]> git.openfabrics.org - ~shefty/rdma-dev.git/blob - fs/btrfs/ioctl.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[~shefty/rdma-dev.git] / fs / btrfs / ioctl.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include "compat.h"
44 #include "ctree.h"
45 #include "disk-io.h"
46 #include "transaction.h"
47 #include "btrfs_inode.h"
48 #include "ioctl.h"
49 #include "print-tree.h"
50 #include "volumes.h"
51 #include "locking.h"
52
53 /* Mask out flags that are inappropriate for the given type of inode. */
54 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
55 {
56         if (S_ISDIR(mode))
57                 return flags;
58         else if (S_ISREG(mode))
59                 return flags & ~FS_DIRSYNC_FL;
60         else
61                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
62 }
63
64 /*
65  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
66  */
67 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
68 {
69         unsigned int iflags = 0;
70
71         if (flags & BTRFS_INODE_SYNC)
72                 iflags |= FS_SYNC_FL;
73         if (flags & BTRFS_INODE_IMMUTABLE)
74                 iflags |= FS_IMMUTABLE_FL;
75         if (flags & BTRFS_INODE_APPEND)
76                 iflags |= FS_APPEND_FL;
77         if (flags & BTRFS_INODE_NODUMP)
78                 iflags |= FS_NODUMP_FL;
79         if (flags & BTRFS_INODE_NOATIME)
80                 iflags |= FS_NOATIME_FL;
81         if (flags & BTRFS_INODE_DIRSYNC)
82                 iflags |= FS_DIRSYNC_FL;
83
84         return iflags;
85 }
86
87 /*
88  * Update inode->i_flags based on the btrfs internal flags.
89  */
90 void btrfs_update_iflags(struct inode *inode)
91 {
92         struct btrfs_inode *ip = BTRFS_I(inode);
93
94         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
95
96         if (ip->flags & BTRFS_INODE_SYNC)
97                 inode->i_flags |= S_SYNC;
98         if (ip->flags & BTRFS_INODE_IMMUTABLE)
99                 inode->i_flags |= S_IMMUTABLE;
100         if (ip->flags & BTRFS_INODE_APPEND)
101                 inode->i_flags |= S_APPEND;
102         if (ip->flags & BTRFS_INODE_NOATIME)
103                 inode->i_flags |= S_NOATIME;
104         if (ip->flags & BTRFS_INODE_DIRSYNC)
105                 inode->i_flags |= S_DIRSYNC;
106 }
107
108 /*
109  * Inherit flags from the parent inode.
110  *
111  * Unlike extN we don't have any flags we don't want to inherit currently.
112  */
113 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
114 {
115         unsigned int flags;
116
117         if (!dir)
118                 return;
119
120         flags = BTRFS_I(dir)->flags;
121
122         if (S_ISREG(inode->i_mode))
123                 flags &= ~BTRFS_INODE_DIRSYNC;
124         else if (!S_ISDIR(inode->i_mode))
125                 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
126
127         BTRFS_I(inode)->flags = flags;
128         btrfs_update_iflags(inode);
129 }
130
131 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
132 {
133         struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
134         unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
135
136         if (copy_to_user(arg, &flags, sizeof(flags)))
137                 return -EFAULT;
138         return 0;
139 }
140
141 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
142 {
143         struct inode *inode = file->f_path.dentry->d_inode;
144         struct btrfs_inode *ip = BTRFS_I(inode);
145         struct btrfs_root *root = ip->root;
146         struct btrfs_trans_handle *trans;
147         unsigned int flags, oldflags;
148         int ret;
149
150         if (copy_from_user(&flags, arg, sizeof(flags)))
151                 return -EFAULT;
152
153         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
154                       FS_NOATIME_FL | FS_NODUMP_FL | \
155                       FS_SYNC_FL | FS_DIRSYNC_FL))
156                 return -EOPNOTSUPP;
157
158         if (!is_owner_or_cap(inode))
159                 return -EACCES;
160
161         mutex_lock(&inode->i_mutex);
162
163         flags = btrfs_mask_flags(inode->i_mode, flags);
164         oldflags = btrfs_flags_to_ioctl(ip->flags);
165         if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
166                 if (!capable(CAP_LINUX_IMMUTABLE)) {
167                         ret = -EPERM;
168                         goto out_unlock;
169                 }
170         }
171
172         ret = mnt_want_write(file->f_path.mnt);
173         if (ret)
174                 goto out_unlock;
175
176         if (flags & FS_SYNC_FL)
177                 ip->flags |= BTRFS_INODE_SYNC;
178         else
179                 ip->flags &= ~BTRFS_INODE_SYNC;
180         if (flags & FS_IMMUTABLE_FL)
181                 ip->flags |= BTRFS_INODE_IMMUTABLE;
182         else
183                 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
184         if (flags & FS_APPEND_FL)
185                 ip->flags |= BTRFS_INODE_APPEND;
186         else
187                 ip->flags &= ~BTRFS_INODE_APPEND;
188         if (flags & FS_NODUMP_FL)
189                 ip->flags |= BTRFS_INODE_NODUMP;
190         else
191                 ip->flags &= ~BTRFS_INODE_NODUMP;
192         if (flags & FS_NOATIME_FL)
193                 ip->flags |= BTRFS_INODE_NOATIME;
194         else
195                 ip->flags &= ~BTRFS_INODE_NOATIME;
196         if (flags & FS_DIRSYNC_FL)
197                 ip->flags |= BTRFS_INODE_DIRSYNC;
198         else
199                 ip->flags &= ~BTRFS_INODE_DIRSYNC;
200
201
202         trans = btrfs_join_transaction(root, 1);
203         BUG_ON(!trans);
204
205         ret = btrfs_update_inode(trans, root, inode);
206         BUG_ON(ret);
207
208         btrfs_update_iflags(inode);
209         inode->i_ctime = CURRENT_TIME;
210         btrfs_end_transaction(trans, root);
211
212         mnt_drop_write(file->f_path.mnt);
213  out_unlock:
214         mutex_unlock(&inode->i_mutex);
215         return 0;
216 }
217
218 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
219 {
220         struct inode *inode = file->f_path.dentry->d_inode;
221
222         return put_user(inode->i_generation, arg);
223 }
224
225 static noinline int create_subvol(struct btrfs_root *root,
226                                   struct dentry *dentry,
227                                   char *name, int namelen,
228                                   u64 *async_transid)
229 {
230         struct btrfs_trans_handle *trans;
231         struct btrfs_key key;
232         struct btrfs_root_item root_item;
233         struct btrfs_inode_item *inode_item;
234         struct extent_buffer *leaf;
235         struct btrfs_root *new_root;
236         struct dentry *parent = dget_parent(dentry);
237         struct inode *dir;
238         int ret;
239         int err;
240         u64 objectid;
241         u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
242         u64 index = 0;
243
244         ret = btrfs_find_free_objectid(NULL, root->fs_info->tree_root,
245                                        0, &objectid);
246         if (ret) {
247                 dput(parent);
248                 return ret;
249         }
250
251         dir = parent->d_inode;
252
253         /*
254          * 1 - inode item
255          * 2 - refs
256          * 1 - root item
257          * 2 - dir items
258          */
259         trans = btrfs_start_transaction(root, 6);
260         if (IS_ERR(trans)) {
261                 dput(parent);
262                 return PTR_ERR(trans);
263         }
264
265         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
266                                       0, objectid, NULL, 0, 0, 0);
267         if (IS_ERR(leaf)) {
268                 ret = PTR_ERR(leaf);
269                 goto fail;
270         }
271
272         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
273         btrfs_set_header_bytenr(leaf, leaf->start);
274         btrfs_set_header_generation(leaf, trans->transid);
275         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
276         btrfs_set_header_owner(leaf, objectid);
277
278         write_extent_buffer(leaf, root->fs_info->fsid,
279                             (unsigned long)btrfs_header_fsid(leaf),
280                             BTRFS_FSID_SIZE);
281         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
282                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
283                             BTRFS_UUID_SIZE);
284         btrfs_mark_buffer_dirty(leaf);
285
286         inode_item = &root_item.inode;
287         memset(inode_item, 0, sizeof(*inode_item));
288         inode_item->generation = cpu_to_le64(1);
289         inode_item->size = cpu_to_le64(3);
290         inode_item->nlink = cpu_to_le32(1);
291         inode_item->nbytes = cpu_to_le64(root->leafsize);
292         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
293
294         btrfs_set_root_bytenr(&root_item, leaf->start);
295         btrfs_set_root_generation(&root_item, trans->transid);
296         btrfs_set_root_level(&root_item, 0);
297         btrfs_set_root_refs(&root_item, 1);
298         btrfs_set_root_used(&root_item, leaf->len);
299         btrfs_set_root_last_snapshot(&root_item, 0);
300
301         memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
302         root_item.drop_level = 0;
303
304         btrfs_tree_unlock(leaf);
305         free_extent_buffer(leaf);
306         leaf = NULL;
307
308         btrfs_set_root_dirid(&root_item, new_dirid);
309
310         key.objectid = objectid;
311         key.offset = 0;
312         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
313         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
314                                 &root_item);
315         if (ret)
316                 goto fail;
317
318         key.offset = (u64)-1;
319         new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
320         BUG_ON(IS_ERR(new_root));
321
322         btrfs_record_root_in_trans(trans, new_root);
323
324         ret = btrfs_create_subvol_root(trans, new_root, new_dirid,
325                                        BTRFS_I(dir)->block_group);
326         /*
327          * insert the directory item
328          */
329         ret = btrfs_set_inode_index(dir, &index);
330         BUG_ON(ret);
331
332         ret = btrfs_insert_dir_item(trans, root,
333                                     name, namelen, dir->i_ino, &key,
334                                     BTRFS_FT_DIR, index);
335         if (ret)
336                 goto fail;
337
338         btrfs_i_size_write(dir, dir->i_size + namelen * 2);
339         ret = btrfs_update_inode(trans, root, dir);
340         BUG_ON(ret);
341
342         ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
343                                  objectid, root->root_key.objectid,
344                                  dir->i_ino, index, name, namelen);
345
346         BUG_ON(ret);
347
348         d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
349 fail:
350         dput(parent);
351         if (async_transid) {
352                 *async_transid = trans->transid;
353                 err = btrfs_commit_transaction_async(trans, root, 1);
354         } else {
355                 err = btrfs_commit_transaction(trans, root);
356         }
357         if (err && !ret)
358                 ret = err;
359         return ret;
360 }
361
362 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
363                            char *name, int namelen, u64 *async_transid)
364 {
365         struct inode *inode;
366         struct dentry *parent;
367         struct btrfs_pending_snapshot *pending_snapshot;
368         struct btrfs_trans_handle *trans;
369         int ret;
370
371         if (!root->ref_cows)
372                 return -EINVAL;
373
374         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
375         if (!pending_snapshot)
376                 return -ENOMEM;
377
378         btrfs_init_block_rsv(&pending_snapshot->block_rsv);
379         pending_snapshot->dentry = dentry;
380         pending_snapshot->root = root;
381
382         trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
383         if (IS_ERR(trans)) {
384                 ret = PTR_ERR(trans);
385                 goto fail;
386         }
387
388         ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
389         BUG_ON(ret);
390
391         list_add(&pending_snapshot->list,
392                  &trans->transaction->pending_snapshots);
393         if (async_transid) {
394                 *async_transid = trans->transid;
395                 ret = btrfs_commit_transaction_async(trans,
396                                      root->fs_info->extent_root, 1);
397         } else {
398                 ret = btrfs_commit_transaction(trans,
399                                                root->fs_info->extent_root);
400         }
401         BUG_ON(ret);
402
403         ret = pending_snapshot->error;
404         if (ret)
405                 goto fail;
406
407         btrfs_orphan_cleanup(pending_snapshot->snap);
408
409         parent = dget_parent(dentry);
410         inode = btrfs_lookup_dentry(parent->d_inode, dentry);
411         dput(parent);
412         if (IS_ERR(inode)) {
413                 ret = PTR_ERR(inode);
414                 goto fail;
415         }
416         BUG_ON(!inode);
417         d_instantiate(dentry, inode);
418         ret = 0;
419 fail:
420         kfree(pending_snapshot);
421         return ret;
422 }
423
424 /*  copy of check_sticky in fs/namei.c()
425 * It's inline, so penalty for filesystems that don't use sticky bit is
426 * minimal.
427 */
428 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
429 {
430         uid_t fsuid = current_fsuid();
431
432         if (!(dir->i_mode & S_ISVTX))
433                 return 0;
434         if (inode->i_uid == fsuid)
435                 return 0;
436         if (dir->i_uid == fsuid)
437                 return 0;
438         return !capable(CAP_FOWNER);
439 }
440
441 /*  copy of may_delete in fs/namei.c()
442  *      Check whether we can remove a link victim from directory dir, check
443  *  whether the type of victim is right.
444  *  1. We can't do it if dir is read-only (done in permission())
445  *  2. We should have write and exec permissions on dir
446  *  3. We can't remove anything from append-only dir
447  *  4. We can't do anything with immutable dir (done in permission())
448  *  5. If the sticky bit on dir is set we should either
449  *      a. be owner of dir, or
450  *      b. be owner of victim, or
451  *      c. have CAP_FOWNER capability
452  *  6. If the victim is append-only or immutable we can't do antyhing with
453  *     links pointing to it.
454  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
455  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
456  *  9. We can't remove a root or mountpoint.
457  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
458  *     nfs_async_unlink().
459  */
460
461 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
462 {
463         int error;
464
465         if (!victim->d_inode)
466                 return -ENOENT;
467
468         BUG_ON(victim->d_parent->d_inode != dir);
469         audit_inode_child(victim, dir);
470
471         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
472         if (error)
473                 return error;
474         if (IS_APPEND(dir))
475                 return -EPERM;
476         if (btrfs_check_sticky(dir, victim->d_inode)||
477                 IS_APPEND(victim->d_inode)||
478             IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
479                 return -EPERM;
480         if (isdir) {
481                 if (!S_ISDIR(victim->d_inode->i_mode))
482                         return -ENOTDIR;
483                 if (IS_ROOT(victim))
484                         return -EBUSY;
485         } else if (S_ISDIR(victim->d_inode->i_mode))
486                 return -EISDIR;
487         if (IS_DEADDIR(dir))
488                 return -ENOENT;
489         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
490                 return -EBUSY;
491         return 0;
492 }
493
494 /* copy of may_create in fs/namei.c() */
495 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
496 {
497         if (child->d_inode)
498                 return -EEXIST;
499         if (IS_DEADDIR(dir))
500                 return -ENOENT;
501         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
502 }
503
504 /*
505  * Create a new subvolume below @parent.  This is largely modeled after
506  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
507  * inside this filesystem so it's quite a bit simpler.
508  */
509 static noinline int btrfs_mksubvol(struct path *parent,
510                                    char *name, int namelen,
511                                    struct btrfs_root *snap_src,
512                                    u64 *async_transid)
513 {
514         struct inode *dir  = parent->dentry->d_inode;
515         struct dentry *dentry;
516         int error;
517
518         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
519
520         dentry = lookup_one_len(name, parent->dentry, namelen);
521         error = PTR_ERR(dentry);
522         if (IS_ERR(dentry))
523                 goto out_unlock;
524
525         error = -EEXIST;
526         if (dentry->d_inode)
527                 goto out_dput;
528
529         error = mnt_want_write(parent->mnt);
530         if (error)
531                 goto out_dput;
532
533         error = btrfs_may_create(dir, dentry);
534         if (error)
535                 goto out_drop_write;
536
537         down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
538
539         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
540                 goto out_up_read;
541
542         if (snap_src) {
543                 error = create_snapshot(snap_src, dentry,
544                                         name, namelen, async_transid);
545         } else {
546                 error = create_subvol(BTRFS_I(dir)->root, dentry,
547                                       name, namelen, async_transid);
548         }
549         if (!error)
550                 fsnotify_mkdir(dir, dentry);
551 out_up_read:
552         up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
553 out_drop_write:
554         mnt_drop_write(parent->mnt);
555 out_dput:
556         dput(dentry);
557 out_unlock:
558         mutex_unlock(&dir->i_mutex);
559         return error;
560 }
561
562 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
563                                int thresh, u64 *last_len, u64 *skip,
564                                u64 *defrag_end)
565 {
566         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
567         struct extent_map *em = NULL;
568         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
569         int ret = 1;
570
571
572         if (thresh == 0)
573                 thresh = 256 * 1024;
574
575         /*
576          * make sure that once we start defragging and extent, we keep on
577          * defragging it
578          */
579         if (start < *defrag_end)
580                 return 1;
581
582         *skip = 0;
583
584         /*
585          * hopefully we have this extent in the tree already, try without
586          * the full extent lock
587          */
588         read_lock(&em_tree->lock);
589         em = lookup_extent_mapping(em_tree, start, len);
590         read_unlock(&em_tree->lock);
591
592         if (!em) {
593                 /* get the big lock and read metadata off disk */
594                 lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
595                 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
596                 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
597
598                 if (IS_ERR(em))
599                         return 0;
600         }
601
602         /* this will cover holes, and inline extents */
603         if (em->block_start >= EXTENT_MAP_LAST_BYTE)
604                 ret = 0;
605
606         /*
607          * we hit a real extent, if it is big don't bother defragging it again
608          */
609         if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
610                 ret = 0;
611
612         /*
613          * last_len ends up being a counter of how many bytes we've defragged.
614          * every time we choose not to defrag an extent, we reset *last_len
615          * so that the next tiny extent will force a defrag.
616          *
617          * The end result of this is that tiny extents before a single big
618          * extent will force at least part of that big extent to be defragged.
619          */
620         if (ret) {
621                 *last_len += len;
622                 *defrag_end = extent_map_end(em);
623         } else {
624                 *last_len = 0;
625                 *skip = extent_map_end(em);
626                 *defrag_end = 0;
627         }
628
629         free_extent_map(em);
630         return ret;
631 }
632
633 static int btrfs_defrag_file(struct file *file,
634                              struct btrfs_ioctl_defrag_range_args *range)
635 {
636         struct inode *inode = fdentry(file)->d_inode;
637         struct btrfs_root *root = BTRFS_I(inode)->root;
638         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
639         struct btrfs_ordered_extent *ordered;
640         struct page *page;
641         unsigned long last_index;
642         unsigned long ra_pages = root->fs_info->bdi.ra_pages;
643         unsigned long total_read = 0;
644         u64 page_start;
645         u64 page_end;
646         u64 last_len = 0;
647         u64 skip = 0;
648         u64 defrag_end = 0;
649         unsigned long i;
650         int ret;
651
652         if (inode->i_size == 0)
653                 return 0;
654
655         if (range->start + range->len > range->start) {
656                 last_index = min_t(u64, inode->i_size - 1,
657                          range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
658         } else {
659                 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
660         }
661
662         i = range->start >> PAGE_CACHE_SHIFT;
663         while (i <= last_index) {
664                 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
665                                         PAGE_CACHE_SIZE,
666                                         range->extent_thresh,
667                                         &last_len, &skip,
668                                         &defrag_end)) {
669                         unsigned long next;
670                         /*
671                          * the should_defrag function tells us how much to skip
672                          * bump our counter by the suggested amount
673                          */
674                         next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
675                         i = max(i + 1, next);
676                         continue;
677                 }
678
679                 if (total_read % ra_pages == 0) {
680                         btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i,
681                                        min(last_index, i + ra_pages - 1));
682                 }
683                 total_read++;
684                 mutex_lock(&inode->i_mutex);
685                 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
686                         BTRFS_I(inode)->force_compress = 1;
687
688                 ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
689                 if (ret)
690                         goto err_unlock;
691 again:
692                 if (inode->i_size == 0 ||
693                     i > ((inode->i_size - 1) >> PAGE_CACHE_SHIFT)) {
694                         ret = 0;
695                         goto err_reservations;
696                 }
697
698                 page = grab_cache_page(inode->i_mapping, i);
699                 if (!page) {
700                         ret = -ENOMEM;
701                         goto err_reservations;
702                 }
703
704                 if (!PageUptodate(page)) {
705                         btrfs_readpage(NULL, page);
706                         lock_page(page);
707                         if (!PageUptodate(page)) {
708                                 unlock_page(page);
709                                 page_cache_release(page);
710                                 ret = -EIO;
711                                 goto err_reservations;
712                         }
713                 }
714
715                 if (page->mapping != inode->i_mapping) {
716                         unlock_page(page);
717                         page_cache_release(page);
718                         goto again;
719                 }
720
721                 wait_on_page_writeback(page);
722
723                 if (PageDirty(page)) {
724                         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
725                         goto loop_unlock;
726                 }
727
728                 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
729                 page_end = page_start + PAGE_CACHE_SIZE - 1;
730                 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
731
732                 ordered = btrfs_lookup_ordered_extent(inode, page_start);
733                 if (ordered) {
734                         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
735                         unlock_page(page);
736                         page_cache_release(page);
737                         btrfs_start_ordered_extent(inode, ordered, 1);
738                         btrfs_put_ordered_extent(ordered);
739                         goto again;
740                 }
741                 set_page_extent_mapped(page);
742
743                 /*
744                  * this makes sure page_mkwrite is called on the
745                  * page if it is dirtied again later
746                  */
747                 clear_page_dirty_for_io(page);
748                 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start,
749                                   page_end, EXTENT_DIRTY | EXTENT_DELALLOC |
750                                   EXTENT_DO_ACCOUNTING, GFP_NOFS);
751
752                 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
753                 ClearPageChecked(page);
754                 set_page_dirty(page);
755                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
756
757 loop_unlock:
758                 unlock_page(page);
759                 page_cache_release(page);
760                 mutex_unlock(&inode->i_mutex);
761
762                 balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1);
763                 i++;
764         }
765
766         if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
767                 filemap_flush(inode->i_mapping);
768
769         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
770                 /* the filemap_flush will queue IO into the worker threads, but
771                  * we have to make sure the IO is actually started and that
772                  * ordered extents get created before we return
773                  */
774                 atomic_inc(&root->fs_info->async_submit_draining);
775                 while (atomic_read(&root->fs_info->nr_async_submits) ||
776                       atomic_read(&root->fs_info->async_delalloc_pages)) {
777                         wait_event(root->fs_info->async_submit_wait,
778                            (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
779                             atomic_read(&root->fs_info->async_delalloc_pages) == 0));
780                 }
781                 atomic_dec(&root->fs_info->async_submit_draining);
782
783                 mutex_lock(&inode->i_mutex);
784                 BTRFS_I(inode)->force_compress = 0;
785                 mutex_unlock(&inode->i_mutex);
786         }
787
788         return 0;
789
790 err_reservations:
791         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
792 err_unlock:
793         mutex_unlock(&inode->i_mutex);
794         return ret;
795 }
796
797 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
798                                         void __user *arg)
799 {
800         u64 new_size;
801         u64 old_size;
802         u64 devid = 1;
803         struct btrfs_ioctl_vol_args *vol_args;
804         struct btrfs_trans_handle *trans;
805         struct btrfs_device *device = NULL;
806         char *sizestr;
807         char *devstr = NULL;
808         int ret = 0;
809         int mod = 0;
810
811         if (root->fs_info->sb->s_flags & MS_RDONLY)
812                 return -EROFS;
813
814         if (!capable(CAP_SYS_ADMIN))
815                 return -EPERM;
816
817         vol_args = memdup_user(arg, sizeof(*vol_args));
818         if (IS_ERR(vol_args))
819                 return PTR_ERR(vol_args);
820
821         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
822
823         mutex_lock(&root->fs_info->volume_mutex);
824         sizestr = vol_args->name;
825         devstr = strchr(sizestr, ':');
826         if (devstr) {
827                 char *end;
828                 sizestr = devstr + 1;
829                 *devstr = '\0';
830                 devstr = vol_args->name;
831                 devid = simple_strtoull(devstr, &end, 10);
832                 printk(KERN_INFO "resizing devid %llu\n",
833                        (unsigned long long)devid);
834         }
835         device = btrfs_find_device(root, devid, NULL, NULL);
836         if (!device) {
837                 printk(KERN_INFO "resizer unable to find device %llu\n",
838                        (unsigned long long)devid);
839                 ret = -EINVAL;
840                 goto out_unlock;
841         }
842         if (!strcmp(sizestr, "max"))
843                 new_size = device->bdev->bd_inode->i_size;
844         else {
845                 if (sizestr[0] == '-') {
846                         mod = -1;
847                         sizestr++;
848                 } else if (sizestr[0] == '+') {
849                         mod = 1;
850                         sizestr++;
851                 }
852                 new_size = memparse(sizestr, NULL);
853                 if (new_size == 0) {
854                         ret = -EINVAL;
855                         goto out_unlock;
856                 }
857         }
858
859         old_size = device->total_bytes;
860
861         if (mod < 0) {
862                 if (new_size > old_size) {
863                         ret = -EINVAL;
864                         goto out_unlock;
865                 }
866                 new_size = old_size - new_size;
867         } else if (mod > 0) {
868                 new_size = old_size + new_size;
869         }
870
871         if (new_size < 256 * 1024 * 1024) {
872                 ret = -EINVAL;
873                 goto out_unlock;
874         }
875         if (new_size > device->bdev->bd_inode->i_size) {
876                 ret = -EFBIG;
877                 goto out_unlock;
878         }
879
880         do_div(new_size, root->sectorsize);
881         new_size *= root->sectorsize;
882
883         printk(KERN_INFO "new size for %s is %llu\n",
884                 device->name, (unsigned long long)new_size);
885
886         if (new_size > old_size) {
887                 trans = btrfs_start_transaction(root, 0);
888                 ret = btrfs_grow_device(trans, device, new_size);
889                 btrfs_commit_transaction(trans, root);
890         } else {
891                 ret = btrfs_shrink_device(device, new_size);
892         }
893
894 out_unlock:
895         mutex_unlock(&root->fs_info->volume_mutex);
896         kfree(vol_args);
897         return ret;
898 }
899
900 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
901                                                     char *name,
902                                                     unsigned long fd,
903                                                     int subvol,
904                                                     u64 *transid)
905 {
906         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
907         struct file *src_file;
908         int namelen;
909         int ret = 0;
910
911         if (root->fs_info->sb->s_flags & MS_RDONLY)
912                 return -EROFS;
913
914         namelen = strlen(name);
915         if (strchr(name, '/')) {
916                 ret = -EINVAL;
917                 goto out;
918         }
919
920         if (subvol) {
921                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
922                                      NULL, transid);
923         } else {
924                 struct inode *src_inode;
925                 src_file = fget(fd);
926                 if (!src_file) {
927                         ret = -EINVAL;
928                         goto out;
929                 }
930
931                 src_inode = src_file->f_path.dentry->d_inode;
932                 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
933                         printk(KERN_INFO "btrfs: Snapshot src from "
934                                "another FS\n");
935                         ret = -EINVAL;
936                         fput(src_file);
937                         goto out;
938                 }
939                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
940                                      BTRFS_I(src_inode)->root,
941                                      transid);
942                 fput(src_file);
943         }
944 out:
945         return ret;
946 }
947
948 static noinline int btrfs_ioctl_snap_create(struct file *file,
949                                             void __user *arg, int subvol,
950                                             int async)
951 {
952         struct btrfs_ioctl_vol_args *vol_args = NULL;
953         struct btrfs_ioctl_async_vol_args *async_vol_args = NULL;
954         char *name;
955         u64 fd;
956         u64 transid = 0;
957         int ret;
958
959         if (async) {
960                 async_vol_args = memdup_user(arg, sizeof(*async_vol_args));
961                 if (IS_ERR(async_vol_args))
962                         return PTR_ERR(async_vol_args);
963
964                 name = async_vol_args->name;
965                 fd = async_vol_args->fd;
966                 async_vol_args->name[BTRFS_SNAPSHOT_NAME_MAX] = '\0';
967         } else {
968                 vol_args = memdup_user(arg, sizeof(*vol_args));
969                 if (IS_ERR(vol_args))
970                         return PTR_ERR(vol_args);
971                 name = vol_args->name;
972                 fd = vol_args->fd;
973                 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
974         }
975
976         ret = btrfs_ioctl_snap_create_transid(file, name, fd,
977                                               subvol, &transid);
978
979         if (!ret && async) {
980                 if (copy_to_user(arg +
981                                 offsetof(struct btrfs_ioctl_async_vol_args,
982                                 transid), &transid, sizeof(transid)))
983                         return -EFAULT;
984         }
985
986         kfree(vol_args);
987         kfree(async_vol_args);
988
989         return ret;
990 }
991
992 /*
993  * helper to check if the subvolume references other subvolumes
994  */
995 static noinline int may_destroy_subvol(struct btrfs_root *root)
996 {
997         struct btrfs_path *path;
998         struct btrfs_key key;
999         int ret;
1000
1001         path = btrfs_alloc_path();
1002         if (!path)
1003                 return -ENOMEM;
1004
1005         key.objectid = root->root_key.objectid;
1006         key.type = BTRFS_ROOT_REF_KEY;
1007         key.offset = (u64)-1;
1008
1009         ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1010                                 &key, path, 0, 0);
1011         if (ret < 0)
1012                 goto out;
1013         BUG_ON(ret == 0);
1014
1015         ret = 0;
1016         if (path->slots[0] > 0) {
1017                 path->slots[0]--;
1018                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1019                 if (key.objectid == root->root_key.objectid &&
1020                     key.type == BTRFS_ROOT_REF_KEY)
1021                         ret = -ENOTEMPTY;
1022         }
1023 out:
1024         btrfs_free_path(path);
1025         return ret;
1026 }
1027
1028 static noinline int key_in_sk(struct btrfs_key *key,
1029                               struct btrfs_ioctl_search_key *sk)
1030 {
1031         struct btrfs_key test;
1032         int ret;
1033
1034         test.objectid = sk->min_objectid;
1035         test.type = sk->min_type;
1036         test.offset = sk->min_offset;
1037
1038         ret = btrfs_comp_cpu_keys(key, &test);
1039         if (ret < 0)
1040                 return 0;
1041
1042         test.objectid = sk->max_objectid;
1043         test.type = sk->max_type;
1044         test.offset = sk->max_offset;
1045
1046         ret = btrfs_comp_cpu_keys(key, &test);
1047         if (ret > 0)
1048                 return 0;
1049         return 1;
1050 }
1051
1052 static noinline int copy_to_sk(struct btrfs_root *root,
1053                                struct btrfs_path *path,
1054                                struct btrfs_key *key,
1055                                struct btrfs_ioctl_search_key *sk,
1056                                char *buf,
1057                                unsigned long *sk_offset,
1058                                int *num_found)
1059 {
1060         u64 found_transid;
1061         struct extent_buffer *leaf;
1062         struct btrfs_ioctl_search_header sh;
1063         unsigned long item_off;
1064         unsigned long item_len;
1065         int nritems;
1066         int i;
1067         int slot;
1068         int found = 0;
1069         int ret = 0;
1070
1071         leaf = path->nodes[0];
1072         slot = path->slots[0];
1073         nritems = btrfs_header_nritems(leaf);
1074
1075         if (btrfs_header_generation(leaf) > sk->max_transid) {
1076                 i = nritems;
1077                 goto advance_key;
1078         }
1079         found_transid = btrfs_header_generation(leaf);
1080
1081         for (i = slot; i < nritems; i++) {
1082                 item_off = btrfs_item_ptr_offset(leaf, i);
1083                 item_len = btrfs_item_size_nr(leaf, i);
1084
1085                 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1086                         item_len = 0;
1087
1088                 if (sizeof(sh) + item_len + *sk_offset >
1089                     BTRFS_SEARCH_ARGS_BUFSIZE) {
1090                         ret = 1;
1091                         goto overflow;
1092                 }
1093
1094                 btrfs_item_key_to_cpu(leaf, key, i);
1095                 if (!key_in_sk(key, sk))
1096                         continue;
1097
1098                 sh.objectid = key->objectid;
1099                 sh.offset = key->offset;
1100                 sh.type = key->type;
1101                 sh.len = item_len;
1102                 sh.transid = found_transid;
1103
1104                 /* copy search result header */
1105                 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1106                 *sk_offset += sizeof(sh);
1107
1108                 if (item_len) {
1109                         char *p = buf + *sk_offset;
1110                         /* copy the item */
1111                         read_extent_buffer(leaf, p,
1112                                            item_off, item_len);
1113                         *sk_offset += item_len;
1114                 }
1115                 found++;
1116
1117                 if (*num_found >= sk->nr_items)
1118                         break;
1119         }
1120 advance_key:
1121         ret = 0;
1122         if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1123                 key->offset++;
1124         else if (key->type < (u8)-1 && key->type < sk->max_type) {
1125                 key->offset = 0;
1126                 key->type++;
1127         } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1128                 key->offset = 0;
1129                 key->type = 0;
1130                 key->objectid++;
1131         } else
1132                 ret = 1;
1133 overflow:
1134         *num_found += found;
1135         return ret;
1136 }
1137
1138 static noinline int search_ioctl(struct inode *inode,
1139                                  struct btrfs_ioctl_search_args *args)
1140 {
1141         struct btrfs_root *root;
1142         struct btrfs_key key;
1143         struct btrfs_key max_key;
1144         struct btrfs_path *path;
1145         struct btrfs_ioctl_search_key *sk = &args->key;
1146         struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1147         int ret;
1148         int num_found = 0;
1149         unsigned long sk_offset = 0;
1150
1151         path = btrfs_alloc_path();
1152         if (!path)
1153                 return -ENOMEM;
1154
1155         if (sk->tree_id == 0) {
1156                 /* search the root of the inode that was passed */
1157                 root = BTRFS_I(inode)->root;
1158         } else {
1159                 key.objectid = sk->tree_id;
1160                 key.type = BTRFS_ROOT_ITEM_KEY;
1161                 key.offset = (u64)-1;
1162                 root = btrfs_read_fs_root_no_name(info, &key);
1163                 if (IS_ERR(root)) {
1164                         printk(KERN_ERR "could not find root %llu\n",
1165                                sk->tree_id);
1166                         btrfs_free_path(path);
1167                         return -ENOENT;
1168                 }
1169         }
1170
1171         key.objectid = sk->min_objectid;
1172         key.type = sk->min_type;
1173         key.offset = sk->min_offset;
1174
1175         max_key.objectid = sk->max_objectid;
1176         max_key.type = sk->max_type;
1177         max_key.offset = sk->max_offset;
1178
1179         path->keep_locks = 1;
1180
1181         while(1) {
1182                 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1183                                            sk->min_transid);
1184                 if (ret != 0) {
1185                         if (ret > 0)
1186                                 ret = 0;
1187                         goto err;
1188                 }
1189                 ret = copy_to_sk(root, path, &key, sk, args->buf,
1190                                  &sk_offset, &num_found);
1191                 btrfs_release_path(root, path);
1192                 if (ret || num_found >= sk->nr_items)
1193                         break;
1194
1195         }
1196         ret = 0;
1197 err:
1198         sk->nr_items = num_found;
1199         btrfs_free_path(path);
1200         return ret;
1201 }
1202
1203 static noinline int btrfs_ioctl_tree_search(struct file *file,
1204                                            void __user *argp)
1205 {
1206          struct btrfs_ioctl_search_args *args;
1207          struct inode *inode;
1208          int ret;
1209
1210         if (!capable(CAP_SYS_ADMIN))
1211                 return -EPERM;
1212
1213         args = memdup_user(argp, sizeof(*args));
1214         if (IS_ERR(args))
1215                 return PTR_ERR(args);
1216
1217         inode = fdentry(file)->d_inode;
1218         ret = search_ioctl(inode, args);
1219         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1220                 ret = -EFAULT;
1221         kfree(args);
1222         return ret;
1223 }
1224
1225 /*
1226  * Search INODE_REFs to identify path name of 'dirid' directory
1227  * in a 'tree_id' tree. and sets path name to 'name'.
1228  */
1229 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1230                                 u64 tree_id, u64 dirid, char *name)
1231 {
1232         struct btrfs_root *root;
1233         struct btrfs_key key;
1234         char *ptr;
1235         int ret = -1;
1236         int slot;
1237         int len;
1238         int total_len = 0;
1239         struct btrfs_inode_ref *iref;
1240         struct extent_buffer *l;
1241         struct btrfs_path *path;
1242
1243         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1244                 name[0]='\0';
1245                 return 0;
1246         }
1247
1248         path = btrfs_alloc_path();
1249         if (!path)
1250                 return -ENOMEM;
1251
1252         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1253
1254         key.objectid = tree_id;
1255         key.type = BTRFS_ROOT_ITEM_KEY;
1256         key.offset = (u64)-1;
1257         root = btrfs_read_fs_root_no_name(info, &key);
1258         if (IS_ERR(root)) {
1259                 printk(KERN_ERR "could not find root %llu\n", tree_id);
1260                 ret = -ENOENT;
1261                 goto out;
1262         }
1263
1264         key.objectid = dirid;
1265         key.type = BTRFS_INODE_REF_KEY;
1266         key.offset = (u64)-1;
1267
1268         while(1) {
1269                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1270                 if (ret < 0)
1271                         goto out;
1272
1273                 l = path->nodes[0];
1274                 slot = path->slots[0];
1275                 if (ret > 0 && slot > 0)
1276                         slot--;
1277                 btrfs_item_key_to_cpu(l, &key, slot);
1278
1279                 if (ret > 0 && (key.objectid != dirid ||
1280                                 key.type != BTRFS_INODE_REF_KEY)) {
1281                         ret = -ENOENT;
1282                         goto out;
1283                 }
1284
1285                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1286                 len = btrfs_inode_ref_name_len(l, iref);
1287                 ptr -= len + 1;
1288                 total_len += len + 1;
1289                 if (ptr < name)
1290                         goto out;
1291
1292                 *(ptr + len) = '/';
1293                 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1294
1295                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1296                         break;
1297
1298                 btrfs_release_path(root, path);
1299                 key.objectid = key.offset;
1300                 key.offset = (u64)-1;
1301                 dirid = key.objectid;
1302
1303         }
1304         if (ptr < name)
1305                 goto out;
1306         memcpy(name, ptr, total_len);
1307         name[total_len]='\0';
1308         ret = 0;
1309 out:
1310         btrfs_free_path(path);
1311         return ret;
1312 }
1313
1314 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1315                                            void __user *argp)
1316 {
1317          struct btrfs_ioctl_ino_lookup_args *args;
1318          struct inode *inode;
1319          int ret;
1320
1321         if (!capable(CAP_SYS_ADMIN))
1322                 return -EPERM;
1323
1324         args = memdup_user(argp, sizeof(*args));
1325         if (IS_ERR(args))
1326                 return PTR_ERR(args);
1327
1328         inode = fdentry(file)->d_inode;
1329
1330         if (args->treeid == 0)
1331                 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1332
1333         ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1334                                         args->treeid, args->objectid,
1335                                         args->name);
1336
1337         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1338                 ret = -EFAULT;
1339
1340         kfree(args);
1341         return ret;
1342 }
1343
1344 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1345                                              void __user *arg)
1346 {
1347         struct dentry *parent = fdentry(file);
1348         struct dentry *dentry;
1349         struct inode *dir = parent->d_inode;
1350         struct inode *inode;
1351         struct btrfs_root *root = BTRFS_I(dir)->root;
1352         struct btrfs_root *dest = NULL;
1353         struct btrfs_ioctl_vol_args *vol_args;
1354         struct btrfs_trans_handle *trans;
1355         int namelen;
1356         int ret;
1357         int err = 0;
1358
1359         vol_args = memdup_user(arg, sizeof(*vol_args));
1360         if (IS_ERR(vol_args))
1361                 return PTR_ERR(vol_args);
1362
1363         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1364         namelen = strlen(vol_args->name);
1365         if (strchr(vol_args->name, '/') ||
1366             strncmp(vol_args->name, "..", namelen) == 0) {
1367                 err = -EINVAL;
1368                 goto out;
1369         }
1370
1371         err = mnt_want_write(file->f_path.mnt);
1372         if (err)
1373                 goto out;
1374
1375         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1376         dentry = lookup_one_len(vol_args->name, parent, namelen);
1377         if (IS_ERR(dentry)) {
1378                 err = PTR_ERR(dentry);
1379                 goto out_unlock_dir;
1380         }
1381
1382         if (!dentry->d_inode) {
1383                 err = -ENOENT;
1384                 goto out_dput;
1385         }
1386
1387         inode = dentry->d_inode;
1388         dest = BTRFS_I(inode)->root;
1389         if (!capable(CAP_SYS_ADMIN)){
1390                 /*
1391                  * Regular user.  Only allow this with a special mount
1392                  * option, when the user has write+exec access to the
1393                  * subvol root, and when rmdir(2) would have been
1394                  * allowed.
1395                  *
1396                  * Note that this is _not_ check that the subvol is
1397                  * empty or doesn't contain data that we wouldn't
1398                  * otherwise be able to delete.
1399                  *
1400                  * Users who want to delete empty subvols should try
1401                  * rmdir(2).
1402                  */
1403                 err = -EPERM;
1404                 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1405                         goto out_dput;
1406
1407                 /*
1408                  * Do not allow deletion if the parent dir is the same
1409                  * as the dir to be deleted.  That means the ioctl
1410                  * must be called on the dentry referencing the root
1411                  * of the subvol, not a random directory contained
1412                  * within it.
1413                  */
1414                 err = -EINVAL;
1415                 if (root == dest)
1416                         goto out_dput;
1417
1418                 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1419                 if (err)
1420                         goto out_dput;
1421
1422                 /* check if subvolume may be deleted by a non-root user */
1423                 err = btrfs_may_delete(dir, dentry, 1);
1424                 if (err)
1425                         goto out_dput;
1426         }
1427
1428         if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
1429                 err = -EINVAL;
1430                 goto out_dput;
1431         }
1432
1433         mutex_lock(&inode->i_mutex);
1434         err = d_invalidate(dentry);
1435         if (err)
1436                 goto out_unlock;
1437
1438         down_write(&root->fs_info->subvol_sem);
1439
1440         err = may_destroy_subvol(dest);
1441         if (err)
1442                 goto out_up_write;
1443
1444         trans = btrfs_start_transaction(root, 0);
1445         if (IS_ERR(trans)) {
1446                 err = PTR_ERR(trans);
1447                 goto out_up_write;
1448         }
1449         trans->block_rsv = &root->fs_info->global_block_rsv;
1450
1451         ret = btrfs_unlink_subvol(trans, root, dir,
1452                                 dest->root_key.objectid,
1453                                 dentry->d_name.name,
1454                                 dentry->d_name.len);
1455         BUG_ON(ret);
1456
1457         btrfs_record_root_in_trans(trans, dest);
1458
1459         memset(&dest->root_item.drop_progress, 0,
1460                 sizeof(dest->root_item.drop_progress));
1461         dest->root_item.drop_level = 0;
1462         btrfs_set_root_refs(&dest->root_item, 0);
1463
1464         if (!xchg(&dest->orphan_item_inserted, 1)) {
1465                 ret = btrfs_insert_orphan_item(trans,
1466                                         root->fs_info->tree_root,
1467                                         dest->root_key.objectid);
1468                 BUG_ON(ret);
1469         }
1470
1471         ret = btrfs_end_transaction(trans, root);
1472         BUG_ON(ret);
1473         inode->i_flags |= S_DEAD;
1474 out_up_write:
1475         up_write(&root->fs_info->subvol_sem);
1476 out_unlock:
1477         mutex_unlock(&inode->i_mutex);
1478         if (!err) {
1479                 shrink_dcache_sb(root->fs_info->sb);
1480                 btrfs_invalidate_inodes(dest);
1481                 d_delete(dentry);
1482         }
1483 out_dput:
1484         dput(dentry);
1485 out_unlock_dir:
1486         mutex_unlock(&dir->i_mutex);
1487         mnt_drop_write(file->f_path.mnt);
1488 out:
1489         kfree(vol_args);
1490         return err;
1491 }
1492
1493 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1494 {
1495         struct inode *inode = fdentry(file)->d_inode;
1496         struct btrfs_root *root = BTRFS_I(inode)->root;
1497         struct btrfs_ioctl_defrag_range_args *range;
1498         int ret;
1499
1500         ret = mnt_want_write(file->f_path.mnt);
1501         if (ret)
1502                 return ret;
1503
1504         switch (inode->i_mode & S_IFMT) {
1505         case S_IFDIR:
1506                 if (!capable(CAP_SYS_ADMIN)) {
1507                         ret = -EPERM;
1508                         goto out;
1509                 }
1510                 ret = btrfs_defrag_root(root, 0);
1511                 if (ret)
1512                         goto out;
1513                 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1514                 break;
1515         case S_IFREG:
1516                 if (!(file->f_mode & FMODE_WRITE)) {
1517                         ret = -EINVAL;
1518                         goto out;
1519                 }
1520
1521                 range = kzalloc(sizeof(*range), GFP_KERNEL);
1522                 if (!range) {
1523                         ret = -ENOMEM;
1524                         goto out;
1525                 }
1526
1527                 if (argp) {
1528                         if (copy_from_user(range, argp,
1529                                            sizeof(*range))) {
1530                                 ret = -EFAULT;
1531                                 kfree(range);
1532                                 goto out;
1533                         }
1534                         /* compression requires us to start the IO */
1535                         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1536                                 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1537                                 range->extent_thresh = (u32)-1;
1538                         }
1539                 } else {
1540                         /* the rest are all set to zero by kzalloc */
1541                         range->len = (u64)-1;
1542                 }
1543                 ret = btrfs_defrag_file(file, range);
1544                 kfree(range);
1545                 break;
1546         default:
1547                 ret = -EINVAL;
1548         }
1549 out:
1550         mnt_drop_write(file->f_path.mnt);
1551         return ret;
1552 }
1553
1554 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
1555 {
1556         struct btrfs_ioctl_vol_args *vol_args;
1557         int ret;
1558
1559         if (!capable(CAP_SYS_ADMIN))
1560                 return -EPERM;
1561
1562         vol_args = memdup_user(arg, sizeof(*vol_args));
1563         if (IS_ERR(vol_args))
1564                 return PTR_ERR(vol_args);
1565
1566         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1567         ret = btrfs_init_new_device(root, vol_args->name);
1568
1569         kfree(vol_args);
1570         return ret;
1571 }
1572
1573 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
1574 {
1575         struct btrfs_ioctl_vol_args *vol_args;
1576         int ret;
1577
1578         if (!capable(CAP_SYS_ADMIN))
1579                 return -EPERM;
1580
1581         if (root->fs_info->sb->s_flags & MS_RDONLY)
1582                 return -EROFS;
1583
1584         vol_args = memdup_user(arg, sizeof(*vol_args));
1585         if (IS_ERR(vol_args))
1586                 return PTR_ERR(vol_args);
1587
1588         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1589         ret = btrfs_rm_device(root, vol_args->name);
1590
1591         kfree(vol_args);
1592         return ret;
1593 }
1594
1595 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
1596                                        u64 off, u64 olen, u64 destoff)
1597 {
1598         struct inode *inode = fdentry(file)->d_inode;
1599         struct btrfs_root *root = BTRFS_I(inode)->root;
1600         struct file *src_file;
1601         struct inode *src;
1602         struct btrfs_trans_handle *trans;
1603         struct btrfs_path *path;
1604         struct extent_buffer *leaf;
1605         char *buf;
1606         struct btrfs_key key;
1607         u32 nritems;
1608         int slot;
1609         int ret;
1610         u64 len = olen;
1611         u64 bs = root->fs_info->sb->s_blocksize;
1612         u64 hint_byte;
1613
1614         /*
1615          * TODO:
1616          * - split compressed inline extents.  annoying: we need to
1617          *   decompress into destination's address_space (the file offset
1618          *   may change, so source mapping won't do), then recompress (or
1619          *   otherwise reinsert) a subrange.
1620          * - allow ranges within the same file to be cloned (provided
1621          *   they don't overlap)?
1622          */
1623
1624         /* the destination must be opened for writing */
1625         if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
1626                 return -EINVAL;
1627
1628         ret = mnt_want_write(file->f_path.mnt);
1629         if (ret)
1630                 return ret;
1631
1632         src_file = fget(srcfd);
1633         if (!src_file) {
1634                 ret = -EBADF;
1635                 goto out_drop_write;
1636         }
1637
1638         src = src_file->f_dentry->d_inode;
1639
1640         ret = -EINVAL;
1641         if (src == inode)
1642                 goto out_fput;
1643
1644         /* the src must be open for reading */
1645         if (!(src_file->f_mode & FMODE_READ))
1646                 goto out_fput;
1647
1648         ret = -EISDIR;
1649         if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
1650                 goto out_fput;
1651
1652         ret = -EXDEV;
1653         if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
1654                 goto out_fput;
1655
1656         ret = -ENOMEM;
1657         buf = vmalloc(btrfs_level_size(root, 0));
1658         if (!buf)
1659                 goto out_fput;
1660
1661         path = btrfs_alloc_path();
1662         if (!path) {
1663                 vfree(buf);
1664                 goto out_fput;
1665         }
1666         path->reada = 2;
1667
1668         if (inode < src) {
1669                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
1670                 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
1671         } else {
1672                 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
1673                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1674         }
1675
1676         /* determine range to clone */
1677         ret = -EINVAL;
1678         if (off + len > src->i_size || off + len < off)
1679                 goto out_unlock;
1680         if (len == 0)
1681                 olen = len = src->i_size - off;
1682         /* if we extend to eof, continue to block boundary */
1683         if (off + len == src->i_size)
1684                 len = ALIGN(src->i_size, bs) - off;
1685
1686         /* verify the end result is block aligned */
1687         if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
1688             !IS_ALIGNED(destoff, bs))
1689                 goto out_unlock;
1690
1691         /* do any pending delalloc/csum calc on src, one way or
1692            another, and lock file content */
1693         while (1) {
1694                 struct btrfs_ordered_extent *ordered;
1695                 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1696                 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
1697                 if (!ordered &&
1698                     !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
1699                                    EXTENT_DELALLOC, 0, NULL))
1700                         break;
1701                 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1702                 if (ordered)
1703                         btrfs_put_ordered_extent(ordered);
1704                 btrfs_wait_ordered_range(src, off, len);
1705         }
1706
1707         /* clone data */
1708         key.objectid = src->i_ino;
1709         key.type = BTRFS_EXTENT_DATA_KEY;
1710         key.offset = 0;
1711
1712         while (1) {
1713                 /*
1714                  * note the key will change type as we walk through the
1715                  * tree.
1716                  */
1717                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1718                 if (ret < 0)
1719                         goto out;
1720
1721                 nritems = btrfs_header_nritems(path->nodes[0]);
1722                 if (path->slots[0] >= nritems) {
1723                         ret = btrfs_next_leaf(root, path);
1724                         if (ret < 0)
1725                                 goto out;
1726                         if (ret > 0)
1727                                 break;
1728                         nritems = btrfs_header_nritems(path->nodes[0]);
1729                 }
1730                 leaf = path->nodes[0];
1731                 slot = path->slots[0];
1732
1733                 btrfs_item_key_to_cpu(leaf, &key, slot);
1734                 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
1735                     key.objectid != src->i_ino)
1736                         break;
1737
1738                 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
1739                         struct btrfs_file_extent_item *extent;
1740                         int type;
1741                         u32 size;
1742                         struct btrfs_key new_key;
1743                         u64 disko = 0, diskl = 0;
1744                         u64 datao = 0, datal = 0;
1745                         u8 comp;
1746                         u64 endoff;
1747
1748                         size = btrfs_item_size_nr(leaf, slot);
1749                         read_extent_buffer(leaf, buf,
1750                                            btrfs_item_ptr_offset(leaf, slot),
1751                                            size);
1752
1753                         extent = btrfs_item_ptr(leaf, slot,
1754                                                 struct btrfs_file_extent_item);
1755                         comp = btrfs_file_extent_compression(leaf, extent);
1756                         type = btrfs_file_extent_type(leaf, extent);
1757                         if (type == BTRFS_FILE_EXTENT_REG ||
1758                             type == BTRFS_FILE_EXTENT_PREALLOC) {
1759                                 disko = btrfs_file_extent_disk_bytenr(leaf,
1760                                                                       extent);
1761                                 diskl = btrfs_file_extent_disk_num_bytes(leaf,
1762                                                                  extent);
1763                                 datao = btrfs_file_extent_offset(leaf, extent);
1764                                 datal = btrfs_file_extent_num_bytes(leaf,
1765                                                                     extent);
1766                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1767                                 /* take upper bound, may be compressed */
1768                                 datal = btrfs_file_extent_ram_bytes(leaf,
1769                                                                     extent);
1770                         }
1771                         btrfs_release_path(root, path);
1772
1773                         if (key.offset + datal <= off ||
1774                             key.offset >= off+len)
1775                                 goto next;
1776
1777                         memcpy(&new_key, &key, sizeof(new_key));
1778                         new_key.objectid = inode->i_ino;
1779                         new_key.offset = key.offset + destoff - off;
1780
1781                         trans = btrfs_start_transaction(root, 1);
1782                         if (IS_ERR(trans)) {
1783                                 ret = PTR_ERR(trans);
1784                                 goto out;
1785                         }
1786
1787                         if (type == BTRFS_FILE_EXTENT_REG ||
1788                             type == BTRFS_FILE_EXTENT_PREALLOC) {
1789                                 if (off > key.offset) {
1790                                         datao += off - key.offset;
1791                                         datal -= off - key.offset;
1792                                 }
1793
1794                                 if (key.offset + datal > off + len)
1795                                         datal = off + len - key.offset;
1796
1797                                 ret = btrfs_drop_extents(trans, inode,
1798                                                          new_key.offset,
1799                                                          new_key.offset + datal,
1800                                                          &hint_byte, 1);
1801                                 BUG_ON(ret);
1802
1803                                 ret = btrfs_insert_empty_item(trans, root, path,
1804                                                               &new_key, size);
1805                                 BUG_ON(ret);
1806
1807                                 leaf = path->nodes[0];
1808                                 slot = path->slots[0];
1809                                 write_extent_buffer(leaf, buf,
1810                                             btrfs_item_ptr_offset(leaf, slot),
1811                                             size);
1812
1813                                 extent = btrfs_item_ptr(leaf, slot,
1814                                                 struct btrfs_file_extent_item);
1815
1816                                 /* disko == 0 means it's a hole */
1817                                 if (!disko)
1818                                         datao = 0;
1819
1820                                 btrfs_set_file_extent_offset(leaf, extent,
1821                                                              datao);
1822                                 btrfs_set_file_extent_num_bytes(leaf, extent,
1823                                                                 datal);
1824                                 if (disko) {
1825                                         inode_add_bytes(inode, datal);
1826                                         ret = btrfs_inc_extent_ref(trans, root,
1827                                                         disko, diskl, 0,
1828                                                         root->root_key.objectid,
1829                                                         inode->i_ino,
1830                                                         new_key.offset - datao);
1831                                         BUG_ON(ret);
1832                                 }
1833                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1834                                 u64 skip = 0;
1835                                 u64 trim = 0;
1836                                 if (off > key.offset) {
1837                                         skip = off - key.offset;
1838                                         new_key.offset += skip;
1839                                 }
1840
1841                                 if (key.offset + datal > off+len)
1842                                         trim = key.offset + datal - (off+len);
1843
1844                                 if (comp && (skip || trim)) {
1845                                         ret = -EINVAL;
1846                                         btrfs_end_transaction(trans, root);
1847                                         goto out;
1848                                 }
1849                                 size -= skip + trim;
1850                                 datal -= skip + trim;
1851
1852                                 ret = btrfs_drop_extents(trans, inode,
1853                                                          new_key.offset,
1854                                                          new_key.offset + datal,
1855                                                          &hint_byte, 1);
1856                                 BUG_ON(ret);
1857
1858                                 ret = btrfs_insert_empty_item(trans, root, path,
1859                                                               &new_key, size);
1860                                 BUG_ON(ret);
1861
1862                                 if (skip) {
1863                                         u32 start =
1864                                           btrfs_file_extent_calc_inline_size(0);
1865                                         memmove(buf+start, buf+start+skip,
1866                                                 datal);
1867                                 }
1868
1869                                 leaf = path->nodes[0];
1870                                 slot = path->slots[0];
1871                                 write_extent_buffer(leaf, buf,
1872                                             btrfs_item_ptr_offset(leaf, slot),
1873                                             size);
1874                                 inode_add_bytes(inode, datal);
1875                         }
1876
1877                         btrfs_mark_buffer_dirty(leaf);
1878                         btrfs_release_path(root, path);
1879
1880                         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1881
1882                         /*
1883                          * we round up to the block size at eof when
1884                          * determining which extents to clone above,
1885                          * but shouldn't round up the file size
1886                          */
1887                         endoff = new_key.offset + datal;
1888                         if (endoff > destoff+olen)
1889                                 endoff = destoff+olen;
1890                         if (endoff > inode->i_size)
1891                                 btrfs_i_size_write(inode, endoff);
1892
1893                         BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
1894                         ret = btrfs_update_inode(trans, root, inode);
1895                         BUG_ON(ret);
1896                         btrfs_end_transaction(trans, root);
1897                 }
1898 next:
1899                 btrfs_release_path(root, path);
1900                 key.offset++;
1901         }
1902         ret = 0;
1903 out:
1904         btrfs_release_path(root, path);
1905         unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1906 out_unlock:
1907         mutex_unlock(&src->i_mutex);
1908         mutex_unlock(&inode->i_mutex);
1909         vfree(buf);
1910         btrfs_free_path(path);
1911 out_fput:
1912         fput(src_file);
1913 out_drop_write:
1914         mnt_drop_write(file->f_path.mnt);
1915         return ret;
1916 }
1917
1918 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
1919 {
1920         struct btrfs_ioctl_clone_range_args args;
1921
1922         if (copy_from_user(&args, argp, sizeof(args)))
1923                 return -EFAULT;
1924         return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
1925                                  args.src_length, args.dest_offset);
1926 }
1927
1928 /*
1929  * there are many ways the trans_start and trans_end ioctls can lead
1930  * to deadlocks.  They should only be used by applications that
1931  * basically own the machine, and have a very in depth understanding
1932  * of all the possible deadlocks and enospc problems.
1933  */
1934 static long btrfs_ioctl_trans_start(struct file *file)
1935 {
1936         struct inode *inode = fdentry(file)->d_inode;
1937         struct btrfs_root *root = BTRFS_I(inode)->root;
1938         struct btrfs_trans_handle *trans;
1939         int ret;
1940
1941         ret = -EPERM;
1942         if (!capable(CAP_SYS_ADMIN))
1943                 goto out;
1944
1945         ret = -EINPROGRESS;
1946         if (file->private_data)
1947                 goto out;
1948
1949         ret = mnt_want_write(file->f_path.mnt);
1950         if (ret)
1951                 goto out;
1952
1953         mutex_lock(&root->fs_info->trans_mutex);
1954         root->fs_info->open_ioctl_trans++;
1955         mutex_unlock(&root->fs_info->trans_mutex);
1956
1957         ret = -ENOMEM;
1958         trans = btrfs_start_ioctl_transaction(root, 0);
1959         if (!trans)
1960                 goto out_drop;
1961
1962         file->private_data = trans;
1963         return 0;
1964
1965 out_drop:
1966         mutex_lock(&root->fs_info->trans_mutex);
1967         root->fs_info->open_ioctl_trans--;
1968         mutex_unlock(&root->fs_info->trans_mutex);
1969         mnt_drop_write(file->f_path.mnt);
1970 out:
1971         return ret;
1972 }
1973
1974 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
1975 {
1976         struct inode *inode = fdentry(file)->d_inode;
1977         struct btrfs_root *root = BTRFS_I(inode)->root;
1978         struct btrfs_root *new_root;
1979         struct btrfs_dir_item *di;
1980         struct btrfs_trans_handle *trans;
1981         struct btrfs_path *path;
1982         struct btrfs_key location;
1983         struct btrfs_disk_key disk_key;
1984         struct btrfs_super_block *disk_super;
1985         u64 features;
1986         u64 objectid = 0;
1987         u64 dir_id;
1988
1989         if (!capable(CAP_SYS_ADMIN))
1990                 return -EPERM;
1991
1992         if (copy_from_user(&objectid, argp, sizeof(objectid)))
1993                 return -EFAULT;
1994
1995         if (!objectid)
1996                 objectid = root->root_key.objectid;
1997
1998         location.objectid = objectid;
1999         location.type = BTRFS_ROOT_ITEM_KEY;
2000         location.offset = (u64)-1;
2001
2002         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2003         if (IS_ERR(new_root))
2004                 return PTR_ERR(new_root);
2005
2006         if (btrfs_root_refs(&new_root->root_item) == 0)
2007                 return -ENOENT;
2008
2009         path = btrfs_alloc_path();
2010         if (!path)
2011                 return -ENOMEM;
2012         path->leave_spinning = 1;
2013
2014         trans = btrfs_start_transaction(root, 1);
2015         if (!trans) {
2016                 btrfs_free_path(path);
2017                 return -ENOMEM;
2018         }
2019
2020         dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
2021         di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2022                                    dir_id, "default", 7, 1);
2023         if (IS_ERR_OR_NULL(di)) {
2024                 btrfs_free_path(path);
2025                 btrfs_end_transaction(trans, root);
2026                 printk(KERN_ERR "Umm, you don't have the default dir item, "
2027                        "this isn't going to work\n");
2028                 return -ENOENT;
2029         }
2030
2031         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2032         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2033         btrfs_mark_buffer_dirty(path->nodes[0]);
2034         btrfs_free_path(path);
2035
2036         disk_super = &root->fs_info->super_copy;
2037         features = btrfs_super_incompat_flags(disk_super);
2038         if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2039                 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2040                 btrfs_set_super_incompat_flags(disk_super, features);
2041         }
2042         btrfs_end_transaction(trans, root);
2043
2044         return 0;
2045 }
2046
2047 static void get_block_group_info(struct list_head *groups_list,
2048                                  struct btrfs_ioctl_space_info *space)
2049 {
2050         struct btrfs_block_group_cache *block_group;
2051
2052         space->total_bytes = 0;
2053         space->used_bytes = 0;
2054         space->flags = 0;
2055         list_for_each_entry(block_group, groups_list, list) {
2056                 space->flags = block_group->flags;
2057                 space->total_bytes += block_group->key.offset;
2058                 space->used_bytes +=
2059                         btrfs_block_group_used(&block_group->item);
2060         }
2061 }
2062
2063 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2064 {
2065         struct btrfs_ioctl_space_args space_args;
2066         struct btrfs_ioctl_space_info space;
2067         struct btrfs_ioctl_space_info *dest;
2068         struct btrfs_ioctl_space_info *dest_orig;
2069         struct btrfs_ioctl_space_info *user_dest;
2070         struct btrfs_space_info *info;
2071         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2072                        BTRFS_BLOCK_GROUP_SYSTEM,
2073                        BTRFS_BLOCK_GROUP_METADATA,
2074                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2075         int num_types = 4;
2076         int alloc_size;
2077         int ret = 0;
2078         int slot_count = 0;
2079         int i, c;
2080
2081         if (copy_from_user(&space_args,
2082                            (struct btrfs_ioctl_space_args __user *)arg,
2083                            sizeof(space_args)))
2084                 return -EFAULT;
2085
2086         for (i = 0; i < num_types; i++) {
2087                 struct btrfs_space_info *tmp;
2088
2089                 info = NULL;
2090                 rcu_read_lock();
2091                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2092                                         list) {
2093                         if (tmp->flags == types[i]) {
2094                                 info = tmp;
2095                                 break;
2096                         }
2097                 }
2098                 rcu_read_unlock();
2099
2100                 if (!info)
2101                         continue;
2102
2103                 down_read(&info->groups_sem);
2104                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2105                         if (!list_empty(&info->block_groups[c]))
2106                                 slot_count++;
2107                 }
2108                 up_read(&info->groups_sem);
2109         }
2110
2111         /* space_slots == 0 means they are asking for a count */
2112         if (space_args.space_slots == 0) {
2113                 space_args.total_spaces = slot_count;
2114                 goto out;
2115         }
2116
2117         slot_count = min_t(int, space_args.space_slots, slot_count);
2118
2119         alloc_size = sizeof(*dest) * slot_count;
2120
2121         /* we generally have at most 6 or so space infos, one for each raid
2122          * level.  So, a whole page should be more than enough for everyone
2123          */
2124         if (alloc_size > PAGE_CACHE_SIZE)
2125                 return -ENOMEM;
2126
2127         space_args.total_spaces = 0;
2128         dest = kmalloc(alloc_size, GFP_NOFS);
2129         if (!dest)
2130                 return -ENOMEM;
2131         dest_orig = dest;
2132
2133         /* now we have a buffer to copy into */
2134         for (i = 0; i < num_types; i++) {
2135                 struct btrfs_space_info *tmp;
2136
2137                 info = NULL;
2138                 rcu_read_lock();
2139                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2140                                         list) {
2141                         if (tmp->flags == types[i]) {
2142                                 info = tmp;
2143                                 break;
2144                         }
2145                 }
2146                 rcu_read_unlock();
2147
2148                 if (!info)
2149                         continue;
2150                 down_read(&info->groups_sem);
2151                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2152                         if (!list_empty(&info->block_groups[c])) {
2153                                 get_block_group_info(&info->block_groups[c],
2154                                                      &space);
2155                                 memcpy(dest, &space, sizeof(space));
2156                                 dest++;
2157                                 space_args.total_spaces++;
2158                         }
2159                 }
2160                 up_read(&info->groups_sem);
2161         }
2162
2163         user_dest = (struct btrfs_ioctl_space_info *)
2164                 (arg + sizeof(struct btrfs_ioctl_space_args));
2165
2166         if (copy_to_user(user_dest, dest_orig, alloc_size))
2167                 ret = -EFAULT;
2168
2169         kfree(dest_orig);
2170 out:
2171         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2172                 ret = -EFAULT;
2173
2174         return ret;
2175 }
2176
2177 /*
2178  * there are many ways the trans_start and trans_end ioctls can lead
2179  * to deadlocks.  They should only be used by applications that
2180  * basically own the machine, and have a very in depth understanding
2181  * of all the possible deadlocks and enospc problems.
2182  */
2183 long btrfs_ioctl_trans_end(struct file *file)
2184 {
2185         struct inode *inode = fdentry(file)->d_inode;
2186         struct btrfs_root *root = BTRFS_I(inode)->root;
2187         struct btrfs_trans_handle *trans;
2188
2189         trans = file->private_data;
2190         if (!trans)
2191                 return -EINVAL;
2192         file->private_data = NULL;
2193
2194         btrfs_end_transaction(trans, root);
2195
2196         mutex_lock(&root->fs_info->trans_mutex);
2197         root->fs_info->open_ioctl_trans--;
2198         mutex_unlock(&root->fs_info->trans_mutex);
2199
2200         mnt_drop_write(file->f_path.mnt);
2201         return 0;
2202 }
2203
2204 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2205 {
2206         struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2207         struct btrfs_trans_handle *trans;
2208         u64 transid;
2209
2210         trans = btrfs_start_transaction(root, 0);
2211         transid = trans->transid;
2212         btrfs_commit_transaction_async(trans, root, 0);
2213
2214         if (argp)
2215                 if (copy_to_user(argp, &transid, sizeof(transid)))
2216                         return -EFAULT;
2217         return 0;
2218 }
2219
2220 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2221 {
2222         struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2223         u64 transid;
2224
2225         if (argp) {
2226                 if (copy_from_user(&transid, argp, sizeof(transid)))
2227                         return -EFAULT;
2228         } else {
2229                 transid = 0;  /* current trans */
2230         }
2231         return btrfs_wait_for_commit(root, transid);
2232 }
2233
2234 long btrfs_ioctl(struct file *file, unsigned int
2235                 cmd, unsigned long arg)
2236 {
2237         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
2238         void __user *argp = (void __user *)arg;
2239
2240         switch (cmd) {
2241         case FS_IOC_GETFLAGS:
2242                 return btrfs_ioctl_getflags(file, argp);
2243         case FS_IOC_SETFLAGS:
2244                 return btrfs_ioctl_setflags(file, argp);
2245         case FS_IOC_GETVERSION:
2246                 return btrfs_ioctl_getversion(file, argp);
2247         case BTRFS_IOC_SNAP_CREATE:
2248                 return btrfs_ioctl_snap_create(file, argp, 0, 0);
2249         case BTRFS_IOC_SNAP_CREATE_ASYNC:
2250                 return btrfs_ioctl_snap_create(file, argp, 0, 1);
2251         case BTRFS_IOC_SUBVOL_CREATE:
2252                 return btrfs_ioctl_snap_create(file, argp, 1, 0);
2253         case BTRFS_IOC_SNAP_DESTROY:
2254                 return btrfs_ioctl_snap_destroy(file, argp);
2255         case BTRFS_IOC_DEFAULT_SUBVOL:
2256                 return btrfs_ioctl_default_subvol(file, argp);
2257         case BTRFS_IOC_DEFRAG:
2258                 return btrfs_ioctl_defrag(file, NULL);
2259         case BTRFS_IOC_DEFRAG_RANGE:
2260                 return btrfs_ioctl_defrag(file, argp);
2261         case BTRFS_IOC_RESIZE:
2262                 return btrfs_ioctl_resize(root, argp);
2263         case BTRFS_IOC_ADD_DEV:
2264                 return btrfs_ioctl_add_dev(root, argp);
2265         case BTRFS_IOC_RM_DEV:
2266                 return btrfs_ioctl_rm_dev(root, argp);
2267         case BTRFS_IOC_BALANCE:
2268                 return btrfs_balance(root->fs_info->dev_root);
2269         case BTRFS_IOC_CLONE:
2270                 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2271         case BTRFS_IOC_CLONE_RANGE:
2272                 return btrfs_ioctl_clone_range(file, argp);
2273         case BTRFS_IOC_TRANS_START:
2274                 return btrfs_ioctl_trans_start(file);
2275         case BTRFS_IOC_TRANS_END:
2276                 return btrfs_ioctl_trans_end(file);
2277         case BTRFS_IOC_TREE_SEARCH:
2278                 return btrfs_ioctl_tree_search(file, argp);
2279         case BTRFS_IOC_INO_LOOKUP:
2280                 return btrfs_ioctl_ino_lookup(file, argp);
2281         case BTRFS_IOC_SPACE_INFO:
2282                 return btrfs_ioctl_space_info(root, argp);
2283         case BTRFS_IOC_SYNC:
2284                 btrfs_sync_fs(file->f_dentry->d_sb, 1);
2285                 return 0;
2286         case BTRFS_IOC_START_SYNC:
2287                 return btrfs_ioctl_start_sync(file, argp);
2288         case BTRFS_IOC_WAIT_SYNC:
2289                 return btrfs_ioctl_wait_sync(file, argp);
2290         }
2291
2292         return -ENOTTY;
2293 }