4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 bh->b_end_io = handler;
52 bh->b_private = private;
54 EXPORT_SYMBOL(init_buffer);
56 static int sleep_on_buffer(void *word)
62 void __lock_buffer(struct buffer_head *bh)
64 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
65 TASK_UNINTERRUPTIBLE);
67 EXPORT_SYMBOL(__lock_buffer);
69 void unlock_buffer(struct buffer_head *bh)
71 clear_bit_unlock(BH_Lock, &bh->b_state);
72 smp_mb__after_clear_bit();
73 wake_up_bit(&bh->b_state, BH_Lock);
75 EXPORT_SYMBOL(unlock_buffer);
78 * Block until a buffer comes unlocked. This doesn't stop it
79 * from becoming locked again - you have to lock it yourself
80 * if you want to preserve its state.
82 void __wait_on_buffer(struct buffer_head * bh)
84 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
86 EXPORT_SYMBOL(__wait_on_buffer);
89 __clear_page_buffers(struct page *page)
91 ClearPagePrivate(page);
92 set_page_private(page, 0);
93 page_cache_release(page);
97 static int quiet_error(struct buffer_head *bh)
99 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
105 static void buffer_io_error(struct buffer_head *bh)
107 char b[BDEVNAME_SIZE];
108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh->b_bdev, b),
110 (unsigned long long)bh->b_blocknr);
114 * End-of-IO handler helper function which does not touch the bh after
116 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
117 * a race there is benign: unlock_buffer() only use the bh's address for
118 * hashing after unlocking the buffer, so it doesn't actually touch the bh
121 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124 set_buffer_uptodate(bh);
126 /* This happens, due to failed READA attempts. */
127 clear_buffer_uptodate(bh);
133 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
134 * unlock the buffer. This is what ll_rw_block uses too.
136 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138 __end_buffer_read_notouch(bh, uptodate);
141 EXPORT_SYMBOL(end_buffer_read_sync);
143 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145 char b[BDEVNAME_SIZE];
148 set_buffer_uptodate(bh);
150 if (!quiet_error(bh)) {
152 printk(KERN_WARNING "lost page write due to "
154 bdevname(bh->b_bdev, b));
156 set_buffer_write_io_error(bh);
157 clear_buffer_uptodate(bh);
162 EXPORT_SYMBOL(end_buffer_write_sync);
165 * Various filesystems appear to want __find_get_block to be non-blocking.
166 * But it's the page lock which protects the buffers. To get around this,
167 * we get exclusion from try_to_free_buffers with the blockdev mapping's
170 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
171 * may be quite high. This code could TryLock the page, and if that
172 * succeeds, there is no need to take private_lock. (But if
173 * private_lock is contended then so is mapping->tree_lock).
175 static struct buffer_head *
176 __find_get_block_slow(struct block_device *bdev, sector_t block)
178 struct inode *bd_inode = bdev->bd_inode;
179 struct address_space *bd_mapping = bd_inode->i_mapping;
180 struct buffer_head *ret = NULL;
182 struct buffer_head *bh;
183 struct buffer_head *head;
187 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
188 page = find_get_page(bd_mapping, index);
192 spin_lock(&bd_mapping->private_lock);
193 if (!page_has_buffers(page))
195 head = page_buffers(page);
198 if (!buffer_mapped(bh))
200 else if (bh->b_blocknr == block) {
205 bh = bh->b_this_page;
206 } while (bh != head);
208 /* we might be here because some of the buffers on this page are
209 * not mapped. This is due to various races between
210 * file io on the block device and getblk. It gets dealt with
211 * elsewhere, don't buffer_error if we had some unmapped buffers
214 char b[BDEVNAME_SIZE];
216 printk("__find_get_block_slow() failed. "
217 "block=%llu, b_blocknr=%llu\n",
218 (unsigned long long)block,
219 (unsigned long long)bh->b_blocknr);
220 printk("b_state=0x%08lx, b_size=%zu\n",
221 bh->b_state, bh->b_size);
222 printk("device %s blocksize: %d\n", bdevname(bdev, b),
223 1 << bd_inode->i_blkbits);
226 spin_unlock(&bd_mapping->private_lock);
227 page_cache_release(page);
233 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
235 static void free_more_memory(void)
240 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
243 for_each_online_node(nid) {
244 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
245 gfp_zone(GFP_NOFS), NULL,
248 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
254 * I/O completion handler for block_read_full_page() - pages
255 * which come unlocked at the end of I/O.
257 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
260 struct buffer_head *first;
261 struct buffer_head *tmp;
263 int page_uptodate = 1;
265 BUG_ON(!buffer_async_read(bh));
269 set_buffer_uptodate(bh);
271 clear_buffer_uptodate(bh);
272 if (!quiet_error(bh))
278 * Be _very_ careful from here on. Bad things can happen if
279 * two buffer heads end IO at almost the same time and both
280 * decide that the page is now completely done.
282 first = page_buffers(page);
283 local_irq_save(flags);
284 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
285 clear_buffer_async_read(bh);
289 if (!buffer_uptodate(tmp))
291 if (buffer_async_read(tmp)) {
292 BUG_ON(!buffer_locked(tmp));
295 tmp = tmp->b_this_page;
297 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
298 local_irq_restore(flags);
301 * If none of the buffers had errors and they are all
302 * uptodate then we can set the page uptodate.
304 if (page_uptodate && !PageError(page))
305 SetPageUptodate(page);
310 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
311 local_irq_restore(flags);
316 * Completion handler for block_write_full_page() - pages which are unlocked
317 * during I/O, and which have PageWriteback cleared upon I/O completion.
319 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
321 char b[BDEVNAME_SIZE];
323 struct buffer_head *first;
324 struct buffer_head *tmp;
327 BUG_ON(!buffer_async_write(bh));
331 set_buffer_uptodate(bh);
333 if (!quiet_error(bh)) {
335 printk(KERN_WARNING "lost page write due to "
337 bdevname(bh->b_bdev, b));
339 set_bit(AS_EIO, &page->mapping->flags);
340 set_buffer_write_io_error(bh);
341 clear_buffer_uptodate(bh);
345 first = page_buffers(page);
346 local_irq_save(flags);
347 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
349 clear_buffer_async_write(bh);
351 tmp = bh->b_this_page;
353 if (buffer_async_write(tmp)) {
354 BUG_ON(!buffer_locked(tmp));
357 tmp = tmp->b_this_page;
359 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
360 local_irq_restore(flags);
361 end_page_writeback(page);
365 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
366 local_irq_restore(flags);
369 EXPORT_SYMBOL(end_buffer_async_write);
372 * If a page's buffers are under async readin (end_buffer_async_read
373 * completion) then there is a possibility that another thread of
374 * control could lock one of the buffers after it has completed
375 * but while some of the other buffers have not completed. This
376 * locked buffer would confuse end_buffer_async_read() into not unlocking
377 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
378 * that this buffer is not under async I/O.
380 * The page comes unlocked when it has no locked buffer_async buffers
383 * PageLocked prevents anyone starting new async I/O reads any of
386 * PageWriteback is used to prevent simultaneous writeout of the same
389 * PageLocked prevents anyone from starting writeback of a page which is
390 * under read I/O (PageWriteback is only ever set against a locked page).
392 static void mark_buffer_async_read(struct buffer_head *bh)
394 bh->b_end_io = end_buffer_async_read;
395 set_buffer_async_read(bh);
398 static void mark_buffer_async_write_endio(struct buffer_head *bh,
399 bh_end_io_t *handler)
401 bh->b_end_io = handler;
402 set_buffer_async_write(bh);
405 void mark_buffer_async_write(struct buffer_head *bh)
407 mark_buffer_async_write_endio(bh, end_buffer_async_write);
409 EXPORT_SYMBOL(mark_buffer_async_write);
413 * fs/buffer.c contains helper functions for buffer-backed address space's
414 * fsync functions. A common requirement for buffer-based filesystems is
415 * that certain data from the backing blockdev needs to be written out for
416 * a successful fsync(). For example, ext2 indirect blocks need to be
417 * written back and waited upon before fsync() returns.
419 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
420 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
421 * management of a list of dependent buffers at ->i_mapping->private_list.
423 * Locking is a little subtle: try_to_free_buffers() will remove buffers
424 * from their controlling inode's queue when they are being freed. But
425 * try_to_free_buffers() will be operating against the *blockdev* mapping
426 * at the time, not against the S_ISREG file which depends on those buffers.
427 * So the locking for private_list is via the private_lock in the address_space
428 * which backs the buffers. Which is different from the address_space
429 * against which the buffers are listed. So for a particular address_space,
430 * mapping->private_lock does *not* protect mapping->private_list! In fact,
431 * mapping->private_list will always be protected by the backing blockdev's
434 * Which introduces a requirement: all buffers on an address_space's
435 * ->private_list must be from the same address_space: the blockdev's.
437 * address_spaces which do not place buffers at ->private_list via these
438 * utility functions are free to use private_lock and private_list for
439 * whatever they want. The only requirement is that list_empty(private_list)
440 * be true at clear_inode() time.
442 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
443 * filesystems should do that. invalidate_inode_buffers() should just go
444 * BUG_ON(!list_empty).
446 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
447 * take an address_space, not an inode. And it should be called
448 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
451 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
452 * list if it is already on a list. Because if the buffer is on a list,
453 * it *must* already be on the right one. If not, the filesystem is being
454 * silly. This will save a ton of locking. But first we have to ensure
455 * that buffers are taken *off* the old inode's list when they are freed
456 * (presumably in truncate). That requires careful auditing of all
457 * filesystems (do it inside bforget()). It could also be done by bringing
462 * The buffer's backing address_space's private_lock must be held
464 static void __remove_assoc_queue(struct buffer_head *bh)
466 list_del_init(&bh->b_assoc_buffers);
467 WARN_ON(!bh->b_assoc_map);
468 if (buffer_write_io_error(bh))
469 set_bit(AS_EIO, &bh->b_assoc_map->flags);
470 bh->b_assoc_map = NULL;
473 int inode_has_buffers(struct inode *inode)
475 return !list_empty(&inode->i_data.private_list);
479 * osync is designed to support O_SYNC io. It waits synchronously for
480 * all already-submitted IO to complete, but does not queue any new
481 * writes to the disk.
483 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
484 * you dirty the buffers, and then use osync_inode_buffers to wait for
485 * completion. Any other dirty buffers which are not yet queued for
486 * write will not be flushed to disk by the osync.
488 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
490 struct buffer_head *bh;
496 list_for_each_prev(p, list) {
498 if (buffer_locked(bh)) {
502 if (!buffer_uptodate(bh))
513 static void do_thaw_one(struct super_block *sb, void *unused)
515 char b[BDEVNAME_SIZE];
516 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
517 printk(KERN_WARNING "Emergency Thaw on %s\n",
518 bdevname(sb->s_bdev, b));
521 static void do_thaw_all(struct work_struct *work)
523 iterate_supers(do_thaw_one, NULL);
525 printk(KERN_WARNING "Emergency Thaw complete\n");
529 * emergency_thaw_all -- forcibly thaw every frozen filesystem
531 * Used for emergency unfreeze of all filesystems via SysRq
533 void emergency_thaw_all(void)
535 struct work_struct *work;
537 work = kmalloc(sizeof(*work), GFP_ATOMIC);
539 INIT_WORK(work, do_thaw_all);
545 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
546 * @mapping: the mapping which wants those buffers written
548 * Starts I/O against the buffers at mapping->private_list, and waits upon
551 * Basically, this is a convenience function for fsync().
552 * @mapping is a file or directory which needs those buffers to be written for
553 * a successful fsync().
555 int sync_mapping_buffers(struct address_space *mapping)
557 struct address_space *buffer_mapping = mapping->private_data;
559 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
562 return fsync_buffers_list(&buffer_mapping->private_lock,
563 &mapping->private_list);
565 EXPORT_SYMBOL(sync_mapping_buffers);
568 * Called when we've recently written block `bblock', and it is known that
569 * `bblock' was for a buffer_boundary() buffer. This means that the block at
570 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
571 * dirty, schedule it for IO. So that indirects merge nicely with their data.
573 void write_boundary_block(struct block_device *bdev,
574 sector_t bblock, unsigned blocksize)
576 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 if (buffer_dirty(bh))
579 ll_rw_block(WRITE, 1, &bh);
584 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 struct address_space *mapping = inode->i_mapping;
587 struct address_space *buffer_mapping = bh->b_page->mapping;
589 mark_buffer_dirty(bh);
590 if (!mapping->private_data) {
591 mapping->private_data = buffer_mapping;
593 BUG_ON(mapping->private_data != buffer_mapping);
595 if (!bh->b_assoc_map) {
596 spin_lock(&buffer_mapping->private_lock);
597 list_move_tail(&bh->b_assoc_buffers,
598 &mapping->private_list);
599 bh->b_assoc_map = mapping;
600 spin_unlock(&buffer_mapping->private_lock);
603 EXPORT_SYMBOL(mark_buffer_dirty_inode);
606 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
609 * If warn is true, then emit a warning if the page is not uptodate and has
610 * not been truncated.
612 static void __set_page_dirty(struct page *page,
613 struct address_space *mapping, int warn)
615 spin_lock_irq(&mapping->tree_lock);
616 if (page->mapping) { /* Race with truncate? */
617 WARN_ON_ONCE(warn && !PageUptodate(page));
618 account_page_dirtied(page, mapping);
619 radix_tree_tag_set(&mapping->page_tree,
620 page_index(page), PAGECACHE_TAG_DIRTY);
622 spin_unlock_irq(&mapping->tree_lock);
623 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
627 * Add a page to the dirty page list.
629 * It is a sad fact of life that this function is called from several places
630 * deeply under spinlocking. It may not sleep.
632 * If the page has buffers, the uptodate buffers are set dirty, to preserve
633 * dirty-state coherency between the page and the buffers. It the page does
634 * not have buffers then when they are later attached they will all be set
637 * The buffers are dirtied before the page is dirtied. There's a small race
638 * window in which a writepage caller may see the page cleanness but not the
639 * buffer dirtiness. That's fine. If this code were to set the page dirty
640 * before the buffers, a concurrent writepage caller could clear the page dirty
641 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
642 * page on the dirty page list.
644 * We use private_lock to lock against try_to_free_buffers while using the
645 * page's buffer list. Also use this to protect against clean buffers being
646 * added to the page after it was set dirty.
648 * FIXME: may need to call ->reservepage here as well. That's rather up to the
649 * address_space though.
651 int __set_page_dirty_buffers(struct page *page)
654 struct address_space *mapping = page_mapping(page);
656 if (unlikely(!mapping))
657 return !TestSetPageDirty(page);
659 spin_lock(&mapping->private_lock);
660 if (page_has_buffers(page)) {
661 struct buffer_head *head = page_buffers(page);
662 struct buffer_head *bh = head;
665 set_buffer_dirty(bh);
666 bh = bh->b_this_page;
667 } while (bh != head);
669 newly_dirty = !TestSetPageDirty(page);
670 spin_unlock(&mapping->private_lock);
673 __set_page_dirty(page, mapping, 1);
676 EXPORT_SYMBOL(__set_page_dirty_buffers);
679 * Write out and wait upon a list of buffers.
681 * We have conflicting pressures: we want to make sure that all
682 * initially dirty buffers get waited on, but that any subsequently
683 * dirtied buffers don't. After all, we don't want fsync to last
684 * forever if somebody is actively writing to the file.
686 * Do this in two main stages: first we copy dirty buffers to a
687 * temporary inode list, queueing the writes as we go. Then we clean
688 * up, waiting for those writes to complete.
690 * During this second stage, any subsequent updates to the file may end
691 * up refiling the buffer on the original inode's dirty list again, so
692 * there is a chance we will end up with a buffer queued for write but
693 * not yet completed on that list. So, as a final cleanup we go through
694 * the osync code to catch these locked, dirty buffers without requeuing
695 * any newly dirty buffers for write.
697 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 struct buffer_head *bh;
700 struct list_head tmp;
701 struct address_space *mapping;
703 struct blk_plug plug;
705 INIT_LIST_HEAD(&tmp);
706 blk_start_plug(&plug);
709 while (!list_empty(list)) {
710 bh = BH_ENTRY(list->next);
711 mapping = bh->b_assoc_map;
712 __remove_assoc_queue(bh);
713 /* Avoid race with mark_buffer_dirty_inode() which does
714 * a lockless check and we rely on seeing the dirty bit */
716 if (buffer_dirty(bh) || buffer_locked(bh)) {
717 list_add(&bh->b_assoc_buffers, &tmp);
718 bh->b_assoc_map = mapping;
719 if (buffer_dirty(bh)) {
723 * Ensure any pending I/O completes so that
724 * write_dirty_buffer() actually writes the
725 * current contents - it is a noop if I/O is
726 * still in flight on potentially older
729 write_dirty_buffer(bh, WRITE_SYNC);
732 * Kick off IO for the previous mapping. Note
733 * that we will not run the very last mapping,
734 * wait_on_buffer() will do that for us
735 * through sync_buffer().
744 blk_finish_plug(&plug);
747 while (!list_empty(&tmp)) {
748 bh = BH_ENTRY(tmp.prev);
750 mapping = bh->b_assoc_map;
751 __remove_assoc_queue(bh);
752 /* Avoid race with mark_buffer_dirty_inode() which does
753 * a lockless check and we rely on seeing the dirty bit */
755 if (buffer_dirty(bh)) {
756 list_add(&bh->b_assoc_buffers,
757 &mapping->private_list);
758 bh->b_assoc_map = mapping;
762 if (!buffer_uptodate(bh))
769 err2 = osync_buffers_list(lock, list);
777 * Invalidate any and all dirty buffers on a given inode. We are
778 * probably unmounting the fs, but that doesn't mean we have already
779 * done a sync(). Just drop the buffers from the inode list.
781 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
782 * assumes that all the buffers are against the blockdev. Not true
785 void invalidate_inode_buffers(struct inode *inode)
787 if (inode_has_buffers(inode)) {
788 struct address_space *mapping = &inode->i_data;
789 struct list_head *list = &mapping->private_list;
790 struct address_space *buffer_mapping = mapping->private_data;
792 spin_lock(&buffer_mapping->private_lock);
793 while (!list_empty(list))
794 __remove_assoc_queue(BH_ENTRY(list->next));
795 spin_unlock(&buffer_mapping->private_lock);
798 EXPORT_SYMBOL(invalidate_inode_buffers);
801 * Remove any clean buffers from the inode's buffer list. This is called
802 * when we're trying to free the inode itself. Those buffers can pin it.
804 * Returns true if all buffers were removed.
806 int remove_inode_buffers(struct inode *inode)
810 if (inode_has_buffers(inode)) {
811 struct address_space *mapping = &inode->i_data;
812 struct list_head *list = &mapping->private_list;
813 struct address_space *buffer_mapping = mapping->private_data;
815 spin_lock(&buffer_mapping->private_lock);
816 while (!list_empty(list)) {
817 struct buffer_head *bh = BH_ENTRY(list->next);
818 if (buffer_dirty(bh)) {
822 __remove_assoc_queue(bh);
824 spin_unlock(&buffer_mapping->private_lock);
830 * Create the appropriate buffers when given a page for data area and
831 * the size of each buffer.. Use the bh->b_this_page linked list to
832 * follow the buffers created. Return NULL if unable to create more
835 * The retry flag is used to differentiate async IO (paging, swapping)
836 * which may not fail from ordinary buffer allocations.
838 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
841 struct buffer_head *bh, *head;
847 while ((offset -= size) >= 0) {
848 bh = alloc_buffer_head(GFP_NOFS);
853 bh->b_this_page = head;
858 atomic_set(&bh->b_count, 0);
861 /* Link the buffer to its page */
862 set_bh_page(bh, page, offset);
864 init_buffer(bh, NULL, NULL);
868 * In case anything failed, we just free everything we got.
874 head = head->b_this_page;
875 free_buffer_head(bh);
880 * Return failure for non-async IO requests. Async IO requests
881 * are not allowed to fail, so we have to wait until buffer heads
882 * become available. But we don't want tasks sleeping with
883 * partially complete buffers, so all were released above.
888 /* We're _really_ low on memory. Now we just
889 * wait for old buffer heads to become free due to
890 * finishing IO. Since this is an async request and
891 * the reserve list is empty, we're sure there are
892 * async buffer heads in use.
897 EXPORT_SYMBOL_GPL(alloc_page_buffers);
900 link_dev_buffers(struct page *page, struct buffer_head *head)
902 struct buffer_head *bh, *tail;
907 bh = bh->b_this_page;
909 tail->b_this_page = head;
910 attach_page_buffers(page, head);
913 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
915 sector_t retval = ~((sector_t)0);
916 loff_t sz = i_size_read(bdev->bd_inode);
919 unsigned int sizebits = blksize_bits(size);
920 retval = (sz >> sizebits);
926 * Initialise the state of a blockdev page's buffers.
929 init_page_buffers(struct page *page, struct block_device *bdev,
930 sector_t block, int size)
932 struct buffer_head *head = page_buffers(page);
933 struct buffer_head *bh = head;
934 int uptodate = PageUptodate(page);
935 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
938 if (!buffer_mapped(bh)) {
939 init_buffer(bh, NULL, NULL);
941 bh->b_blocknr = block;
943 set_buffer_uptodate(bh);
944 if (block < end_block)
945 set_buffer_mapped(bh);
948 bh = bh->b_this_page;
949 } while (bh != head);
952 * Caller needs to validate requested block against end of device.
958 * Create the page-cache page that contains the requested block.
960 * This is used purely for blockdev mappings.
963 grow_dev_page(struct block_device *bdev, sector_t block,
964 pgoff_t index, int size, int sizebits)
966 struct inode *inode = bdev->bd_inode;
968 struct buffer_head *bh;
970 int ret = 0; /* Will call free_more_memory() */
972 page = find_or_create_page(inode->i_mapping, index,
973 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
977 BUG_ON(!PageLocked(page));
979 if (page_has_buffers(page)) {
980 bh = page_buffers(page);
981 if (bh->b_size == size) {
982 end_block = init_page_buffers(page, bdev,
983 index << sizebits, size);
986 if (!try_to_free_buffers(page))
991 * Allocate some buffers for this page
993 bh = alloc_page_buffers(page, size, 0);
998 * Link the page to the buffers and initialise them. Take the
999 * lock to be atomic wrt __find_get_block(), which does not
1000 * run under the page lock.
1002 spin_lock(&inode->i_mapping->private_lock);
1003 link_dev_buffers(page, bh);
1004 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1005 spin_unlock(&inode->i_mapping->private_lock);
1007 ret = (block < end_block) ? 1 : -ENXIO;
1010 page_cache_release(page);
1015 * Create buffers for the specified block device block's page. If
1016 * that page was dirty, the buffers are set dirty also.
1019 grow_buffers(struct block_device *bdev, sector_t block, int size)
1027 } while ((size << sizebits) < PAGE_SIZE);
1029 index = block >> sizebits;
1032 * Check for a block which wants to lie outside our maximum possible
1033 * pagecache index. (this comparison is done using sector_t types).
1035 if (unlikely(index != block >> sizebits)) {
1036 char b[BDEVNAME_SIZE];
1038 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1040 __func__, (unsigned long long)block,
1045 /* Create a page with the proper size buffers.. */
1046 return grow_dev_page(bdev, block, index, size, sizebits);
1049 static struct buffer_head *
1050 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1052 /* Size must be multiple of hard sectorsize */
1053 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1054 (size < 512 || size > PAGE_SIZE))) {
1055 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1057 printk(KERN_ERR "logical block size: %d\n",
1058 bdev_logical_block_size(bdev));
1065 struct buffer_head *bh;
1068 bh = __find_get_block(bdev, block, size);
1072 ret = grow_buffers(bdev, block, size);
1081 * The relationship between dirty buffers and dirty pages:
1083 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1084 * the page is tagged dirty in its radix tree.
1086 * At all times, the dirtiness of the buffers represents the dirtiness of
1087 * subsections of the page. If the page has buffers, the page dirty bit is
1088 * merely a hint about the true dirty state.
1090 * When a page is set dirty in its entirety, all its buffers are marked dirty
1091 * (if the page has buffers).
1093 * When a buffer is marked dirty, its page is dirtied, but the page's other
1096 * Also. When blockdev buffers are explicitly read with bread(), they
1097 * individually become uptodate. But their backing page remains not
1098 * uptodate - even if all of its buffers are uptodate. A subsequent
1099 * block_read_full_page() against that page will discover all the uptodate
1100 * buffers, will set the page uptodate and will perform no I/O.
1104 * mark_buffer_dirty - mark a buffer_head as needing writeout
1105 * @bh: the buffer_head to mark dirty
1107 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1108 * backing page dirty, then tag the page as dirty in its address_space's radix
1109 * tree and then attach the address_space's inode to its superblock's dirty
1112 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1113 * mapping->tree_lock and mapping->host->i_lock.
1115 void mark_buffer_dirty(struct buffer_head *bh)
1117 WARN_ON_ONCE(!buffer_uptodate(bh));
1120 * Very *carefully* optimize the it-is-already-dirty case.
1122 * Don't let the final "is it dirty" escape to before we
1123 * perhaps modified the buffer.
1125 if (buffer_dirty(bh)) {
1127 if (buffer_dirty(bh))
1131 if (!test_set_buffer_dirty(bh)) {
1132 struct page *page = bh->b_page;
1133 if (!TestSetPageDirty(page)) {
1134 struct address_space *mapping = page_mapping(page);
1136 __set_page_dirty(page, mapping, 0);
1140 EXPORT_SYMBOL(mark_buffer_dirty);
1143 * Decrement a buffer_head's reference count. If all buffers against a page
1144 * have zero reference count, are clean and unlocked, and if the page is clean
1145 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1146 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1147 * a page but it ends up not being freed, and buffers may later be reattached).
1149 void __brelse(struct buffer_head * buf)
1151 if (atomic_read(&buf->b_count)) {
1155 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1157 EXPORT_SYMBOL(__brelse);
1160 * bforget() is like brelse(), except it discards any
1161 * potentially dirty data.
1163 void __bforget(struct buffer_head *bh)
1165 clear_buffer_dirty(bh);
1166 if (bh->b_assoc_map) {
1167 struct address_space *buffer_mapping = bh->b_page->mapping;
1169 spin_lock(&buffer_mapping->private_lock);
1170 list_del_init(&bh->b_assoc_buffers);
1171 bh->b_assoc_map = NULL;
1172 spin_unlock(&buffer_mapping->private_lock);
1176 EXPORT_SYMBOL(__bforget);
1178 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1181 if (buffer_uptodate(bh)) {
1186 bh->b_end_io = end_buffer_read_sync;
1187 submit_bh(READ, bh);
1189 if (buffer_uptodate(bh))
1197 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1198 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1199 * refcount elevated by one when they're in an LRU. A buffer can only appear
1200 * once in a particular CPU's LRU. A single buffer can be present in multiple
1201 * CPU's LRUs at the same time.
1203 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1204 * sb_find_get_block().
1206 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1207 * a local interrupt disable for that.
1210 #define BH_LRU_SIZE 8
1213 struct buffer_head *bhs[BH_LRU_SIZE];
1216 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1219 #define bh_lru_lock() local_irq_disable()
1220 #define bh_lru_unlock() local_irq_enable()
1222 #define bh_lru_lock() preempt_disable()
1223 #define bh_lru_unlock() preempt_enable()
1226 static inline void check_irqs_on(void)
1228 #ifdef irqs_disabled
1229 BUG_ON(irqs_disabled());
1234 * The LRU management algorithm is dopey-but-simple. Sorry.
1236 static void bh_lru_install(struct buffer_head *bh)
1238 struct buffer_head *evictee = NULL;
1242 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1243 struct buffer_head *bhs[BH_LRU_SIZE];
1249 for (in = 0; in < BH_LRU_SIZE; in++) {
1250 struct buffer_head *bh2 =
1251 __this_cpu_read(bh_lrus.bhs[in]);
1256 if (out >= BH_LRU_SIZE) {
1257 BUG_ON(evictee != NULL);
1264 while (out < BH_LRU_SIZE)
1266 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1275 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1277 static struct buffer_head *
1278 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1280 struct buffer_head *ret = NULL;
1285 for (i = 0; i < BH_LRU_SIZE; i++) {
1286 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1288 if (bh && bh->b_bdev == bdev &&
1289 bh->b_blocknr == block && bh->b_size == size) {
1292 __this_cpu_write(bh_lrus.bhs[i],
1293 __this_cpu_read(bh_lrus.bhs[i - 1]));
1296 __this_cpu_write(bh_lrus.bhs[0], bh);
1308 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1309 * it in the LRU and mark it as accessed. If it is not present then return
1312 struct buffer_head *
1313 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1315 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1318 bh = __find_get_block_slow(bdev, block);
1326 EXPORT_SYMBOL(__find_get_block);
1329 * __getblk will locate (and, if necessary, create) the buffer_head
1330 * which corresponds to the passed block_device, block and size. The
1331 * returned buffer has its reference count incremented.
1333 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1334 * attempt is failing. FIXME, perhaps?
1336 struct buffer_head *
1337 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1339 struct buffer_head *bh = __find_get_block(bdev, block, size);
1343 bh = __getblk_slow(bdev, block, size);
1346 EXPORT_SYMBOL(__getblk);
1349 * Do async read-ahead on a buffer..
1351 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1353 struct buffer_head *bh = __getblk(bdev, block, size);
1355 ll_rw_block(READA, 1, &bh);
1359 EXPORT_SYMBOL(__breadahead);
1362 * __bread() - reads a specified block and returns the bh
1363 * @bdev: the block_device to read from
1364 * @block: number of block
1365 * @size: size (in bytes) to read
1367 * Reads a specified block, and returns buffer head that contains it.
1368 * It returns NULL if the block was unreadable.
1370 struct buffer_head *
1371 __bread(struct block_device *bdev, sector_t block, unsigned size)
1373 struct buffer_head *bh = __getblk(bdev, block, size);
1375 if (likely(bh) && !buffer_uptodate(bh))
1376 bh = __bread_slow(bh);
1379 EXPORT_SYMBOL(__bread);
1382 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1383 * This doesn't race because it runs in each cpu either in irq
1384 * or with preempt disabled.
1386 static void invalidate_bh_lru(void *arg)
1388 struct bh_lru *b = &get_cpu_var(bh_lrus);
1391 for (i = 0; i < BH_LRU_SIZE; i++) {
1395 put_cpu_var(bh_lrus);
1398 static bool has_bh_in_lru(int cpu, void *dummy)
1400 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1403 for (i = 0; i < BH_LRU_SIZE; i++) {
1411 void invalidate_bh_lrus(void)
1413 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1415 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1417 void set_bh_page(struct buffer_head *bh,
1418 struct page *page, unsigned long offset)
1421 BUG_ON(offset >= PAGE_SIZE);
1422 if (PageHighMem(page))
1424 * This catches illegal uses and preserves the offset:
1426 bh->b_data = (char *)(0 + offset);
1428 bh->b_data = page_address(page) + offset;
1430 EXPORT_SYMBOL(set_bh_page);
1433 * Called when truncating a buffer on a page completely.
1435 static void discard_buffer(struct buffer_head * bh)
1438 clear_buffer_dirty(bh);
1440 clear_buffer_mapped(bh);
1441 clear_buffer_req(bh);
1442 clear_buffer_new(bh);
1443 clear_buffer_delay(bh);
1444 clear_buffer_unwritten(bh);
1449 * block_invalidatepage - invalidate part or all of a buffer-backed page
1451 * @page: the page which is affected
1452 * @offset: the index of the truncation point
1454 * block_invalidatepage() is called when all or part of the page has become
1455 * invalidated by a truncate operation.
1457 * block_invalidatepage() does not have to release all buffers, but it must
1458 * ensure that no dirty buffer is left outside @offset and that no I/O
1459 * is underway against any of the blocks which are outside the truncation
1460 * point. Because the caller is about to free (and possibly reuse) those
1463 void block_invalidatepage(struct page *page, unsigned long offset)
1465 struct buffer_head *head, *bh, *next;
1466 unsigned int curr_off = 0;
1468 BUG_ON(!PageLocked(page));
1469 if (!page_has_buffers(page))
1472 head = page_buffers(page);
1475 unsigned int next_off = curr_off + bh->b_size;
1476 next = bh->b_this_page;
1479 * is this block fully invalidated?
1481 if (offset <= curr_off)
1483 curr_off = next_off;
1485 } while (bh != head);
1488 * We release buffers only if the entire page is being invalidated.
1489 * The get_block cached value has been unconditionally invalidated,
1490 * so real IO is not possible anymore.
1493 try_to_release_page(page, 0);
1497 EXPORT_SYMBOL(block_invalidatepage);
1500 * We attach and possibly dirty the buffers atomically wrt
1501 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1502 * is already excluded via the page lock.
1504 void create_empty_buffers(struct page *page,
1505 unsigned long blocksize, unsigned long b_state)
1507 struct buffer_head *bh, *head, *tail;
1509 head = alloc_page_buffers(page, blocksize, 1);
1512 bh->b_state |= b_state;
1514 bh = bh->b_this_page;
1516 tail->b_this_page = head;
1518 spin_lock(&page->mapping->private_lock);
1519 if (PageUptodate(page) || PageDirty(page)) {
1522 if (PageDirty(page))
1523 set_buffer_dirty(bh);
1524 if (PageUptodate(page))
1525 set_buffer_uptodate(bh);
1526 bh = bh->b_this_page;
1527 } while (bh != head);
1529 attach_page_buffers(page, head);
1530 spin_unlock(&page->mapping->private_lock);
1532 EXPORT_SYMBOL(create_empty_buffers);
1535 * We are taking a block for data and we don't want any output from any
1536 * buffer-cache aliases starting from return from that function and
1537 * until the moment when something will explicitly mark the buffer
1538 * dirty (hopefully that will not happen until we will free that block ;-)
1539 * We don't even need to mark it not-uptodate - nobody can expect
1540 * anything from a newly allocated buffer anyway. We used to used
1541 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1542 * don't want to mark the alias unmapped, for example - it would confuse
1543 * anyone who might pick it with bread() afterwards...
1545 * Also.. Note that bforget() doesn't lock the buffer. So there can
1546 * be writeout I/O going on against recently-freed buffers. We don't
1547 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1548 * only if we really need to. That happens here.
1550 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1552 struct buffer_head *old_bh;
1556 old_bh = __find_get_block_slow(bdev, block);
1558 clear_buffer_dirty(old_bh);
1559 wait_on_buffer(old_bh);
1560 clear_buffer_req(old_bh);
1564 EXPORT_SYMBOL(unmap_underlying_metadata);
1567 * Size is a power-of-two in the range 512..PAGE_SIZE,
1568 * and the case we care about most is PAGE_SIZE.
1570 * So this *could* possibly be written with those
1571 * constraints in mind (relevant mostly if some
1572 * architecture has a slow bit-scan instruction)
1574 static inline int block_size_bits(unsigned int blocksize)
1576 return ilog2(blocksize);
1579 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1581 BUG_ON(!PageLocked(page));
1583 if (!page_has_buffers(page))
1584 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1585 return page_buffers(page);
1589 * NOTE! All mapped/uptodate combinations are valid:
1591 * Mapped Uptodate Meaning
1593 * No No "unknown" - must do get_block()
1594 * No Yes "hole" - zero-filled
1595 * Yes No "allocated" - allocated on disk, not read in
1596 * Yes Yes "valid" - allocated and up-to-date in memory.
1598 * "Dirty" is valid only with the last case (mapped+uptodate).
1602 * While block_write_full_page is writing back the dirty buffers under
1603 * the page lock, whoever dirtied the buffers may decide to clean them
1604 * again at any time. We handle that by only looking at the buffer
1605 * state inside lock_buffer().
1607 * If block_write_full_page() is called for regular writeback
1608 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1609 * locked buffer. This only can happen if someone has written the buffer
1610 * directly, with submit_bh(). At the address_space level PageWriteback
1611 * prevents this contention from occurring.
1613 * If block_write_full_page() is called with wbc->sync_mode ==
1614 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1615 * causes the writes to be flagged as synchronous writes.
1617 static int __block_write_full_page(struct inode *inode, struct page *page,
1618 get_block_t *get_block, struct writeback_control *wbc,
1619 bh_end_io_t *handler)
1623 sector_t last_block;
1624 struct buffer_head *bh, *head;
1625 unsigned int blocksize, bbits;
1626 int nr_underway = 0;
1627 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1628 WRITE_SYNC : WRITE);
1630 head = create_page_buffers(page, inode,
1631 (1 << BH_Dirty)|(1 << BH_Uptodate));
1634 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1635 * here, and the (potentially unmapped) buffers may become dirty at
1636 * any time. If a buffer becomes dirty here after we've inspected it
1637 * then we just miss that fact, and the page stays dirty.
1639 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1640 * handle that here by just cleaning them.
1644 blocksize = bh->b_size;
1645 bbits = block_size_bits(blocksize);
1647 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1648 last_block = (i_size_read(inode) - 1) >> bbits;
1651 * Get all the dirty buffers mapped to disk addresses and
1652 * handle any aliases from the underlying blockdev's mapping.
1655 if (block > last_block) {
1657 * mapped buffers outside i_size will occur, because
1658 * this page can be outside i_size when there is a
1659 * truncate in progress.
1662 * The buffer was zeroed by block_write_full_page()
1664 clear_buffer_dirty(bh);
1665 set_buffer_uptodate(bh);
1666 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1668 WARN_ON(bh->b_size != blocksize);
1669 err = get_block(inode, block, bh, 1);
1672 clear_buffer_delay(bh);
1673 if (buffer_new(bh)) {
1674 /* blockdev mappings never come here */
1675 clear_buffer_new(bh);
1676 unmap_underlying_metadata(bh->b_bdev,
1680 bh = bh->b_this_page;
1682 } while (bh != head);
1685 if (!buffer_mapped(bh))
1688 * If it's a fully non-blocking write attempt and we cannot
1689 * lock the buffer then redirty the page. Note that this can
1690 * potentially cause a busy-wait loop from writeback threads
1691 * and kswapd activity, but those code paths have their own
1692 * higher-level throttling.
1694 if (wbc->sync_mode != WB_SYNC_NONE) {
1696 } else if (!trylock_buffer(bh)) {
1697 redirty_page_for_writepage(wbc, page);
1700 if (test_clear_buffer_dirty(bh)) {
1701 mark_buffer_async_write_endio(bh, handler);
1705 } while ((bh = bh->b_this_page) != head);
1708 * The page and its buffers are protected by PageWriteback(), so we can
1709 * drop the bh refcounts early.
1711 BUG_ON(PageWriteback(page));
1712 set_page_writeback(page);
1715 struct buffer_head *next = bh->b_this_page;
1716 if (buffer_async_write(bh)) {
1717 submit_bh(write_op, bh);
1721 } while (bh != head);
1726 if (nr_underway == 0) {
1728 * The page was marked dirty, but the buffers were
1729 * clean. Someone wrote them back by hand with
1730 * ll_rw_block/submit_bh. A rare case.
1732 end_page_writeback(page);
1735 * The page and buffer_heads can be released at any time from
1743 * ENOSPC, or some other error. We may already have added some
1744 * blocks to the file, so we need to write these out to avoid
1745 * exposing stale data.
1746 * The page is currently locked and not marked for writeback
1749 /* Recovery: lock and submit the mapped buffers */
1751 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1752 !buffer_delay(bh)) {
1754 mark_buffer_async_write_endio(bh, handler);
1757 * The buffer may have been set dirty during
1758 * attachment to a dirty page.
1760 clear_buffer_dirty(bh);
1762 } while ((bh = bh->b_this_page) != head);
1764 BUG_ON(PageWriteback(page));
1765 mapping_set_error(page->mapping, err);
1766 set_page_writeback(page);
1768 struct buffer_head *next = bh->b_this_page;
1769 if (buffer_async_write(bh)) {
1770 clear_buffer_dirty(bh);
1771 submit_bh(write_op, bh);
1775 } while (bh != head);
1781 * If a page has any new buffers, zero them out here, and mark them uptodate
1782 * and dirty so they'll be written out (in order to prevent uninitialised
1783 * block data from leaking). And clear the new bit.
1785 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1787 unsigned int block_start, block_end;
1788 struct buffer_head *head, *bh;
1790 BUG_ON(!PageLocked(page));
1791 if (!page_has_buffers(page))
1794 bh = head = page_buffers(page);
1797 block_end = block_start + bh->b_size;
1799 if (buffer_new(bh)) {
1800 if (block_end > from && block_start < to) {
1801 if (!PageUptodate(page)) {
1802 unsigned start, size;
1804 start = max(from, block_start);
1805 size = min(to, block_end) - start;
1807 zero_user(page, start, size);
1808 set_buffer_uptodate(bh);
1811 clear_buffer_new(bh);
1812 mark_buffer_dirty(bh);
1816 block_start = block_end;
1817 bh = bh->b_this_page;
1818 } while (bh != head);
1820 EXPORT_SYMBOL(page_zero_new_buffers);
1822 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1823 get_block_t *get_block)
1825 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1826 unsigned to = from + len;
1827 struct inode *inode = page->mapping->host;
1828 unsigned block_start, block_end;
1831 unsigned blocksize, bbits;
1832 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1834 BUG_ON(!PageLocked(page));
1835 BUG_ON(from > PAGE_CACHE_SIZE);
1836 BUG_ON(to > PAGE_CACHE_SIZE);
1839 head = create_page_buffers(page, inode, 0);
1840 blocksize = head->b_size;
1841 bbits = block_size_bits(blocksize);
1843 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1845 for(bh = head, block_start = 0; bh != head || !block_start;
1846 block++, block_start=block_end, bh = bh->b_this_page) {
1847 block_end = block_start + blocksize;
1848 if (block_end <= from || block_start >= to) {
1849 if (PageUptodate(page)) {
1850 if (!buffer_uptodate(bh))
1851 set_buffer_uptodate(bh);
1856 clear_buffer_new(bh);
1857 if (!buffer_mapped(bh)) {
1858 WARN_ON(bh->b_size != blocksize);
1859 err = get_block(inode, block, bh, 1);
1862 if (buffer_new(bh)) {
1863 unmap_underlying_metadata(bh->b_bdev,
1865 if (PageUptodate(page)) {
1866 clear_buffer_new(bh);
1867 set_buffer_uptodate(bh);
1868 mark_buffer_dirty(bh);
1871 if (block_end > to || block_start < from)
1872 zero_user_segments(page,
1878 if (PageUptodate(page)) {
1879 if (!buffer_uptodate(bh))
1880 set_buffer_uptodate(bh);
1883 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1884 !buffer_unwritten(bh) &&
1885 (block_start < from || block_end > to)) {
1886 ll_rw_block(READ, 1, &bh);
1891 * If we issued read requests - let them complete.
1893 while(wait_bh > wait) {
1894 wait_on_buffer(*--wait_bh);
1895 if (!buffer_uptodate(*wait_bh))
1899 page_zero_new_buffers(page, from, to);
1902 EXPORT_SYMBOL(__block_write_begin);
1904 static int __block_commit_write(struct inode *inode, struct page *page,
1905 unsigned from, unsigned to)
1907 unsigned block_start, block_end;
1910 struct buffer_head *bh, *head;
1912 bh = head = page_buffers(page);
1913 blocksize = bh->b_size;
1917 block_end = block_start + blocksize;
1918 if (block_end <= from || block_start >= to) {
1919 if (!buffer_uptodate(bh))
1922 set_buffer_uptodate(bh);
1923 mark_buffer_dirty(bh);
1925 clear_buffer_new(bh);
1927 block_start = block_end;
1928 bh = bh->b_this_page;
1929 } while (bh != head);
1932 * If this is a partial write which happened to make all buffers
1933 * uptodate then we can optimize away a bogus readpage() for
1934 * the next read(). Here we 'discover' whether the page went
1935 * uptodate as a result of this (potentially partial) write.
1938 SetPageUptodate(page);
1943 * block_write_begin takes care of the basic task of block allocation and
1944 * bringing partial write blocks uptodate first.
1946 * The filesystem needs to handle block truncation upon failure.
1948 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1949 unsigned flags, struct page **pagep, get_block_t *get_block)
1951 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1955 page = grab_cache_page_write_begin(mapping, index, flags);
1959 status = __block_write_begin(page, pos, len, get_block);
1960 if (unlikely(status)) {
1962 page_cache_release(page);
1969 EXPORT_SYMBOL(block_write_begin);
1971 int block_write_end(struct file *file, struct address_space *mapping,
1972 loff_t pos, unsigned len, unsigned copied,
1973 struct page *page, void *fsdata)
1975 struct inode *inode = mapping->host;
1978 start = pos & (PAGE_CACHE_SIZE - 1);
1980 if (unlikely(copied < len)) {
1982 * The buffers that were written will now be uptodate, so we
1983 * don't have to worry about a readpage reading them and
1984 * overwriting a partial write. However if we have encountered
1985 * a short write and only partially written into a buffer, it
1986 * will not be marked uptodate, so a readpage might come in and
1987 * destroy our partial write.
1989 * Do the simplest thing, and just treat any short write to a
1990 * non uptodate page as a zero-length write, and force the
1991 * caller to redo the whole thing.
1993 if (!PageUptodate(page))
1996 page_zero_new_buffers(page, start+copied, start+len);
1998 flush_dcache_page(page);
2000 /* This could be a short (even 0-length) commit */
2001 __block_commit_write(inode, page, start, start+copied);
2005 EXPORT_SYMBOL(block_write_end);
2007 int generic_write_end(struct file *file, struct address_space *mapping,
2008 loff_t pos, unsigned len, unsigned copied,
2009 struct page *page, void *fsdata)
2011 struct inode *inode = mapping->host;
2012 int i_size_changed = 0;
2014 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2017 * No need to use i_size_read() here, the i_size
2018 * cannot change under us because we hold i_mutex.
2020 * But it's important to update i_size while still holding page lock:
2021 * page writeout could otherwise come in and zero beyond i_size.
2023 if (pos+copied > inode->i_size) {
2024 i_size_write(inode, pos+copied);
2029 page_cache_release(page);
2032 * Don't mark the inode dirty under page lock. First, it unnecessarily
2033 * makes the holding time of page lock longer. Second, it forces lock
2034 * ordering of page lock and transaction start for journaling
2038 mark_inode_dirty(inode);
2042 EXPORT_SYMBOL(generic_write_end);
2045 * block_is_partially_uptodate checks whether buffers within a page are
2048 * Returns true if all buffers which correspond to a file portion
2049 * we want to read are uptodate.
2051 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2054 unsigned block_start, block_end, blocksize;
2056 struct buffer_head *bh, *head;
2059 if (!page_has_buffers(page))
2062 head = page_buffers(page);
2063 blocksize = head->b_size;
2064 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2066 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2072 block_end = block_start + blocksize;
2073 if (block_end > from && block_start < to) {
2074 if (!buffer_uptodate(bh)) {
2078 if (block_end >= to)
2081 block_start = block_end;
2082 bh = bh->b_this_page;
2083 } while (bh != head);
2087 EXPORT_SYMBOL(block_is_partially_uptodate);
2090 * Generic "read page" function for block devices that have the normal
2091 * get_block functionality. This is most of the block device filesystems.
2092 * Reads the page asynchronously --- the unlock_buffer() and
2093 * set/clear_buffer_uptodate() functions propagate buffer state into the
2094 * page struct once IO has completed.
2096 int block_read_full_page(struct page *page, get_block_t *get_block)
2098 struct inode *inode = page->mapping->host;
2099 sector_t iblock, lblock;
2100 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2101 unsigned int blocksize, bbits;
2103 int fully_mapped = 1;
2105 head = create_page_buffers(page, inode, 0);
2106 blocksize = head->b_size;
2107 bbits = block_size_bits(blocksize);
2109 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2110 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2116 if (buffer_uptodate(bh))
2119 if (!buffer_mapped(bh)) {
2123 if (iblock < lblock) {
2124 WARN_ON(bh->b_size != blocksize);
2125 err = get_block(inode, iblock, bh, 0);
2129 if (!buffer_mapped(bh)) {
2130 zero_user(page, i * blocksize, blocksize);
2132 set_buffer_uptodate(bh);
2136 * get_block() might have updated the buffer
2139 if (buffer_uptodate(bh))
2143 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2146 SetPageMappedToDisk(page);
2150 * All buffers are uptodate - we can set the page uptodate
2151 * as well. But not if get_block() returned an error.
2153 if (!PageError(page))
2154 SetPageUptodate(page);
2159 /* Stage two: lock the buffers */
2160 for (i = 0; i < nr; i++) {
2163 mark_buffer_async_read(bh);
2167 * Stage 3: start the IO. Check for uptodateness
2168 * inside the buffer lock in case another process reading
2169 * the underlying blockdev brought it uptodate (the sct fix).
2171 for (i = 0; i < nr; i++) {
2173 if (buffer_uptodate(bh))
2174 end_buffer_async_read(bh, 1);
2176 submit_bh(READ, bh);
2180 EXPORT_SYMBOL(block_read_full_page);
2182 /* utility function for filesystems that need to do work on expanding
2183 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2184 * deal with the hole.
2186 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2188 struct address_space *mapping = inode->i_mapping;
2193 err = inode_newsize_ok(inode, size);
2197 err = pagecache_write_begin(NULL, mapping, size, 0,
2198 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2203 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2209 EXPORT_SYMBOL(generic_cont_expand_simple);
2211 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2212 loff_t pos, loff_t *bytes)
2214 struct inode *inode = mapping->host;
2215 unsigned blocksize = 1 << inode->i_blkbits;
2218 pgoff_t index, curidx;
2220 unsigned zerofrom, offset, len;
2223 index = pos >> PAGE_CACHE_SHIFT;
2224 offset = pos & ~PAGE_CACHE_MASK;
2226 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2227 zerofrom = curpos & ~PAGE_CACHE_MASK;
2228 if (zerofrom & (blocksize-1)) {
2229 *bytes |= (blocksize-1);
2232 len = PAGE_CACHE_SIZE - zerofrom;
2234 err = pagecache_write_begin(file, mapping, curpos, len,
2235 AOP_FLAG_UNINTERRUPTIBLE,
2239 zero_user(page, zerofrom, len);
2240 err = pagecache_write_end(file, mapping, curpos, len, len,
2247 balance_dirty_pages_ratelimited(mapping);
2250 /* page covers the boundary, find the boundary offset */
2251 if (index == curidx) {
2252 zerofrom = curpos & ~PAGE_CACHE_MASK;
2253 /* if we will expand the thing last block will be filled */
2254 if (offset <= zerofrom) {
2257 if (zerofrom & (blocksize-1)) {
2258 *bytes |= (blocksize-1);
2261 len = offset - zerofrom;
2263 err = pagecache_write_begin(file, mapping, curpos, len,
2264 AOP_FLAG_UNINTERRUPTIBLE,
2268 zero_user(page, zerofrom, len);
2269 err = pagecache_write_end(file, mapping, curpos, len, len,
2281 * For moronic filesystems that do not allow holes in file.
2282 * We may have to extend the file.
2284 int cont_write_begin(struct file *file, struct address_space *mapping,
2285 loff_t pos, unsigned len, unsigned flags,
2286 struct page **pagep, void **fsdata,
2287 get_block_t *get_block, loff_t *bytes)
2289 struct inode *inode = mapping->host;
2290 unsigned blocksize = 1 << inode->i_blkbits;
2294 err = cont_expand_zero(file, mapping, pos, bytes);
2298 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2299 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2300 *bytes |= (blocksize-1);
2304 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2306 EXPORT_SYMBOL(cont_write_begin);
2308 int block_commit_write(struct page *page, unsigned from, unsigned to)
2310 struct inode *inode = page->mapping->host;
2311 __block_commit_write(inode,page,from,to);
2314 EXPORT_SYMBOL(block_commit_write);
2317 * block_page_mkwrite() is not allowed to change the file size as it gets
2318 * called from a page fault handler when a page is first dirtied. Hence we must
2319 * be careful to check for EOF conditions here. We set the page up correctly
2320 * for a written page which means we get ENOSPC checking when writing into
2321 * holes and correct delalloc and unwritten extent mapping on filesystems that
2322 * support these features.
2324 * We are not allowed to take the i_mutex here so we have to play games to
2325 * protect against truncate races as the page could now be beyond EOF. Because
2326 * truncate writes the inode size before removing pages, once we have the
2327 * page lock we can determine safely if the page is beyond EOF. If it is not
2328 * beyond EOF, then the page is guaranteed safe against truncation until we
2331 * Direct callers of this function should protect against filesystem freezing
2332 * using sb_start_write() - sb_end_write() functions.
2334 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2335 get_block_t get_block)
2337 struct page *page = vmf->page;
2338 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2344 size = i_size_read(inode);
2345 if ((page->mapping != inode->i_mapping) ||
2346 (page_offset(page) > size)) {
2347 /* We overload EFAULT to mean page got truncated */
2352 /* page is wholly or partially inside EOF */
2353 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2354 end = size & ~PAGE_CACHE_MASK;
2356 end = PAGE_CACHE_SIZE;
2358 ret = __block_write_begin(page, 0, end, get_block);
2360 ret = block_commit_write(page, 0, end);
2362 if (unlikely(ret < 0))
2364 set_page_dirty(page);
2365 wait_on_page_writeback(page);
2371 EXPORT_SYMBOL(__block_page_mkwrite);
2373 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2374 get_block_t get_block)
2377 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2379 sb_start_pagefault(sb);
2382 * Update file times before taking page lock. We may end up failing the
2383 * fault so this update may be superfluous but who really cares...
2385 file_update_time(vma->vm_file);
2387 ret = __block_page_mkwrite(vma, vmf, get_block);
2388 sb_end_pagefault(sb);
2389 return block_page_mkwrite_return(ret);
2391 EXPORT_SYMBOL(block_page_mkwrite);
2394 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2395 * immediately, while under the page lock. So it needs a special end_io
2396 * handler which does not touch the bh after unlocking it.
2398 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2400 __end_buffer_read_notouch(bh, uptodate);
2404 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2405 * the page (converting it to circular linked list and taking care of page
2408 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2410 struct buffer_head *bh;
2412 BUG_ON(!PageLocked(page));
2414 spin_lock(&page->mapping->private_lock);
2417 if (PageDirty(page))
2418 set_buffer_dirty(bh);
2419 if (!bh->b_this_page)
2420 bh->b_this_page = head;
2421 bh = bh->b_this_page;
2422 } while (bh != head);
2423 attach_page_buffers(page, head);
2424 spin_unlock(&page->mapping->private_lock);
2428 * On entry, the page is fully not uptodate.
2429 * On exit the page is fully uptodate in the areas outside (from,to)
2430 * The filesystem needs to handle block truncation upon failure.
2432 int nobh_write_begin(struct address_space *mapping,
2433 loff_t pos, unsigned len, unsigned flags,
2434 struct page **pagep, void **fsdata,
2435 get_block_t *get_block)
2437 struct inode *inode = mapping->host;
2438 const unsigned blkbits = inode->i_blkbits;
2439 const unsigned blocksize = 1 << blkbits;
2440 struct buffer_head *head, *bh;
2444 unsigned block_in_page;
2445 unsigned block_start, block_end;
2446 sector_t block_in_file;
2449 int is_mapped_to_disk = 1;
2451 index = pos >> PAGE_CACHE_SHIFT;
2452 from = pos & (PAGE_CACHE_SIZE - 1);
2455 page = grab_cache_page_write_begin(mapping, index, flags);
2461 if (page_has_buffers(page)) {
2462 ret = __block_write_begin(page, pos, len, get_block);
2468 if (PageMappedToDisk(page))
2472 * Allocate buffers so that we can keep track of state, and potentially
2473 * attach them to the page if an error occurs. In the common case of
2474 * no error, they will just be freed again without ever being attached
2475 * to the page (which is all OK, because we're under the page lock).
2477 * Be careful: the buffer linked list is a NULL terminated one, rather
2478 * than the circular one we're used to.
2480 head = alloc_page_buffers(page, blocksize, 0);
2486 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2489 * We loop across all blocks in the page, whether or not they are
2490 * part of the affected region. This is so we can discover if the
2491 * page is fully mapped-to-disk.
2493 for (block_start = 0, block_in_page = 0, bh = head;
2494 block_start < PAGE_CACHE_SIZE;
2495 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2498 block_end = block_start + blocksize;
2501 if (block_start >= to)
2503 ret = get_block(inode, block_in_file + block_in_page,
2507 if (!buffer_mapped(bh))
2508 is_mapped_to_disk = 0;
2510 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2511 if (PageUptodate(page)) {
2512 set_buffer_uptodate(bh);
2515 if (buffer_new(bh) || !buffer_mapped(bh)) {
2516 zero_user_segments(page, block_start, from,
2520 if (buffer_uptodate(bh))
2521 continue; /* reiserfs does this */
2522 if (block_start < from || block_end > to) {
2524 bh->b_end_io = end_buffer_read_nobh;
2525 submit_bh(READ, bh);
2532 * The page is locked, so these buffers are protected from
2533 * any VM or truncate activity. Hence we don't need to care
2534 * for the buffer_head refcounts.
2536 for (bh = head; bh; bh = bh->b_this_page) {
2538 if (!buffer_uptodate(bh))
2545 if (is_mapped_to_disk)
2546 SetPageMappedToDisk(page);
2548 *fsdata = head; /* to be released by nobh_write_end */
2555 * Error recovery is a bit difficult. We need to zero out blocks that
2556 * were newly allocated, and dirty them to ensure they get written out.
2557 * Buffers need to be attached to the page at this point, otherwise
2558 * the handling of potential IO errors during writeout would be hard
2559 * (could try doing synchronous writeout, but what if that fails too?)
2561 attach_nobh_buffers(page, head);
2562 page_zero_new_buffers(page, from, to);
2566 page_cache_release(page);
2571 EXPORT_SYMBOL(nobh_write_begin);
2573 int nobh_write_end(struct file *file, struct address_space *mapping,
2574 loff_t pos, unsigned len, unsigned copied,
2575 struct page *page, void *fsdata)
2577 struct inode *inode = page->mapping->host;
2578 struct buffer_head *head = fsdata;
2579 struct buffer_head *bh;
2580 BUG_ON(fsdata != NULL && page_has_buffers(page));
2582 if (unlikely(copied < len) && head)
2583 attach_nobh_buffers(page, head);
2584 if (page_has_buffers(page))
2585 return generic_write_end(file, mapping, pos, len,
2586 copied, page, fsdata);
2588 SetPageUptodate(page);
2589 set_page_dirty(page);
2590 if (pos+copied > inode->i_size) {
2591 i_size_write(inode, pos+copied);
2592 mark_inode_dirty(inode);
2596 page_cache_release(page);
2600 head = head->b_this_page;
2601 free_buffer_head(bh);
2606 EXPORT_SYMBOL(nobh_write_end);
2609 * nobh_writepage() - based on block_full_write_page() except
2610 * that it tries to operate without attaching bufferheads to
2613 int nobh_writepage(struct page *page, get_block_t *get_block,
2614 struct writeback_control *wbc)
2616 struct inode * const inode = page->mapping->host;
2617 loff_t i_size = i_size_read(inode);
2618 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2622 /* Is the page fully inside i_size? */
2623 if (page->index < end_index)
2626 /* Is the page fully outside i_size? (truncate in progress) */
2627 offset = i_size & (PAGE_CACHE_SIZE-1);
2628 if (page->index >= end_index+1 || !offset) {
2630 * The page may have dirty, unmapped buffers. For example,
2631 * they may have been added in ext3_writepage(). Make them
2632 * freeable here, so the page does not leak.
2635 /* Not really sure about this - do we need this ? */
2636 if (page->mapping->a_ops->invalidatepage)
2637 page->mapping->a_ops->invalidatepage(page, offset);
2640 return 0; /* don't care */
2644 * The page straddles i_size. It must be zeroed out on each and every
2645 * writepage invocation because it may be mmapped. "A file is mapped
2646 * in multiples of the page size. For a file that is not a multiple of
2647 * the page size, the remaining memory is zeroed when mapped, and
2648 * writes to that region are not written out to the file."
2650 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2652 ret = mpage_writepage(page, get_block, wbc);
2654 ret = __block_write_full_page(inode, page, get_block, wbc,
2655 end_buffer_async_write);
2658 EXPORT_SYMBOL(nobh_writepage);
2660 int nobh_truncate_page(struct address_space *mapping,
2661 loff_t from, get_block_t *get_block)
2663 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2664 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2667 unsigned length, pos;
2668 struct inode *inode = mapping->host;
2670 struct buffer_head map_bh;
2673 blocksize = 1 << inode->i_blkbits;
2674 length = offset & (blocksize - 1);
2676 /* Block boundary? Nothing to do */
2680 length = blocksize - length;
2681 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2683 page = grab_cache_page(mapping, index);
2688 if (page_has_buffers(page)) {
2691 page_cache_release(page);
2692 return block_truncate_page(mapping, from, get_block);
2695 /* Find the buffer that contains "offset" */
2697 while (offset >= pos) {
2702 map_bh.b_size = blocksize;
2704 err = get_block(inode, iblock, &map_bh, 0);
2707 /* unmapped? It's a hole - nothing to do */
2708 if (!buffer_mapped(&map_bh))
2711 /* Ok, it's mapped. Make sure it's up-to-date */
2712 if (!PageUptodate(page)) {
2713 err = mapping->a_ops->readpage(NULL, page);
2715 page_cache_release(page);
2719 if (!PageUptodate(page)) {
2723 if (page_has_buffers(page))
2726 zero_user(page, offset, length);
2727 set_page_dirty(page);
2732 page_cache_release(page);
2736 EXPORT_SYMBOL(nobh_truncate_page);
2738 int block_truncate_page(struct address_space *mapping,
2739 loff_t from, get_block_t *get_block)
2741 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2742 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2745 unsigned length, pos;
2746 struct inode *inode = mapping->host;
2748 struct buffer_head *bh;
2751 blocksize = 1 << inode->i_blkbits;
2752 length = offset & (blocksize - 1);
2754 /* Block boundary? Nothing to do */
2758 length = blocksize - length;
2759 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2761 page = grab_cache_page(mapping, index);
2766 if (!page_has_buffers(page))
2767 create_empty_buffers(page, blocksize, 0);
2769 /* Find the buffer that contains "offset" */
2770 bh = page_buffers(page);
2772 while (offset >= pos) {
2773 bh = bh->b_this_page;
2779 if (!buffer_mapped(bh)) {
2780 WARN_ON(bh->b_size != blocksize);
2781 err = get_block(inode, iblock, bh, 0);
2784 /* unmapped? It's a hole - nothing to do */
2785 if (!buffer_mapped(bh))
2789 /* Ok, it's mapped. Make sure it's up-to-date */
2790 if (PageUptodate(page))
2791 set_buffer_uptodate(bh);
2793 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2795 ll_rw_block(READ, 1, &bh);
2797 /* Uhhuh. Read error. Complain and punt. */
2798 if (!buffer_uptodate(bh))
2802 zero_user(page, offset, length);
2803 mark_buffer_dirty(bh);
2808 page_cache_release(page);
2812 EXPORT_SYMBOL(block_truncate_page);
2815 * The generic ->writepage function for buffer-backed address_spaces
2816 * this form passes in the end_io handler used to finish the IO.
2818 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2819 struct writeback_control *wbc, bh_end_io_t *handler)
2821 struct inode * const inode = page->mapping->host;
2822 loff_t i_size = i_size_read(inode);
2823 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2826 /* Is the page fully inside i_size? */
2827 if (page->index < end_index)
2828 return __block_write_full_page(inode, page, get_block, wbc,
2831 /* Is the page fully outside i_size? (truncate in progress) */
2832 offset = i_size & (PAGE_CACHE_SIZE-1);
2833 if (page->index >= end_index+1 || !offset) {
2835 * The page may have dirty, unmapped buffers. For example,
2836 * they may have been added in ext3_writepage(). Make them
2837 * freeable here, so the page does not leak.
2839 do_invalidatepage(page, 0);
2841 return 0; /* don't care */
2845 * The page straddles i_size. It must be zeroed out on each and every
2846 * writepage invocation because it may be mmapped. "A file is mapped
2847 * in multiples of the page size. For a file that is not a multiple of
2848 * the page size, the remaining memory is zeroed when mapped, and
2849 * writes to that region are not written out to the file."
2851 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2852 return __block_write_full_page(inode, page, get_block, wbc, handler);
2854 EXPORT_SYMBOL(block_write_full_page_endio);
2857 * The generic ->writepage function for buffer-backed address_spaces
2859 int block_write_full_page(struct page *page, get_block_t *get_block,
2860 struct writeback_control *wbc)
2862 return block_write_full_page_endio(page, get_block, wbc,
2863 end_buffer_async_write);
2865 EXPORT_SYMBOL(block_write_full_page);
2867 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2868 get_block_t *get_block)
2870 struct buffer_head tmp;
2871 struct inode *inode = mapping->host;
2874 tmp.b_size = 1 << inode->i_blkbits;
2875 get_block(inode, block, &tmp, 0);
2876 return tmp.b_blocknr;
2878 EXPORT_SYMBOL(generic_block_bmap);
2880 static void end_bio_bh_io_sync(struct bio *bio, int err)
2882 struct buffer_head *bh = bio->bi_private;
2884 if (err == -EOPNOTSUPP) {
2885 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2888 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2889 set_bit(BH_Quiet, &bh->b_state);
2891 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2896 * This allows us to do IO even on the odd last sectors
2897 * of a device, even if the bh block size is some multiple
2898 * of the physical sector size.
2900 * We'll just truncate the bio to the size of the device,
2901 * and clear the end of the buffer head manually.
2903 * Truly out-of-range accesses will turn into actual IO
2904 * errors, this only handles the "we need to be able to
2905 * do IO at the final sector" case.
2907 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2912 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2917 * If the *whole* IO is past the end of the device,
2918 * let it through, and the IO layer will turn it into
2921 if (unlikely(bio->bi_sector >= maxsector))
2924 maxsector -= bio->bi_sector;
2925 bytes = bio->bi_size;
2926 if (likely((bytes >> 9) <= maxsector))
2929 /* Uhhuh. We've got a bh that straddles the device size! */
2930 bytes = maxsector << 9;
2932 /* Truncate the bio.. */
2933 bio->bi_size = bytes;
2934 bio->bi_io_vec[0].bv_len = bytes;
2936 /* ..and clear the end of the buffer for reads */
2937 if ((rw & RW_MASK) == READ) {
2938 void *kaddr = kmap_atomic(bh->b_page);
2939 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2940 kunmap_atomic(kaddr);
2944 int submit_bh(int rw, struct buffer_head * bh)
2949 BUG_ON(!buffer_locked(bh));
2950 BUG_ON(!buffer_mapped(bh));
2951 BUG_ON(!bh->b_end_io);
2952 BUG_ON(buffer_delay(bh));
2953 BUG_ON(buffer_unwritten(bh));
2956 * Only clear out a write error when rewriting
2958 if (test_set_buffer_req(bh) && (rw & WRITE))
2959 clear_buffer_write_io_error(bh);
2962 * from here on down, it's all bio -- do the initial mapping,
2963 * submit_bio -> generic_make_request may further map this bio around
2965 bio = bio_alloc(GFP_NOIO, 1);
2967 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2968 bio->bi_bdev = bh->b_bdev;
2969 bio->bi_io_vec[0].bv_page = bh->b_page;
2970 bio->bi_io_vec[0].bv_len = bh->b_size;
2971 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2975 bio->bi_size = bh->b_size;
2977 bio->bi_end_io = end_bio_bh_io_sync;
2978 bio->bi_private = bh;
2980 /* Take care of bh's that straddle the end of the device */
2981 guard_bh_eod(rw, bio, bh);
2984 submit_bio(rw, bio);
2986 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2992 EXPORT_SYMBOL(submit_bh);
2995 * ll_rw_block: low-level access to block devices (DEPRECATED)
2996 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2997 * @nr: number of &struct buffer_heads in the array
2998 * @bhs: array of pointers to &struct buffer_head
3000 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3001 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3002 * %READA option is described in the documentation for generic_make_request()
3003 * which ll_rw_block() calls.
3005 * This function drops any buffer that it cannot get a lock on (with the
3006 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3007 * request, and any buffer that appears to be up-to-date when doing read
3008 * request. Further it marks as clean buffers that are processed for
3009 * writing (the buffer cache won't assume that they are actually clean
3010 * until the buffer gets unlocked).
3012 * ll_rw_block sets b_end_io to simple completion handler that marks
3013 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3016 * All of the buffers must be for the same device, and must also be a
3017 * multiple of the current approved size for the device.
3019 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3023 for (i = 0; i < nr; i++) {
3024 struct buffer_head *bh = bhs[i];
3026 if (!trylock_buffer(bh))
3029 if (test_clear_buffer_dirty(bh)) {
3030 bh->b_end_io = end_buffer_write_sync;
3032 submit_bh(WRITE, bh);
3036 if (!buffer_uptodate(bh)) {
3037 bh->b_end_io = end_buffer_read_sync;
3046 EXPORT_SYMBOL(ll_rw_block);
3048 void write_dirty_buffer(struct buffer_head *bh, int rw)
3051 if (!test_clear_buffer_dirty(bh)) {
3055 bh->b_end_io = end_buffer_write_sync;
3059 EXPORT_SYMBOL(write_dirty_buffer);
3062 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3063 * and then start new I/O and then wait upon it. The caller must have a ref on
3066 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3070 WARN_ON(atomic_read(&bh->b_count) < 1);
3072 if (test_clear_buffer_dirty(bh)) {
3074 bh->b_end_io = end_buffer_write_sync;
3075 ret = submit_bh(rw, bh);
3077 if (!ret && !buffer_uptodate(bh))
3084 EXPORT_SYMBOL(__sync_dirty_buffer);
3086 int sync_dirty_buffer(struct buffer_head *bh)
3088 return __sync_dirty_buffer(bh, WRITE_SYNC);
3090 EXPORT_SYMBOL(sync_dirty_buffer);
3093 * try_to_free_buffers() checks if all the buffers on this particular page
3094 * are unused, and releases them if so.
3096 * Exclusion against try_to_free_buffers may be obtained by either
3097 * locking the page or by holding its mapping's private_lock.
3099 * If the page is dirty but all the buffers are clean then we need to
3100 * be sure to mark the page clean as well. This is because the page
3101 * may be against a block device, and a later reattachment of buffers
3102 * to a dirty page will set *all* buffers dirty. Which would corrupt
3103 * filesystem data on the same device.
3105 * The same applies to regular filesystem pages: if all the buffers are
3106 * clean then we set the page clean and proceed. To do that, we require
3107 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3110 * try_to_free_buffers() is non-blocking.
3112 static inline int buffer_busy(struct buffer_head *bh)
3114 return atomic_read(&bh->b_count) |
3115 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3119 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3121 struct buffer_head *head = page_buffers(page);
3122 struct buffer_head *bh;
3126 if (buffer_write_io_error(bh) && page->mapping)
3127 set_bit(AS_EIO, &page->mapping->flags);
3128 if (buffer_busy(bh))
3130 bh = bh->b_this_page;
3131 } while (bh != head);
3134 struct buffer_head *next = bh->b_this_page;
3136 if (bh->b_assoc_map)
3137 __remove_assoc_queue(bh);
3139 } while (bh != head);
3140 *buffers_to_free = head;
3141 __clear_page_buffers(page);
3147 int try_to_free_buffers(struct page *page)
3149 struct address_space * const mapping = page->mapping;
3150 struct buffer_head *buffers_to_free = NULL;
3153 BUG_ON(!PageLocked(page));
3154 if (PageWriteback(page))
3157 if (mapping == NULL) { /* can this still happen? */
3158 ret = drop_buffers(page, &buffers_to_free);
3162 spin_lock(&mapping->private_lock);
3163 ret = drop_buffers(page, &buffers_to_free);
3166 * If the filesystem writes its buffers by hand (eg ext3)
3167 * then we can have clean buffers against a dirty page. We
3168 * clean the page here; otherwise the VM will never notice
3169 * that the filesystem did any IO at all.
3171 * Also, during truncate, discard_buffer will have marked all
3172 * the page's buffers clean. We discover that here and clean
3175 * private_lock must be held over this entire operation in order
3176 * to synchronise against __set_page_dirty_buffers and prevent the
3177 * dirty bit from being lost.
3180 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3181 spin_unlock(&mapping->private_lock);
3183 if (buffers_to_free) {
3184 struct buffer_head *bh = buffers_to_free;
3187 struct buffer_head *next = bh->b_this_page;
3188 free_buffer_head(bh);
3190 } while (bh != buffers_to_free);
3194 EXPORT_SYMBOL(try_to_free_buffers);
3197 * There are no bdflush tunables left. But distributions are
3198 * still running obsolete flush daemons, so we terminate them here.
3200 * Use of bdflush() is deprecated and will be removed in a future kernel.
3201 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3203 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3205 static int msg_count;
3207 if (!capable(CAP_SYS_ADMIN))
3210 if (msg_count < 5) {
3213 "warning: process `%s' used the obsolete bdflush"
3214 " system call\n", current->comm);
3215 printk(KERN_INFO "Fix your initscripts?\n");
3224 * Buffer-head allocation
3226 static struct kmem_cache *bh_cachep __read_mostly;
3229 * Once the number of bh's in the machine exceeds this level, we start
3230 * stripping them in writeback.
3232 static int max_buffer_heads;
3234 int buffer_heads_over_limit;
3236 struct bh_accounting {
3237 int nr; /* Number of live bh's */
3238 int ratelimit; /* Limit cacheline bouncing */
3241 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3243 static void recalc_bh_state(void)
3248 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3250 __this_cpu_write(bh_accounting.ratelimit, 0);
3251 for_each_online_cpu(i)
3252 tot += per_cpu(bh_accounting, i).nr;
3253 buffer_heads_over_limit = (tot > max_buffer_heads);
3256 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3258 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3260 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3262 __this_cpu_inc(bh_accounting.nr);
3268 EXPORT_SYMBOL(alloc_buffer_head);
3270 void free_buffer_head(struct buffer_head *bh)
3272 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3273 kmem_cache_free(bh_cachep, bh);
3275 __this_cpu_dec(bh_accounting.nr);
3279 EXPORT_SYMBOL(free_buffer_head);
3281 static void buffer_exit_cpu(int cpu)
3284 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3286 for (i = 0; i < BH_LRU_SIZE; i++) {
3290 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3291 per_cpu(bh_accounting, cpu).nr = 0;
3294 static int buffer_cpu_notify(struct notifier_block *self,
3295 unsigned long action, void *hcpu)
3297 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3298 buffer_exit_cpu((unsigned long)hcpu);
3303 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3304 * @bh: struct buffer_head
3306 * Return true if the buffer is up-to-date and false,
3307 * with the buffer locked, if not.
3309 int bh_uptodate_or_lock(struct buffer_head *bh)
3311 if (!buffer_uptodate(bh)) {
3313 if (!buffer_uptodate(bh))
3319 EXPORT_SYMBOL(bh_uptodate_or_lock);
3322 * bh_submit_read - Submit a locked buffer for reading
3323 * @bh: struct buffer_head
3325 * Returns zero on success and -EIO on error.
3327 int bh_submit_read(struct buffer_head *bh)
3329 BUG_ON(!buffer_locked(bh));
3331 if (buffer_uptodate(bh)) {
3337 bh->b_end_io = end_buffer_read_sync;
3338 submit_bh(READ, bh);
3340 if (buffer_uptodate(bh))
3344 EXPORT_SYMBOL(bh_submit_read);
3346 void __init buffer_init(void)
3350 bh_cachep = kmem_cache_create("buffer_head",
3351 sizeof(struct buffer_head), 0,
3352 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3357 * Limit the bh occupancy to 10% of ZONE_NORMAL
3359 nrpages = (nr_free_buffer_pages() * 10) / 100;
3360 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3361 hotcpu_notifier(buffer_cpu_notify, 0);