2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
30 #include "extent_map.h"
32 #include "transaction.h"
33 #include "print-tree.h"
35 #include "async-thread.h"
36 #include "check-integrity.h"
37 #include "rcu-string.h"
39 #include "dev-replace.h"
41 static int init_first_rw_device(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 struct btrfs_device *device);
44 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
45 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
46 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
48 static DEFINE_MUTEX(uuid_mutex);
49 static LIST_HEAD(fs_uuids);
51 static void lock_chunks(struct btrfs_root *root)
53 mutex_lock(&root->fs_info->chunk_mutex);
56 static void unlock_chunks(struct btrfs_root *root)
58 mutex_unlock(&root->fs_info->chunk_mutex);
61 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
63 struct btrfs_device *device;
64 WARN_ON(fs_devices->opened);
65 while (!list_empty(&fs_devices->devices)) {
66 device = list_entry(fs_devices->devices.next,
67 struct btrfs_device, dev_list);
68 list_del(&device->dev_list);
69 rcu_string_free(device->name);
75 static void btrfs_kobject_uevent(struct block_device *bdev,
76 enum kobject_action action)
80 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
82 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
84 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
85 &disk_to_dev(bdev->bd_disk)->kobj);
88 void btrfs_cleanup_fs_uuids(void)
90 struct btrfs_fs_devices *fs_devices;
92 while (!list_empty(&fs_uuids)) {
93 fs_devices = list_entry(fs_uuids.next,
94 struct btrfs_fs_devices, list);
95 list_del(&fs_devices->list);
96 free_fs_devices(fs_devices);
100 static noinline struct btrfs_device *__find_device(struct list_head *head,
103 struct btrfs_device *dev;
105 list_for_each_entry(dev, head, dev_list) {
106 if (dev->devid == devid &&
107 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
114 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
116 struct btrfs_fs_devices *fs_devices;
118 list_for_each_entry(fs_devices, &fs_uuids, list) {
119 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
126 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
127 int flush, struct block_device **bdev,
128 struct buffer_head **bh)
132 *bdev = blkdev_get_by_path(device_path, flags, holder);
135 ret = PTR_ERR(*bdev);
136 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
141 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
142 ret = set_blocksize(*bdev, 4096);
144 blkdev_put(*bdev, flags);
147 invalidate_bdev(*bdev);
148 *bh = btrfs_read_dev_super(*bdev);
151 blkdev_put(*bdev, flags);
163 static void requeue_list(struct btrfs_pending_bios *pending_bios,
164 struct bio *head, struct bio *tail)
167 struct bio *old_head;
169 old_head = pending_bios->head;
170 pending_bios->head = head;
171 if (pending_bios->tail)
172 tail->bi_next = old_head;
174 pending_bios->tail = tail;
178 * we try to collect pending bios for a device so we don't get a large
179 * number of procs sending bios down to the same device. This greatly
180 * improves the schedulers ability to collect and merge the bios.
182 * But, it also turns into a long list of bios to process and that is sure
183 * to eventually make the worker thread block. The solution here is to
184 * make some progress and then put this work struct back at the end of
185 * the list if the block device is congested. This way, multiple devices
186 * can make progress from a single worker thread.
188 static noinline void run_scheduled_bios(struct btrfs_device *device)
191 struct backing_dev_info *bdi;
192 struct btrfs_fs_info *fs_info;
193 struct btrfs_pending_bios *pending_bios;
197 unsigned long num_run;
198 unsigned long batch_run = 0;
200 unsigned long last_waited = 0;
202 int sync_pending = 0;
203 struct blk_plug plug;
206 * this function runs all the bios we've collected for
207 * a particular device. We don't want to wander off to
208 * another device without first sending all of these down.
209 * So, setup a plug here and finish it off before we return
211 blk_start_plug(&plug);
213 bdi = blk_get_backing_dev_info(device->bdev);
214 fs_info = device->dev_root->fs_info;
215 limit = btrfs_async_submit_limit(fs_info);
216 limit = limit * 2 / 3;
219 spin_lock(&device->io_lock);
224 /* take all the bios off the list at once and process them
225 * later on (without the lock held). But, remember the
226 * tail and other pointers so the bios can be properly reinserted
227 * into the list if we hit congestion
229 if (!force_reg && device->pending_sync_bios.head) {
230 pending_bios = &device->pending_sync_bios;
233 pending_bios = &device->pending_bios;
237 pending = pending_bios->head;
238 tail = pending_bios->tail;
239 WARN_ON(pending && !tail);
242 * if pending was null this time around, no bios need processing
243 * at all and we can stop. Otherwise it'll loop back up again
244 * and do an additional check so no bios are missed.
246 * device->running_pending is used to synchronize with the
249 if (device->pending_sync_bios.head == NULL &&
250 device->pending_bios.head == NULL) {
252 device->running_pending = 0;
255 device->running_pending = 1;
258 pending_bios->head = NULL;
259 pending_bios->tail = NULL;
261 spin_unlock(&device->io_lock);
266 /* we want to work on both lists, but do more bios on the
267 * sync list than the regular list
270 pending_bios != &device->pending_sync_bios &&
271 device->pending_sync_bios.head) ||
272 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
273 device->pending_bios.head)) {
274 spin_lock(&device->io_lock);
275 requeue_list(pending_bios, pending, tail);
280 pending = pending->bi_next;
283 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
284 waitqueue_active(&fs_info->async_submit_wait))
285 wake_up(&fs_info->async_submit_wait);
287 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
290 * if we're doing the sync list, record that our
291 * plug has some sync requests on it
293 * If we're doing the regular list and there are
294 * sync requests sitting around, unplug before
297 if (pending_bios == &device->pending_sync_bios) {
299 } else if (sync_pending) {
300 blk_finish_plug(&plug);
301 blk_start_plug(&plug);
305 btrfsic_submit_bio(cur->bi_rw, cur);
312 * we made progress, there is more work to do and the bdi
313 * is now congested. Back off and let other work structs
316 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
317 fs_info->fs_devices->open_devices > 1) {
318 struct io_context *ioc;
320 ioc = current->io_context;
323 * the main goal here is that we don't want to
324 * block if we're going to be able to submit
325 * more requests without blocking.
327 * This code does two great things, it pokes into
328 * the elevator code from a filesystem _and_
329 * it makes assumptions about how batching works.
331 if (ioc && ioc->nr_batch_requests > 0 &&
332 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
334 ioc->last_waited == last_waited)) {
336 * we want to go through our batch of
337 * requests and stop. So, we copy out
338 * the ioc->last_waited time and test
339 * against it before looping
341 last_waited = ioc->last_waited;
346 spin_lock(&device->io_lock);
347 requeue_list(pending_bios, pending, tail);
348 device->running_pending = 1;
350 spin_unlock(&device->io_lock);
351 btrfs_requeue_work(&device->work);
354 /* unplug every 64 requests just for good measure */
355 if (batch_run % 64 == 0) {
356 blk_finish_plug(&plug);
357 blk_start_plug(&plug);
366 spin_lock(&device->io_lock);
367 if (device->pending_bios.head || device->pending_sync_bios.head)
369 spin_unlock(&device->io_lock);
372 blk_finish_plug(&plug);
375 static void pending_bios_fn(struct btrfs_work *work)
377 struct btrfs_device *device;
379 device = container_of(work, struct btrfs_device, work);
380 run_scheduled_bios(device);
383 static noinline int device_list_add(const char *path,
384 struct btrfs_super_block *disk_super,
385 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
387 struct btrfs_device *device;
388 struct btrfs_fs_devices *fs_devices;
389 struct rcu_string *name;
390 u64 found_transid = btrfs_super_generation(disk_super);
392 fs_devices = find_fsid(disk_super->fsid);
394 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
397 INIT_LIST_HEAD(&fs_devices->devices);
398 INIT_LIST_HEAD(&fs_devices->alloc_list);
399 list_add(&fs_devices->list, &fs_uuids);
400 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
401 fs_devices->latest_devid = devid;
402 fs_devices->latest_trans = found_transid;
403 mutex_init(&fs_devices->device_list_mutex);
406 device = __find_device(&fs_devices->devices, devid,
407 disk_super->dev_item.uuid);
410 if (fs_devices->opened)
413 device = kzalloc(sizeof(*device), GFP_NOFS);
415 /* we can safely leave the fs_devices entry around */
418 device->devid = devid;
419 device->dev_stats_valid = 0;
420 device->work.func = pending_bios_fn;
421 memcpy(device->uuid, disk_super->dev_item.uuid,
423 spin_lock_init(&device->io_lock);
425 name = rcu_string_strdup(path, GFP_NOFS);
430 rcu_assign_pointer(device->name, name);
431 INIT_LIST_HEAD(&device->dev_alloc_list);
433 /* init readahead state */
434 spin_lock_init(&device->reada_lock);
435 device->reada_curr_zone = NULL;
436 atomic_set(&device->reada_in_flight, 0);
437 device->reada_next = 0;
438 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
439 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
441 mutex_lock(&fs_devices->device_list_mutex);
442 list_add_rcu(&device->dev_list, &fs_devices->devices);
443 mutex_unlock(&fs_devices->device_list_mutex);
445 device->fs_devices = fs_devices;
446 fs_devices->num_devices++;
447 } else if (!device->name || strcmp(device->name->str, path)) {
448 name = rcu_string_strdup(path, GFP_NOFS);
451 rcu_string_free(device->name);
452 rcu_assign_pointer(device->name, name);
453 if (device->missing) {
454 fs_devices->missing_devices--;
459 if (found_transid > fs_devices->latest_trans) {
460 fs_devices->latest_devid = devid;
461 fs_devices->latest_trans = found_transid;
463 *fs_devices_ret = fs_devices;
467 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
469 struct btrfs_fs_devices *fs_devices;
470 struct btrfs_device *device;
471 struct btrfs_device *orig_dev;
473 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
475 return ERR_PTR(-ENOMEM);
477 INIT_LIST_HEAD(&fs_devices->devices);
478 INIT_LIST_HEAD(&fs_devices->alloc_list);
479 INIT_LIST_HEAD(&fs_devices->list);
480 mutex_init(&fs_devices->device_list_mutex);
481 fs_devices->latest_devid = orig->latest_devid;
482 fs_devices->latest_trans = orig->latest_trans;
483 fs_devices->total_devices = orig->total_devices;
484 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
486 /* We have held the volume lock, it is safe to get the devices. */
487 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
488 struct rcu_string *name;
490 device = kzalloc(sizeof(*device), GFP_NOFS);
495 * This is ok to do without rcu read locked because we hold the
496 * uuid mutex so nothing we touch in here is going to disappear.
498 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
503 rcu_assign_pointer(device->name, name);
505 device->devid = orig_dev->devid;
506 device->work.func = pending_bios_fn;
507 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
508 spin_lock_init(&device->io_lock);
509 INIT_LIST_HEAD(&device->dev_list);
510 INIT_LIST_HEAD(&device->dev_alloc_list);
512 list_add(&device->dev_list, &fs_devices->devices);
513 device->fs_devices = fs_devices;
514 fs_devices->num_devices++;
518 free_fs_devices(fs_devices);
519 return ERR_PTR(-ENOMEM);
522 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
523 struct btrfs_fs_devices *fs_devices, int step)
525 struct btrfs_device *device, *next;
527 struct block_device *latest_bdev = NULL;
528 u64 latest_devid = 0;
529 u64 latest_transid = 0;
531 mutex_lock(&uuid_mutex);
533 /* This is the initialized path, it is safe to release the devices. */
534 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
535 if (device->in_fs_metadata) {
536 if (!device->is_tgtdev_for_dev_replace &&
538 device->generation > latest_transid)) {
539 latest_devid = device->devid;
540 latest_transid = device->generation;
541 latest_bdev = device->bdev;
546 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
548 * In the first step, keep the device which has
549 * the correct fsid and the devid that is used
550 * for the dev_replace procedure.
551 * In the second step, the dev_replace state is
552 * read from the device tree and it is known
553 * whether the procedure is really active or
554 * not, which means whether this device is
555 * used or whether it should be removed.
557 if (step == 0 || device->is_tgtdev_for_dev_replace) {
562 blkdev_put(device->bdev, device->mode);
564 fs_devices->open_devices--;
566 if (device->writeable) {
567 list_del_init(&device->dev_alloc_list);
568 device->writeable = 0;
569 if (!device->is_tgtdev_for_dev_replace)
570 fs_devices->rw_devices--;
572 list_del_init(&device->dev_list);
573 fs_devices->num_devices--;
574 rcu_string_free(device->name);
578 if (fs_devices->seed) {
579 fs_devices = fs_devices->seed;
583 fs_devices->latest_bdev = latest_bdev;
584 fs_devices->latest_devid = latest_devid;
585 fs_devices->latest_trans = latest_transid;
587 mutex_unlock(&uuid_mutex);
590 static void __free_device(struct work_struct *work)
592 struct btrfs_device *device;
594 device = container_of(work, struct btrfs_device, rcu_work);
597 blkdev_put(device->bdev, device->mode);
599 rcu_string_free(device->name);
603 static void free_device(struct rcu_head *head)
605 struct btrfs_device *device;
607 device = container_of(head, struct btrfs_device, rcu);
609 INIT_WORK(&device->rcu_work, __free_device);
610 schedule_work(&device->rcu_work);
613 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
615 struct btrfs_device *device;
617 if (--fs_devices->opened > 0)
620 mutex_lock(&fs_devices->device_list_mutex);
621 list_for_each_entry(device, &fs_devices->devices, dev_list) {
622 struct btrfs_device *new_device;
623 struct rcu_string *name;
626 fs_devices->open_devices--;
628 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
629 list_del_init(&device->dev_alloc_list);
630 fs_devices->rw_devices--;
633 if (device->can_discard)
634 fs_devices->num_can_discard--;
636 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
637 BUG_ON(!new_device); /* -ENOMEM */
638 memcpy(new_device, device, sizeof(*new_device));
640 /* Safe because we are under uuid_mutex */
642 name = rcu_string_strdup(device->name->str, GFP_NOFS);
643 BUG_ON(device->name && !name); /* -ENOMEM */
644 rcu_assign_pointer(new_device->name, name);
646 new_device->bdev = NULL;
647 new_device->writeable = 0;
648 new_device->in_fs_metadata = 0;
649 new_device->can_discard = 0;
650 list_replace_rcu(&device->dev_list, &new_device->dev_list);
652 call_rcu(&device->rcu, free_device);
654 mutex_unlock(&fs_devices->device_list_mutex);
656 WARN_ON(fs_devices->open_devices);
657 WARN_ON(fs_devices->rw_devices);
658 fs_devices->opened = 0;
659 fs_devices->seeding = 0;
664 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
666 struct btrfs_fs_devices *seed_devices = NULL;
669 mutex_lock(&uuid_mutex);
670 ret = __btrfs_close_devices(fs_devices);
671 if (!fs_devices->opened) {
672 seed_devices = fs_devices->seed;
673 fs_devices->seed = NULL;
675 mutex_unlock(&uuid_mutex);
677 while (seed_devices) {
678 fs_devices = seed_devices;
679 seed_devices = fs_devices->seed;
680 __btrfs_close_devices(fs_devices);
681 free_fs_devices(fs_devices);
686 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
687 fmode_t flags, void *holder)
689 struct request_queue *q;
690 struct block_device *bdev;
691 struct list_head *head = &fs_devices->devices;
692 struct btrfs_device *device;
693 struct block_device *latest_bdev = NULL;
694 struct buffer_head *bh;
695 struct btrfs_super_block *disk_super;
696 u64 latest_devid = 0;
697 u64 latest_transid = 0;
704 list_for_each_entry(device, head, dev_list) {
710 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
715 disk_super = (struct btrfs_super_block *)bh->b_data;
716 devid = btrfs_stack_device_id(&disk_super->dev_item);
717 if (devid != device->devid)
720 if (memcmp(device->uuid, disk_super->dev_item.uuid,
724 device->generation = btrfs_super_generation(disk_super);
725 if (!latest_transid || device->generation > latest_transid) {
726 latest_devid = devid;
727 latest_transid = device->generation;
731 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
732 device->writeable = 0;
734 device->writeable = !bdev_read_only(bdev);
738 q = bdev_get_queue(bdev);
739 if (blk_queue_discard(q)) {
740 device->can_discard = 1;
741 fs_devices->num_can_discard++;
745 device->in_fs_metadata = 0;
746 device->mode = flags;
748 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
749 fs_devices->rotating = 1;
751 fs_devices->open_devices++;
752 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
753 fs_devices->rw_devices++;
754 list_add(&device->dev_alloc_list,
755 &fs_devices->alloc_list);
762 blkdev_put(bdev, flags);
765 if (fs_devices->open_devices == 0) {
769 fs_devices->seeding = seeding;
770 fs_devices->opened = 1;
771 fs_devices->latest_bdev = latest_bdev;
772 fs_devices->latest_devid = latest_devid;
773 fs_devices->latest_trans = latest_transid;
774 fs_devices->total_rw_bytes = 0;
779 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
780 fmode_t flags, void *holder)
784 mutex_lock(&uuid_mutex);
785 if (fs_devices->opened) {
786 fs_devices->opened++;
789 ret = __btrfs_open_devices(fs_devices, flags, holder);
791 mutex_unlock(&uuid_mutex);
795 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
796 struct btrfs_fs_devices **fs_devices_ret)
798 struct btrfs_super_block *disk_super;
799 struct block_device *bdev;
800 struct buffer_head *bh;
807 mutex_lock(&uuid_mutex);
808 ret = btrfs_get_bdev_and_sb(path, flags, holder, 0, &bdev, &bh);
811 disk_super = (struct btrfs_super_block *)bh->b_data;
812 devid = btrfs_stack_device_id(&disk_super->dev_item);
813 transid = btrfs_super_generation(disk_super);
814 total_devices = btrfs_super_num_devices(disk_super);
815 if (disk_super->label[0]) {
816 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
817 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
818 printk(KERN_INFO "device label %s ", disk_super->label);
820 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
822 printk(KERN_CONT "devid %llu transid %llu %s\n",
823 (unsigned long long)devid, (unsigned long long)transid, path);
824 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
825 if (!ret && fs_devices_ret)
826 (*fs_devices_ret)->total_devices = total_devices;
828 blkdev_put(bdev, flags);
830 mutex_unlock(&uuid_mutex);
834 /* helper to account the used device space in the range */
835 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
836 u64 end, u64 *length)
838 struct btrfs_key key;
839 struct btrfs_root *root = device->dev_root;
840 struct btrfs_dev_extent *dev_extent;
841 struct btrfs_path *path;
845 struct extent_buffer *l;
849 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
852 path = btrfs_alloc_path();
857 key.objectid = device->devid;
859 key.type = BTRFS_DEV_EXTENT_KEY;
861 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
865 ret = btrfs_previous_item(root, path, key.objectid, key.type);
872 slot = path->slots[0];
873 if (slot >= btrfs_header_nritems(l)) {
874 ret = btrfs_next_leaf(root, path);
882 btrfs_item_key_to_cpu(l, &key, slot);
884 if (key.objectid < device->devid)
887 if (key.objectid > device->devid)
890 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
893 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
894 extent_end = key.offset + btrfs_dev_extent_length(l,
896 if (key.offset <= start && extent_end > end) {
897 *length = end - start + 1;
899 } else if (key.offset <= start && extent_end > start)
900 *length += extent_end - start;
901 else if (key.offset > start && extent_end <= end)
902 *length += extent_end - key.offset;
903 else if (key.offset > start && key.offset <= end) {
904 *length += end - key.offset + 1;
906 } else if (key.offset > end)
914 btrfs_free_path(path);
919 * find_free_dev_extent - find free space in the specified device
920 * @device: the device which we search the free space in
921 * @num_bytes: the size of the free space that we need
922 * @start: store the start of the free space.
923 * @len: the size of the free space. that we find, or the size of the max
924 * free space if we don't find suitable free space
926 * this uses a pretty simple search, the expectation is that it is
927 * called very infrequently and that a given device has a small number
930 * @start is used to store the start of the free space if we find. But if we
931 * don't find suitable free space, it will be used to store the start position
932 * of the max free space.
934 * @len is used to store the size of the free space that we find.
935 * But if we don't find suitable free space, it is used to store the size of
936 * the max free space.
938 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
939 u64 *start, u64 *len)
941 struct btrfs_key key;
942 struct btrfs_root *root = device->dev_root;
943 struct btrfs_dev_extent *dev_extent;
944 struct btrfs_path *path;
950 u64 search_end = device->total_bytes;
953 struct extent_buffer *l;
955 /* FIXME use last free of some kind */
957 /* we don't want to overwrite the superblock on the drive,
958 * so we make sure to start at an offset of at least 1MB
960 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
962 max_hole_start = search_start;
966 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
971 path = btrfs_alloc_path();
978 key.objectid = device->devid;
979 key.offset = search_start;
980 key.type = BTRFS_DEV_EXTENT_KEY;
982 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
986 ret = btrfs_previous_item(root, path, key.objectid, key.type);
993 slot = path->slots[0];
994 if (slot >= btrfs_header_nritems(l)) {
995 ret = btrfs_next_leaf(root, path);
1003 btrfs_item_key_to_cpu(l, &key, slot);
1005 if (key.objectid < device->devid)
1008 if (key.objectid > device->devid)
1011 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1014 if (key.offset > search_start) {
1015 hole_size = key.offset - search_start;
1017 if (hole_size > max_hole_size) {
1018 max_hole_start = search_start;
1019 max_hole_size = hole_size;
1023 * If this free space is greater than which we need,
1024 * it must be the max free space that we have found
1025 * until now, so max_hole_start must point to the start
1026 * of this free space and the length of this free space
1027 * is stored in max_hole_size. Thus, we return
1028 * max_hole_start and max_hole_size and go back to the
1031 if (hole_size >= num_bytes) {
1037 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1038 extent_end = key.offset + btrfs_dev_extent_length(l,
1040 if (extent_end > search_start)
1041 search_start = extent_end;
1048 * At this point, search_start should be the end of
1049 * allocated dev extents, and when shrinking the device,
1050 * search_end may be smaller than search_start.
1052 if (search_end > search_start)
1053 hole_size = search_end - search_start;
1055 if (hole_size > max_hole_size) {
1056 max_hole_start = search_start;
1057 max_hole_size = hole_size;
1061 if (hole_size < num_bytes)
1067 btrfs_free_path(path);
1069 *start = max_hole_start;
1071 *len = max_hole_size;
1075 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1076 struct btrfs_device *device,
1080 struct btrfs_path *path;
1081 struct btrfs_root *root = device->dev_root;
1082 struct btrfs_key key;
1083 struct btrfs_key found_key;
1084 struct extent_buffer *leaf = NULL;
1085 struct btrfs_dev_extent *extent = NULL;
1087 path = btrfs_alloc_path();
1091 key.objectid = device->devid;
1093 key.type = BTRFS_DEV_EXTENT_KEY;
1095 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1097 ret = btrfs_previous_item(root, path, key.objectid,
1098 BTRFS_DEV_EXTENT_KEY);
1101 leaf = path->nodes[0];
1102 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1103 extent = btrfs_item_ptr(leaf, path->slots[0],
1104 struct btrfs_dev_extent);
1105 BUG_ON(found_key.offset > start || found_key.offset +
1106 btrfs_dev_extent_length(leaf, extent) < start);
1108 btrfs_release_path(path);
1110 } else if (ret == 0) {
1111 leaf = path->nodes[0];
1112 extent = btrfs_item_ptr(leaf, path->slots[0],
1113 struct btrfs_dev_extent);
1115 btrfs_error(root->fs_info, ret, "Slot search failed");
1119 if (device->bytes_used > 0) {
1120 u64 len = btrfs_dev_extent_length(leaf, extent);
1121 device->bytes_used -= len;
1122 spin_lock(&root->fs_info->free_chunk_lock);
1123 root->fs_info->free_chunk_space += len;
1124 spin_unlock(&root->fs_info->free_chunk_lock);
1126 ret = btrfs_del_item(trans, root, path);
1128 btrfs_error(root->fs_info, ret,
1129 "Failed to remove dev extent item");
1132 btrfs_free_path(path);
1136 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1137 struct btrfs_device *device,
1138 u64 chunk_tree, u64 chunk_objectid,
1139 u64 chunk_offset, u64 start, u64 num_bytes)
1142 struct btrfs_path *path;
1143 struct btrfs_root *root = device->dev_root;
1144 struct btrfs_dev_extent *extent;
1145 struct extent_buffer *leaf;
1146 struct btrfs_key key;
1148 WARN_ON(!device->in_fs_metadata);
1149 WARN_ON(device->is_tgtdev_for_dev_replace);
1150 path = btrfs_alloc_path();
1154 key.objectid = device->devid;
1156 key.type = BTRFS_DEV_EXTENT_KEY;
1157 ret = btrfs_insert_empty_item(trans, root, path, &key,
1162 leaf = path->nodes[0];
1163 extent = btrfs_item_ptr(leaf, path->slots[0],
1164 struct btrfs_dev_extent);
1165 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1166 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1167 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1169 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1170 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1173 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1174 btrfs_mark_buffer_dirty(leaf);
1176 btrfs_free_path(path);
1180 static noinline int find_next_chunk(struct btrfs_root *root,
1181 u64 objectid, u64 *offset)
1183 struct btrfs_path *path;
1185 struct btrfs_key key;
1186 struct btrfs_chunk *chunk;
1187 struct btrfs_key found_key;
1189 path = btrfs_alloc_path();
1193 key.objectid = objectid;
1194 key.offset = (u64)-1;
1195 key.type = BTRFS_CHUNK_ITEM_KEY;
1197 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1201 BUG_ON(ret == 0); /* Corruption */
1203 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1207 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1209 if (found_key.objectid != objectid)
1212 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1213 struct btrfs_chunk);
1214 *offset = found_key.offset +
1215 btrfs_chunk_length(path->nodes[0], chunk);
1220 btrfs_free_path(path);
1224 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1227 struct btrfs_key key;
1228 struct btrfs_key found_key;
1229 struct btrfs_path *path;
1231 root = root->fs_info->chunk_root;
1233 path = btrfs_alloc_path();
1237 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1238 key.type = BTRFS_DEV_ITEM_KEY;
1239 key.offset = (u64)-1;
1241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1245 BUG_ON(ret == 0); /* Corruption */
1247 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1248 BTRFS_DEV_ITEM_KEY);
1252 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1254 *objectid = found_key.offset + 1;
1258 btrfs_free_path(path);
1263 * the device information is stored in the chunk root
1264 * the btrfs_device struct should be fully filled in
1266 int btrfs_add_device(struct btrfs_trans_handle *trans,
1267 struct btrfs_root *root,
1268 struct btrfs_device *device)
1271 struct btrfs_path *path;
1272 struct btrfs_dev_item *dev_item;
1273 struct extent_buffer *leaf;
1274 struct btrfs_key key;
1277 root = root->fs_info->chunk_root;
1279 path = btrfs_alloc_path();
1283 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1284 key.type = BTRFS_DEV_ITEM_KEY;
1285 key.offset = device->devid;
1287 ret = btrfs_insert_empty_item(trans, root, path, &key,
1292 leaf = path->nodes[0];
1293 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1295 btrfs_set_device_id(leaf, dev_item, device->devid);
1296 btrfs_set_device_generation(leaf, dev_item, 0);
1297 btrfs_set_device_type(leaf, dev_item, device->type);
1298 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1299 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1300 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1301 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1302 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1303 btrfs_set_device_group(leaf, dev_item, 0);
1304 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1305 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1306 btrfs_set_device_start_offset(leaf, dev_item, 0);
1308 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1309 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1310 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1311 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1312 btrfs_mark_buffer_dirty(leaf);
1316 btrfs_free_path(path);
1320 static int btrfs_rm_dev_item(struct btrfs_root *root,
1321 struct btrfs_device *device)
1324 struct btrfs_path *path;
1325 struct btrfs_key key;
1326 struct btrfs_trans_handle *trans;
1328 root = root->fs_info->chunk_root;
1330 path = btrfs_alloc_path();
1334 trans = btrfs_start_transaction(root, 0);
1335 if (IS_ERR(trans)) {
1336 btrfs_free_path(path);
1337 return PTR_ERR(trans);
1339 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1340 key.type = BTRFS_DEV_ITEM_KEY;
1341 key.offset = device->devid;
1344 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1353 ret = btrfs_del_item(trans, root, path);
1357 btrfs_free_path(path);
1358 unlock_chunks(root);
1359 btrfs_commit_transaction(trans, root);
1363 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1365 struct btrfs_device *device;
1366 struct btrfs_device *next_device;
1367 struct block_device *bdev;
1368 struct buffer_head *bh = NULL;
1369 struct btrfs_super_block *disk_super;
1370 struct btrfs_fs_devices *cur_devices;
1376 bool clear_super = false;
1378 mutex_lock(&uuid_mutex);
1380 all_avail = root->fs_info->avail_data_alloc_bits |
1381 root->fs_info->avail_system_alloc_bits |
1382 root->fs_info->avail_metadata_alloc_bits;
1384 num_devices = root->fs_info->fs_devices->num_devices;
1385 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1386 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1387 WARN_ON(num_devices < 1);
1390 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1392 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1393 printk(KERN_ERR "btrfs: unable to go below four devices "
1399 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1400 printk(KERN_ERR "btrfs: unable to go below two "
1401 "devices on raid1\n");
1406 if (strcmp(device_path, "missing") == 0) {
1407 struct list_head *devices;
1408 struct btrfs_device *tmp;
1411 devices = &root->fs_info->fs_devices->devices;
1413 * It is safe to read the devices since the volume_mutex
1416 list_for_each_entry(tmp, devices, dev_list) {
1417 if (tmp->in_fs_metadata &&
1418 !tmp->is_tgtdev_for_dev_replace &&
1428 printk(KERN_ERR "btrfs: no missing devices found to "
1433 ret = btrfs_get_bdev_and_sb(device_path,
1434 FMODE_READ | FMODE_EXCL,
1435 root->fs_info->bdev_holder, 0,
1439 disk_super = (struct btrfs_super_block *)bh->b_data;
1440 devid = btrfs_stack_device_id(&disk_super->dev_item);
1441 dev_uuid = disk_super->dev_item.uuid;
1442 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1450 if (device->is_tgtdev_for_dev_replace) {
1451 pr_err("btrfs: unable to remove the dev_replace target dev\n");
1456 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1457 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1463 if (device->writeable) {
1465 list_del_init(&device->dev_alloc_list);
1466 unlock_chunks(root);
1467 root->fs_info->fs_devices->rw_devices--;
1471 ret = btrfs_shrink_device(device, 0);
1476 * TODO: the superblock still includes this device in its num_devices
1477 * counter although write_all_supers() is not locked out. This
1478 * could give a filesystem state which requires a degraded mount.
1480 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1484 spin_lock(&root->fs_info->free_chunk_lock);
1485 root->fs_info->free_chunk_space = device->total_bytes -
1487 spin_unlock(&root->fs_info->free_chunk_lock);
1489 device->in_fs_metadata = 0;
1490 btrfs_scrub_cancel_dev(root->fs_info, device);
1493 * the device list mutex makes sure that we don't change
1494 * the device list while someone else is writing out all
1495 * the device supers.
1498 cur_devices = device->fs_devices;
1499 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1500 list_del_rcu(&device->dev_list);
1502 device->fs_devices->num_devices--;
1503 device->fs_devices->total_devices--;
1505 if (device->missing)
1506 root->fs_info->fs_devices->missing_devices--;
1508 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1509 struct btrfs_device, dev_list);
1510 if (device->bdev == root->fs_info->sb->s_bdev)
1511 root->fs_info->sb->s_bdev = next_device->bdev;
1512 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1513 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1516 device->fs_devices->open_devices--;
1518 call_rcu(&device->rcu, free_device);
1519 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1521 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1522 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1524 if (cur_devices->open_devices == 0) {
1525 struct btrfs_fs_devices *fs_devices;
1526 fs_devices = root->fs_info->fs_devices;
1527 while (fs_devices) {
1528 if (fs_devices->seed == cur_devices)
1530 fs_devices = fs_devices->seed;
1532 fs_devices->seed = cur_devices->seed;
1533 cur_devices->seed = NULL;
1535 __btrfs_close_devices(cur_devices);
1536 unlock_chunks(root);
1537 free_fs_devices(cur_devices);
1540 root->fs_info->num_tolerated_disk_barrier_failures =
1541 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1544 * at this point, the device is zero sized. We want to
1545 * remove it from the devices list and zero out the old super
1547 if (clear_super && disk_super) {
1548 /* make sure this device isn't detected as part of
1551 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1552 set_buffer_dirty(bh);
1553 sync_dirty_buffer(bh);
1558 /* Notify udev that device has changed */
1560 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1565 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1567 mutex_unlock(&uuid_mutex);
1570 if (device->writeable) {
1572 list_add(&device->dev_alloc_list,
1573 &root->fs_info->fs_devices->alloc_list);
1574 unlock_chunks(root);
1575 root->fs_info->fs_devices->rw_devices++;
1580 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1581 struct btrfs_device *srcdev)
1583 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1584 list_del_rcu(&srcdev->dev_list);
1585 list_del_rcu(&srcdev->dev_alloc_list);
1586 fs_info->fs_devices->num_devices--;
1587 if (srcdev->missing) {
1588 fs_info->fs_devices->missing_devices--;
1589 fs_info->fs_devices->rw_devices++;
1591 if (srcdev->can_discard)
1592 fs_info->fs_devices->num_can_discard--;
1594 fs_info->fs_devices->open_devices--;
1596 call_rcu(&srcdev->rcu, free_device);
1599 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1600 struct btrfs_device *tgtdev)
1602 struct btrfs_device *next_device;
1605 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1607 btrfs_scratch_superblock(tgtdev);
1608 fs_info->fs_devices->open_devices--;
1610 fs_info->fs_devices->num_devices--;
1611 if (tgtdev->can_discard)
1612 fs_info->fs_devices->num_can_discard++;
1614 next_device = list_entry(fs_info->fs_devices->devices.next,
1615 struct btrfs_device, dev_list);
1616 if (tgtdev->bdev == fs_info->sb->s_bdev)
1617 fs_info->sb->s_bdev = next_device->bdev;
1618 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1619 fs_info->fs_devices->latest_bdev = next_device->bdev;
1620 list_del_rcu(&tgtdev->dev_list);
1622 call_rcu(&tgtdev->rcu, free_device);
1624 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1627 int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1628 struct btrfs_device **device)
1631 struct btrfs_super_block *disk_super;
1634 struct block_device *bdev;
1635 struct buffer_head *bh;
1638 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1639 root->fs_info->bdev_holder, 0, &bdev, &bh);
1642 disk_super = (struct btrfs_super_block *)bh->b_data;
1643 devid = btrfs_stack_device_id(&disk_super->dev_item);
1644 dev_uuid = disk_super->dev_item.uuid;
1645 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1650 blkdev_put(bdev, FMODE_READ);
1654 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1656 struct btrfs_device **device)
1659 if (strcmp(device_path, "missing") == 0) {
1660 struct list_head *devices;
1661 struct btrfs_device *tmp;
1663 devices = &root->fs_info->fs_devices->devices;
1665 * It is safe to read the devices since the volume_mutex
1666 * is held by the caller.
1668 list_for_each_entry(tmp, devices, dev_list) {
1669 if (tmp->in_fs_metadata && !tmp->bdev) {
1676 pr_err("btrfs: no missing device found\n");
1682 return btrfs_find_device_by_path(root, device_path, device);
1687 * does all the dirty work required for changing file system's UUID.
1689 static int btrfs_prepare_sprout(struct btrfs_root *root)
1691 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1692 struct btrfs_fs_devices *old_devices;
1693 struct btrfs_fs_devices *seed_devices;
1694 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1695 struct btrfs_device *device;
1698 BUG_ON(!mutex_is_locked(&uuid_mutex));
1699 if (!fs_devices->seeding)
1702 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1706 old_devices = clone_fs_devices(fs_devices);
1707 if (IS_ERR(old_devices)) {
1708 kfree(seed_devices);
1709 return PTR_ERR(old_devices);
1712 list_add(&old_devices->list, &fs_uuids);
1714 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1715 seed_devices->opened = 1;
1716 INIT_LIST_HEAD(&seed_devices->devices);
1717 INIT_LIST_HEAD(&seed_devices->alloc_list);
1718 mutex_init(&seed_devices->device_list_mutex);
1720 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1721 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1723 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1725 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1726 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1727 device->fs_devices = seed_devices;
1730 fs_devices->seeding = 0;
1731 fs_devices->num_devices = 0;
1732 fs_devices->open_devices = 0;
1733 fs_devices->total_devices = 0;
1734 fs_devices->seed = seed_devices;
1736 generate_random_uuid(fs_devices->fsid);
1737 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1738 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1739 super_flags = btrfs_super_flags(disk_super) &
1740 ~BTRFS_SUPER_FLAG_SEEDING;
1741 btrfs_set_super_flags(disk_super, super_flags);
1747 * strore the expected generation for seed devices in device items.
1749 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1750 struct btrfs_root *root)
1752 struct btrfs_path *path;
1753 struct extent_buffer *leaf;
1754 struct btrfs_dev_item *dev_item;
1755 struct btrfs_device *device;
1756 struct btrfs_key key;
1757 u8 fs_uuid[BTRFS_UUID_SIZE];
1758 u8 dev_uuid[BTRFS_UUID_SIZE];
1762 path = btrfs_alloc_path();
1766 root = root->fs_info->chunk_root;
1767 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1769 key.type = BTRFS_DEV_ITEM_KEY;
1772 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1776 leaf = path->nodes[0];
1778 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1779 ret = btrfs_next_leaf(root, path);
1784 leaf = path->nodes[0];
1785 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1786 btrfs_release_path(path);
1790 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1791 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1792 key.type != BTRFS_DEV_ITEM_KEY)
1795 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1796 struct btrfs_dev_item);
1797 devid = btrfs_device_id(leaf, dev_item);
1798 read_extent_buffer(leaf, dev_uuid,
1799 (unsigned long)btrfs_device_uuid(dev_item),
1801 read_extent_buffer(leaf, fs_uuid,
1802 (unsigned long)btrfs_device_fsid(dev_item),
1804 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1806 BUG_ON(!device); /* Logic error */
1808 if (device->fs_devices->seeding) {
1809 btrfs_set_device_generation(leaf, dev_item,
1810 device->generation);
1811 btrfs_mark_buffer_dirty(leaf);
1819 btrfs_free_path(path);
1823 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1825 struct request_queue *q;
1826 struct btrfs_trans_handle *trans;
1827 struct btrfs_device *device;
1828 struct block_device *bdev;
1829 struct list_head *devices;
1830 struct super_block *sb = root->fs_info->sb;
1831 struct rcu_string *name;
1833 int seeding_dev = 0;
1836 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1839 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1840 root->fs_info->bdev_holder);
1842 return PTR_ERR(bdev);
1844 if (root->fs_info->fs_devices->seeding) {
1846 down_write(&sb->s_umount);
1847 mutex_lock(&uuid_mutex);
1850 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1852 devices = &root->fs_info->fs_devices->devices;
1854 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1855 list_for_each_entry(device, devices, dev_list) {
1856 if (device->bdev == bdev) {
1859 &root->fs_info->fs_devices->device_list_mutex);
1863 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1865 device = kzalloc(sizeof(*device), GFP_NOFS);
1867 /* we can safely leave the fs_devices entry around */
1872 name = rcu_string_strdup(device_path, GFP_NOFS);
1878 rcu_assign_pointer(device->name, name);
1880 ret = find_next_devid(root, &device->devid);
1882 rcu_string_free(device->name);
1887 trans = btrfs_start_transaction(root, 0);
1888 if (IS_ERR(trans)) {
1889 rcu_string_free(device->name);
1891 ret = PTR_ERR(trans);
1897 q = bdev_get_queue(bdev);
1898 if (blk_queue_discard(q))
1899 device->can_discard = 1;
1900 device->writeable = 1;
1901 device->work.func = pending_bios_fn;
1902 generate_random_uuid(device->uuid);
1903 spin_lock_init(&device->io_lock);
1904 device->generation = trans->transid;
1905 device->io_width = root->sectorsize;
1906 device->io_align = root->sectorsize;
1907 device->sector_size = root->sectorsize;
1908 device->total_bytes = i_size_read(bdev->bd_inode);
1909 device->disk_total_bytes = device->total_bytes;
1910 device->dev_root = root->fs_info->dev_root;
1911 device->bdev = bdev;
1912 device->in_fs_metadata = 1;
1913 device->is_tgtdev_for_dev_replace = 0;
1914 device->mode = FMODE_EXCL;
1915 set_blocksize(device->bdev, 4096);
1918 sb->s_flags &= ~MS_RDONLY;
1919 ret = btrfs_prepare_sprout(root);
1920 BUG_ON(ret); /* -ENOMEM */
1923 device->fs_devices = root->fs_info->fs_devices;
1925 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1926 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1927 list_add(&device->dev_alloc_list,
1928 &root->fs_info->fs_devices->alloc_list);
1929 root->fs_info->fs_devices->num_devices++;
1930 root->fs_info->fs_devices->open_devices++;
1931 root->fs_info->fs_devices->rw_devices++;
1932 root->fs_info->fs_devices->total_devices++;
1933 if (device->can_discard)
1934 root->fs_info->fs_devices->num_can_discard++;
1935 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1937 spin_lock(&root->fs_info->free_chunk_lock);
1938 root->fs_info->free_chunk_space += device->total_bytes;
1939 spin_unlock(&root->fs_info->free_chunk_lock);
1941 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1942 root->fs_info->fs_devices->rotating = 1;
1944 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1945 btrfs_set_super_total_bytes(root->fs_info->super_copy,
1946 total_bytes + device->total_bytes);
1948 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1949 btrfs_set_super_num_devices(root->fs_info->super_copy,
1951 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1954 ret = init_first_rw_device(trans, root, device);
1956 btrfs_abort_transaction(trans, root, ret);
1959 ret = btrfs_finish_sprout(trans, root);
1961 btrfs_abort_transaction(trans, root, ret);
1965 ret = btrfs_add_device(trans, root, device);
1967 btrfs_abort_transaction(trans, root, ret);
1973 * we've got more storage, clear any full flags on the space
1976 btrfs_clear_space_info_full(root->fs_info);
1978 unlock_chunks(root);
1979 root->fs_info->num_tolerated_disk_barrier_failures =
1980 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1981 ret = btrfs_commit_transaction(trans, root);
1984 mutex_unlock(&uuid_mutex);
1985 up_write(&sb->s_umount);
1987 if (ret) /* transaction commit */
1990 ret = btrfs_relocate_sys_chunks(root);
1992 btrfs_error(root->fs_info, ret,
1993 "Failed to relocate sys chunks after "
1994 "device initialization. This can be fixed "
1995 "using the \"btrfs balance\" command.");
1996 trans = btrfs_attach_transaction(root);
1997 if (IS_ERR(trans)) {
1998 if (PTR_ERR(trans) == -ENOENT)
2000 return PTR_ERR(trans);
2002 ret = btrfs_commit_transaction(trans, root);
2008 unlock_chunks(root);
2009 btrfs_end_transaction(trans, root);
2010 rcu_string_free(device->name);
2013 blkdev_put(bdev, FMODE_EXCL);
2015 mutex_unlock(&uuid_mutex);
2016 up_write(&sb->s_umount);
2021 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2022 struct btrfs_device **device_out)
2024 struct request_queue *q;
2025 struct btrfs_device *device;
2026 struct block_device *bdev;
2027 struct btrfs_fs_info *fs_info = root->fs_info;
2028 struct list_head *devices;
2029 struct rcu_string *name;
2033 if (fs_info->fs_devices->seeding)
2036 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2037 fs_info->bdev_holder);
2039 return PTR_ERR(bdev);
2041 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2043 devices = &fs_info->fs_devices->devices;
2044 list_for_each_entry(device, devices, dev_list) {
2045 if (device->bdev == bdev) {
2051 device = kzalloc(sizeof(*device), GFP_NOFS);
2057 name = rcu_string_strdup(device_path, GFP_NOFS);
2063 rcu_assign_pointer(device->name, name);
2065 q = bdev_get_queue(bdev);
2066 if (blk_queue_discard(q))
2067 device->can_discard = 1;
2068 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2069 device->writeable = 1;
2070 device->work.func = pending_bios_fn;
2071 generate_random_uuid(device->uuid);
2072 device->devid = BTRFS_DEV_REPLACE_DEVID;
2073 spin_lock_init(&device->io_lock);
2074 device->generation = 0;
2075 device->io_width = root->sectorsize;
2076 device->io_align = root->sectorsize;
2077 device->sector_size = root->sectorsize;
2078 device->total_bytes = i_size_read(bdev->bd_inode);
2079 device->disk_total_bytes = device->total_bytes;
2080 device->dev_root = fs_info->dev_root;
2081 device->bdev = bdev;
2082 device->in_fs_metadata = 1;
2083 device->is_tgtdev_for_dev_replace = 1;
2084 device->mode = FMODE_EXCL;
2085 set_blocksize(device->bdev, 4096);
2086 device->fs_devices = fs_info->fs_devices;
2087 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2088 fs_info->fs_devices->num_devices++;
2089 fs_info->fs_devices->open_devices++;
2090 if (device->can_discard)
2091 fs_info->fs_devices->num_can_discard++;
2092 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2094 *device_out = device;
2098 blkdev_put(bdev, FMODE_EXCL);
2102 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2103 struct btrfs_device *tgtdev)
2105 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2106 tgtdev->io_width = fs_info->dev_root->sectorsize;
2107 tgtdev->io_align = fs_info->dev_root->sectorsize;
2108 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2109 tgtdev->dev_root = fs_info->dev_root;
2110 tgtdev->in_fs_metadata = 1;
2113 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2114 struct btrfs_device *device)
2117 struct btrfs_path *path;
2118 struct btrfs_root *root;
2119 struct btrfs_dev_item *dev_item;
2120 struct extent_buffer *leaf;
2121 struct btrfs_key key;
2123 root = device->dev_root->fs_info->chunk_root;
2125 path = btrfs_alloc_path();
2129 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2130 key.type = BTRFS_DEV_ITEM_KEY;
2131 key.offset = device->devid;
2133 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2142 leaf = path->nodes[0];
2143 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2145 btrfs_set_device_id(leaf, dev_item, device->devid);
2146 btrfs_set_device_type(leaf, dev_item, device->type);
2147 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2148 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2149 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2150 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2151 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2152 btrfs_mark_buffer_dirty(leaf);
2155 btrfs_free_path(path);
2159 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2160 struct btrfs_device *device, u64 new_size)
2162 struct btrfs_super_block *super_copy =
2163 device->dev_root->fs_info->super_copy;
2164 u64 old_total = btrfs_super_total_bytes(super_copy);
2165 u64 diff = new_size - device->total_bytes;
2167 if (!device->writeable)
2169 if (new_size <= device->total_bytes ||
2170 device->is_tgtdev_for_dev_replace)
2173 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2174 device->fs_devices->total_rw_bytes += diff;
2176 device->total_bytes = new_size;
2177 device->disk_total_bytes = new_size;
2178 btrfs_clear_space_info_full(device->dev_root->fs_info);
2180 return btrfs_update_device(trans, device);
2183 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2184 struct btrfs_device *device, u64 new_size)
2187 lock_chunks(device->dev_root);
2188 ret = __btrfs_grow_device(trans, device, new_size);
2189 unlock_chunks(device->dev_root);
2193 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2194 struct btrfs_root *root,
2195 u64 chunk_tree, u64 chunk_objectid,
2199 struct btrfs_path *path;
2200 struct btrfs_key key;
2202 root = root->fs_info->chunk_root;
2203 path = btrfs_alloc_path();
2207 key.objectid = chunk_objectid;
2208 key.offset = chunk_offset;
2209 key.type = BTRFS_CHUNK_ITEM_KEY;
2211 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2214 else if (ret > 0) { /* Logic error or corruption */
2215 btrfs_error(root->fs_info, -ENOENT,
2216 "Failed lookup while freeing chunk.");
2221 ret = btrfs_del_item(trans, root, path);
2223 btrfs_error(root->fs_info, ret,
2224 "Failed to delete chunk item.");
2226 btrfs_free_path(path);
2230 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2233 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2234 struct btrfs_disk_key *disk_key;
2235 struct btrfs_chunk *chunk;
2242 struct btrfs_key key;
2244 array_size = btrfs_super_sys_array_size(super_copy);
2246 ptr = super_copy->sys_chunk_array;
2249 while (cur < array_size) {
2250 disk_key = (struct btrfs_disk_key *)ptr;
2251 btrfs_disk_key_to_cpu(&key, disk_key);
2253 len = sizeof(*disk_key);
2255 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2256 chunk = (struct btrfs_chunk *)(ptr + len);
2257 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2258 len += btrfs_chunk_item_size(num_stripes);
2263 if (key.objectid == chunk_objectid &&
2264 key.offset == chunk_offset) {
2265 memmove(ptr, ptr + len, array_size - (cur + len));
2267 btrfs_set_super_sys_array_size(super_copy, array_size);
2276 static int btrfs_relocate_chunk(struct btrfs_root *root,
2277 u64 chunk_tree, u64 chunk_objectid,
2280 struct extent_map_tree *em_tree;
2281 struct btrfs_root *extent_root;
2282 struct btrfs_trans_handle *trans;
2283 struct extent_map *em;
2284 struct map_lookup *map;
2288 root = root->fs_info->chunk_root;
2289 extent_root = root->fs_info->extent_root;
2290 em_tree = &root->fs_info->mapping_tree.map_tree;
2292 ret = btrfs_can_relocate(extent_root, chunk_offset);
2296 /* step one, relocate all the extents inside this chunk */
2297 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2301 trans = btrfs_start_transaction(root, 0);
2302 BUG_ON(IS_ERR(trans));
2307 * step two, delete the device extents and the
2308 * chunk tree entries
2310 read_lock(&em_tree->lock);
2311 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2312 read_unlock(&em_tree->lock);
2314 BUG_ON(!em || em->start > chunk_offset ||
2315 em->start + em->len < chunk_offset);
2316 map = (struct map_lookup *)em->bdev;
2318 for (i = 0; i < map->num_stripes; i++) {
2319 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2320 map->stripes[i].physical);
2323 if (map->stripes[i].dev) {
2324 ret = btrfs_update_device(trans, map->stripes[i].dev);
2328 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2333 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2335 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2336 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2340 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2343 write_lock(&em_tree->lock);
2344 remove_extent_mapping(em_tree, em);
2345 write_unlock(&em_tree->lock);
2350 /* once for the tree */
2351 free_extent_map(em);
2353 free_extent_map(em);
2355 unlock_chunks(root);
2356 btrfs_end_transaction(trans, root);
2360 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2362 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2363 struct btrfs_path *path;
2364 struct extent_buffer *leaf;
2365 struct btrfs_chunk *chunk;
2366 struct btrfs_key key;
2367 struct btrfs_key found_key;
2368 u64 chunk_tree = chunk_root->root_key.objectid;
2370 bool retried = false;
2374 path = btrfs_alloc_path();
2379 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2380 key.offset = (u64)-1;
2381 key.type = BTRFS_CHUNK_ITEM_KEY;
2384 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2387 BUG_ON(ret == 0); /* Corruption */
2389 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2396 leaf = path->nodes[0];
2397 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2399 chunk = btrfs_item_ptr(leaf, path->slots[0],
2400 struct btrfs_chunk);
2401 chunk_type = btrfs_chunk_type(leaf, chunk);
2402 btrfs_release_path(path);
2404 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2405 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2414 if (found_key.offset == 0)
2416 key.offset = found_key.offset - 1;
2419 if (failed && !retried) {
2423 } else if (failed && retried) {
2428 btrfs_free_path(path);
2432 static int insert_balance_item(struct btrfs_root *root,
2433 struct btrfs_balance_control *bctl)
2435 struct btrfs_trans_handle *trans;
2436 struct btrfs_balance_item *item;
2437 struct btrfs_disk_balance_args disk_bargs;
2438 struct btrfs_path *path;
2439 struct extent_buffer *leaf;
2440 struct btrfs_key key;
2443 path = btrfs_alloc_path();
2447 trans = btrfs_start_transaction(root, 0);
2448 if (IS_ERR(trans)) {
2449 btrfs_free_path(path);
2450 return PTR_ERR(trans);
2453 key.objectid = BTRFS_BALANCE_OBJECTID;
2454 key.type = BTRFS_BALANCE_ITEM_KEY;
2457 ret = btrfs_insert_empty_item(trans, root, path, &key,
2462 leaf = path->nodes[0];
2463 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2465 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2467 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2468 btrfs_set_balance_data(leaf, item, &disk_bargs);
2469 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2470 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2471 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2472 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2474 btrfs_set_balance_flags(leaf, item, bctl->flags);
2476 btrfs_mark_buffer_dirty(leaf);
2478 btrfs_free_path(path);
2479 err = btrfs_commit_transaction(trans, root);
2485 static int del_balance_item(struct btrfs_root *root)
2487 struct btrfs_trans_handle *trans;
2488 struct btrfs_path *path;
2489 struct btrfs_key key;
2492 path = btrfs_alloc_path();
2496 trans = btrfs_start_transaction(root, 0);
2497 if (IS_ERR(trans)) {
2498 btrfs_free_path(path);
2499 return PTR_ERR(trans);
2502 key.objectid = BTRFS_BALANCE_OBJECTID;
2503 key.type = BTRFS_BALANCE_ITEM_KEY;
2506 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2514 ret = btrfs_del_item(trans, root, path);
2516 btrfs_free_path(path);
2517 err = btrfs_commit_transaction(trans, root);
2524 * This is a heuristic used to reduce the number of chunks balanced on
2525 * resume after balance was interrupted.
2527 static void update_balance_args(struct btrfs_balance_control *bctl)
2530 * Turn on soft mode for chunk types that were being converted.
2532 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2533 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2534 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2535 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2536 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2537 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2540 * Turn on usage filter if is not already used. The idea is
2541 * that chunks that we have already balanced should be
2542 * reasonably full. Don't do it for chunks that are being
2543 * converted - that will keep us from relocating unconverted
2544 * (albeit full) chunks.
2546 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2547 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2548 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2549 bctl->data.usage = 90;
2551 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2552 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2553 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2554 bctl->sys.usage = 90;
2556 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2557 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2558 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2559 bctl->meta.usage = 90;
2564 * Should be called with both balance and volume mutexes held to
2565 * serialize other volume operations (add_dev/rm_dev/resize) with
2566 * restriper. Same goes for unset_balance_control.
2568 static void set_balance_control(struct btrfs_balance_control *bctl)
2570 struct btrfs_fs_info *fs_info = bctl->fs_info;
2572 BUG_ON(fs_info->balance_ctl);
2574 spin_lock(&fs_info->balance_lock);
2575 fs_info->balance_ctl = bctl;
2576 spin_unlock(&fs_info->balance_lock);
2579 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2581 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2583 BUG_ON(!fs_info->balance_ctl);
2585 spin_lock(&fs_info->balance_lock);
2586 fs_info->balance_ctl = NULL;
2587 spin_unlock(&fs_info->balance_lock);
2593 * Balance filters. Return 1 if chunk should be filtered out
2594 * (should not be balanced).
2596 static int chunk_profiles_filter(u64 chunk_type,
2597 struct btrfs_balance_args *bargs)
2599 chunk_type = chunk_to_extended(chunk_type) &
2600 BTRFS_EXTENDED_PROFILE_MASK;
2602 if (bargs->profiles & chunk_type)
2608 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2609 struct btrfs_balance_args *bargs)
2611 struct btrfs_block_group_cache *cache;
2612 u64 chunk_used, user_thresh;
2615 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2616 chunk_used = btrfs_block_group_used(&cache->item);
2618 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2619 if (chunk_used < user_thresh)
2622 btrfs_put_block_group(cache);
2626 static int chunk_devid_filter(struct extent_buffer *leaf,
2627 struct btrfs_chunk *chunk,
2628 struct btrfs_balance_args *bargs)
2630 struct btrfs_stripe *stripe;
2631 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2634 for (i = 0; i < num_stripes; i++) {
2635 stripe = btrfs_stripe_nr(chunk, i);
2636 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2643 /* [pstart, pend) */
2644 static int chunk_drange_filter(struct extent_buffer *leaf,
2645 struct btrfs_chunk *chunk,
2647 struct btrfs_balance_args *bargs)
2649 struct btrfs_stripe *stripe;
2650 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2656 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2659 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2660 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2664 factor = num_stripes / factor;
2666 for (i = 0; i < num_stripes; i++) {
2667 stripe = btrfs_stripe_nr(chunk, i);
2668 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2671 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2672 stripe_length = btrfs_chunk_length(leaf, chunk);
2673 do_div(stripe_length, factor);
2675 if (stripe_offset < bargs->pend &&
2676 stripe_offset + stripe_length > bargs->pstart)
2683 /* [vstart, vend) */
2684 static int chunk_vrange_filter(struct extent_buffer *leaf,
2685 struct btrfs_chunk *chunk,
2687 struct btrfs_balance_args *bargs)
2689 if (chunk_offset < bargs->vend &&
2690 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2691 /* at least part of the chunk is inside this vrange */
2697 static int chunk_soft_convert_filter(u64 chunk_type,
2698 struct btrfs_balance_args *bargs)
2700 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2703 chunk_type = chunk_to_extended(chunk_type) &
2704 BTRFS_EXTENDED_PROFILE_MASK;
2706 if (bargs->target == chunk_type)
2712 static int should_balance_chunk(struct btrfs_root *root,
2713 struct extent_buffer *leaf,
2714 struct btrfs_chunk *chunk, u64 chunk_offset)
2716 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2717 struct btrfs_balance_args *bargs = NULL;
2718 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2721 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2722 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2726 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2727 bargs = &bctl->data;
2728 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2730 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2731 bargs = &bctl->meta;
2733 /* profiles filter */
2734 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2735 chunk_profiles_filter(chunk_type, bargs)) {
2740 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2741 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2746 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2747 chunk_devid_filter(leaf, chunk, bargs)) {
2751 /* drange filter, makes sense only with devid filter */
2752 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2753 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2758 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2759 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2763 /* soft profile changing mode */
2764 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2765 chunk_soft_convert_filter(chunk_type, bargs)) {
2772 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2774 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2775 struct btrfs_root *chunk_root = fs_info->chunk_root;
2776 struct btrfs_root *dev_root = fs_info->dev_root;
2777 struct list_head *devices;
2778 struct btrfs_device *device;
2781 struct btrfs_chunk *chunk;
2782 struct btrfs_path *path;
2783 struct btrfs_key key;
2784 struct btrfs_key found_key;
2785 struct btrfs_trans_handle *trans;
2786 struct extent_buffer *leaf;
2789 int enospc_errors = 0;
2790 bool counting = true;
2792 /* step one make some room on all the devices */
2793 devices = &fs_info->fs_devices->devices;
2794 list_for_each_entry(device, devices, dev_list) {
2795 old_size = device->total_bytes;
2796 size_to_free = div_factor(old_size, 1);
2797 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2798 if (!device->writeable ||
2799 device->total_bytes - device->bytes_used > size_to_free ||
2800 device->is_tgtdev_for_dev_replace)
2803 ret = btrfs_shrink_device(device, old_size - size_to_free);
2808 trans = btrfs_start_transaction(dev_root, 0);
2809 BUG_ON(IS_ERR(trans));
2811 ret = btrfs_grow_device(trans, device, old_size);
2814 btrfs_end_transaction(trans, dev_root);
2817 /* step two, relocate all the chunks */
2818 path = btrfs_alloc_path();
2824 /* zero out stat counters */
2825 spin_lock(&fs_info->balance_lock);
2826 memset(&bctl->stat, 0, sizeof(bctl->stat));
2827 spin_unlock(&fs_info->balance_lock);
2829 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2830 key.offset = (u64)-1;
2831 key.type = BTRFS_CHUNK_ITEM_KEY;
2834 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2835 atomic_read(&fs_info->balance_cancel_req)) {
2840 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2845 * this shouldn't happen, it means the last relocate
2849 BUG(); /* FIXME break ? */
2851 ret = btrfs_previous_item(chunk_root, path, 0,
2852 BTRFS_CHUNK_ITEM_KEY);
2858 leaf = path->nodes[0];
2859 slot = path->slots[0];
2860 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2862 if (found_key.objectid != key.objectid)
2865 /* chunk zero is special */
2866 if (found_key.offset == 0)
2869 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2872 spin_lock(&fs_info->balance_lock);
2873 bctl->stat.considered++;
2874 spin_unlock(&fs_info->balance_lock);
2877 ret = should_balance_chunk(chunk_root, leaf, chunk,
2879 btrfs_release_path(path);
2884 spin_lock(&fs_info->balance_lock);
2885 bctl->stat.expected++;
2886 spin_unlock(&fs_info->balance_lock);
2890 ret = btrfs_relocate_chunk(chunk_root,
2891 chunk_root->root_key.objectid,
2894 if (ret && ret != -ENOSPC)
2896 if (ret == -ENOSPC) {
2899 spin_lock(&fs_info->balance_lock);
2900 bctl->stat.completed++;
2901 spin_unlock(&fs_info->balance_lock);
2904 key.offset = found_key.offset - 1;
2908 btrfs_release_path(path);
2913 btrfs_free_path(path);
2914 if (enospc_errors) {
2915 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2925 * alloc_profile_is_valid - see if a given profile is valid and reduced
2926 * @flags: profile to validate
2927 * @extended: if true @flags is treated as an extended profile
2929 static int alloc_profile_is_valid(u64 flags, int extended)
2931 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2932 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2934 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2936 /* 1) check that all other bits are zeroed */
2940 /* 2) see if profile is reduced */
2942 return !extended; /* "0" is valid for usual profiles */
2944 /* true if exactly one bit set */
2945 return (flags & (flags - 1)) == 0;
2948 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2950 /* cancel requested || normal exit path */
2951 return atomic_read(&fs_info->balance_cancel_req) ||
2952 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2953 atomic_read(&fs_info->balance_cancel_req) == 0);
2956 static void __cancel_balance(struct btrfs_fs_info *fs_info)
2960 unset_balance_control(fs_info);
2961 ret = del_balance_item(fs_info->tree_root);
2965 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2966 struct btrfs_ioctl_balance_args *bargs);
2969 * Should be called with both balance and volume mutexes held
2971 int btrfs_balance(struct btrfs_balance_control *bctl,
2972 struct btrfs_ioctl_balance_args *bargs)
2974 struct btrfs_fs_info *fs_info = bctl->fs_info;
2980 if (btrfs_fs_closing(fs_info) ||
2981 atomic_read(&fs_info->balance_pause_req) ||
2982 atomic_read(&fs_info->balance_cancel_req)) {
2987 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2988 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2992 * In case of mixed groups both data and meta should be picked,
2993 * and identical options should be given for both of them.
2995 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2996 if (mixed && (bctl->flags & allowed)) {
2997 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2998 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2999 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3000 printk(KERN_ERR "btrfs: with mixed groups data and "
3001 "metadata balance options must be the same\n");
3007 num_devices = fs_info->fs_devices->num_devices;
3008 btrfs_dev_replace_lock(&fs_info->dev_replace);
3009 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3010 BUG_ON(num_devices < 1);
3013 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3014 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3015 if (num_devices == 1)
3016 allowed |= BTRFS_BLOCK_GROUP_DUP;
3017 else if (num_devices < 4)
3018 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3020 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
3021 BTRFS_BLOCK_GROUP_RAID10);
3023 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3024 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3025 (bctl->data.target & ~allowed))) {
3026 printk(KERN_ERR "btrfs: unable to start balance with target "
3027 "data profile %llu\n",
3028 (unsigned long long)bctl->data.target);
3032 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3033 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3034 (bctl->meta.target & ~allowed))) {
3035 printk(KERN_ERR "btrfs: unable to start balance with target "
3036 "metadata profile %llu\n",
3037 (unsigned long long)bctl->meta.target);
3041 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3042 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3043 (bctl->sys.target & ~allowed))) {
3044 printk(KERN_ERR "btrfs: unable to start balance with target "
3045 "system profile %llu\n",
3046 (unsigned long long)bctl->sys.target);
3051 /* allow dup'ed data chunks only in mixed mode */
3052 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3053 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3054 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3059 /* allow to reduce meta or sys integrity only if force set */
3060 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3061 BTRFS_BLOCK_GROUP_RAID10;
3062 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3063 (fs_info->avail_system_alloc_bits & allowed) &&
3064 !(bctl->sys.target & allowed)) ||
3065 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3066 (fs_info->avail_metadata_alloc_bits & allowed) &&
3067 !(bctl->meta.target & allowed))) {
3068 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3069 printk(KERN_INFO "btrfs: force reducing metadata "
3072 printk(KERN_ERR "btrfs: balance will reduce metadata "
3073 "integrity, use force if you want this\n");
3079 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3080 int num_tolerated_disk_barrier_failures;
3081 u64 target = bctl->sys.target;
3083 num_tolerated_disk_barrier_failures =
3084 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3085 if (num_tolerated_disk_barrier_failures > 0 &&
3087 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3088 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3089 num_tolerated_disk_barrier_failures = 0;
3090 else if (num_tolerated_disk_barrier_failures > 1 &&
3092 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3093 num_tolerated_disk_barrier_failures = 1;
3095 fs_info->num_tolerated_disk_barrier_failures =
3096 num_tolerated_disk_barrier_failures;
3099 ret = insert_balance_item(fs_info->tree_root, bctl);
3100 if (ret && ret != -EEXIST)
3103 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3104 BUG_ON(ret == -EEXIST);
3105 set_balance_control(bctl);
3107 BUG_ON(ret != -EEXIST);
3108 spin_lock(&fs_info->balance_lock);
3109 update_balance_args(bctl);
3110 spin_unlock(&fs_info->balance_lock);
3113 atomic_inc(&fs_info->balance_running);
3114 mutex_unlock(&fs_info->balance_mutex);
3116 ret = __btrfs_balance(fs_info);
3118 mutex_lock(&fs_info->balance_mutex);
3119 atomic_dec(&fs_info->balance_running);
3122 memset(bargs, 0, sizeof(*bargs));
3123 update_ioctl_balance_args(fs_info, 0, bargs);
3126 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3127 balance_need_close(fs_info)) {
3128 __cancel_balance(fs_info);
3131 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3132 fs_info->num_tolerated_disk_barrier_failures =
3133 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3136 wake_up(&fs_info->balance_wait_q);
3140 if (bctl->flags & BTRFS_BALANCE_RESUME)
3141 __cancel_balance(fs_info);
3147 static int balance_kthread(void *data)
3149 struct btrfs_fs_info *fs_info = data;
3152 mutex_lock(&fs_info->volume_mutex);
3153 mutex_lock(&fs_info->balance_mutex);
3155 if (fs_info->balance_ctl) {
3156 printk(KERN_INFO "btrfs: continuing balance\n");
3157 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3160 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3161 mutex_unlock(&fs_info->balance_mutex);
3162 mutex_unlock(&fs_info->volume_mutex);
3167 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3169 struct task_struct *tsk;
3171 spin_lock(&fs_info->balance_lock);
3172 if (!fs_info->balance_ctl) {
3173 spin_unlock(&fs_info->balance_lock);
3176 spin_unlock(&fs_info->balance_lock);
3178 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3179 printk(KERN_INFO "btrfs: force skipping balance\n");
3183 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3184 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3186 return PTR_ERR(tsk);
3191 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3193 struct btrfs_balance_control *bctl;
3194 struct btrfs_balance_item *item;
3195 struct btrfs_disk_balance_args disk_bargs;
3196 struct btrfs_path *path;
3197 struct extent_buffer *leaf;
3198 struct btrfs_key key;
3201 path = btrfs_alloc_path();
3205 key.objectid = BTRFS_BALANCE_OBJECTID;
3206 key.type = BTRFS_BALANCE_ITEM_KEY;
3209 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3212 if (ret > 0) { /* ret = -ENOENT; */
3217 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3223 leaf = path->nodes[0];
3224 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3226 bctl->fs_info = fs_info;
3227 bctl->flags = btrfs_balance_flags(leaf, item);
3228 bctl->flags |= BTRFS_BALANCE_RESUME;
3230 btrfs_balance_data(leaf, item, &disk_bargs);
3231 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3232 btrfs_balance_meta(leaf, item, &disk_bargs);
3233 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3234 btrfs_balance_sys(leaf, item, &disk_bargs);
3235 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3237 mutex_lock(&fs_info->volume_mutex);
3238 mutex_lock(&fs_info->balance_mutex);
3240 set_balance_control(bctl);
3242 mutex_unlock(&fs_info->balance_mutex);
3243 mutex_unlock(&fs_info->volume_mutex);
3245 btrfs_free_path(path);
3249 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3253 mutex_lock(&fs_info->balance_mutex);
3254 if (!fs_info->balance_ctl) {
3255 mutex_unlock(&fs_info->balance_mutex);
3259 if (atomic_read(&fs_info->balance_running)) {
3260 atomic_inc(&fs_info->balance_pause_req);
3261 mutex_unlock(&fs_info->balance_mutex);
3263 wait_event(fs_info->balance_wait_q,
3264 atomic_read(&fs_info->balance_running) == 0);
3266 mutex_lock(&fs_info->balance_mutex);
3267 /* we are good with balance_ctl ripped off from under us */
3268 BUG_ON(atomic_read(&fs_info->balance_running));
3269 atomic_dec(&fs_info->balance_pause_req);
3274 mutex_unlock(&fs_info->balance_mutex);
3278 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3280 mutex_lock(&fs_info->balance_mutex);
3281 if (!fs_info->balance_ctl) {
3282 mutex_unlock(&fs_info->balance_mutex);
3286 atomic_inc(&fs_info->balance_cancel_req);
3288 * if we are running just wait and return, balance item is
3289 * deleted in btrfs_balance in this case
3291 if (atomic_read(&fs_info->balance_running)) {
3292 mutex_unlock(&fs_info->balance_mutex);
3293 wait_event(fs_info->balance_wait_q,
3294 atomic_read(&fs_info->balance_running) == 0);
3295 mutex_lock(&fs_info->balance_mutex);
3297 /* __cancel_balance needs volume_mutex */
3298 mutex_unlock(&fs_info->balance_mutex);
3299 mutex_lock(&fs_info->volume_mutex);
3300 mutex_lock(&fs_info->balance_mutex);
3302 if (fs_info->balance_ctl)
3303 __cancel_balance(fs_info);
3305 mutex_unlock(&fs_info->volume_mutex);
3308 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3309 atomic_dec(&fs_info->balance_cancel_req);
3310 mutex_unlock(&fs_info->balance_mutex);
3315 * shrinking a device means finding all of the device extents past
3316 * the new size, and then following the back refs to the chunks.
3317 * The chunk relocation code actually frees the device extent
3319 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3321 struct btrfs_trans_handle *trans;
3322 struct btrfs_root *root = device->dev_root;
3323 struct btrfs_dev_extent *dev_extent = NULL;
3324 struct btrfs_path *path;
3332 bool retried = false;
3333 struct extent_buffer *l;
3334 struct btrfs_key key;
3335 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3336 u64 old_total = btrfs_super_total_bytes(super_copy);
3337 u64 old_size = device->total_bytes;
3338 u64 diff = device->total_bytes - new_size;
3340 if (device->is_tgtdev_for_dev_replace)
3343 path = btrfs_alloc_path();
3351 device->total_bytes = new_size;
3352 if (device->writeable) {
3353 device->fs_devices->total_rw_bytes -= diff;
3354 spin_lock(&root->fs_info->free_chunk_lock);
3355 root->fs_info->free_chunk_space -= diff;
3356 spin_unlock(&root->fs_info->free_chunk_lock);
3358 unlock_chunks(root);
3361 key.objectid = device->devid;
3362 key.offset = (u64)-1;
3363 key.type = BTRFS_DEV_EXTENT_KEY;