
2471                                 if (PageWriteback(page))
2472                                         flush_fn(data);
2473                                 wait_on_page_writeback(page);
2474                         }
2475
2476                         if (PageWriteback(page) ||
2477                             !clear_page_dirty_for_io(page)) {
2478                                 unlock_page(page);
2479                                 continue;
2480                         }
2481
2482                         ret = (*writepage)(page, wbc, data);
2483
2484                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2485                                 unlock_page(page);
2486                                 ret = 0;
2487                         }
2488                         if (ret)
2489                                 done = 1;
2490
2491                         /*
2492                          * the filesystem may choose to bump up nr_to_write.
2493                          * We have to make sure to honor the new nr_to_write
2494                          * at any time
2495                          */
2496                         nr_to_write_done = wbc->nr_to_write <= 0;
2497                 }
2498                 pagevec_release(&pvec);
2499                 cond_resched();
2500         }
2501         if (!scanned && !done) {
2502                 /*
2503                  * We hit the last page and there is more work to be done: wrap
2504                  * back to the start of the file
2505                  */
2506                 scanned = 1;
2507                 index = 0;
2508                 goto retry;
2509         }
2510         return ret;
2511 }
2512
2513 static void flush_epd_write_bio(struct extent_page_data *epd)
2514 {
2515         if (epd->bio) {
2516                 if (epd->sync_io)
2517                         submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2518                 else
2519                         submit_one_bio(WRITE, epd->bio, 0, 0);
2520                 epd->bio = NULL;
2521         }
2522 }
2523
2524 static noinline void flush_write_bio(void *data)
2525 {
2526         struct extent_page_data *epd = data;
2527         flush_epd_write_bio(epd);
2528 }
2529
2530 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2531                           get_extent_t *get_extent,
2532                           struct writeback_control *wbc)
2533 {
2534         int ret;
2535         struct address_space *mapping = page->mapping;
2536         struct extent_page_data epd = {
2537                 .bio = NULL,
2538                 .tree = tree,
2539                 .get_extent = get_extent,
2540                 .extent_locked = 0,
2541                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2542         };
2543         struct writeback_control wbc_writepages = {
2544                 .sync_mode      = wbc->sync_mode,
2545                 .older_than_this = NULL,
2546                 .nr_to_write    = 64,
2547                 .range_start    = page_offset(page) + PAGE_CACHE_SIZE,
2548                 .range_end      = (loff_t)-1,
2549         };
2550
2551         ret = __extent_writepage(page, wbc, &epd);
2552
2553         extent_write_cache_pages(tree, mapping, &wbc_writepages,
2554                                  __extent_writepage, &epd, flush_write_bio);
2555         flush_epd_write_bio(&epd);
2556         return ret;
2557 }
2558
2559 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2560                               u64 start, u64 end, get_extent_t *get_extent,
2561                               int mode)
2562 {
2563         int ret = 0;
2564         struct address_space *mapping = inode->i_mapping;
2565         struct page *page;
2566         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2567                 PAGE_CACHE_SHIFT;
2568
2569         struct extent_page_data epd = {
2570                 .bio = NULL,
2571                 .tree = tree,
2572                 .get_extent = get_extent,
2573                 .extent_locked = 1,
2574                 .sync_io = mode == WB_SYNC_ALL,
2575         };
2576         struct writeback_control wbc_writepages = {
2577                 .sync_mode      = mode,
2578                 .older_than_this = NULL,
2579                 .nr_to_write    = nr_pages * 2,
2580                 .range_start    = start,
2581                 .range_end      = end + 1,
2582         };
2583
2584         while (start <= end) {
2585                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2586                 if (clear_page_dirty_for_io(page))
2587                         ret = __extent_writepage(page, &wbc_writepages, &epd);
2588                 else {
2589                         if (tree->ops && tree->ops->writepage_end_io_hook)
2590                                 tree->ops->writepage_end_io_hook(page, start,
2591                                                  start + PAGE_CACHE_SIZE - 1,
2592                                                  NULL, 1);
2593                         unlock_page(page);
2594                 }
2595                 page_cache_release(page);
2596                 start += PAGE_CACHE_SIZE;
2597         }
2598
2599         flush_epd_write_bio(&epd);
2600         return ret;
2601 }
2602
2603 int extent_writepages(struct extent_io_tree *tree,
2604                       struct address_space *mapping,
2605                       get_extent_t *get_extent,
2606                       struct writeback_control *wbc)
2607 {
2608         int ret = 0;
2609         struct extent_page_data epd = {
2610                 .bio = NULL,
2611                 .tree = tree,
2612                 .get_extent = get_extent,
2613                 .extent_locked = 0,
2614                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2615         };
2616
2617         ret = extent_write_cache_pages(tree, mapping, wbc,
2618                                        __extent_writepage, &epd,
2619                                        flush_write_bio);
2620         flush_epd_write_bio(&epd);
2621         return ret;
2622 }
2623
2624 int extent_readpages(struct extent_io_tree *tree,
2625                      struct address_space *mapping,
2626                      struct list_head *pages, unsigned nr_pages,
2627                      get_extent_t get_extent)
2628 {
2629         struct bio *bio = NULL;
2630         unsigned page_idx;
2631         unsigned long bio_flags = 0;
2632
2633         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2634                 struct page *page = list_entry(pages->prev, struct page, lru);
2635
2636                 prefetchw(&page->flags);
2637                 list_del(&page->lru);
2638                 if (!add_to_page_cache_lru(page, mapping,
2639                                         page->index, GFP_KERNEL)) {
2640                         __extent_read_full_page(tree, page, get_extent,
2641                                                 &bio, 0, &bio_flags);
2642                 }
2643                 page_cache_release(page);
2644         }
2645         BUG_ON(!list_empty(pages));
2646         if (bio)
2647                 submit_one_bio(READ, bio, 0, bio_flags);
2648         return 0;
2649 }
2650
2651 /*
2652  * basic invalidatepage code, this waits on any locked or writeback
2653  * ranges corresponding to the page, and then deletes any extent state
2654  * records from the tree
2655  */
2656 int extent_invalidatepage(struct extent_io_tree *tree,
2657                           struct page *page, unsigned long offset)
2658 {
2659         struct extent_state *cached_state = NULL;
2660         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2661         u64 end = start + PAGE_CACHE_SIZE - 1;
2662         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2663
2664         start += (offset + blocksize - 1) & ~(blocksize - 1);
2665         if (start > end)
2666                 return 0;
2667
2668         lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2669         wait_on_page_writeback(page);
2670         clear_extent_bit(tree, start, end,
2671                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2672                          EXTENT_DO_ACCOUNTING,
2673                          1, 1, &cached_state, GFP_NOFS);
2674         return 0;
2675 }
2676
2677 /*
2678  * simple commit_write call, set_range_dirty is used to mark both
2679  * the pages and the extent records as dirty
2680  */
2681 int extent_commit_write(struct extent_io_tree *tree,
2682                         struct inode *inode, struct page *page,
2683                         unsigned from, unsigned to)
2684 {
2685         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2686
2687         set_page_extent_mapped(page);
2688         set_page_dirty(page);
2689
2690         if (pos > inode->i_size) {
2691                 i_size_write(inode, pos);
2692                 mark_inode_dirty(inode);
2693         }
2694         return 0;
2695 }
2696
2697 int extent_prepare_write(struct extent_io_tree *tree,
2698                          struct inode *inode, struct page *page,
2699                          unsigned from, unsigned to, get_extent_t *get_extent)
2700 {
2701         u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2702         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2703         u64 block_start;
2704         u64 orig_block_start;
2705         u64 block_end;
2706         u64 cur_end;
2707         struct extent_map *em;
2708         unsigned blocksize = 1 << inode->i_blkbits;
2709         size_t page_offset = 0;
2710         size_t block_off_start;
2711         size_t block_off_end;
2712         int err = 0;
2713         int iocount = 0;
2714         int ret = 0;
2715         int isnew;
2716
2717         set_page_extent_mapped(page);
2718
2719         block_start = (page_start + from) & ~((u64)blocksize - 1);
2720         block_end = (page_start + to - 1) | (blocksize - 1);
2721         orig_block_start = block_start;
2722
2723         lock_extent(tree, page_start, page_end, GFP_NOFS);
2724         while (block_start <= block_end) {
2725                 em = get_extent(inode, page, page_offset, block_start,
2726                                 block_end - block_start + 1, 1);
2727                 if (IS_ERR(em) || !em)
2728                         goto err;
2729
2730                 cur_end = min(block_end, extent_map_end(em) - 1);
2731                 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2732                 block_off_end = block_off_start + blocksize;
2733                 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2734
2735                 if (!PageUptodate(page) && isnew &&
2736                     (block_off_end > to || block_off_start < from)) {
2737                         void *kaddr;
2738
2739                         kaddr = kmap_atomic(page, KM_USER0);
2740                         if (block_off_end > to)
2741                                 memset(kaddr + to, 0, block_off_end - to);
2742                         if (block_off_start < from)
2743                                 memset(kaddr + block_off_start, 0,
2744                                        from - block_off_start);
2745                         flush_dcache_page(page);
2746                         kunmap_atomic(kaddr, KM_USER0);
2747                 }
2748                 if ((em->block_start != EXTENT_MAP_HOLE &&
2749                      em->block_start != EXTENT_MAP_INLINE) &&
2750                     !isnew && !PageUptodate(page) &&
2751                     (block_off_end > to || block_off_start < from) &&
2752                     !test_range_bit(tree, block_start, cur_end,
2753                                     EXTENT_UPTODATE, 1, NULL)) {
2754                         u64 sector;
2755                         u64 extent_offset = block_start - em->start;
2756                         size_t iosize;
2757                         sector = (em->block_start + extent_offset) >> 9;
2758                         iosize = (cur_end - block_start + blocksize) &
2759                                 ~((u64)blocksize - 1);
2760                         /*
2761                          * we've already got the extent locked, but we
2762                          * need to split the state such that our end_bio
2763                          * handler can clear the lock.
2764                          */
2765                         set_extent_bit(tree, block_start,
2766                                        block_start + iosize - 1,
2767                                        EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2768                         ret = submit_extent_page(READ, tree, page,
2769                                          sector, iosize, page_offset, em->bdev,
2770                                          NULL, 1,
2771                                          end_bio_extent_preparewrite, 0,
2772                                          0, 0);
2773                         if (ret && !err)
2774                                 err = ret;
2775                         iocount++;
2776                         block_start = block_start + iosize;
2777                 } else {
2778                         set_extent_uptodate(tree, block_start, cur_end,
2779                                             GFP_NOFS);
2780                         unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2781                         block_start = cur_end + 1;
2782                 }
2783                 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2784                 free_extent_map(em);
2785         }
2786         if (iocount) {
2787                 wait_extent_bit(tree, orig_block_start,
2788                                 block_end, EXTENT_LOCKED);
2789         }
2790         check_page_uptodate(tree, page);
2791 err:
2792         /* FIXME, zero out newly allocated blocks on error */
2793         return err;
2794 }
2795
2796 /*
2797  * a helper for releasepage, this tests for areas of the page that
2798  * are locked or under IO and drops the related state bits if it is safe
2799  * to drop the page.
2800  */
2801 int try_release_extent_state(struct extent_map_tree *map,
2802                              struct extent_io_tree *tree, struct page *page,
2803                              gfp_t mask)
2804 {
2805         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2806         u64 end = start + PAGE_CACHE_SIZE - 1;
2807         int ret = 1;
2808
2809         if (test_range_bit(tree, start, end,
2810                            EXTENT_IOBITS, 0, NULL))
2811                 ret = 0;
2812         else {
2813                 if ((mask & GFP_NOFS) == GFP_NOFS)
2814                         mask = GFP_NOFS;
2815                 /*
2816                  * at this point we can safely clear everything except the
2817                  * locked bit and the nodatasum bit
2818                  */
2819                 clear_extent_bit(tree, start, end,
2820                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2821                                  0, 0, NULL, mask);
2822         }
2823         return ret;
2824 }
2825
2826 /*
2827  * a helper for releasepage.  As long as there are no locked extents
2828  * in the range corresponding to the page, both state records and extent
2829  * map records are removed
2830  */
2831 int try_release_extent_mapping(struct extent_map_tree *map,
2832                                struct extent_io_tree *tree, struct page *page,
2833                                gfp_t mask)
2834 {
2835         struct extent_map *em;
2836         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2837         u64 end = start + PAGE_CACHE_SIZE - 1;
2838
2839         if ((mask & __GFP_WAIT) &&
2840             page->mapping->host->i_size > 16 * 1024 * 1024) {
2841                 u64 len;
2842                 while (start <= end) {
2843                         len = end - start + 1;
2844                         write_lock(&map->lock);
2845                         em = lookup_extent_mapping(map, start, len);
2846                         if (!em || IS_ERR(em)) {
2847                                 write_unlock(&map->lock);
2848                                 break;
2849                         }
2850                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2851                             em->start != start) {
2852                                 write_unlock(&map->lock);
2853                                 free_extent_map(em);
2854                                 break;
2855                         }
2856                         if (!test_range_bit(tree, em->start,
2857                                             extent_map_end(em) - 1,
2858                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
2859                                             0, NULL)) {
2860                                 remove_extent_mapping(map, em);
2861                                 /* once for the rb tree */
2862                                 free_extent_map(em);
2863                         }
2864                         start = extent_map_end(em);
2865                         write_unlock(&map->lock);
2866
2867                         /* once for us */
2868                         free_extent_map(em);
2869                 }
2870         }
2871         return try_release_extent_state(map, tree, page, mask);
2872 }
2873
2874 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2875                 get_extent_t *get_extent)
2876 {
2877         struct inode *inode = mapping->host;
2878         struct extent_state *cached_state = NULL;
2879         u64 start = iblock << inode->i_blkbits;
2880         sector_t sector = 0;
2881         size_t blksize = (1 << inode->i_blkbits);
2882         struct extent_map *em;
2883
2884         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2885                          0, &cached_state, GFP_NOFS);
2886         em = get_extent(inode, NULL, 0, start, blksize, 0);
2887         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2888                              start + blksize - 1, &cached_state, GFP_NOFS);
2889         if (!em || IS_ERR(em))
2890                 return 0;
2891
2892         if (em->block_start > EXTENT_MAP_LAST_BYTE)
2893                 goto out;
2894
2895         sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2896 out:
2897         free_extent_map(em);
2898         return sector;
2899 }
2900
2901 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2902                 __u64 start, __u64 len, get_extent_t *get_extent)
2903 {
2904         int ret;
2905         u64 off = start;
2906         u64 max = start + len;
2907         u32 flags = 0;
2908         u64 disko = 0;
2909         struct extent_map *em = NULL;
2910         struct extent_state *cached_state = NULL;
2911         int end = 0;
2912         u64 em_start = 0, em_len = 0;
2913         unsigned long emflags;
2914         ret = 0;
2915
2916         if (len == 0)
2917                 return -EINVAL;
2918
2919         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
2920                          &cached_state, GFP_NOFS);
2921         em = get_extent(inode, NULL, 0, off, max - off, 0);
2922         if (!em)
2923                 goto out;
2924         if (IS_ERR(em)) {
2925                 ret = PTR_ERR(em);
2926                 goto out;
2927         }
2928         while (!end) {
2929                 off = em->start + em->len;
2930                 if (off >= max)
2931                         end = 1;
2932
2933                 em_start = em->start;
2934                 em_len = em->len;
2935
2936                 disko = 0;
2937                 flags = 0;
2938
2939                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2940                         end = 1;
2941                         flags |= FIEMAP_EXTENT_LAST;
2942                 } else if (em->block_start == EXTENT_MAP_HOLE) {
2943                         flags |= FIEMAP_EXTENT_UNWRITTEN;
2944                 } else if (em->block_start == EXTENT_MAP_INLINE) {
2945                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
2946                                   FIEMAP_EXTENT_NOT_ALIGNED);
2947                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2948                         flags |= (FIEMAP_EXTENT_DELALLOC |
2949                                   FIEMAP_EXTENT_UNKNOWN);
2950                 } else {
2951                         disko = em->block_start;
2952                 }
2953                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2954                         flags |= FIEMAP_EXTENT_ENCODED;
2955
2956                 emflags = em->flags;
2957                 free_extent_map(em);
2958                 em = NULL;
2959
2960                 if (!end) {
2961                         em = get_extent(inode, NULL, 0, off, max - off, 0);
2962                         if (!em)
2963                                 goto out;
2964                         if (IS_ERR(em)) {
2965                                 ret = PTR_ERR(em);
2966                                 goto out;
2967                         }
2968                         emflags = em->flags;
2969                 }
2970                 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
2971                         flags |= FIEMAP_EXTENT_LAST;
2972                         end = 1;
2973                 }
2974
2975                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2976                                         em_len, flags);
2977                 if (ret)
2978                         goto out_free;
2979         }
2980 out_free:
2981         free_extent_map(em);
2982 out:
2983         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
2984                              &cached_state, GFP_NOFS);
2985         return ret;
2986 }
2987
2988 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2989                                               unsigned long i)
2990 {
2991         struct page *p;
2992         struct address_space *mapping;
2993
2994         if (i == 0)
2995                 return eb->first_page;
2996         i += eb->start >> PAGE_CACHE_SHIFT;
2997         mapping = eb->first_page->mapping;
2998         if (!mapping)
2999                 return NULL;
3000
3001         /*
3002          * extent_buffer_page is only called after pinning the page
3003          * by increasing the reference count.  So we know the page must
3004          * be in the radix tree.
3005          */
3006         rcu_read_lock();
3007         p = radix_tree_lookup(&mapping->page_tree, i);
3008         rcu_read_unlock();
3009
3010         return p;
3011 }
3012
3013 static inline unsigned long num_extent_pages(u64 start, u64 len)
3014 {
3015         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3016                 (start >> PAGE_CACHE_SHIFT);
3017 }
3018
3019 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3020                                                    u64 start,
3021                                                    unsigned long len,
3022                                                    gfp_t mask)
3023 {
3024         struct extent_buffer *eb = NULL;
3025 #if LEAK_DEBUG
3026         unsigned long flags;
3027 #endif
3028
3029         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3030         eb->start = start;
3031         eb->len = len;
3032         spin_lock_init(&eb->lock);
3033         init_waitqueue_head(&eb->lock_wq);
3034
3035 #if LEAK_DEBUG
3036         spin_lock_irqsave(&leak_lock, flags);
3037         list_add(&eb->leak_list, &buffers);
3038         spin_unlock_irqrestore(&leak_lock, flags);
3039 #endif
3040         atomic_set(&eb->refs, 1);
3041
3042         return eb;
3043 }
3044
3045 static void __free_extent_buffer(struct extent_buffer *eb)
3046 {
3047 #if LEAK_DEBUG
3048         unsigned long flags;
3049         spin_lock_irqsave(&leak_lock, flags);
3050         list_del(&eb->leak_list);
3051         spin_unlock_irqrestore(&leak_lock, flags);
3052 #endif
3053         kmem_cache_free(extent_buffer_cache, eb);
3054 }
3055
3056 /*
3057  * Helper for releasing extent buffer page.
3058  */
3059 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3060                                                 unsigned long start_idx)
3061 {
3062         unsigned long index;
3063         struct page *page;
3064
3065         if (!eb->first_page)
3066                 return;
3067
3068         index = num_extent_pages(eb->start, eb->len);
3069         if (start_idx >= index)
3070                 return;
3071
3072         do {
3073                 index--;
3074                 page = extent_buffer_page(eb, index);
3075                 if (page)
3076                         page_cache_release(page);
3077         } while (index != start_idx);
3078 }
3079
3080 /*
3081  * Helper for releasing the extent buffer.
3082  */
3083 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3084 {
3085         btrfs_release_extent_buffer_page(eb, 0);
3086         __free_extent_buffer(eb);
3087 }
3088
3089 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3090                                           u64 start, unsigned long len,
3091                                           struct page *page0,
3092                                           gfp_t mask)
3093 {
3094         unsigned long num_pages = num_extent_pages(start, len);
3095         unsigned long i;
3096         unsigned long index = start >> PAGE_CACHE_SHIFT;
3097         struct extent_buffer *eb;
3098         struct extent_buffer *exists = NULL;
3099         struct page *p;
3100         struct address_space *mapping = tree->mapping;
3101         int uptodate = 1;
3102         int ret;
3103
3104         rcu_read_lock();
3105         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3106         if (eb && atomic_inc_not_zero(&eb->refs)) {
3107                 rcu_read_unlock();
3108                 mark_page_accessed(eb->first_page);
3109                 return eb;
3110         }
3111         rcu_read_unlock();
3112
3113         eb = __alloc_extent_buffer(tree, start, len, mask);
3114         if (!eb)
3115                 return NULL;
3116
3117         if (page0) {
3118                 eb->first_page = page0;
3119                 i = 1;
3120                 index++;
3121                 page_cache_get(page0);
3122                 mark_page_accessed(page0);
3123                 set_page_extent_mapped(page0);
3124                 set_page_extent_head(page0, len);
3125                 uptodate = PageUptodate(page0);
3126         } else {
3127                 i = 0;
3128         }
3129         for (; i < num_pages; i++, index++) {
3130                 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3131                 if (!p) {
3132                         WARN_ON(1);
3133                         goto free_eb;
3134                 }
3135                 set_page_extent_mapped(p);
3136                 mark_page_accessed(p);
3137                 if (i == 0) {
3138                         eb->first_page = p;
3139                         set_page_extent_head(p, len);
3140                 } else {
3141                         set_page_private(p, EXTENT_PAGE_PRIVATE);
3142                 }
3143                 if (!PageUptodate(p))
3144                         uptodate = 0;
3145                 unlock_page(p);
3146         }
3147         if (uptodate)
3148                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3149
3150         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3151         if (ret)
3152                 goto free_eb;
3153
3154         spin_lock(&tree->buffer_lock);
3155         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3156         if (ret == -EEXIST) {
3157                 exists = radix_tree_lookup(&tree->buffer,
3158                                                 start >> PAGE_CACHE_SHIFT);
3159                 /* add one reference for the caller */
3160                 atomic_inc(&exists->refs);
3161                 spin_unlock(&tree->buffer_lock);
3162                 radix_tree_preload_end();
3163                 goto free_eb;
3164         }
3165         /* add one reference for the tree */
3166         atomic_inc(&eb->refs);
3167         spin_unlock(&tree->buffer_lock);
3168         radix_tree_preload_end();
3169         return eb;
3170
3171 free_eb:
3172         if (!atomic_dec_and_test(&eb->refs))
3173                 return exists;
3174         btrfs_release_extent_buffer(eb);
3175         return exists;
3176 }
3177
3178 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3179                                          u64 start, unsigned long len,
3180                                           gfp_t mask)
3181 {
3182         struct extent_buffer *eb;
3183
3184         rcu_read_lock();
3185         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3186         if (eb && atomic_inc_not_zero(&eb->refs)) {
3187                 rcu_read_unlock();
3188                 mark_page_accessed(eb->first_page);
3189                 return eb;
3190         }
3191         rcu_read_unlock();
3192
3193         return NULL;
3194 }
3195
3196 void free_extent_buffer(struct extent_buffer *eb)
3197 {
3198         if (!eb)
3199                 return;
3200
3201         if (!atomic_dec_and_test(&eb->refs))
3202                 return;
3203
3204         WARN_ON(1);
3205 }
3206
3207 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3208                               struct extent_buffer *eb)
3209 {
3210         unsigned long i;
3211         unsigned long num_pages;
3212         struct page *page;
3213