2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
45 #include "transaction.h"
46 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
53 #include "compression.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
58 struct btrfs_iget_args {
60 struct btrfs_root *root;
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
93 static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
106 err = btrfs_init_acl(trans, inode, dir);
108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
121 struct page **compressed_pages)
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
129 struct btrfs_file_extent_item *ei;
132 size_t cur_size = size;
134 unsigned long offset;
136 if (compressed_size && compressed_pages)
137 cur_size = compressed_size;
139 path = btrfs_alloc_path();
143 path->leave_spinning = 1;
145 key.objectid = btrfs_ino(inode);
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
158 leaf = path->nodes[0];
159 ei = btrfs_item_ptr(leaf, path->slots[0],
160 struct btrfs_file_extent_item);
161 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
162 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
163 btrfs_set_file_extent_encryption(leaf, ei, 0);
164 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
165 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
166 ptr = btrfs_file_extent_inline_start(ei);
168 if (compress_type != BTRFS_COMPRESS_NONE) {
171 while (compressed_size > 0) {
172 cpage = compressed_pages[i];
173 cur_size = min_t(unsigned long, compressed_size,
176 kaddr = kmap_atomic(cpage);
177 write_extent_buffer(leaf, kaddr, ptr, cur_size);
178 kunmap_atomic(kaddr);
182 compressed_size -= cur_size;
184 btrfs_set_file_extent_compression(leaf, ei,
187 page = find_get_page(inode->i_mapping,
188 start >> PAGE_CACHE_SHIFT);
189 btrfs_set_file_extent_compression(leaf, ei, 0);
190 kaddr = kmap_atomic(page);
191 offset = start & (PAGE_CACHE_SIZE - 1);
192 write_extent_buffer(leaf, kaddr + offset, ptr, size);
193 kunmap_atomic(kaddr);
194 page_cache_release(page);
196 btrfs_mark_buffer_dirty(leaf);
197 btrfs_free_path(path);
200 * we're an inline extent, so nobody can
201 * extend the file past i_size without locking
202 * a page we already have locked.
204 * We must do any isize and inode updates
205 * before we unlock the pages. Otherwise we
206 * could end up racing with unlink.
208 BTRFS_I(inode)->disk_i_size = inode->i_size;
209 btrfs_update_inode(trans, root, inode);
213 btrfs_free_path(path);
219 * conditionally insert an inline extent into the file. This
220 * does the checks required to make sure the data is small enough
221 * to fit as an inline extent.
223 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
224 struct btrfs_root *root,
225 struct inode *inode, u64 start, u64 end,
226 size_t compressed_size, int compress_type,
227 struct page **compressed_pages)
229 u64 isize = i_size_read(inode);
230 u64 actual_end = min(end + 1, isize);
231 u64 inline_len = actual_end - start;
232 u64 aligned_end = (end + root->sectorsize - 1) &
233 ~((u64)root->sectorsize - 1);
235 u64 data_len = inline_len;
239 data_len = compressed_size;
242 actual_end >= PAGE_CACHE_SIZE ||
243 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
245 (actual_end & (root->sectorsize - 1)) == 0) ||
247 data_len > root->fs_info->max_inline) {
251 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
259 compress_type, compressed_pages);
261 btrfs_delalloc_release_metadata(inode, end + 1 - start);
262 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
266 struct async_extent {
271 unsigned long nr_pages;
273 struct list_head list;
278 struct btrfs_root *root;
279 struct page *locked_page;
282 struct list_head extents;
283 struct btrfs_work work;
286 static noinline int add_async_extent(struct async_cow *cow,
287 u64 start, u64 ram_size,
290 unsigned long nr_pages,
293 struct async_extent *async_extent;
295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
296 BUG_ON(!async_extent);
297 async_extent->start = start;
298 async_extent->ram_size = ram_size;
299 async_extent->compressed_size = compressed_size;
300 async_extent->pages = pages;
301 async_extent->nr_pages = nr_pages;
302 async_extent->compress_type = compress_type;
303 list_add_tail(&async_extent->list, &cow->extents);
308 * we create compressed extents in two phases. The first
309 * phase compresses a range of pages that have already been
310 * locked (both pages and state bits are locked).
312 * This is done inside an ordered work queue, and the compression
313 * is spread across many cpus. The actual IO submission is step
314 * two, and the ordered work queue takes care of making sure that
315 * happens in the same order things were put onto the queue by
316 * writepages and friends.
318 * If this code finds it can't get good compression, it puts an
319 * entry onto the work queue to write the uncompressed bytes. This
320 * makes sure that both compressed inodes and uncompressed inodes
321 * are written in the same order that pdflush sent them down.
323 static noinline int compress_file_range(struct inode *inode,
324 struct page *locked_page,
326 struct async_cow *async_cow,
329 struct btrfs_root *root = BTRFS_I(inode)->root;
330 struct btrfs_trans_handle *trans;
332 u64 blocksize = root->sectorsize;
334 u64 isize = i_size_read(inode);
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
342 unsigned long max_uncompressed = 128 * 1024;
345 int compress_type = root->fs_info->compress_type;
347 /* if this is a small write inside eof, kick off a defragbot */
348 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
349 btrfs_add_inode_defrag(NULL, inode);
351 actual_end = min_t(u64, isize, end + 1);
354 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
355 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
358 * we don't want to send crud past the end of i_size through
359 * compression, that's just a waste of CPU time. So, if the
360 * end of the file is before the start of our current
361 * requested range of bytes, we bail out to the uncompressed
362 * cleanup code that can deal with all of this.
364 * It isn't really the fastest way to fix things, but this is a
365 * very uncommon corner.
367 if (actual_end <= start)
368 goto cleanup_and_bail_uncompressed;
370 total_compressed = actual_end - start;
372 /* we want to make sure that amount of ram required to uncompress
373 * an extent is reasonable, so we limit the total size in ram
374 * of a compressed extent to 128k. This is a crucial number
375 * because it also controls how easily we can spread reads across
376 * cpus for decompression.
378 * We also want to make sure the amount of IO required to do
379 * a random read is reasonably small, so we limit the size of
380 * a compressed extent to 128k.
382 total_compressed = min(total_compressed, max_uncompressed);
383 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
384 num_bytes = max(blocksize, num_bytes);
389 * we do compression for mount -o compress and when the
390 * inode has not been flagged as nocompress. This flag can
391 * change at any time if we discover bad compression ratios.
393 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
394 (btrfs_test_opt(root, COMPRESS) ||
395 (BTRFS_I(inode)->force_compress) ||
396 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
398 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
400 /* just bail out to the uncompressed code */
404 if (BTRFS_I(inode)->force_compress)
405 compress_type = BTRFS_I(inode)->force_compress;
407 ret = btrfs_compress_pages(compress_type,
408 inode->i_mapping, start,
409 total_compressed, pages,
410 nr_pages, &nr_pages_ret,
416 unsigned long offset = total_compressed &
417 (PAGE_CACHE_SIZE - 1);
418 struct page *page = pages[nr_pages_ret - 1];
421 /* zero the tail end of the last page, we might be
422 * sending it down to disk
425 kaddr = kmap_atomic(page);
426 memset(kaddr + offset, 0,
427 PAGE_CACHE_SIZE - offset);
428 kunmap_atomic(kaddr);
435 trans = btrfs_join_transaction(root);
436 BUG_ON(IS_ERR(trans));
437 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
439 /* lets try to make an inline extent */
440 if (ret || total_in < (actual_end - start)) {
441 /* we didn't compress the entire range, try
442 * to make an uncompressed inline extent.
444 ret = cow_file_range_inline(trans, root, inode,
445 start, end, 0, 0, NULL);
447 /* try making a compressed inline extent */
448 ret = cow_file_range_inline(trans, root, inode,
451 compress_type, pages);
455 * inline extent creation worked, we don't need
456 * to create any more async work items. Unlock
457 * and free up our temp pages.
459 extent_clear_unlock_delalloc(inode,
460 &BTRFS_I(inode)->io_tree,
462 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
463 EXTENT_CLEAR_DELALLOC |
464 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
466 btrfs_end_transaction(trans, root);
469 btrfs_end_transaction(trans, root);
474 * we aren't doing an inline extent round the compressed size
475 * up to a block size boundary so the allocator does sane
478 total_compressed = (total_compressed + blocksize - 1) &
482 * one last check to make sure the compression is really a
483 * win, compare the page count read with the blocks on disk
485 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
486 ~(PAGE_CACHE_SIZE - 1);
487 if (total_compressed >= total_in) {
490 num_bytes = total_in;
493 if (!will_compress && pages) {
495 * the compression code ran but failed to make things smaller,
496 * free any pages it allocated and our page pointer array
498 for (i = 0; i < nr_pages_ret; i++) {
499 WARN_ON(pages[i]->mapping);
500 page_cache_release(pages[i]);
504 total_compressed = 0;
507 /* flag the file so we don't compress in the future */
508 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
509 !(BTRFS_I(inode)->force_compress)) {
510 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
516 /* the async work queues will take care of doing actual
517 * allocation on disk for these compressed pages,
518 * and will submit them to the elevator.
520 add_async_extent(async_cow, start, num_bytes,
521 total_compressed, pages, nr_pages_ret,
524 if (start + num_bytes < end) {
531 cleanup_and_bail_uncompressed:
533 * No compression, but we still need to write the pages in
534 * the file we've been given so far. redirty the locked
535 * page if it corresponds to our extent and set things up
536 * for the async work queue to run cow_file_range to do
537 * the normal delalloc dance
539 if (page_offset(locked_page) >= start &&
540 page_offset(locked_page) <= end) {
541 __set_page_dirty_nobuffers(locked_page);
542 /* unlocked later on in the async handlers */
544 add_async_extent(async_cow, start, end - start + 1,
545 0, NULL, 0, BTRFS_COMPRESS_NONE);
553 for (i = 0; i < nr_pages_ret; i++) {
554 WARN_ON(pages[i]->mapping);
555 page_cache_release(pages[i]);
563 * phase two of compressed writeback. This is the ordered portion
564 * of the code, which only gets called in the order the work was
565 * queued. We walk all the async extents created by compress_file_range
566 * and send them down to the disk.
568 static noinline int submit_compressed_extents(struct inode *inode,
569 struct async_cow *async_cow)
571 struct async_extent *async_extent;
573 struct btrfs_trans_handle *trans;
574 struct btrfs_key ins;
575 struct extent_map *em;
576 struct btrfs_root *root = BTRFS_I(inode)->root;
577 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
578 struct extent_io_tree *io_tree;
581 if (list_empty(&async_cow->extents))
585 while (!list_empty(&async_cow->extents)) {
586 async_extent = list_entry(async_cow->extents.next,
587 struct async_extent, list);
588 list_del(&async_extent->list);
590 io_tree = &BTRFS_I(inode)->io_tree;
593 /* did the compression code fall back to uncompressed IO? */
594 if (!async_extent->pages) {
595 int page_started = 0;
596 unsigned long nr_written = 0;
598 lock_extent(io_tree, async_extent->start,
599 async_extent->start +
600 async_extent->ram_size - 1, GFP_NOFS);
602 /* allocate blocks */
603 ret = cow_file_range(inode, async_cow->locked_page,
605 async_extent->start +
606 async_extent->ram_size - 1,
607 &page_started, &nr_written, 0);
610 * if page_started, cow_file_range inserted an
611 * inline extent and took care of all the unlocking
612 * and IO for us. Otherwise, we need to submit
613 * all those pages down to the drive.
615 if (!page_started && !ret)
616 extent_write_locked_range(io_tree,
617 inode, async_extent->start,
618 async_extent->start +
619 async_extent->ram_size - 1,
627 lock_extent(io_tree, async_extent->start,
628 async_extent->start + async_extent->ram_size - 1,
631 trans = btrfs_join_transaction(root);
632 BUG_ON(IS_ERR(trans));
633 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
634 ret = btrfs_reserve_extent(trans, root,
635 async_extent->compressed_size,
636 async_extent->compressed_size,
639 btrfs_end_transaction(trans, root);
643 for (i = 0; i < async_extent->nr_pages; i++) {
644 WARN_ON(async_extent->pages[i]->mapping);
645 page_cache_release(async_extent->pages[i]);
647 kfree(async_extent->pages);
648 async_extent->nr_pages = 0;
649 async_extent->pages = NULL;
650 unlock_extent(io_tree, async_extent->start,
651 async_extent->start +
652 async_extent->ram_size - 1, GFP_NOFS);
657 * here we're doing allocation and writeback of the
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
664 em = alloc_extent_map();
666 em->start = async_extent->start;
667 em->len = async_extent->ram_size;
668 em->orig_start = em->start;
670 em->block_start = ins.objectid;
671 em->block_len = ins.offset;
672 em->bdev = root->fs_info->fs_devices->latest_bdev;
673 em->compress_type = async_extent->compress_type;
674 set_bit(EXTENT_FLAG_PINNED, &em->flags);
675 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
678 write_lock(&em_tree->lock);
679 ret = add_extent_mapping(em_tree, em);
680 write_unlock(&em_tree->lock);
681 if (ret != -EEXIST) {
685 btrfs_drop_extent_cache(inode, async_extent->start,
686 async_extent->start +
687 async_extent->ram_size - 1, 0);
690 ret = btrfs_add_ordered_extent_compress(inode,
693 async_extent->ram_size,
695 BTRFS_ORDERED_COMPRESSED,
696 async_extent->compress_type);
700 * clear dirty, set writeback and unlock the pages.
702 extent_clear_unlock_delalloc(inode,
703 &BTRFS_I(inode)->io_tree,
705 async_extent->start +
706 async_extent->ram_size - 1,
707 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
708 EXTENT_CLEAR_UNLOCK |
709 EXTENT_CLEAR_DELALLOC |
710 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
712 ret = btrfs_submit_compressed_write(inode,
714 async_extent->ram_size,
716 ins.offset, async_extent->pages,
717 async_extent->nr_pages);
720 alloc_hint = ins.objectid + ins.offset;
728 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 struct extent_map *em;
735 read_lock(&em_tree->lock);
736 em = search_extent_mapping(em_tree, start, num_bytes);
739 * if block start isn't an actual block number then find the
740 * first block in this inode and use that as a hint. If that
741 * block is also bogus then just don't worry about it.
743 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
745 em = search_extent_mapping(em_tree, 0, 0);
746 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
747 alloc_hint = em->block_start;
751 alloc_hint = em->block_start;
755 read_unlock(&em_tree->lock);
761 * when extent_io.c finds a delayed allocation range in the file,
762 * the call backs end up in this code. The basic idea is to
763 * allocate extents on disk for the range, and create ordered data structs
764 * in ram to track those extents.
766 * locked_page is the page that writepage had locked already. We use
767 * it to make sure we don't do extra locks or unlocks.
769 * *page_started is set to one if we unlock locked_page and do everything
770 * required to start IO on it. It may be clean and already done with
773 static noinline int cow_file_range(struct inode *inode,
774 struct page *locked_page,
775 u64 start, u64 end, int *page_started,
776 unsigned long *nr_written,
779 struct btrfs_root *root = BTRFS_I(inode)->root;
780 struct btrfs_trans_handle *trans;
783 unsigned long ram_size;
786 u64 blocksize = root->sectorsize;
787 struct btrfs_key ins;
788 struct extent_map *em;
789 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
792 BUG_ON(btrfs_is_free_space_inode(root, inode));
793 trans = btrfs_join_transaction(root);
794 BUG_ON(IS_ERR(trans));
795 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
797 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
798 num_bytes = max(blocksize, num_bytes);
799 disk_num_bytes = num_bytes;
802 /* if this is a small write inside eof, kick off defrag */
803 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
804 btrfs_add_inode_defrag(trans, inode);
807 /* lets try to make an inline extent */
808 ret = cow_file_range_inline(trans, root, inode,
809 start, end, 0, 0, NULL);
811 extent_clear_unlock_delalloc(inode,
812 &BTRFS_I(inode)->io_tree,
814 EXTENT_CLEAR_UNLOCK_PAGE |
815 EXTENT_CLEAR_UNLOCK |
816 EXTENT_CLEAR_DELALLOC |
818 EXTENT_SET_WRITEBACK |
819 EXTENT_END_WRITEBACK);
821 *nr_written = *nr_written +
822 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
829 BUG_ON(disk_num_bytes >
830 btrfs_super_total_bytes(root->fs_info->super_copy));
832 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
833 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
835 while (disk_num_bytes > 0) {
838 cur_alloc_size = disk_num_bytes;
839 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
840 root->sectorsize, 0, alloc_hint,
844 em = alloc_extent_map();
847 em->orig_start = em->start;
848 ram_size = ins.offset;
849 em->len = ins.offset;
851 em->block_start = ins.objectid;
852 em->block_len = ins.offset;
853 em->bdev = root->fs_info->fs_devices->latest_bdev;
854 set_bit(EXTENT_FLAG_PINNED, &em->flags);
857 write_lock(&em_tree->lock);
858 ret = add_extent_mapping(em_tree, em);
859 write_unlock(&em_tree->lock);
860 if (ret != -EEXIST) {
864 btrfs_drop_extent_cache(inode, start,
865 start + ram_size - 1, 0);
868 cur_alloc_size = ins.offset;
869 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
870 ram_size, cur_alloc_size, 0);
873 if (root->root_key.objectid ==
874 BTRFS_DATA_RELOC_TREE_OBJECTID) {
875 ret = btrfs_reloc_clone_csums(inode, start,
880 if (disk_num_bytes < cur_alloc_size)
883 /* we're not doing compressed IO, don't unlock the first
884 * page (which the caller expects to stay locked), don't
885 * clear any dirty bits and don't set any writeback bits
887 * Do set the Private2 bit so we know this page was properly
888 * setup for writepage
890 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
891 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
894 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
895 start, start + ram_size - 1,
897 disk_num_bytes -= cur_alloc_size;
898 num_bytes -= cur_alloc_size;
899 alloc_hint = ins.objectid + ins.offset;
900 start += cur_alloc_size;
904 btrfs_end_transaction(trans, root);
910 * work queue call back to started compression on a file and pages
912 static noinline void async_cow_start(struct btrfs_work *work)
914 struct async_cow *async_cow;
916 async_cow = container_of(work, struct async_cow, work);
918 compress_file_range(async_cow->inode, async_cow->locked_page,
919 async_cow->start, async_cow->end, async_cow,
922 async_cow->inode = NULL;
926 * work queue call back to submit previously compressed pages
928 static noinline void async_cow_submit(struct btrfs_work *work)
930 struct async_cow *async_cow;
931 struct btrfs_root *root;
932 unsigned long nr_pages;
934 async_cow = container_of(work, struct async_cow, work);
936 root = async_cow->root;
937 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
940 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
942 if (atomic_read(&root->fs_info->async_delalloc_pages) <
944 waitqueue_active(&root->fs_info->async_submit_wait))
945 wake_up(&root->fs_info->async_submit_wait);
947 if (async_cow->inode)
948 submit_compressed_extents(async_cow->inode, async_cow);
951 static noinline void async_cow_free(struct btrfs_work *work)
953 struct async_cow *async_cow;
954 async_cow = container_of(work, struct async_cow, work);
958 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
959 u64 start, u64 end, int *page_started,
960 unsigned long *nr_written)
962 struct async_cow *async_cow;
963 struct btrfs_root *root = BTRFS_I(inode)->root;
964 unsigned long nr_pages;
966 int limit = 10 * 1024 * 1042;
968 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
969 1, 0, NULL, GFP_NOFS);
970 while (start < end) {
971 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
973 async_cow->inode = inode;
974 async_cow->root = root;
975 async_cow->locked_page = locked_page;
976 async_cow->start = start;
978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
981 cur_end = min(end, start + 512 * 1024 - 1);
983 async_cow->end = cur_end;
984 INIT_LIST_HEAD(&async_cow->extents);
986 async_cow->work.func = async_cow_start;
987 async_cow->work.ordered_func = async_cow_submit;
988 async_cow->work.ordered_free = async_cow_free;
989 async_cow->work.flags = 0;
991 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
993 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
995 btrfs_queue_worker(&root->fs_info->delalloc_workers,
998 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) <
1004 while (atomic_read(&root->fs_info->async_submit_draining) &&
1005 atomic_read(&root->fs_info->async_delalloc_pages)) {
1006 wait_event(root->fs_info->async_submit_wait,
1007 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1011 *nr_written += nr_pages;
1012 start = cur_end + 1;
1018 static noinline int csum_exist_in_range(struct btrfs_root *root,
1019 u64 bytenr, u64 num_bytes)
1022 struct btrfs_ordered_sum *sums;
1025 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1026 bytenr + num_bytes - 1, &list, 0);
1027 if (ret == 0 && list_empty(&list))
1030 while (!list_empty(&list)) {
1031 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1032 list_del(&sums->list);
1039 * when nowcow writeback call back. This checks for snapshots or COW copies
1040 * of the extents that exist in the file, and COWs the file as required.
1042 * If no cow copies or snapshots exist, we write directly to the existing
1045 static noinline int run_delalloc_nocow(struct inode *inode,
1046 struct page *locked_page,
1047 u64 start, u64 end, int *page_started, int force,
1048 unsigned long *nr_written)
1050 struct btrfs_root *root = BTRFS_I(inode)->root;
1051 struct btrfs_trans_handle *trans;
1052 struct extent_buffer *leaf;
1053 struct btrfs_path *path;
1054 struct btrfs_file_extent_item *fi;
1055 struct btrfs_key found_key;
1068 u64 ino = btrfs_ino(inode);
1070 path = btrfs_alloc_path();
1074 nolock = btrfs_is_free_space_inode(root, inode);
1077 trans = btrfs_join_transaction_nolock(root);
1079 trans = btrfs_join_transaction(root);
1081 BUG_ON(IS_ERR(trans));
1082 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1084 cow_start = (u64)-1;
1087 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1090 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1091 leaf = path->nodes[0];
1092 btrfs_item_key_to_cpu(leaf, &found_key,
1093 path->slots[0] - 1);
1094 if (found_key.objectid == ino &&
1095 found_key.type == BTRFS_EXTENT_DATA_KEY)
1100 leaf = path->nodes[0];
1101 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1102 ret = btrfs_next_leaf(root, path);
1107 leaf = path->nodes[0];
1113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1115 if (found_key.objectid > ino ||
1116 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1117 found_key.offset > end)
1120 if (found_key.offset > cur_offset) {
1121 extent_end = found_key.offset;
1126 fi = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_file_extent_item);
1128 extent_type = btrfs_file_extent_type(leaf, fi);
1130 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1131 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1132 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1133 extent_offset = btrfs_file_extent_offset(leaf, fi);
1134 extent_end = found_key.offset +
1135 btrfs_file_extent_num_bytes(leaf, fi);
1136 if (extent_end <= start) {
1140 if (disk_bytenr == 0)
1142 if (btrfs_file_extent_compression(leaf, fi) ||
1143 btrfs_file_extent_encryption(leaf, fi) ||
1144 btrfs_file_extent_other_encoding(leaf, fi))
1146 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1148 if (btrfs_extent_readonly(root, disk_bytenr))
1150 if (btrfs_cross_ref_exist(trans, root, ino,
1152 extent_offset, disk_bytenr))
1154 disk_bytenr += extent_offset;
1155 disk_bytenr += cur_offset - found_key.offset;
1156 num_bytes = min(end + 1, extent_end) - cur_offset;
1158 * force cow if csum exists in the range.
1159 * this ensure that csum for a given extent are
1160 * either valid or do not exist.
1162 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1165 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1166 extent_end = found_key.offset +
1167 btrfs_file_extent_inline_len(leaf, fi);
1168 extent_end = ALIGN(extent_end, root->sectorsize);
1173 if (extent_end <= start) {
1178 if (cow_start == (u64)-1)
1179 cow_start = cur_offset;
1180 cur_offset = extent_end;
1181 if (cur_offset > end)
1187 btrfs_release_path(path);
1188 if (cow_start != (u64)-1) {
1189 ret = cow_file_range(inode, locked_page, cow_start,
1190 found_key.offset - 1, page_started,
1193 cow_start = (u64)-1;
1196 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1197 struct extent_map *em;
1198 struct extent_map_tree *em_tree;
1199 em_tree = &BTRFS_I(inode)->extent_tree;
1200 em = alloc_extent_map();
1202 em->start = cur_offset;
1203 em->orig_start = em->start;
1204 em->len = num_bytes;
1205 em->block_len = num_bytes;
1206 em->block_start = disk_bytenr;
1207 em->bdev = root->fs_info->fs_devices->latest_bdev;
1208 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1210 write_lock(&em_tree->lock);
1211 ret = add_extent_mapping(em_tree, em);
1212 write_unlock(&em_tree->lock);
1213 if (ret != -EEXIST) {
1214 free_extent_map(em);
1217 btrfs_drop_extent_cache(inode, em->start,
1218 em->start + em->len - 1, 0);
1220 type = BTRFS_ORDERED_PREALLOC;
1222 type = BTRFS_ORDERED_NOCOW;
1225 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1226 num_bytes, num_bytes, type);
1229 if (root->root_key.objectid ==
1230 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1231 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1236 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1237 cur_offset, cur_offset + num_bytes - 1,
1238 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1239 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1240 EXTENT_SET_PRIVATE2);
1241 cur_offset = extent_end;
1242 if (cur_offset > end)
1245 btrfs_release_path(path);
1247 if (cur_offset <= end && cow_start == (u64)-1)
1248 cow_start = cur_offset;
1249 if (cow_start != (u64)-1) {
1250 ret = cow_file_range(inode, locked_page, cow_start, end,
1251 page_started, nr_written, 1);
1256 ret = btrfs_end_transaction_nolock(trans, root);
1259 ret = btrfs_end_transaction(trans, root);
1262 btrfs_free_path(path);
1267 * extent_io.c call back to do delayed allocation processing
1269 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1270 u64 start, u64 end, int *page_started,
1271 unsigned long *nr_written)
1274 struct btrfs_root *root = BTRFS_I(inode)->root;
1276 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1277 ret = run_delalloc_nocow(inode, locked_page, start, end,
1278 page_started, 1, nr_written);
1279 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1280 ret = run_delalloc_nocow(inode, locked_page, start, end,
1281 page_started, 0, nr_written);
1282 else if (!btrfs_test_opt(root, COMPRESS) &&
1283 !(BTRFS_I(inode)->force_compress) &&
1284 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1285 ret = cow_file_range(inode, locked_page, start, end,
1286 page_started, nr_written, 1);
1288 ret = cow_file_range_async(inode, locked_page, start, end,
1289 page_started, nr_written);
1293 static void btrfs_split_extent_hook(struct inode *inode,
1294 struct extent_state *orig, u64 split)
1296 /* not delalloc, ignore it */
1297 if (!(orig->state & EXTENT_DELALLOC))
1300 spin_lock(&BTRFS_I(inode)->lock);
1301 BTRFS_I(inode)->outstanding_extents++;
1302 spin_unlock(&BTRFS_I(inode)->lock);
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1311 static void btrfs_merge_extent_hook(struct inode *inode,
1312 struct extent_state *new,
1313 struct extent_state *other)
1315 /* not delalloc, ignore it */
1316 if (!(other->state & EXTENT_DELALLOC))
1319 spin_lock(&BTRFS_I(inode)->lock);
1320 BTRFS_I(inode)->outstanding_extents--;
1321 spin_unlock(&BTRFS_I(inode)->lock);
1325 * extent_io.c set_bit_hook, used to track delayed allocation
1326 * bytes in this file, and to maintain the list of inodes that
1327 * have pending delalloc work to be done.
1329 static void btrfs_set_bit_hook(struct inode *inode,
1330 struct extent_state *state, int *bits)
1334 * set_bit and clear bit hooks normally require _irqsave/restore
1335 * but in this case, we are only testing for the DELALLOC
1336 * bit, which is only set or cleared with irqs on
1338 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1339 struct btrfs_root *root = BTRFS_I(inode)->root;
1340 u64 len = state->end + 1 - state->start;
1341 bool do_list = !btrfs_is_free_space_inode(root, inode);
1343 if (*bits & EXTENT_FIRST_DELALLOC) {
1344 *bits &= ~EXTENT_FIRST_DELALLOC;
1346 spin_lock(&BTRFS_I(inode)->lock);
1347 BTRFS_I(inode)->outstanding_extents++;
1348 spin_unlock(&BTRFS_I(inode)->lock);
1351 spin_lock(&root->fs_info->delalloc_lock);
1352 BTRFS_I(inode)->delalloc_bytes += len;
1353 root->fs_info->delalloc_bytes += len;
1354 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1355 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1356 &root->fs_info->delalloc_inodes);
1358 spin_unlock(&root->fs_info->delalloc_lock);
1363 * extent_io.c clear_bit_hook, see set_bit_hook for why
1365 static void btrfs_clear_bit_hook(struct inode *inode,
1366 struct extent_state *state, int *bits)
1369 * set_bit and clear bit hooks normally require _irqsave/restore
1370 * but in this case, we are only testing for the DELALLOC
1371 * bit, which is only set or cleared with irqs on
1373 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1374 struct btrfs_root *root = BTRFS_I(inode)->root;
1375 u64 len = state->end + 1 - state->start;
1376 bool do_list = !btrfs_is_free_space_inode(root, inode);
1378 if (*bits & EXTENT_FIRST_DELALLOC) {
1379 *bits &= ~EXTENT_FIRST_DELALLOC;
1380 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1381 spin_lock(&BTRFS_I(inode)->lock);
1382 BTRFS_I(inode)->outstanding_extents--;
1383 spin_unlock(&BTRFS_I(inode)->lock);
1386 if (*bits & EXTENT_DO_ACCOUNTING)
1387 btrfs_delalloc_release_metadata(inode, len);
1389 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1391 btrfs_free_reserved_data_space(inode, len);
1393 spin_lock(&root->fs_info->delalloc_lock);
1394 root->fs_info->delalloc_bytes -= len;
1395 BTRFS_I(inode)->delalloc_bytes -= len;
1397 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1398 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1399 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1401 spin_unlock(&root->fs_info->delalloc_lock);
1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1407 * we don't create bios that span stripes or chunks
1409 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1410 size_t size, struct bio *bio,
1411 unsigned long bio_flags)
1413 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1414 struct btrfs_mapping_tree *map_tree;
1415 u64 logical = (u64)bio->bi_sector << 9;
1420 if (bio_flags & EXTENT_BIO_COMPRESSED)
1423 length = bio->bi_size;
1424 map_tree = &root->fs_info->mapping_tree;
1425 map_length = length;
1426 ret = btrfs_map_block(map_tree, READ, logical,
1427 &map_length, NULL, 0);
1429 if (map_length < length + size)
1435 * in order to insert checksums into the metadata in large chunks,
1436 * we wait until bio submission time. All the pages in the bio are
1437 * checksummed and sums are attached onto the ordered extent record.
1439 * At IO completion time the cums attached on the ordered extent record
1440 * are inserted into the btree
1442 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1443 struct bio *bio, int mirror_num,
1444 unsigned long bio_flags,
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1450 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1456 * in order to insert checksums into the metadata in large chunks,
1457 * we wait until bio submission time. All the pages in the bio are
1458 * checksummed and sums are attached onto the ordered extent record.
1460 * At IO completion time the cums attached on the ordered extent record
1461 * are inserted into the btree
1463 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1464 int mirror_num, unsigned long bio_flags,
1467 struct btrfs_root *root = BTRFS_I(inode)->root;
1468 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1472 * extent_io.c submission hook. This does the right thing for csum calculation
1473 * on write, or reading the csums from the tree before a read
1475 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1476 int mirror_num, unsigned long bio_flags,
1479 struct btrfs_root *root = BTRFS_I(inode)->root;
1483 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1485 if (btrfs_is_free_space_inode(root, inode))
1486 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1488 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1491 if (!(rw & REQ_WRITE)) {
1492 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1493 return btrfs_submit_compressed_read(inode, bio,
1494 mirror_num, bio_flags);
1495 } else if (!skip_sum) {
1496 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1501 } else if (!skip_sum) {
1502 /* csum items have already been cloned */
1503 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1505 /* we're doing a write, do the async checksumming */
1506 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1507 inode, rw, bio, mirror_num,
1508 bio_flags, bio_offset,
1509 __btrfs_submit_bio_start,
1510 __btrfs_submit_bio_done);
1514 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1518 * given a list of ordered sums record them in the inode. This happens
1519 * at IO completion time based on sums calculated at bio submission time.
1521 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1522 struct inode *inode, u64 file_offset,
1523 struct list_head *list)
1525 struct btrfs_ordered_sum *sum;
1527 list_for_each_entry(sum, list, list) {
1528 btrfs_csum_file_blocks(trans,
1529 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1534 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1535 struct extent_state **cached_state)
1537 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1539 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1540 cached_state, GFP_NOFS);
1543 /* see btrfs_writepage_start_hook for details on why this is required */
1544 struct btrfs_writepage_fixup {
1546 struct btrfs_work work;
1549 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1551 struct btrfs_writepage_fixup *fixup;
1552 struct btrfs_ordered_extent *ordered;
1553 struct extent_state *cached_state = NULL;
1555 struct inode *inode;
1560 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1564 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1565 ClearPageChecked(page);
1569 inode = page->mapping->host;
1570 page_start = page_offset(page);
1571 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1573 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1574 &cached_state, GFP_NOFS);
1576 /* already ordered? We're done */
1577 if (PagePrivate2(page))
1580 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1582 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1583 page_end, &cached_state, GFP_NOFS);
1585 btrfs_start_ordered_extent(inode, ordered, 1);
1586 btrfs_put_ordered_extent(ordered);
1590 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1592 mapping_set_error(page->mapping, ret);
1593 end_extent_writepage(page, ret, page_start, page_end);
1594 ClearPageChecked(page);
1598 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1599 ClearPageChecked(page);
1600 set_page_dirty(page);
1602 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1603 &cached_state, GFP_NOFS);
1606 page_cache_release(page);
1611 * There are a few paths in the higher layers of the kernel that directly
1612 * set the page dirty bit without asking the filesystem if it is a
1613 * good idea. This causes problems because we want to make sure COW
1614 * properly happens and the data=ordered rules are followed.
1616 * In our case any range that doesn't have the ORDERED bit set
1617 * hasn't been properly setup for IO. We kick off an async process
1618 * to fix it up. The async helper will wait for ordered extents, set
1619 * the delalloc bit and make it safe to write the page.
1621 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1623 struct inode *inode = page->mapping->host;
1624 struct btrfs_writepage_fixup *fixup;
1625 struct btrfs_root *root = BTRFS_I(inode)->root;
1627 /* this page is properly in the ordered list */
1628 if (TestClearPagePrivate2(page))
1631 if (PageChecked(page))
1634 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1638 SetPageChecked(page);
1639 page_cache_get(page);
1640 fixup->work.func = btrfs_writepage_fixup_worker;
1642 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1646 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1647 struct inode *inode, u64 file_pos,
1648 u64 disk_bytenr, u64 disk_num_bytes,
1649 u64 num_bytes, u64 ram_bytes,
1650 u8 compression, u8 encryption,
1651 u16 other_encoding, int extent_type)
1653 struct btrfs_root *root = BTRFS_I(inode)->root;
1654 struct btrfs_file_extent_item *fi;
1655 struct btrfs_path *path;
1656 struct extent_buffer *leaf;
1657 struct btrfs_key ins;
1661 path = btrfs_alloc_path();
1665 path->leave_spinning = 1;
1668 * we may be replacing one extent in the tree with another.
1669 * The new extent is pinned in the extent map, and we don't want
1670 * to drop it from the cache until it is completely in the btree.
1672 * So, tell btrfs_drop_extents to leave this extent in the cache.
1673 * the caller is expected to unpin it and allow it to be merged
1676 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1680 ins.objectid = btrfs_ino(inode);
1681 ins.offset = file_pos;
1682 ins.type = BTRFS_EXTENT_DATA_KEY;
1683 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1685 leaf = path->nodes[0];
1686 fi = btrfs_item_ptr(leaf, path->slots[0],
1687 struct btrfs_file_extent_item);
1688 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1689 btrfs_set_file_extent_type(leaf, fi, extent_type);
1690 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1691 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1692 btrfs_set_file_extent_offset(leaf, fi, 0);
1693 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1694 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1695 btrfs_set_file_extent_compression(leaf, fi, compression);
1696 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1697 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1699 btrfs_unlock_up_safe(path, 1);
1700 btrfs_set_lock_blocking(leaf);
1702 btrfs_mark_buffer_dirty(leaf);
1704 inode_add_bytes(inode, num_bytes);
1706 ins.objectid = disk_bytenr;
1707 ins.offset = disk_num_bytes;
1708 ins.type = BTRFS_EXTENT_ITEM_KEY;
1709 ret = btrfs_alloc_reserved_file_extent(trans, root,
1710 root->root_key.objectid,
1711 btrfs_ino(inode), file_pos, &ins);
1713 btrfs_free_path(path);
1719 * helper function for btrfs_finish_ordered_io, this
1720 * just reads in some of the csum leaves to prime them into ram
1721 * before we start the transaction. It limits the amount of btree
1722 * reads required while inside the transaction.
1724 /* as ordered data IO finishes, this gets called so we can finish
1725 * an ordered extent if the range of bytes in the file it covers are
1728 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1730 struct btrfs_root *root = BTRFS_I(inode)->root;
1731 struct btrfs_trans_handle *trans = NULL;
1732 struct btrfs_ordered_extent *ordered_extent = NULL;
1733 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1734 struct extent_state *cached_state = NULL;
1735 int compress_type = 0;
1739 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1743 BUG_ON(!ordered_extent);
1745 nolock = btrfs_is_free_space_inode(root, inode);
1747 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1748 BUG_ON(!list_empty(&ordered_extent->list));
1749 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1752 trans = btrfs_join_transaction_nolock(root);
1754 trans = btrfs_join_transaction(root);
1755 BUG_ON(IS_ERR(trans));
1756 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1757 ret = btrfs_update_inode_fallback(trans, root, inode);
1763 lock_extent_bits(io_tree, ordered_extent->file_offset,
1764 ordered_extent->file_offset + ordered_extent->len - 1,
1765 0, &cached_state, GFP_NOFS);
1768 trans = btrfs_join_transaction_nolock(root);
1770 trans = btrfs_join_transaction(root);
1771 BUG_ON(IS_ERR(trans));
1772 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1774 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1775 compress_type = ordered_extent->compress_type;
1776 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1777 BUG_ON(compress_type);
1778 ret = btrfs_mark_extent_written(trans, inode,
1779 ordered_extent->file_offset,
1780 ordered_extent->file_offset +
1781 ordered_extent->len);
1784 BUG_ON(root == root->fs_info->tree_root);
1785 ret = insert_reserved_file_extent(trans, inode,
1786 ordered_extent->file_offset,
1787 ordered_extent->start,
1788 ordered_extent->disk_len,
1789 ordered_extent->len,
1790 ordered_extent->len,
1791 compress_type, 0, 0,
1792 BTRFS_FILE_EXTENT_REG);
1793 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1794 ordered_extent->file_offset,
1795 ordered_extent->len);
1798 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1799 ordered_extent->file_offset +
1800 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1802 add_pending_csums(trans, inode, ordered_extent->file_offset,
1803 &ordered_extent->list);
1805 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1806 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1807 ret = btrfs_update_inode_fallback(trans, root, inode);
1812 if (root != root->fs_info->tree_root)
1813 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1816 btrfs_end_transaction_nolock(trans, root);
1818 btrfs_end_transaction(trans, root);
1822 btrfs_put_ordered_extent(ordered_extent);
1823 /* once for the tree */
1824 btrfs_put_ordered_extent(ordered_extent);
1829 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1830 struct extent_state *state, int uptodate)
1832 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1834 ClearPagePrivate2(page);
1835 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1839 * when reads are done, we need to check csums to verify the data is correct
1840 * if there's a match, we allow the bio to finish. If not, the code in
1841 * extent_io.c will try to find good copies for us.
1843 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1844 struct extent_state *state)
1846 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1847 struct inode *inode = page->mapping->host;
1848 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1850 u64 private = ~(u32)0;
1852 struct btrfs_root *root = BTRFS_I(inode)->root;
1855 if (PageChecked(page)) {
1856 ClearPageChecked(page);
1860 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1863 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1864 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1865 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1870 if (state && state->start == start) {
1871 private = state->private;
1874 ret = get_state_private(io_tree, start, &private);
1876 kaddr = kmap_atomic(page);
1880 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1881 btrfs_csum_final(csum, (char *)&csum);
1882 if (csum != private)
1885 kunmap_atomic(kaddr);
1890 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1892 (unsigned long long)btrfs_ino(page->mapping->host),
1893 (unsigned long long)start, csum,
1894 (unsigned long long)private);
1895 memset(kaddr + offset, 1, end - start + 1);
1896 flush_dcache_page(page);
1897 kunmap_atomic(kaddr);
1903 struct delayed_iput {
1904 struct list_head list;
1905 struct inode *inode;
1908 void btrfs_add_delayed_iput(struct inode *inode)
1910 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1911 struct delayed_iput *delayed;
1913 if (atomic_add_unless(&inode->i_count, -1, 1))
1916 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1917 delayed->inode = inode;
1919 spin_lock(&fs_info->delayed_iput_lock);
1920 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1921 spin_unlock(&fs_info->delayed_iput_lock);
1924 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1927 struct btrfs_fs_info *fs_info = root->fs_info;
1928 struct delayed_iput *delayed;
1931 spin_lock(&fs_info->delayed_iput_lock);
1932 empty = list_empty(&fs_info->delayed_iputs);
1933 spin_unlock(&fs_info->delayed_iput_lock);
1937 down_read(&root->fs_info->cleanup_work_sem);
1938 spin_lock(&fs_info->delayed_iput_lock);
1939 list_splice_init(&fs_info->delayed_iputs, &list);
1940 spin_unlock(&fs_info->delayed_iput_lock);
1942 while (!list_empty(&list)) {
1943 delayed = list_entry(list.next, struct delayed_iput, list);
1944 list_del(&delayed->list);
1945 iput(delayed->inode);
1948 up_read(&root->fs_info->cleanup_work_sem);
1951 enum btrfs_orphan_cleanup_state {
1952 ORPHAN_CLEANUP_STARTED = 1,
1953 ORPHAN_CLEANUP_DONE = 2,
1957 * This is called in transaction commit time. If there are no orphan
1958 * files in the subvolume, it removes orphan item and frees block_rsv
1961 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1962 struct btrfs_root *root)
1964 struct btrfs_block_rsv *block_rsv;
1967 if (!list_empty(&root->orphan_list) ||
1968 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1971 spin_lock(&root->orphan_lock);
1972 if (!list_empty(&root->orphan_list)) {
1973 spin_unlock(&root->orphan_lock);
1977 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
1978 spin_unlock(&root->orphan_lock);
1982 block_rsv = root->orphan_block_rsv;
1983 root->orphan_block_rsv = NULL;
1984 spin_unlock(&root->orphan_lock);
1986 if (root->orphan_item_inserted &&
1987 btrfs_root_refs(&root->root_item) > 0) {
1988 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1989 root->root_key.objectid);
1991 root->orphan_item_inserted = 0;
1995 WARN_ON(block_rsv->size > 0);
1996 btrfs_free_block_rsv(root, block_rsv);
2001 * This creates an orphan entry for the given inode in case something goes
2002 * wrong in the middle of an unlink/truncate.
2004 * NOTE: caller of this function should reserve 5 units of metadata for
2007 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2009 struct btrfs_root *root = BTRFS_I(inode)->root;
2010 struct btrfs_block_rsv *block_rsv = NULL;
2015 if (!root->orphan_block_rsv) {
2016 block_rsv = btrfs_alloc_block_rsv(root);
2021 spin_lock(&root->orphan_lock);
2022 if (!root->orphan_block_rsv) {
2023 root->orphan_block_rsv = block_rsv;
2024 } else if (block_rsv) {
2025 btrfs_free_block_rsv(root, block_rsv);
2029 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2030 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2033 * For proper ENOSPC handling, we should do orphan
2034 * cleanup when mounting. But this introduces backward
2035 * compatibility issue.
2037 if (!xchg(&root->orphan_item_inserted, 1))
2045 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2046 BTRFS_I(inode)->orphan_meta_reserved = 1;
2049 spin_unlock(&root->orphan_lock);
2051 /* grab metadata reservation from transaction handle */
2053 ret = btrfs_orphan_reserve_metadata(trans, inode);
2057 /* insert an orphan item to track this unlinked/truncated file */
2059 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2060 BUG_ON(ret && ret != -EEXIST);
2063 /* insert an orphan item to track subvolume contains orphan files */
2065 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2066 root->root_key.objectid);
2073 * We have done the truncate/delete so we can go ahead and remove the orphan
2074 * item for this particular inode.
2076 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2078 struct btrfs_root *root = BTRFS_I(inode)->root;
2079 int delete_item = 0;
2080 int release_rsv = 0;
2083 spin_lock(&root->orphan_lock);
2084 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2085 list_del_init(&BTRFS_I(inode)->i_orphan);
2089 if (BTRFS_I(inode)->orphan_meta_reserved) {
2090 BTRFS_I(inode)->orphan_meta_reserved = 0;
2093 spin_unlock(&root->orphan_lock);
2095 if (trans && delete_item) {
2096 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2101 btrfs_orphan_release_metadata(inode);
2107 * this cleans up any orphans that may be left on the list from the last use
2110 int btrfs_orphan_cleanup(struct btrfs_root *root)
2112 struct btrfs_path *path;
2113 struct extent_buffer *leaf;
2114 struct btrfs_key key, found_key;
2115 struct btrfs_trans_handle *trans;
2116 struct inode *inode;
2117 u64 last_objectid = 0;
2118 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2120 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2123 path = btrfs_alloc_path();
2130 key.objectid = BTRFS_ORPHAN_OBJECTID;
2131 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2132 key.offset = (u64)-1;
2135 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2140 * if ret == 0 means we found what we were searching for, which
2141 * is weird, but possible, so only screw with path if we didn't
2142 * find the key and see if we have stuff that matches
2146 if (path->slots[0] == 0)
2151 /* pull out the item */
2152 leaf = path->nodes[0];
2153 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2155 /* make sure the item matches what we want */
2156 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2158 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2161 /* release the path since we're done with it */
2162 btrfs_release_path(path);
2165 * this is where we are basically btrfs_lookup, without the
2166 * crossing root thing. we store the inode number in the
2167 * offset of the orphan item.
2170 if (found_key.offset == last_objectid) {
2171 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2172 "stopping orphan cleanup\n");
2177 last_objectid = found_key.offset;
2179 found_key.objectid = found_key.offset;
2180 found_key.type = BTRFS_INODE_ITEM_KEY;
2181 found_key.offset = 0;
2182 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2183 ret = PTR_RET(inode);
2184 if (ret && ret != -ESTALE)
2187 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2188 struct btrfs_root *dead_root;
2189 struct btrfs_fs_info *fs_info = root->fs_info;
2190 int is_dead_root = 0;
2193 * this is an orphan in the tree root. Currently these
2194 * could come from 2 sources:
2195 * a) a snapshot deletion in progress
2196 * b) a free space cache inode
2197 * We need to distinguish those two, as the snapshot
2198 * orphan must not get deleted.
2199 * find_dead_roots already ran before us, so if this
2200 * is a snapshot deletion, we should find the root
2201 * in the dead_roots list
2203 spin_lock(&fs_info->trans_lock);
2204 list_for_each_entry(dead_root, &fs_info->dead_roots,
2206 if (dead_root->root_key.objectid ==
2207 found_key.objectid) {
2212 spin_unlock(&fs_info->trans_lock);
2214 /* prevent this orphan from being found again */
2215 key.offset = found_key.objectid - 1;
2220 * Inode is already gone but the orphan item is still there,
2221 * kill the orphan item.
2223 if (ret == -ESTALE) {
2224 trans = btrfs_start_transaction(root, 1);
2225 if (IS_ERR(trans)) {
2226 ret = PTR_ERR(trans);
2229 ret = btrfs_del_orphan_item(trans, root,
2230 found_key.objectid);
2232 btrfs_end_transaction(trans, root);
2237 * add this inode to the orphan list so btrfs_orphan_del does
2238 * the proper thing when we hit it
2240 spin_lock(&root->orphan_lock);
2241 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2242 spin_unlock(&root->orphan_lock);
2244 /* if we have links, this was a truncate, lets do that */
2245 if (inode->i_nlink) {
2246 if (!S_ISREG(inode->i_mode)) {
2252 ret = btrfs_truncate(inode);
2257 /* this will do delete_inode and everything for us */
2262 /* release the path since we're done with it */
2263 btrfs_release_path(path);
2265 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2267 if (root->orphan_block_rsv)
2268 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2271 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2272 trans = btrfs_join_transaction(root);
2274 btrfs_end_transaction(trans, root);
2278 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2280 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2284 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2285 btrfs_free_path(path);
2290 * very simple check to peek ahead in the leaf looking for xattrs. If we
2291 * don't find any xattrs, we know there can't be any acls.
2293 * slot is the slot the inode is in, objectid is the objectid of the inode
2295 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2296 int slot, u64 objectid)
2298 u32 nritems = btrfs_header_nritems(leaf);
2299 struct btrfs_key found_key;
2303 while (slot < nritems) {
2304 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2306 /* we found a different objectid, there must not be acls */
2307 if (found_key.objectid != objectid)
2310 /* we found an xattr, assume we've got an acl */
2311 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2315 * we found a key greater than an xattr key, there can't
2316 * be any acls later on
2318 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2325 * it goes inode, inode backrefs, xattrs, extents,
2326 * so if there are a ton of hard links to an inode there can
2327 * be a lot of backrefs. Don't waste time searching too hard,
2328 * this is just an optimization
2333 /* we hit the end of the leaf before we found an xattr or
2334 * something larger than an xattr. We have to assume the inode
2341 * read an inode from the btree into the in-memory inode
2343 static void btrfs_read_locked_inode(struct inode *inode)
2345 struct btrfs_path *path;
2346 struct extent_buffer *leaf;
2347 struct btrfs_inode_item *inode_item;
2348 struct btrfs_timespec *tspec;
2349 struct btrfs_root *root = BTRFS_I(inode)->root;
2350 struct btrfs_key location;
2354 bool filled = false;
2356 ret = btrfs_fill_inode(inode, &rdev);
2360 path = btrfs_alloc_path();
2364 path->leave_spinning = 1;
2365 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2367 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2371 leaf = path->nodes[0];
2376 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2377 struct btrfs_inode_item);
2378 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2379 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2380 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2381 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2382 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2384 tspec = btrfs_inode_atime(inode_item);
2385 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2386 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2388 tspec = btrfs_inode_mtime(inode_item);
2389 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2390 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2392 tspec = btrfs_inode_ctime(inode_item);
2393 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2394 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2396 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2397 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2398 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2399 inode->i_generation = BTRFS_I(inode)->generation;
2401 rdev = btrfs_inode_rdev(leaf, inode_item);
2403 BTRFS_I(inode)->index_cnt = (u64)-1;
2404 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2407 * try to precache a NULL acl entry for files that don't have
2408 * any xattrs or acls
2410 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2413 cache_no_acl(inode);
2415 btrfs_free_path(path);
2417 switch (inode->i_mode & S_IFMT) {
2419 inode->i_mapping->a_ops = &btrfs_aops;
2420 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2421 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2422 inode->i_fop = &btrfs_file_operations;
2423 inode->i_op = &btrfs_file_inode_operations;
2426 inode->i_fop = &btrfs_dir_file_operations;
2427 if (root == root->fs_info->tree_root)
2428 inode->i_op = &btrfs_dir_ro_inode_operations;
2430 inode->i_op = &btrfs_dir_inode_operations;
2433 inode->i_op = &btrfs_symlink_inode_operations;
2434 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2435 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2438 inode->i_op = &btrfs_special_inode_operations;
2439 init_special_inode(inode, inode->i_mode, rdev);
2443 btrfs_update_iflags(inode);
2447 btrfs_free_path(path);
2448 make_bad_inode(inode);
2452 * given a leaf and an inode, copy the inode fields into the leaf
2454 static void fill_inode_item(struct btrfs_trans_handle *trans,
2455 struct extent_buffer *leaf,
2456 struct btrfs_inode_item *item,
2457 struct inode *inode)
2459 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2460 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2461 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2462 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2463 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2465 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2466 inode->i_atime.tv_sec);
2467 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2468 inode->i_atime.tv_nsec);
2470 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2471 inode->i_mtime.tv_sec);
2472 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2473 inode->i_mtime.tv_nsec);
2475 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2476 inode->i_ctime.tv_sec);
2477 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2478 inode->i_ctime.tv_nsec);
2480 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2481 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2482 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2483 btrfs_set_inode_transid(leaf, item, trans->transid);
2484 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2485 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2486 btrfs_set_inode_block_group(leaf, item, 0);
2490 * copy everything in the in-memory inode into the btree.
2492 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2493 struct btrfs_root *root, struct inode *inode)
2495 struct btrfs_inode_item *inode_item;
2496 struct btrfs_path *path;
2497 struct extent_buffer *leaf;
2500 path = btrfs_alloc_path();
2504 path->leave_spinning = 1;
2505 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2513 btrfs_unlock_up_safe(path, 1);
2514 leaf = path->nodes[0];
2515 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2516 struct btrfs_inode_item);
2518 fill_inode_item(trans, leaf, inode_item, inode);
2519 btrfs_mark_buffer_dirty(leaf);
2520 btrfs_set_inode_last_trans(trans, inode);
2523 btrfs_free_path(path);
2528 * copy everything in the in-memory inode into the btree.
2530 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2531 struct btrfs_root *root, struct inode *inode)
2536 * If the inode is a free space inode, we can deadlock during commit
2537 * if we put it into the delayed code.
2539 * The data relocation inode should also be directly updated
2542 if (!btrfs_is_free_space_inode(root, inode)
2543 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2544 ret = btrfs_delayed_update_inode(trans, root, inode);
2546 btrfs_set_inode_last_trans(trans, inode);
2550 return btrfs_update_inode_item(trans, root, inode);
2553 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2554 struct btrfs_root *root, struct inode *inode)
2558 ret = btrfs_update_inode(trans, root, inode);
2560 return btrfs_update_inode_item(trans, root, inode);
2565 * unlink helper that gets used here in inode.c and in the tree logging
2566 * recovery code. It remove a link in a directory with a given name, and
2567 * also drops the back refs in the inode to the directory
2569 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2570 struct btrfs_root *root,
2571 struct inode *dir, struct inode *inode,
2572 const char *name, int name_len)
2574 struct btrfs_path *path;
2576 struct extent_buffer *leaf;
2577 struct btrfs_dir_item *di;
2578 struct btrfs_key key;
2580 u64 ino = btrfs_ino(inode);
2581 u64 dir_ino = btrfs_ino(dir);
2583 path = btrfs_alloc_path();
2589 path->leave_spinning = 1;
2590 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2591 name, name_len, -1);
2600 leaf = path->nodes[0];
2601 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2602 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2605 btrfs_release_path(path);
2607 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2610 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2611 "inode %llu parent %llu\n", name_len, name,
2612 (unsigned long long)ino, (unsigned long long)dir_ino);
2616 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2620 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2622 BUG_ON(ret != 0 && ret != -ENOENT);
2624 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2629 btrfs_free_path(path);
2633 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2634 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2635 btrfs_update_inode(trans, root, dir);
2640 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *root,
2642 struct inode *dir, struct inode *inode,
2643 const char *name, int name_len)
2646 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2648 btrfs_drop_nlink(inode);
2649 ret = btrfs_update_inode(trans, root, inode);
2655 /* helper to check if there is any shared block in the path */
2656 static int check_path_shared(struct btrfs_root *root,
2657 struct btrfs_path *path)
2659 struct extent_buffer *eb;
2663 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2666 if (!path->nodes[level])
2668 eb = path->nodes[level];
2669 if (!btrfs_block_can_be_shared(root, eb))
2671 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2680 * helper to start transaction for unlink and rmdir.
2682 * unlink and rmdir are special in btrfs, they do not always free space.
2683 * so in enospc case, we should make sure they will free space before
2684 * allowing them to use the global metadata reservation.
2686 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2687 struct dentry *dentry)
2689 struct btrfs_trans_handle *trans;
2690 struct btrfs_root *root = BTRFS_I(dir)->root;
2691 struct btrfs_path *path;
2692 struct btrfs_inode_ref *ref;
2693 struct btrfs_dir_item *di;
2694 struct inode *inode = dentry->d_inode;
2699 u64 ino = btrfs_ino(inode);
2700 u64 dir_ino = btrfs_ino(dir);
2703 * 1 for the possible orphan item
2704 * 1 for the dir item
2705 * 1 for the dir index
2706 * 1 for the inode ref
2707 * 1 for the inode ref in the tree log
2708 * 2 for the dir entries in the log
2711 trans = btrfs_start_transaction(root, 8);
2712 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2715 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2716 return ERR_PTR(-ENOSPC);
2718 /* check if there is someone else holds reference */
2719 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2720 return ERR_PTR(-ENOSPC);
2722 if (atomic_read(&inode->i_count) > 2)
2723 return ERR_PTR(-ENOSPC);
2725 if (xchg(&root->fs_info->enospc_unlink, 1))
2726 return ERR_PTR(-ENOSPC);
2728 path = btrfs_alloc_path();
2730 root->fs_info->enospc_unlink = 0;
2731 return ERR_PTR(-ENOMEM);
2734 /* 1 for the orphan item */
2735 trans = btrfs_start_transaction(root, 1);
2736 if (IS_ERR(trans)) {
2737 btrfs_free_path(path);
2738 root->fs_info->enospc_unlink = 0;
2742 path->skip_locking = 1;
2743 path->search_commit_root = 1;
2745 ret = btrfs_lookup_inode(trans, root, path,
2746 &BTRFS_I(dir)->location, 0);
2752 if (check_path_shared(root, path))
2757 btrfs_release_path(path);
2759 ret = btrfs_lookup_inode(trans, root, path,
2760 &BTRFS_I(inode)->location, 0);
2766 if (check_path_shared(root, path))
2771 btrfs_release_path(path);
2773 if (ret == 0 && S_ISREG(inode->i_mode)) {
2774 ret = btrfs_lookup_file_extent(trans, root, path,
2781 if (check_path_shared(root, path))
2783 btrfs_release_path(path);
2791 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2792 dentry->d_name.name, dentry->d_name.len, 0);
2798 if (check_path_shared(root, path))
2804 btrfs_release_path(path);
2806 ref = btrfs_lookup_inode_ref(trans, root, path,
2807 dentry->d_name.name, dentry->d_name.len,
2814 if (check_path_shared(root, path))
2816 index = btrfs_inode_ref_index(path->nodes[0], ref);
2817 btrfs_release_path(path);
2820 * This is a commit root search, if we can lookup inode item and other
2821 * relative items in the commit root, it means the transaction of
2822 * dir/file creation has been committed, and the dir index item that we
2823 * delay to insert has also been inserted into the commit root. So
2824 * we needn't worry about the delayed insertion of the dir index item
2827 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2828 dentry->d_name.name, dentry->d_name.len, 0);
2833 BUG_ON(ret == -ENOENT);
2834 if (check_path_shared(root, path))
2839 btrfs_free_path(path);
2840 /* Migrate the orphan reservation over */
2842 err = btrfs_block_rsv_migrate(trans->block_rsv,
2843 &root->fs_info->global_block_rsv,
2844 trans->bytes_reserved);
2847 btrfs_end_transaction(trans, root);
2848 root->fs_info->enospc_unlink = 0;
2849 return ERR_PTR(err);
2852 trans->block_rsv = &root->fs_info->global_block_rsv;
2856 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2857 struct btrfs_root *root)
2859 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2860 btrfs_block_rsv_release(root, trans->block_rsv,
2861 trans->bytes_reserved);
2862 trans->block_rsv = &root->fs_info->trans_block_rsv;
2863 BUG_ON(!root->fs_info->enospc_unlink);
2864 root->fs_info->enospc_unlink = 0;
2866 btrfs_end_transaction(trans, root);
2869 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2871 struct btrfs_root *root = BTRFS_I(dir)->root;
2872 struct btrfs_trans_handle *trans;
2873 struct inode *inode = dentry->d_inode;
2875 unsigned long nr = 0;
2877 trans = __unlink_start_trans(dir, dentry);
2879 return PTR_ERR(trans);
2881 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2883 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2884 dentry->d_name.name, dentry->d_name.len);
2888 if (inode->i_nlink == 0) {
2889 ret = btrfs_orphan_add(trans, inode);
2895 nr = trans->blocks_used;
2896 __unlink_end_trans(trans, root);
2897 btrfs_btree_balance_dirty(root, nr);
2901 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2902 struct btrfs_root *root,
2903 struct inode *dir, u64 objectid,
2904 const char *name, int name_len)
2906 struct btrfs_path *path;
2907 struct extent_buffer *leaf;
2908 struct btrfs_dir_item *di;
2909 struct btrfs_key key;
2912 u64 dir_ino = btrfs_ino(dir);
2914 path = btrfs_alloc_path();
2918 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2919 name, name_len, -1);
2920 BUG_ON(IS_ERR_OR_NULL(di));
2922 leaf = path->nodes[0];
2923 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2924 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2925 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2927 btrfs_release_path(path);
2929 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2930 objectid, root->root_key.objectid,
2931 dir_ino, &index, name, name_len);
2933 BUG_ON(ret != -ENOENT);
2934 di = btrfs_search_dir_index_item(root, path, dir_ino,
2936 BUG_ON(IS_ERR_OR_NULL(di));
2938 leaf = path->nodes[0];
2939 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2940 btrfs_release_path(path);
2943 btrfs_release_path(path);
2945 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2948 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2949 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2950 ret = btrfs_update_inode(trans, root, dir);
2953 btrfs_free_path(path);
2957 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2959 struct inode *inode = dentry->d_inode;
2961 struct btrfs_root *root = BTRFS_I(dir)->root;
2962 struct btrfs_trans_handle *trans;
2963 unsigned long nr = 0;
2965 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2966 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
2969 trans = __unlink_start_trans(dir, dentry);
2971 return PTR_ERR(trans);
2973 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2974 err = btrfs_unlink_subvol(trans, root, dir,
2975 BTRFS_I(inode)->location.objectid,
2976 dentry->d_name.name,
2977 dentry->d_name.len);
2981 err = btrfs_orphan_add(trans, inode);
2985 /* now the directory is empty */
2986 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2987 dentry->d_name.name, dentry->d_name.len);
2989 btrfs_i_size_write(inode, 0);
2991 nr = trans->blocks_used;
2992 __unlink_end_trans(trans, root);
2993 btrfs_btree_balance_dirty(root, nr);
2999 * this can truncate away extent items, csum items and directory items.
3000 * It starts at a high offset and removes keys until it can't find
3001 * any higher than new_size
3003 * csum items that cross the new i_size are truncated to the new size
3006 * min_type is the minimum key type to truncate down to. If set to 0, this
3007 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3009 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3010 struct btrfs_root *root,
3011 struct inode *inode,
3012 u64 new_size, u32 min_type)
3014 struct btrfs_path *path;
3015 struct extent_buffer *leaf;
3016 struct btrfs_file_extent_item *fi;
3017 struct btrfs_key key;
3018 struct btrfs_key found_key;
3019 u64 extent_start = 0;
3020 u64 extent_num_bytes = 0;
3021 u64 extent_offset = 0;
3023 u64 mask = root->sectorsize - 1;
3024 u32 found_type = (u8)-1;
3027 int pending_del_nr = 0;
3028 int pending_del_slot = 0;
3029 int extent_type = -1;
3032 u64 ino = btrfs_ino(inode);
3034 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3036 path = btrfs_alloc_path();
3041 if (root->ref_cows || root == root->fs_info->tree_root)
3042 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3045 * This function is also used to drop the items in the log tree before
3046 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3047 * it is used to drop the loged items. So we shouldn't kill the delayed
3050 if (min_type == 0 && root == BTRFS_I(inode)->root)
3051 btrfs_kill_delayed_inode_items(inode);
3054 key.offset = (u64)-1;
3058 path->leave_spinning = 1;
3059 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3066 /* there are no items in the tree for us to truncate, we're
3069 if (path->slots[0] == 0)
3076 leaf = path->nodes[0];
3077 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3078 found_type = btrfs_key_type(&found_key);
3080 if (found_key.objectid != ino)
3083 if (found_type < min_type)
3086 item_end = found_key.offset;
3087 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3088 fi = btrfs_item_ptr(leaf, path->slots[0],
3089 struct btrfs_file_extent_item);
3090 extent_type = btrfs_file_extent_type(leaf, fi);
3091 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3093 btrfs_file_extent_num_bytes(leaf, fi);
3094 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3095 item_end += btrfs_file_extent_inline_len(leaf,
3100 if (found_type > min_type) {
3103 if (item_end < new_size)
3105 if (found_key.offset >= new_size)
3111 /* FIXME, shrink the extent if the ref count is only 1 */
3112 if (found_type != BTRFS_EXTENT_DATA_KEY)
3115 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3117 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3119 u64 orig_num_bytes =
3120 btrfs_file_extent_num_bytes(leaf, fi);
3121 extent_num_bytes = new_size -
3122 found_key.offset + root->sectorsize - 1;
3123 extent_num_bytes = extent_num_bytes &
3124 ~((u64)root->sectorsize - 1);
3125 btrfs_set_file_extent_num_bytes(leaf, fi,
3127 num_dec = (orig_num_bytes -
3129 if (root->ref_cows && extent_start != 0)
3130 inode_sub_bytes(inode, num_dec);
3131 btrfs_mark_buffer_dirty(leaf);
3134 btrfs_file_extent_disk_num_bytes(leaf,
3136 extent_offset = found_key.offset -
3137 btrfs_file_extent_offset(leaf, fi);
3139 /* FIXME blocksize != 4096 */
3140 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3141 if (extent_start != 0) {
3144 inode_sub_bytes(inode, num_dec);
3147 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3149 * we can't truncate inline items that have had
3153 btrfs_file_extent_compression(leaf, fi) == 0 &&
3154 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3155 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3156 u32 size = new_size - found_key.offset;
3158 if (root->ref_cows) {
3159 inode_sub_bytes(inode, item_end + 1 -
3163 btrfs_file_extent_calc_inline_size(size);
3164 ret = btrfs_truncate_item(trans, root, path,
3166 } else if (root->ref_cows) {
3167 inode_sub_bytes(inode, item_end + 1 -
3173 if (!pending_del_nr) {
3174 /* no pending yet, add ourselves */
3175 pending_del_slot = path->slots[0];
3177 } else if (pending_del_nr &&
3178 path->slots[0] + 1 == pending_del_slot) {
3179 /* hop on the pending chunk */
3181 pending_del_slot = path->slots[0];
3188 if (found_extent && (root->ref_cows ||
3189 root == root->fs_info->tree_root)) {
3190 btrfs_set_path_blocking(path);
3191 ret = btrfs_free_extent(trans, root, extent_start,
3192 extent_num_bytes, 0,
3193 btrfs_header_owner(leaf),
3194 ino, extent_offset, 0);
3198 if (found_type == BTRFS_INODE_ITEM_KEY)
3201 if (path->slots[0] == 0 ||
3202 path->slots[0] != pending_del_slot) {
3203 if (root->ref_cows &&
3204 BTRFS_I(inode)->location.objectid !=
3205 BTRFS_FREE_INO_OBJECTID) {
3209 if (pending_del_nr) {
3210 ret = btrfs_del_items(trans, root, path,