2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "compression.h"
54 struct btrfs_iget_args {
56 struct btrfs_root *root;
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
92 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
96 err = btrfs_init_acl(inode, dir);
98 err = btrfs_xattr_security_init(inode, dir);
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
118 struct btrfs_file_extent_item *ei;
121 size_t cur_size = size;
123 unsigned long offset;
124 int use_compress = 0;
126 if (compressed_size && compressed_pages) {
128 cur_size = compressed_size;
131 path = btrfs_alloc_path();
135 path->leave_spinning = 1;
136 btrfs_set_trans_block_group(trans, inode);
138 key.objectid = inode->i_ino;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
164 while (compressed_size > 0) {
165 cpage = compressed_pages[i];
166 cur_size = min_t(unsigned long, compressed_size,
169 kaddr = kmap_atomic(cpage, KM_USER0);
170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
171 kunmap_atomic(kaddr, KM_USER0);
175 compressed_size -= cur_size;
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
192 BTRFS_I(inode)->disk_i_size = inode->i_size;
193 btrfs_update_inode(trans, root, inode);
196 btrfs_free_path(path);
202 * conditionally insert an inline extent into the file. This
203 * does the checks required to make sure the data is small enough
204 * to fit as an inline extent.
206 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
207 struct btrfs_root *root,
208 struct inode *inode, u64 start, u64 end,
209 size_t compressed_size,
210 struct page **compressed_pages)
212 u64 isize = i_size_read(inode);
213 u64 actual_end = min(end + 1, isize);
214 u64 inline_len = actual_end - start;
215 u64 aligned_end = (end + root->sectorsize - 1) &
216 ~((u64)root->sectorsize - 1);
218 u64 data_len = inline_len;
222 data_len = compressed_size;
225 actual_end >= PAGE_CACHE_SIZE ||
226 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
228 (actual_end & (root->sectorsize - 1)) == 0) ||
230 data_len > root->fs_info->max_inline) {
234 ret = btrfs_drop_extents(trans, root, inode, start,
235 aligned_end, aligned_end, start, &hint_byte);
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
244 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
248 struct async_extent {
253 unsigned long nr_pages;
254 struct list_head list;
259 struct btrfs_root *root;
260 struct page *locked_page;
263 struct list_head extents;
264 struct btrfs_work work;
267 static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
271 unsigned long nr_pages)
273 struct async_extent *async_extent;
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
301 static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
304 struct async_cow *async_cow,
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
312 u64 blocksize = root->sectorsize;
314 u64 isize = i_size_read(inode);
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
322 unsigned long max_uncompressed = 128 * 1024;
328 actual_end = min_t(u64, isize, end + 1);
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
347 total_compressed = actual_end - start;
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
359 total_compressed = min(total_compressed, max_uncompressed);
360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361 num_bytes = max(blocksize, num_bytes);
362 disk_num_bytes = num_bytes;
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372 btrfs_test_opt(root, COMPRESS)) {
374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
402 trans = btrfs_join_transaction(root, 1);
404 btrfs_set_trans_block_group(trans, inode);
406 /* lets try to make an inline extent */
407 if (ret || total_in < (actual_end - start)) {
408 /* we didn't compress the entire range, try
409 * to make an uncompressed inline extent.
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
414 /* try making a compressed inline extent */
415 ret = cow_file_range_inline(trans, root, inode,
417 total_compressed, pages);
419 btrfs_end_transaction(trans, root);
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
426 extent_clear_unlock_delalloc(inode,
427 &BTRFS_I(inode)->io_tree,
428 start, end, NULL, 1, 0,
437 * we aren't doing an inline extent round the compressed size
438 * up to a block size boundary so the allocator does sane
441 total_compressed = (total_compressed + blocksize - 1) &
445 * one last check to make sure the compression is really a
446 * win, compare the page count read with the blocks on disk
448 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
449 ~(PAGE_CACHE_SIZE - 1);
450 if (total_compressed >= total_in) {
453 disk_num_bytes = total_compressed;
454 num_bytes = total_in;
457 if (!will_compress && pages) {
459 * the compression code ran but failed to make things smaller,
460 * free any pages it allocated and our page pointer array
462 for (i = 0; i < nr_pages_ret; i++) {
463 WARN_ON(pages[i]->mapping);
464 page_cache_release(pages[i]);
468 total_compressed = 0;
471 /* flag the file so we don't compress in the future */
472 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
477 /* the async work queues will take care of doing actual
478 * allocation on disk for these compressed pages,
479 * and will submit them to the elevator.
481 add_async_extent(async_cow, start, num_bytes,
482 total_compressed, pages, nr_pages_ret);
484 if (start + num_bytes < end && start + num_bytes < actual_end) {
491 cleanup_and_bail_uncompressed:
493 * No compression, but we still need to write the pages in
494 * the file we've been given so far. redirty the locked
495 * page if it corresponds to our extent and set things up
496 * for the async work queue to run cow_file_range to do
497 * the normal delalloc dance
499 if (page_offset(locked_page) >= start &&
500 page_offset(locked_page) <= end) {
501 __set_page_dirty_nobuffers(locked_page);
502 /* unlocked later on in the async handlers */
504 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
512 for (i = 0; i < nr_pages_ret; i++) {
513 WARN_ON(pages[i]->mapping);
514 page_cache_release(pages[i]);
522 * phase two of compressed writeback. This is the ordered portion
523 * of the code, which only gets called in the order the work was
524 * queued. We walk all the async extents created by compress_file_range
525 * and send them down to the disk.
527 static noinline int submit_compressed_extents(struct inode *inode,
528 struct async_cow *async_cow)
530 struct async_extent *async_extent;
532 struct btrfs_trans_handle *trans;
533 struct btrfs_key ins;
534 struct extent_map *em;
535 struct btrfs_root *root = BTRFS_I(inode)->root;
536 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537 struct extent_io_tree *io_tree;
540 if (list_empty(&async_cow->extents))
543 trans = btrfs_join_transaction(root, 1);
545 while (!list_empty(&async_cow->extents)) {
546 async_extent = list_entry(async_cow->extents.next,
547 struct async_extent, list);
548 list_del(&async_extent->list);
550 io_tree = &BTRFS_I(inode)->io_tree;
552 /* did the compression code fall back to uncompressed IO? */
553 if (!async_extent->pages) {
554 int page_started = 0;
555 unsigned long nr_written = 0;
557 lock_extent(io_tree, async_extent->start,
558 async_extent->start +
559 async_extent->ram_size - 1, GFP_NOFS);
561 /* allocate blocks */
562 cow_file_range(inode, async_cow->locked_page,
564 async_extent->start +
565 async_extent->ram_size - 1,
566 &page_started, &nr_written, 0);
569 * if page_started, cow_file_range inserted an
570 * inline extent and took care of all the unlocking
571 * and IO for us. Otherwise, we need to submit
572 * all those pages down to the drive.
575 extent_write_locked_range(io_tree,
576 inode, async_extent->start,
577 async_extent->start +
578 async_extent->ram_size - 1,
586 lock_extent(io_tree, async_extent->start,
587 async_extent->start + async_extent->ram_size - 1,
590 * here we're doing allocation and writeback of the
593 btrfs_drop_extent_cache(inode, async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1, 0);
597 ret = btrfs_reserve_extent(trans, root,
598 async_extent->compressed_size,
599 async_extent->compressed_size,
603 em = alloc_extent_map(GFP_NOFS);
604 em->start = async_extent->start;
605 em->len = async_extent->ram_size;
606 em->orig_start = em->start;
608 em->block_start = ins.objectid;
609 em->block_len = ins.offset;
610 em->bdev = root->fs_info->fs_devices->latest_bdev;
611 set_bit(EXTENT_FLAG_PINNED, &em->flags);
612 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
615 spin_lock(&em_tree->lock);
616 ret = add_extent_mapping(em_tree, em);
617 spin_unlock(&em_tree->lock);
618 if (ret != -EEXIST) {
622 btrfs_drop_extent_cache(inode, async_extent->start,
623 async_extent->start +
624 async_extent->ram_size - 1, 0);
627 ret = btrfs_add_ordered_extent(inode, async_extent->start,
629 async_extent->ram_size,
631 BTRFS_ORDERED_COMPRESSED);
634 btrfs_end_transaction(trans, root);
637 * clear dirty, set writeback and unlock the pages.
639 extent_clear_unlock_delalloc(inode,
640 &BTRFS_I(inode)->io_tree,
642 async_extent->start +
643 async_extent->ram_size - 1,
644 NULL, 1, 1, 0, 1, 1, 0);
646 ret = btrfs_submit_compressed_write(inode,
648 async_extent->ram_size,
650 ins.offset, async_extent->pages,
651 async_extent->nr_pages);
654 trans = btrfs_join_transaction(root, 1);
655 alloc_hint = ins.objectid + ins.offset;
660 btrfs_end_transaction(trans, root);
665 * when extent_io.c finds a delayed allocation range in the file,
666 * the call backs end up in this code. The basic idea is to
667 * allocate extents on disk for the range, and create ordered data structs
668 * in ram to track those extents.
670 * locked_page is the page that writepage had locked already. We use
671 * it to make sure we don't do extra locks or unlocks.
673 * *page_started is set to one if we unlock locked_page and do everything
674 * required to start IO on it. It may be clean and already done with
677 static noinline int cow_file_range(struct inode *inode,
678 struct page *locked_page,
679 u64 start, u64 end, int *page_started,
680 unsigned long *nr_written,
683 struct btrfs_root *root = BTRFS_I(inode)->root;
684 struct btrfs_trans_handle *trans;
687 unsigned long ram_size;
690 u64 blocksize = root->sectorsize;
692 u64 isize = i_size_read(inode);
693 struct btrfs_key ins;
694 struct extent_map *em;
695 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
698 trans = btrfs_join_transaction(root, 1);
700 btrfs_set_trans_block_group(trans, inode);
702 actual_end = min_t(u64, isize, end + 1);
704 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
705 num_bytes = max(blocksize, num_bytes);
706 disk_num_bytes = num_bytes;
710 /* lets try to make an inline extent */
711 ret = cow_file_range_inline(trans, root, inode,
712 start, end, 0, NULL);
714 extent_clear_unlock_delalloc(inode,
715 &BTRFS_I(inode)->io_tree,
716 start, end, NULL, 1, 1,
718 *nr_written = *nr_written +
719 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
726 BUG_ON(disk_num_bytes >
727 btrfs_super_total_bytes(&root->fs_info->super_copy));
729 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
731 while (disk_num_bytes > 0) {
732 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
733 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
734 root->sectorsize, 0, alloc_hint,
738 em = alloc_extent_map(GFP_NOFS);
740 em->orig_start = em->start;
742 ram_size = ins.offset;
743 em->len = ins.offset;
745 em->block_start = ins.objectid;
746 em->block_len = ins.offset;
747 em->bdev = root->fs_info->fs_devices->latest_bdev;
748 set_bit(EXTENT_FLAG_PINNED, &em->flags);
751 spin_lock(&em_tree->lock);
752 ret = add_extent_mapping(em_tree, em);
753 spin_unlock(&em_tree->lock);
754 if (ret != -EEXIST) {
758 btrfs_drop_extent_cache(inode, start,
759 start + ram_size - 1, 0);
762 cur_alloc_size = ins.offset;
763 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
764 ram_size, cur_alloc_size, 0);
767 if (root->root_key.objectid ==
768 BTRFS_DATA_RELOC_TREE_OBJECTID) {
769 ret = btrfs_reloc_clone_csums(inode, start,
774 if (disk_num_bytes < cur_alloc_size)
777 /* we're not doing compressed IO, don't unlock the first
778 * page (which the caller expects to stay locked), don't
779 * clear any dirty bits and don't set any writeback bits
781 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
782 start, start + ram_size - 1,
783 locked_page, unlock, 1,
785 disk_num_bytes -= cur_alloc_size;
786 num_bytes -= cur_alloc_size;
787 alloc_hint = ins.objectid + ins.offset;
788 start += cur_alloc_size;
792 btrfs_end_transaction(trans, root);
798 * work queue call back to started compression on a file and pages
800 static noinline void async_cow_start(struct btrfs_work *work)
802 struct async_cow *async_cow;
804 async_cow = container_of(work, struct async_cow, work);
806 compress_file_range(async_cow->inode, async_cow->locked_page,
807 async_cow->start, async_cow->end, async_cow,
810 async_cow->inode = NULL;
814 * work queue call back to submit previously compressed pages
816 static noinline void async_cow_submit(struct btrfs_work *work)
818 struct async_cow *async_cow;
819 struct btrfs_root *root;
820 unsigned long nr_pages;
822 async_cow = container_of(work, struct async_cow, work);
824 root = async_cow->root;
825 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
828 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
830 if (atomic_read(&root->fs_info->async_delalloc_pages) <
832 waitqueue_active(&root->fs_info->async_submit_wait))
833 wake_up(&root->fs_info->async_submit_wait);
835 if (async_cow->inode)
836 submit_compressed_extents(async_cow->inode, async_cow);
839 static noinline void async_cow_free(struct btrfs_work *work)
841 struct async_cow *async_cow;
842 async_cow = container_of(work, struct async_cow, work);
846 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
847 u64 start, u64 end, int *page_started,
848 unsigned long *nr_written)
850 struct async_cow *async_cow;
851 struct btrfs_root *root = BTRFS_I(inode)->root;
852 unsigned long nr_pages;
854 int limit = 10 * 1024 * 1042;
856 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
857 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
858 while (start < end) {
859 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
860 async_cow->inode = inode;
861 async_cow->root = root;
862 async_cow->locked_page = locked_page;
863 async_cow->start = start;
865 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
868 cur_end = min(end, start + 512 * 1024 - 1);
870 async_cow->end = cur_end;
871 INIT_LIST_HEAD(&async_cow->extents);
873 async_cow->work.func = async_cow_start;
874 async_cow->work.ordered_func = async_cow_submit;
875 async_cow->work.ordered_free = async_cow_free;
876 async_cow->work.flags = 0;
878 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
880 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
882 btrfs_queue_worker(&root->fs_info->delalloc_workers,
885 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
886 wait_event(root->fs_info->async_submit_wait,
887 (atomic_read(&root->fs_info->async_delalloc_pages) <
891 while (atomic_read(&root->fs_info->async_submit_draining) &&
892 atomic_read(&root->fs_info->async_delalloc_pages)) {
893 wait_event(root->fs_info->async_submit_wait,
894 (atomic_read(&root->fs_info->async_delalloc_pages) ==
898 *nr_written += nr_pages;
905 static noinline int csum_exist_in_range(struct btrfs_root *root,
906 u64 bytenr, u64 num_bytes)
909 struct btrfs_ordered_sum *sums;
912 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
913 bytenr + num_bytes - 1, &list);
914 if (ret == 0 && list_empty(&list))
917 while (!list_empty(&list)) {
918 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
919 list_del(&sums->list);
926 * when nowcow writeback call back. This checks for snapshots or COW copies
927 * of the extents that exist in the file, and COWs the file as required.
929 * If no cow copies or snapshots exist, we write directly to the existing
932 static noinline int run_delalloc_nocow(struct inode *inode,
933 struct page *locked_page,
934 u64 start, u64 end, int *page_started, int force,
935 unsigned long *nr_written)
937 struct btrfs_root *root = BTRFS_I(inode)->root;
938 struct btrfs_trans_handle *trans;
939 struct extent_buffer *leaf;
940 struct btrfs_path *path;
941 struct btrfs_file_extent_item *fi;
942 struct btrfs_key found_key;
955 path = btrfs_alloc_path();
957 trans = btrfs_join_transaction(root, 1);
963 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
966 if (ret > 0 && path->slots[0] > 0 && check_prev) {
967 leaf = path->nodes[0];
968 btrfs_item_key_to_cpu(leaf, &found_key,
970 if (found_key.objectid == inode->i_ino &&
971 found_key.type == BTRFS_EXTENT_DATA_KEY)
976 leaf = path->nodes[0];
977 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
978 ret = btrfs_next_leaf(root, path);
983 leaf = path->nodes[0];
989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
991 if (found_key.objectid > inode->i_ino ||
992 found_key.type > BTRFS_EXTENT_DATA_KEY ||
993 found_key.offset > end)
996 if (found_key.offset > cur_offset) {
997 extent_end = found_key.offset;
1001 fi = btrfs_item_ptr(leaf, path->slots[0],
1002 struct btrfs_file_extent_item);
1003 extent_type = btrfs_file_extent_type(leaf, fi);
1005 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1006 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1007 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1008 extent_offset = btrfs_file_extent_offset(leaf, fi);
1009 extent_end = found_key.offset +
1010 btrfs_file_extent_num_bytes(leaf, fi);
1011 if (extent_end <= start) {
1015 if (disk_bytenr == 0)
1017 if (btrfs_file_extent_compression(leaf, fi) ||
1018 btrfs_file_extent_encryption(leaf, fi) ||
1019 btrfs_file_extent_other_encoding(leaf, fi))
1021 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1023 if (btrfs_extent_readonly(root, disk_bytenr))
1025 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1027 extent_offset, disk_bytenr))
1029 disk_bytenr += extent_offset;
1030 disk_bytenr += cur_offset - found_key.offset;
1031 num_bytes = min(end + 1, extent_end) - cur_offset;
1033 * force cow if csum exists in the range.
1034 * this ensure that csum for a given extent are
1035 * either valid or do not exist.
1037 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1040 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1041 extent_end = found_key.offset +
1042 btrfs_file_extent_inline_len(leaf, fi);
1043 extent_end = ALIGN(extent_end, root->sectorsize);
1048 if (extent_end <= start) {
1053 if (cow_start == (u64)-1)
1054 cow_start = cur_offset;
1055 cur_offset = extent_end;
1056 if (cur_offset > end)
1062 btrfs_release_path(root, path);
1063 if (cow_start != (u64)-1) {
1064 ret = cow_file_range(inode, locked_page, cow_start,
1065 found_key.offset - 1, page_started,
1068 cow_start = (u64)-1;
1071 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1072 struct extent_map *em;
1073 struct extent_map_tree *em_tree;
1074 em_tree = &BTRFS_I(inode)->extent_tree;
1075 em = alloc_extent_map(GFP_NOFS);
1076 em->start = cur_offset;
1077 em->orig_start = em->start;
1078 em->len = num_bytes;
1079 em->block_len = num_bytes;
1080 em->block_start = disk_bytenr;
1081 em->bdev = root->fs_info->fs_devices->latest_bdev;
1082 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1084 spin_lock(&em_tree->lock);
1085 ret = add_extent_mapping(em_tree, em);
1086 spin_unlock(&em_tree->lock);
1087 if (ret != -EEXIST) {
1088 free_extent_map(em);
1091 btrfs_drop_extent_cache(inode, em->start,
1092 em->start + em->len - 1, 0);
1094 type = BTRFS_ORDERED_PREALLOC;
1096 type = BTRFS_ORDERED_NOCOW;
1099 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1100 num_bytes, num_bytes, type);
1103 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1104 cur_offset, cur_offset + num_bytes - 1,
1105 locked_page, 1, 1, 1, 0, 0, 0);
1106 cur_offset = extent_end;
1107 if (cur_offset > end)
1110 btrfs_release_path(root, path);
1112 if (cur_offset <= end && cow_start == (u64)-1)
1113 cow_start = cur_offset;
1114 if (cow_start != (u64)-1) {
1115 ret = cow_file_range(inode, locked_page, cow_start, end,
1116 page_started, nr_written, 1);
1120 ret = btrfs_end_transaction(trans, root);
1122 btrfs_free_path(path);
1127 * extent_io.c call back to do delayed allocation processing
1129 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1130 u64 start, u64 end, int *page_started,
1131 unsigned long *nr_written)
1134 struct btrfs_root *root = BTRFS_I(inode)->root;
1136 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1137 ret = run_delalloc_nocow(inode, locked_page, start, end,
1138 page_started, 1, nr_written);
1139 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1140 ret = run_delalloc_nocow(inode, locked_page, start, end,
1141 page_started, 0, nr_written);
1142 else if (!btrfs_test_opt(root, COMPRESS))
1143 ret = cow_file_range(inode, locked_page, start, end,
1144 page_started, nr_written, 1);
1146 ret = cow_file_range_async(inode, locked_page, start, end,
1147 page_started, nr_written);
1152 * extent_io.c set_bit_hook, used to track delayed allocation
1153 * bytes in this file, and to maintain the list of inodes that
1154 * have pending delalloc work to be done.
1156 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1157 unsigned long old, unsigned long bits)
1160 * set_bit and clear bit hooks normally require _irqsave/restore
1161 * but in this case, we are only testeing for the DELALLOC
1162 * bit, which is only set or cleared with irqs on
1164 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1165 struct btrfs_root *root = BTRFS_I(inode)->root;
1166 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1167 spin_lock(&root->fs_info->delalloc_lock);
1168 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1169 root->fs_info->delalloc_bytes += end - start + 1;
1170 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1171 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1172 &root->fs_info->delalloc_inodes);
1174 spin_unlock(&root->fs_info->delalloc_lock);
1180 * extent_io.c clear_bit_hook, see set_bit_hook for why
1182 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1183 unsigned long old, unsigned long bits)
1186 * set_bit and clear bit hooks normally require _irqsave/restore
1187 * but in this case, we are only testeing for the DELALLOC
1188 * bit, which is only set or cleared with irqs on
1190 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1191 struct btrfs_root *root = BTRFS_I(inode)->root;
1193 spin_lock(&root->fs_info->delalloc_lock);
1194 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1195 printk(KERN_INFO "btrfs warning: delalloc account "
1197 (unsigned long long)end - start + 1,
1198 (unsigned long long)
1199 root->fs_info->delalloc_bytes);
1200 btrfs_delalloc_free_space(root, inode, (u64)-1);
1201 root->fs_info->delalloc_bytes = 0;
1202 BTRFS_I(inode)->delalloc_bytes = 0;
1204 btrfs_delalloc_free_space(root, inode,
1206 root->fs_info->delalloc_bytes -= end - start + 1;
1207 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1209 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1210 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1211 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1213 spin_unlock(&root->fs_info->delalloc_lock);
1219 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1220 * we don't create bios that span stripes or chunks
1222 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1223 size_t size, struct bio *bio,
1224 unsigned long bio_flags)
1226 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1227 struct btrfs_mapping_tree *map_tree;
1228 u64 logical = (u64)bio->bi_sector << 9;
1233 if (bio_flags & EXTENT_BIO_COMPRESSED)
1236 length = bio->bi_size;
1237 map_tree = &root->fs_info->mapping_tree;
1238 map_length = length;
1239 ret = btrfs_map_block(map_tree, READ, logical,
1240 &map_length, NULL, 0);
1242 if (map_length < length + size)
1248 * in order to insert checksums into the metadata in large chunks,
1249 * we wait until bio submission time. All the pages in the bio are
1250 * checksummed and sums are attached onto the ordered extent record.
1252 * At IO completion time the cums attached on the ordered extent record
1253 * are inserted into the btree
1255 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1256 struct bio *bio, int mirror_num,
1257 unsigned long bio_flags)
1259 struct btrfs_root *root = BTRFS_I(inode)->root;
1262 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1268 * in order to insert checksums into the metadata in large chunks,
1269 * we wait until bio submission time. All the pages in the bio are
1270 * checksummed and sums are attached onto the ordered extent record.
1272 * At IO completion time the cums attached on the ordered extent record
1273 * are inserted into the btree
1275 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1276 int mirror_num, unsigned long bio_flags)
1278 struct btrfs_root *root = BTRFS_I(inode)->root;
1279 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1283 * extent_io.c submission hook. This does the right thing for csum calculation
1284 * on write, or reading the csums from the tree before a read
1286 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1287 int mirror_num, unsigned long bio_flags)
1289 struct btrfs_root *root = BTRFS_I(inode)->root;
1293 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1295 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1298 if (!(rw & (1 << BIO_RW))) {
1299 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1300 return btrfs_submit_compressed_read(inode, bio,
1301 mirror_num, bio_flags);
1302 } else if (!skip_sum)
1303 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1305 } else if (!skip_sum) {
1306 /* csum items have already been cloned */
1307 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1309 /* we're doing a write, do the async checksumming */
1310 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1311 inode, rw, bio, mirror_num,
1312 bio_flags, __btrfs_submit_bio_start,
1313 __btrfs_submit_bio_done);
1317 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1321 * given a list of ordered sums record them in the inode. This happens
1322 * at IO completion time based on sums calculated at bio submission time.
1324 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1325 struct inode *inode, u64 file_offset,
1326 struct list_head *list)
1328 struct btrfs_ordered_sum *sum;
1330 btrfs_set_trans_block_group(trans, inode);
1332 list_for_each_entry(sum, list, list) {
1333 btrfs_csum_file_blocks(trans,
1334 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1339 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1341 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1343 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1347 /* see btrfs_writepage_start_hook for details on why this is required */
1348 struct btrfs_writepage_fixup {
1350 struct btrfs_work work;
1353 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1355 struct btrfs_writepage_fixup *fixup;
1356 struct btrfs_ordered_extent *ordered;
1358 struct inode *inode;
1362 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1366 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1367 ClearPageChecked(page);
1371 inode = page->mapping->host;
1372 page_start = page_offset(page);
1373 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1375 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1377 /* already ordered? We're done */
1378 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1379 EXTENT_ORDERED, 0)) {
1383 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1385 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1386 page_end, GFP_NOFS);
1388 btrfs_start_ordered_extent(inode, ordered, 1);
1392 btrfs_set_extent_delalloc(inode, page_start, page_end);
1393 ClearPageChecked(page);
1395 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1398 page_cache_release(page);
1402 * There are a few paths in the higher layers of the kernel that directly
1403 * set the page dirty bit without asking the filesystem if it is a
1404 * good idea. This causes problems because we want to make sure COW
1405 * properly happens and the data=ordered rules are followed.
1407 * In our case any range that doesn't have the ORDERED bit set
1408 * hasn't been properly setup for IO. We kick off an async process
1409 * to fix it up. The async helper will wait for ordered extents, set
1410 * the delalloc bit and make it safe to write the page.
1412 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1414 struct inode *inode = page->mapping->host;
1415 struct btrfs_writepage_fixup *fixup;
1416 struct btrfs_root *root = BTRFS_I(inode)->root;
1419 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1424 if (PageChecked(page))
1427 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1431 SetPageChecked(page);
1432 page_cache_get(page);
1433 fixup->work.func = btrfs_writepage_fixup_worker;
1435 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1439 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1440 struct inode *inode, u64 file_pos,
1441 u64 disk_bytenr, u64 disk_num_bytes,
1442 u64 num_bytes, u64 ram_bytes,
1444 u8 compression, u8 encryption,
1445 u16 other_encoding, int extent_type)
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1448 struct btrfs_file_extent_item *fi;
1449 struct btrfs_path *path;
1450 struct extent_buffer *leaf;
1451 struct btrfs_key ins;
1455 path = btrfs_alloc_path();
1458 path->leave_spinning = 1;
1459 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1460 file_pos + num_bytes, locked_end,
1464 ins.objectid = inode->i_ino;
1465 ins.offset = file_pos;
1466 ins.type = BTRFS_EXTENT_DATA_KEY;
1467 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1469 leaf = path->nodes[0];
1470 fi = btrfs_item_ptr(leaf, path->slots[0],
1471 struct btrfs_file_extent_item);
1472 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1473 btrfs_set_file_extent_type(leaf, fi, extent_type);
1474 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1475 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1476 btrfs_set_file_extent_offset(leaf, fi, 0);
1477 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1478 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1479 btrfs_set_file_extent_compression(leaf, fi, compression);
1480 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1481 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1483 btrfs_unlock_up_safe(path, 1);
1484 btrfs_set_lock_blocking(leaf);
1486 btrfs_mark_buffer_dirty(leaf);
1488 inode_add_bytes(inode, num_bytes);
1489 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1491 ins.objectid = disk_bytenr;
1492 ins.offset = disk_num_bytes;
1493 ins.type = BTRFS_EXTENT_ITEM_KEY;
1494 ret = btrfs_alloc_reserved_file_extent(trans, root,
1495 root->root_key.objectid,
1496 inode->i_ino, file_pos, &ins);
1498 btrfs_free_path(path);
1504 * helper function for btrfs_finish_ordered_io, this
1505 * just reads in some of the csum leaves to prime them into ram
1506 * before we start the transaction. It limits the amount of btree
1507 * reads required while inside the transaction.
1509 static noinline void reada_csum(struct btrfs_root *root,
1510 struct btrfs_path *path,
1511 struct btrfs_ordered_extent *ordered_extent)
1513 struct btrfs_ordered_sum *sum;
1516 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1518 bytenr = sum->sums[0].bytenr;
1521 * we don't care about the results, the point of this search is
1522 * just to get the btree leaves into ram
1524 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1527 /* as ordered data IO finishes, this gets called so we can finish
1528 * an ordered extent if the range of bytes in the file it covers are
1531 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1533 struct btrfs_root *root = BTRFS_I(inode)->root;
1534 struct btrfs_trans_handle *trans;
1535 struct btrfs_ordered_extent *ordered_extent = NULL;
1536 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1537 struct btrfs_path *path;
1541 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1546 * before we join the transaction, try to do some of our IO.
1547 * This will limit the amount of IO that we have to do with
1548 * the transaction running. We're unlikely to need to do any
1549 * IO if the file extents are new, the disk_i_size checks
1550 * covers the most common case.
1552 if (start < BTRFS_I(inode)->disk_i_size) {
1553 path = btrfs_alloc_path();
1555 ret = btrfs_lookup_file_extent(NULL, root, path,
1558 ordered_extent = btrfs_lookup_ordered_extent(inode,
1560 if (!list_empty(&ordered_extent->list)) {
1561 btrfs_release_path(root, path);
1562 reada_csum(root, path, ordered_extent);
1564 btrfs_free_path(path);
1568 trans = btrfs_join_transaction(root, 1);
1570 if (!ordered_extent)
1571 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1572 BUG_ON(!ordered_extent);
1573 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1576 lock_extent(io_tree, ordered_extent->file_offset,
1577 ordered_extent->file_offset + ordered_extent->len - 1,
1580 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1582 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1584 ret = btrfs_mark_extent_written(trans, root, inode,
1585 ordered_extent->file_offset,
1586 ordered_extent->file_offset +
1587 ordered_extent->len);
1590 ret = insert_reserved_file_extent(trans, inode,
1591 ordered_extent->file_offset,
1592 ordered_extent->start,
1593 ordered_extent->disk_len,
1594 ordered_extent->len,
1595 ordered_extent->len,
1596 ordered_extent->file_offset +
1597 ordered_extent->len,
1599 BTRFS_FILE_EXTENT_REG);
1602 unlock_extent(io_tree, ordered_extent->file_offset,
1603 ordered_extent->file_offset + ordered_extent->len - 1,
1606 add_pending_csums(trans, inode, ordered_extent->file_offset,
1607 &ordered_extent->list);
1609 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1610 btrfs_ordered_update_i_size(inode, ordered_extent);
1611 btrfs_update_inode(trans, root, inode);
1612 btrfs_remove_ordered_extent(inode, ordered_extent);
1613 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1616 btrfs_put_ordered_extent(ordered_extent);
1617 /* once for the tree */
1618 btrfs_put_ordered_extent(ordered_extent);
1620 btrfs_end_transaction(trans, root);
1624 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1625 struct extent_state *state, int uptodate)
1627 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1631 * When IO fails, either with EIO or csum verification fails, we
1632 * try other mirrors that might have a good copy of the data. This
1633 * io_failure_record is used to record state as we go through all the
1634 * mirrors. If another mirror has good data, the page is set up to date
1635 * and things continue. If a good mirror can't be found, the original
1636 * bio end_io callback is called to indicate things have failed.
1638 struct io_failure_record {
1643 unsigned long bio_flags;
1647 static int btrfs_io_failed_hook(struct bio *failed_bio,
1648 struct page *page, u64 start, u64 end,
1649 struct extent_state *state)
1651 struct io_failure_record *failrec = NULL;
1653 struct extent_map *em;
1654 struct inode *inode = page->mapping->host;
1655 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1656 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1663 ret = get_state_private(failure_tree, start, &private);
1665 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1668 failrec->start = start;
1669 failrec->len = end - start + 1;
1670 failrec->last_mirror = 0;
1671 failrec->bio_flags = 0;
1673 spin_lock(&em_tree->lock);
1674 em = lookup_extent_mapping(em_tree, start, failrec->len);
1675 if (em->start > start || em->start + em->len < start) {
1676 free_extent_map(em);
1679 spin_unlock(&em_tree->lock);
1681 if (!em || IS_ERR(em)) {
1685 logical = start - em->start;
1686 logical = em->block_start + logical;
1687 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1688 logical = em->block_start;
1689 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1691 failrec->logical = logical;
1692 free_extent_map(em);
1693 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1694 EXTENT_DIRTY, GFP_NOFS);
1695 set_state_private(failure_tree, start,
1696 (u64)(unsigned long)failrec);
1698 failrec = (struct io_failure_record *)(unsigned long)private;
1700 num_copies = btrfs_num_copies(
1701 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1702 failrec->logical, failrec->len);
1703 failrec->last_mirror++;
1705 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1706 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1709 if (state && state->start != failrec->start)
1711 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1713 if (!state || failrec->last_mirror > num_copies) {
1714 set_state_private(failure_tree, failrec->start, 0);
1715 clear_extent_bits(failure_tree, failrec->start,
1716 failrec->start + failrec->len - 1,
1717 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1721 bio = bio_alloc(GFP_NOFS, 1);
1722 bio->bi_private = state;
1723 bio->bi_end_io = failed_bio->bi_end_io;
1724 bio->bi_sector = failrec->logical >> 9;
1725 bio->bi_bdev = failed_bio->bi_bdev;
1728 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1729 if (failed_bio->bi_rw & (1 << BIO_RW))
1734 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1735 failrec->last_mirror,
1736 failrec->bio_flags);
1741 * each time an IO finishes, we do a fast check in the IO failure tree
1742 * to see if we need to process or clean up an io_failure_record
1744 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1747 u64 private_failure;
1748 struct io_failure_record *failure;
1752 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1753 (u64)-1, 1, EXTENT_DIRTY)) {
1754 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1755 start, &private_failure);
1757 failure = (struct io_failure_record *)(unsigned long)
1759 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1761 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1763 failure->start + failure->len - 1,
1764 EXTENT_DIRTY | EXTENT_LOCKED,
1773 * when reads are done, we need to check csums to verify the data is correct
1774 * if there's a match, we allow the bio to finish. If not, we go through
1775 * the io_failure_record routines to find good copies
1777 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1778 struct extent_state *state)
1780 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1781 struct inode *inode = page->mapping->host;
1782 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1784 u64 private = ~(u32)0;
1786 struct btrfs_root *root = BTRFS_I(inode)->root;
1789 if (PageChecked(page)) {
1790 ClearPageChecked(page);
1794 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1797 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1798 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1799 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1804 if (state && state->start == start) {
1805 private = state->private;
1808 ret = get_state_private(io_tree, start, &private);
1810 kaddr = kmap_atomic(page, KM_USER0);
1814 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1815 btrfs_csum_final(csum, (char *)&csum);
1816 if (csum != private)
1819 kunmap_atomic(kaddr, KM_USER0);
1821 /* if the io failure tree for this inode is non-empty,
1822 * check to see if we've recovered from a failed IO
1824 btrfs_clean_io_failures(inode, start);
1828 if (printk_ratelimit()) {
1829 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1830 "private %llu\n", page->mapping->host->i_ino,
1831 (unsigned long long)start, csum,
1832 (unsigned long long)private);
1834 memset(kaddr + offset, 1, end - start + 1);
1835 flush_dcache_page(page);
1836 kunmap_atomic(kaddr, KM_USER0);
1843 * This creates an orphan entry for the given inode in case something goes
1844 * wrong in the middle of an unlink/truncate.
1846 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1848 struct btrfs_root *root = BTRFS_I(inode)->root;
1851 spin_lock(&root->list_lock);
1853 /* already on the orphan list, we're good */
1854 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1855 spin_unlock(&root->list_lock);
1859 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1861 spin_unlock(&root->list_lock);
1864 * insert an orphan item to track this unlinked/truncated file
1866 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1872 * We have done the truncate/delete so we can go ahead and remove the orphan
1873 * item for this particular inode.
1875 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1877 struct btrfs_root *root = BTRFS_I(inode)->root;
1880 spin_lock(&root->list_lock);
1882 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1883 spin_unlock(&root->list_lock);
1887 list_del_init(&BTRFS_I(inode)->i_orphan);
1889 spin_unlock(&root->list_lock);
1893 spin_unlock(&root->list_lock);
1895 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1901 * this cleans up any orphans that may be left on the list from the last use
1904 void btrfs_orphan_cleanup(struct btrfs_root *root)
1906 struct btrfs_path *path;
1907 struct extent_buffer *leaf;
1908 struct btrfs_item *item;
1909 struct btrfs_key key, found_key;
1910 struct btrfs_trans_handle *trans;
1911 struct inode *inode;
1912 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1914 path = btrfs_alloc_path();
1919 key.objectid = BTRFS_ORPHAN_OBJECTID;
1920 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1921 key.offset = (u64)-1;
1925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1927 printk(KERN_ERR "Error searching slot for orphan: %d"
1933 * if ret == 0 means we found what we were searching for, which
1934 * is weird, but possible, so only screw with path if we didnt
1935 * find the key and see if we have stuff that matches
1938 if (path->slots[0] == 0)
1943 /* pull out the item */
1944 leaf = path->nodes[0];
1945 item = btrfs_item_nr(leaf, path->slots[0]);
1946 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1948 /* make sure the item matches what we want */
1949 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1951 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1954 /* release the path since we're done with it */
1955 btrfs_release_path(root, path);
1958 * this is where we are basically btrfs_lookup, without the
1959 * crossing root thing. we store the inode number in the
1960 * offset of the orphan item.
1962 found_key.objectid = found_key.offset;
1963 found_key.type = BTRFS_INODE_ITEM_KEY;
1964 found_key.offset = 0;
1965 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1970 * add this inode to the orphan list so btrfs_orphan_del does
1971 * the proper thing when we hit it
1973 spin_lock(&root->list_lock);
1974 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1975 spin_unlock(&root->list_lock);
1978 * if this is a bad inode, means we actually succeeded in
1979 * removing the inode, but not the orphan record, which means
1980 * we need to manually delete the orphan since iput will just
1981 * do a destroy_inode
1983 if (is_bad_inode(inode)) {
1984 trans = btrfs_start_transaction(root, 1);
1985 btrfs_orphan_del(trans, inode);
1986 btrfs_end_transaction(trans, root);
1991 /* if we have links, this was a truncate, lets do that */
1992 if (inode->i_nlink) {
1994 btrfs_truncate(inode);
1999 /* this will do delete_inode and everything for us */
2004 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2006 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2008 btrfs_free_path(path);
2012 * very simple check to peek ahead in the leaf looking for xattrs. If we
2013 * don't find any xattrs, we know there can't be any acls.
2015 * slot is the slot the inode is in, objectid is the objectid of the inode
2017 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2018 int slot, u64 objectid)
2020 u32 nritems = btrfs_header_nritems(leaf);
2021 struct btrfs_key found_key;
2025 while (slot < nritems) {
2026 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2028 /* we found a different objectid, there must not be acls */
2029 if (found_key.objectid != objectid)
2032 /* we found an xattr, assume we've got an acl */
2033 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2037 * we found a key greater than an xattr key, there can't
2038 * be any acls later on
2040 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2047 * it goes inode, inode backrefs, xattrs, extents,
2048 * so if there are a ton of hard links to an inode there can
2049 * be a lot of backrefs. Don't waste time searching too hard,
2050 * this is just an optimization
2055 /* we hit the end of the leaf before we found an xattr or
2056 * something larger than an xattr. We have to assume the inode
2063 * read an inode from the btree into the in-memory inode
2065 static void btrfs_read_locked_inode(struct inode *inode)
2067 struct btrfs_path *path;
2068 struct extent_buffer *leaf;
2069 struct btrfs_inode_item *inode_item;
2070 struct btrfs_timespec *tspec;
2071 struct btrfs_root *root = BTRFS_I(inode)->root;
2072 struct btrfs_key location;
2074 u64 alloc_group_block;
2078 path = btrfs_alloc_path();
2080 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2082 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2086 leaf = path->nodes[0];
2087 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2088 struct btrfs_inode_item);
2090 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2091 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2092 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2093 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2094 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2096 tspec = btrfs_inode_atime(inode_item);
2097 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2098 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2100 tspec = btrfs_inode_mtime(inode_item);
2101 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2102 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2104 tspec = btrfs_inode_ctime(inode_item);
2105 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2106 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2108 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2109 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2110 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2111 inode->i_generation = BTRFS_I(inode)->generation;
2113 rdev = btrfs_inode_rdev(leaf, inode_item);
2115 BTRFS_I(inode)->index_cnt = (u64)-1;
2116 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2118 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2121 * try to precache a NULL acl entry for files that don't have
2122 * any xattrs or acls
2124 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2126 BTRFS_I(inode)->i_acl = NULL;
2127 BTRFS_I(inode)->i_default_acl = NULL;
2130 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2131 alloc_group_block, 0);
2132 btrfs_free_path(path);
2135 switch (inode->i_mode & S_IFMT) {
2137 inode->i_mapping->a_ops = &btrfs_aops;
2138 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2139 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2140 inode->i_fop = &btrfs_file_operations;
2141 inode->i_op = &btrfs_file_inode_operations;
2144 inode->i_fop = &btrfs_dir_file_operations;
2145 if (root == root->fs_info->tree_root)
2146 inode->i_op = &btrfs_dir_ro_inode_operations;
2148 inode->i_op = &btrfs_dir_inode_operations;
2151 inode->i_op = &btrfs_symlink_inode_operations;
2152 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2153 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2156 inode->i_op = &btrfs_special_inode_operations;
2157 init_special_inode(inode, inode->i_mode, rdev);
2161 btrfs_update_iflags(inode);
2165 btrfs_free_path(path);
2166 make_bad_inode(inode);
2170 * given a leaf and an inode, copy the inode fields into the leaf
2172 static void fill_inode_item(struct btrfs_trans_handle *trans,
2173 struct extent_buffer *leaf,
2174 struct btrfs_inode_item *item,
2175 struct inode *inode)
2177 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2178 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2179 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2180 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2181 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2183 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2184 inode->i_atime.tv_sec);
2185 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2186 inode->i_atime.tv_nsec);
2188 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2189 inode->i_mtime.tv_sec);
2190 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2191 inode->i_mtime.tv_nsec);
2193 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2194 inode->i_ctime.tv_sec);
2195 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2196 inode->i_ctime.tv_nsec);
2198 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2199 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2200 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2201 btrfs_set_inode_transid(leaf, item, trans->transid);
2202 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2203 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2204 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2208 * copy everything in the in-memory inode into the btree.
2210 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2211 struct btrfs_root *root, struct inode *inode)
2213 struct btrfs_inode_item *inode_item;
2214 struct btrfs_path *path;
2215 struct extent_buffer *leaf;
2218 path = btrfs_alloc_path();
2220 path->leave_spinning = 1;
2221 ret = btrfs_lookup_inode(trans, root, path,
2222 &BTRFS_I(inode)->location, 1);
2229 btrfs_unlock_up_safe(path, 1);
2230 leaf = path->nodes[0];
2231 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2232 struct btrfs_inode_item);
2234 fill_inode_item(trans, leaf, inode_item, inode);
2235 btrfs_mark_buffer_dirty(leaf);
2236 btrfs_set_inode_last_trans(trans, inode);
2239 btrfs_free_path(path);
2245 * unlink helper that gets used here in inode.c and in the tree logging
2246 * recovery code. It remove a link in a directory with a given name, and
2247 * also drops the back refs in the inode to the directory
2249 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2250 struct btrfs_root *root,
2251 struct inode *dir, struct inode *inode,
2252 const char *name, int name_len)
2254 struct btrfs_path *path;
2256 struct extent_buffer *leaf;
2257 struct btrfs_dir_item *di;
2258 struct btrfs_key key;
2261 path = btrfs_alloc_path();
2267 path->leave_spinning = 1;
2268 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2269 name, name_len, -1);
2278 leaf = path->nodes[0];
2279 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2280 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2283 btrfs_release_path(root, path);
2285 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2287 dir->i_ino, &index);
2289 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2290 "inode %lu parent %lu\n", name_len, name,
2291 inode->i_ino, dir->i_ino);
2295 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2296 index, name, name_len, -1);
2305 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2306 btrfs_release_path(root, path);
2308 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2310 BUG_ON(ret != 0 && ret != -ENOENT);
2312 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2316 btrfs_free_path(path);
2320 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2321 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2322 btrfs_update_inode(trans, root, dir);
2323 btrfs_drop_nlink(inode);
2324 ret = btrfs_update_inode(trans, root, inode);
2325 dir->i_sb->s_dirt = 1;
2330 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2332 struct btrfs_root *root;
2333 struct btrfs_trans_handle *trans;
2334 struct inode *inode = dentry->d_inode;
2336 unsigned long nr = 0;
2338 root = BTRFS_I(dir)->root;
2340 trans = btrfs_start_transaction(root, 1);
2342 btrfs_set_trans_block_group(trans, dir);
2344 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2346 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2347 dentry->d_name.name, dentry->d_name.len);
2349 if (inode->i_nlink == 0)
2350 ret = btrfs_orphan_add(trans, inode);
2352 nr = trans->blocks_used;
2354 btrfs_end_transaction_throttle(trans, root);
2355 btrfs_btree_balance_dirty(root, nr);
2359 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2361 struct inode *inode = dentry->d_inode;
2364 struct btrfs_root *root = BTRFS_I(dir)->root;
2365 struct btrfs_trans_handle *trans;
2366 unsigned long nr = 0;
2369 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2370 * the root of a subvolume or snapshot
2372 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2373 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2377 trans = btrfs_start_transaction(root, 1);
2378 btrfs_set_trans_block_group(trans, dir);
2380 err = btrfs_orphan_add(trans, inode);
2384 /* now the directory is empty */
2385 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2386 dentry->d_name.name, dentry->d_name.len);
2388 btrfs_i_size_write(inode, 0);
2391 nr = trans->blocks_used;
2392 ret = btrfs_end_transaction_throttle(trans, root);
2393 btrfs_btree_balance_dirty(root, nr);
2402 * when truncating bytes in a file, it is possible to avoid reading
2403 * the leaves that contain only checksum items. This can be the
2404 * majority of the IO required to delete a large file, but it must
2405 * be done carefully.
2407 * The keys in the level just above the leaves are checked to make sure
2408 * the lowest key in a given leaf is a csum key, and starts at an offset
2409 * after the new size.
2411 * Then the key for the next leaf is checked to make sure it also has
2412 * a checksum item for the same file. If it does, we know our target leaf
2413 * contains only checksum items, and it can be safely freed without reading
2416 * This is just an optimization targeted at large files. It may do
2417 * nothing. It will return 0 unless things went badly.
2419 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2420 struct btrfs_root *root,
2421 struct btrfs_path *path,
2422 struct inode *inode, u64 new_size)
2424 struct btrfs_key key;
2427 struct btrfs_key found_key;
2428 struct btrfs_key other_key;
2429 struct btrfs_leaf_ref *ref;
2433 path->lowest_level = 1;
2434 key.objectid = inode->i_ino;
2435 key.type = BTRFS_CSUM_ITEM_KEY;
2436 key.offset = new_size;
2438 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2442 if (path->nodes[1] == NULL) {
2447 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2448 nritems = btrfs_header_nritems(path->nodes[1]);
2453 if (path->slots[1] >= nritems)
2456 /* did we find a key greater than anything we want to delete? */
2457 if (found_key.objectid > inode->i_ino ||
2458 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2461 /* we check the next key in the node to make sure the leave contains
2462 * only checksum items. This comparison doesn't work if our
2463 * leaf is the last one in the node
2465 if (path->slots[1] + 1 >= nritems) {
2467 /* search forward from the last key in the node, this
2468 * will bring us into the next node in the tree
2470 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2472 /* unlikely, but we inc below, so check to be safe */
2473 if (found_key.offset == (u64)-1)
2476 /* search_forward needs a path with locks held, do the
2477 * search again for the original key. It is possible
2478 * this will race with a balance and return a path that
2479 * we could modify, but this drop is just an optimization
2480 * and is allowed to miss some leaves.
2482 btrfs_release_path(root, path);
2485 /* setup a max key for search_forward */
2486 other_key.offset = (u64)-1;
2487 other_key.type = key.type;
2488 other_key.objectid = key.objectid;
2490 path->keep_locks = 1;
2491 ret = btrfs_search_forward(root, &found_key, &other_key,
2493 path->keep_locks = 0;
2494 if (ret || found_key.objectid != key.objectid ||
2495 found_key.type != key.type) {
2500 key.offset = found_key.offset;
2501 btrfs_release_path(root, path);
2506 /* we know there's one more slot after us in the tree,
2507 * read that key so we can verify it is also a checksum item
2509 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2511 if (found_key.objectid < inode->i_ino)
2514 if (found_key.type != key.type || found_key.offset < new_size)
2518 * if the key for the next leaf isn't a csum key from this objectid,
2519 * we can't be sure there aren't good items inside this leaf.
2522 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2525 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2526 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2528 * it is safe to delete this leaf, it contains only
2529 * csum items from this inode at an offset >= new_size
2531 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2534 if (root->ref_cows && leaf_gen < trans->transid) {
2535 ref = btrfs_alloc_leaf_ref(root, 0);
2537 ref->root_gen = root->root_key.offset;
2538 ref->bytenr = leaf_start;
2540 ref->generation = leaf_gen;
2543 btrfs_sort_leaf_ref(ref);
2545 ret = btrfs_add_leaf_ref(root, ref, 0);
2547 btrfs_free_leaf_ref(root, ref);
2553 btrfs_release_path(root, path);
2555 if (other_key.objectid == inode->i_ino &&
2556 other_key.type == key.type && other_key.offset > key.offset) {
2557 key.offset = other_key.offset;
2563 /* fixup any changes we've made to the path */
2564 path->lowest_level = 0;
2565 path->keep_locks = 0;
2566 btrfs_release_path(root, path);
2573 * this can truncate away extent items, csum items and directory items.
2574 * It starts at a high offset and removes keys until it can't find
2575 * any higher than new_size
2577 * csum items that cross the new i_size are truncated to the new size
2580 * min_type is the minimum key type to truncate down to. If set to 0, this
2581 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2583 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2584 struct btrfs_root *root,
2585 struct inode *inode,
2586 u64 new_size, u32 min_type)
2589 struct btrfs_path *path;
2590 struct btrfs_key key;
2591 struct btrfs_key found_key;
2592 u32 found_type = (u8)-1;
2593 struct extent_buffer *leaf;
2594 struct btrfs_file_extent_item *fi;
2595 u64 extent_start = 0;
2596 u64 extent_num_bytes = 0;
2597 u64 extent_offset = 0;
2601 int pending_del_nr = 0;
2602 int pending_del_slot = 0;
2603 int extent_type = -1;
2605 u64 mask = root->sectorsize - 1;
2608 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2609 path = btrfs_alloc_path();
2613 /* FIXME, add redo link to tree so we don't leak on crash */
2614 key.objectid = inode->i_ino;
2615 key.offset = (u64)-1;
2619 path->leave_spinning = 1;
2620 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2625 /* there are no items in the tree for us to truncate, we're
2628 if (path->slots[0] == 0) {
2637 leaf = path->nodes[0];
2638 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2639 found_type = btrfs_key_type(&found_key);
2642 if (found_key.objectid != inode->i_ino)
2645 if (found_type < min_type)
2648 item_end = found_key.offset;
2649 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2650 fi = btrfs_item_ptr(leaf, path->slots[0],
2651 struct btrfs_file_extent_item);
2652 extent_type = btrfs_file_extent_type(leaf, fi);
2653 encoding = btrfs_file_extent_compression(leaf, fi);
2654 encoding |= btrfs_file_extent_encryption(leaf, fi);
2655 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2657 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2659 btrfs_file_extent_num_bytes(leaf, fi);
2660 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2661 item_end += btrfs_file_extent_inline_len(leaf,
2666 if (item_end < new_size) {
2667 if (found_type == BTRFS_DIR_ITEM_KEY)
2668 found_type = BTRFS_INODE_ITEM_KEY;
2669 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2670 found_type = BTRFS_EXTENT_DATA_KEY;
2671 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2672 found_type = BTRFS_XATTR_ITEM_KEY;
2673 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2674 found_type = BTRFS_INODE_REF_KEY;
2675 else if (found_type)
2679 btrfs_set_key_type(&key, found_type);
2682 if (found_key.offset >= new_size)
2688 /* FIXME, shrink the extent if the ref count is only 1 */
2689 if (found_type != BTRFS_EXTENT_DATA_KEY)
2692 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2694 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2695 if (!del_item && !encoding) {
2696 u64 orig_num_bytes =
2697 btrfs_file_extent_num_bytes(leaf, fi);
2698 extent_num_bytes = new_size -
2699 found_key.offset + root->sectorsize - 1;
2700 extent_num_bytes = extent_num_bytes &
2701 ~((u64)root->sectorsize - 1);
2702 btrfs_set_file_extent_num_bytes(leaf, fi,
2704 num_dec = (orig_num_bytes -
2706 if (root->ref_cows && extent_start != 0)
2707 inode_sub_bytes(inode, num_dec);
2708 btrfs_mark_buffer_dirty(leaf);
2711 btrfs_file_extent_disk_num_bytes(leaf,
2713 extent_offset = found_key.offset -
2714 btrfs_file_extent_offset(leaf, fi);
2716 /* FIXME blocksize != 4096 */
2717 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2718 if (extent_start != 0) {
2721 inode_sub_bytes(inode, num_dec);
2724 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2726 * we can't truncate inline items that have had
2730 btrfs_file_extent_compression(leaf, fi) == 0 &&
2731 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2732 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2733 u32 size = new_size - found_key.offset;
2735 if (root->ref_cows) {
2736 inode_sub_bytes(inode, item_end + 1 -
2740 btrfs_file_extent_calc_inline_size(size);
2741 ret = btrfs_truncate_item(trans, root, path,
2744 } else if (root->ref_cows) {
2745 inode_sub_bytes(inode, item_end + 1 -
2751 if (!pending_del_nr) {
2752 /* no pending yet, add ourselves */
2753 pending_del_slot = path->slots[0];
2755 } else if (pending_del_nr &&
2756 path->slots[0] + 1 == pending_del_slot) {
2757 /* hop on the pending chunk */
2759 pending_del_slot = path->slots[0];
2766 if (found_extent && root->ref_cows) {
2767 btrfs_set_path_blocking(path);
2768 ret = btrfs_free_extent(trans, root, extent_start,
2769 extent_num_bytes, 0,
2770 btrfs_header_owner(leaf),
2771 inode->i_ino, extent_offset);
2775 if (path->slots[0] == 0) {
2778 btrfs_release_path(root, path);
2779 if (found_type == BTRFS_INODE_ITEM_KEY)
2785 if (pending_del_nr &&
2786 path->slots[0] + 1 != pending_del_slot) {
2787 struct btrfs_key debug;
2789 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2791 ret = btrfs_del_items(trans, root, path,
2796 btrfs_release_path(root, path);
2797 if (found_type == BTRFS_INODE_ITEM_KEY)
2804 if (pending_del_nr) {
2805 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2808 btrfs_free_path(path);
2809 inode->i_sb->s_dirt = 1;
2814 * taken from block_truncate_page, but does cow as it zeros out
2815 * any bytes left in the last page in the file.
2817 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2819 struct inode *inode = mapping->host;
2820 struct btrfs_root *root = BTRFS_I(inode)->root;
2821 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2822 struct btrfs_ordered_extent *ordered;
2824 u32 blocksize = root->sectorsize;
2825 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2826 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2832 if ((offset & (blocksize - 1)) == 0)
2837 page = grab_cache_page(mapping, index);
2841 page_start = page_offset(page);
2842 page_end = page_start + PAGE_CACHE_SIZE - 1;
2844 if (!PageUptodate(page)) {
2845 ret = btrfs_readpage(NULL, page);
2847 if (page->mapping != mapping) {
2849 page_cache_release(page);
2852 if (!PageUptodate(page)) {
2857 wait_on_page_writeback(page);
2859 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2860 set_page_extent_mapped(page);
2862 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2864 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2866 page_cache_release(page);
2867 btrfs_start_ordered_extent(inode, ordered, 1);
2868 btrfs_put_ordered_extent(ordered);
2872 btrfs_set_extent_delalloc(inode, page_start, page_end);
2874 if (offset != PAGE_CACHE_SIZE) {
2876 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2877 flush_dcache_page(page);
2880 ClearPageChecked(page);
2881 set_page_dirty(page);
2882 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2886 page_cache_release(page);
2891 int btrfs_cont_expand(struct inode *inode, loff_t size)
2893 struct btrfs_trans_handle *trans;
2894 struct btrfs_root *root = BTRFS_I(inode)->root;
2895 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2896 struct extent_map *em;
2897 u64 mask = root->sectorsize - 1;
2898 u64 hole_start = (inode->i_size + mask) & ~mask;
2899 u64 block_end = (size + mask) & ~mask;
2905 if (size <= hole_start)
2908 err = btrfs_check_metadata_free_space(root);
2912 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2915 struct btrfs_ordered_extent *ordered;
2916 btrfs_wait_ordered_range(inode, hole_start,
2917 block_end - hole_start);
2918 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2919 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2922 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2923 btrfs_put_ordered_extent(ordered);
2926 trans = btrfs_start_transaction(root, 1);
2927 btrfs_set_trans_block_group(trans, inode);
2929 cur_offset = hole_start;
2931 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2932 block_end - cur_offset, 0);
2933 BUG_ON(IS_ERR(em) || !em);
2934 last_byte = min(extent_map_end(em), block_end);
2935 last_byte = (last_byte + mask) & ~mask;
2936 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2938 hole_size = last_byte - cur_offset;
2939 err = btrfs_drop_extents(trans, root, inode,
2941 cur_offset + hole_size,
2943 cur_offset, &hint_byte);
2946 err = btrfs_insert_file_extent(trans, root,
2947 inode->i_ino, cur_offset, 0,
2948 0, hole_size, 0, hole_size,
2950 btrfs_drop_extent_cache(inode, hole_start,
2953 free_extent_map(em);
2954 cur_offset = last_byte;
2955 if (err || cur_offset >= block_end)
2959 btrfs_end_transaction(trans, root);
2960 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2964 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2966 struct inode *inode = dentry->d_inode;
2969 err = inode_change_ok(inode, attr);
2973 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2974 if (attr->ia_size > inode->i_size) {
2975 err = btrfs_cont_expand(inode, attr->ia_size);
2978 } else if (inode->i_size > 0 &&
2979 attr->ia_size == 0) {
2981 /* we're truncating a file that used to have good
2982 * data down to zero. Make sure it gets into
2983 * the ordered flush list so that any new writes
2984 * get down to disk quickly.
2986 BTRFS_I(inode)->ordered_data_close = 1;
2990 err = inode_setattr(inode, attr);
2992 if (!err && ((attr->ia_valid & ATTR_MODE)))
2993 err = btrfs_acl_chmod(inode);
2997 void btrfs_delete_inode(struct inode *inode)
2999 struct btrfs_trans_handle *trans;
3000 struct btrfs_root *root = BTRFS_I(inode)->root;
3004 truncate_inode_pages(&inode->i_data, 0);
3005 if (is_bad_inode(inode)) {
3006 btrfs_orphan_del(NULL, inode);
3009 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3011 btrfs_i_size_write(inode, 0);
3012 trans = btrfs_join_transaction(root, 1);
3014 btrfs_set_trans_block_group(trans, inode);
3015 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3017 btrfs_orphan_del(NULL, inode);
3018 goto no_delete_lock;
3021 btrfs_orphan_del(trans, inode);
3023 nr = trans->blocks_used;
3026 btrfs_end_transaction(trans, root);
3027 btrfs_btree_balance_dirty(root, nr);
3031 nr = trans->blocks_used;
3032 btrfs_end_transaction(trans, root);
3033 btrfs_btree_balance_dirty(root, nr);
3039 * this returns the key found in the dir entry in the location pointer.
3040 * If no dir entries were found, location->objectid is 0.
3042 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3043 struct btrfs_key *location)
3045 const char *name = dentry->d_name.name;
3046 int namelen = dentry->d_name.len;
3047 struct btrfs_dir_item *di;
3048 struct btrfs_path *path;
3049 struct btrfs_root *root = BTRFS_I(dir)->root;
3052 path = btrfs_alloc_path();
3055 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3060 if (!di || IS_ERR(di))
3063 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3065 btrfs_free_path(path);
3068 location->objectid = 0;
3073 * when we hit a tree root in a directory, the btrfs part of the inode
3074 * needs to be changed to reflect the root directory of the tree root. This
3075 * is kind of like crossing a mount point.
3077 static int fixup_tree_root_location(struct btrfs_root *root,
3078 struct btrfs_key *location,
3079 struct btrfs_root **sub_root,
3080 struct dentry *dentry)
3082 struct btrfs_root_item *ri;
3084 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3086 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3089 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3090 dentry->d_name.name,
3091 dentry->d_name.len);
3092 if (IS_ERR(*sub_root))
3093 return PTR_ERR(*sub_root);
3095 ri = &(*sub_root)->root_item;
3096 location->objectid = btrfs_root_dirid(ri);
3097 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3098 location->offset = 0;
3103 static void inode_tree_add(struct inode *inode)
3105 struct btrfs_root *root = BTRFS_I(inode)->root;
3106 struct btrfs_inode *entry;
3107 struct rb_node **p = &root->inode_tree.rb_node;
3108 struct rb_node *parent = NULL;
3110 spin_lock(&root->inode_lock);
3113 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3115 if (inode->i_ino < entry->vfs_inode.i_ino)
3117 else if (inode->i_ino > entry->vfs_inode.i_ino)
3118 p = &(*p)->rb_right;
3120 WARN_ON(!(entry->vfs_inode.i_state &
3121 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3125 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3126 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3127 spin_unlock(&root->inode_lock);
3130 static void inode_tree_del(struct inode *inode)
3132 struct btrfs_root *root = BTRFS_I(inode)->root;
3134 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3135 spin_lock(&root->inode_lock);
3136 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3137 spin_unlock(&root->inode_lock);
3138 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3142 static noinline void init_btrfs_i(struct inode *inode)
3144 struct btrfs_inode *bi = BTRFS_I(inode);
3146 bi->i_acl = BTRFS_ACL_NOT_CACHED;
3147 bi->i_default_acl = BTRFS_ACL_NOT_CACHED;
3152 bi->logged_trans = 0;
3153 bi->delalloc_bytes = 0;
3154 bi->reserved_bytes = 0;
3155 bi->disk_i_size = 0;
3157 bi->index_cnt = (u64)-1;
3158 bi->last_unlink_trans = 0;
3159 bi->ordered_data_close = 0;
3160 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3161 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3162 inode->i_mapping, GFP_NOFS);
3163 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3164 inode->i_mapping, GFP_NOFS);
3165 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3166 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3167 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3168 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3169 mutex_init(&BTRFS_I(inode)->extent_mutex);
3170 mutex_init(&BTRFS_I(inode)->log_mutex);
3173 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3175 struct btrfs_iget_args *args = p;
3176 inode->i_ino = args->ino;
3177 init_btrfs_i(inode);
3178 BTRFS_I(inode)->root = args->root;
3179 btrfs_set_inode_space_info(args->root, inode);
3183 static int btrfs_find_actor(struct inode *inode, void *opaque)
3185 struct btrfs_iget_args *args = opaque;
3186 return args->ino == inode->i_ino &&
3187 args->root == BTRFS_I(inode)->root;
3190 static struct inode *btrfs_iget_locked(struct super_block *s,
3192 struct btrfs_root *root)
3194 struct inode *inode;
3195 struct btrfs_iget_args args;
3196 args.ino = objectid;
3199 inode = iget5_locked(s, objectid, btrfs_find_actor,
3200 btrfs_init_locked_inode,
3205 /* Get an inode object given its location and corresponding root.
3206 * Returns in *is_new if the inode was read from disk
3208 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3209 struct btrfs_root *root)
3211 struct inode *inode;
3213 inode = btrfs_iget_locked(s, location->objectid, root);
3215 return ERR_PTR(-ENOMEM);
3217 if (inode->i_state & I_NEW) {
3218 BTRFS_I(inode)->root = root;