slab: propagate tunable values
[~shefty/rdma-dev.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26
27 struct mem_cgroup;
28 struct page_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32
33 /* Stats that can be updated by kernel. */
34 enum mem_cgroup_page_stat_item {
35         MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */
36 };
37
38 struct mem_cgroup_reclaim_cookie {
39         struct zone *zone;
40         int priority;
41         unsigned int generation;
42 };
43
44 #ifdef CONFIG_MEMCG
45 /*
46  * All "charge" functions with gfp_mask should use GFP_KERNEL or
47  * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
48  * alloc memory but reclaims memory from all available zones. So, "where I want
49  * memory from" bits of gfp_mask has no meaning. So any bits of that field is
50  * available but adding a rule is better. charge functions' gfp_mask should
51  * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
52  * codes.
53  * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
54  */
55
56 extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
57                                 gfp_t gfp_mask);
58 /* for swap handling */
59 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
60                 struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
61 extern void mem_cgroup_commit_charge_swapin(struct page *page,
62                                         struct mem_cgroup *memcg);
63 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
64
65 extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
66                                         gfp_t gfp_mask);
67
68 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
69 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
70
71 /* For coalescing uncharge for reducing memcg' overhead*/
72 extern void mem_cgroup_uncharge_start(void);
73 extern void mem_cgroup_uncharge_end(void);
74
75 extern void mem_cgroup_uncharge_page(struct page *page);
76 extern void mem_cgroup_uncharge_cache_page(struct page *page);
77
78 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
79                                   struct mem_cgroup *memcg);
80 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg);
81
82 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
83 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
84 extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
85
86 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
87 extern struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont);
88
89 static inline
90 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
91 {
92         struct mem_cgroup *task_memcg;
93         bool match;
94
95         rcu_read_lock();
96         task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
97         match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
98         rcu_read_unlock();
99         return match;
100 }
101
102 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
103
104 extern void
105 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
106                              struct mem_cgroup **memcgp);
107 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
108         struct page *oldpage, struct page *newpage, bool migration_ok);
109
110 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
111                                    struct mem_cgroup *,
112                                    struct mem_cgroup_reclaim_cookie *);
113 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
114
115 /*
116  * For memory reclaim.
117  */
118 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
119 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec);
120 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
121 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
122 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
123 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
124                                         struct task_struct *p);
125 extern void mem_cgroup_replace_page_cache(struct page *oldpage,
126                                         struct page *newpage);
127
128 #ifdef CONFIG_MEMCG_SWAP
129 extern int do_swap_account;
130 #endif
131
132 static inline bool mem_cgroup_disabled(void)
133 {
134         if (mem_cgroup_subsys.disabled)
135                 return true;
136         return false;
137 }
138
139 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
140                                          unsigned long *flags);
141
142 extern atomic_t memcg_moving;
143
144 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
145                                         bool *locked, unsigned long *flags)
146 {
147         if (mem_cgroup_disabled())
148                 return;
149         rcu_read_lock();
150         *locked = false;
151         if (atomic_read(&memcg_moving))
152                 __mem_cgroup_begin_update_page_stat(page, locked, flags);
153 }
154
155 void __mem_cgroup_end_update_page_stat(struct page *page,
156                                 unsigned long *flags);
157 static inline void mem_cgroup_end_update_page_stat(struct page *page,
158                                         bool *locked, unsigned long *flags)
159 {
160         if (mem_cgroup_disabled())
161                 return;
162         if (*locked)
163                 __mem_cgroup_end_update_page_stat(page, flags);
164         rcu_read_unlock();
165 }
166
167 void mem_cgroup_update_page_stat(struct page *page,
168                                  enum mem_cgroup_page_stat_item idx,
169                                  int val);
170
171 static inline void mem_cgroup_inc_page_stat(struct page *page,
172                                             enum mem_cgroup_page_stat_item idx)
173 {
174         mem_cgroup_update_page_stat(page, idx, 1);
175 }
176
177 static inline void mem_cgroup_dec_page_stat(struct page *page,
178                                             enum mem_cgroup_page_stat_item idx)
179 {
180         mem_cgroup_update_page_stat(page, idx, -1);
181 }
182
183 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
184                                                 gfp_t gfp_mask,
185                                                 unsigned long *total_scanned);
186
187 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
188 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
189                                              enum vm_event_item idx)
190 {
191         if (mem_cgroup_disabled())
192                 return;
193         __mem_cgroup_count_vm_event(mm, idx);
194 }
195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
196 void mem_cgroup_split_huge_fixup(struct page *head);
197 #endif
198
199 #ifdef CONFIG_DEBUG_VM
200 bool mem_cgroup_bad_page_check(struct page *page);
201 void mem_cgroup_print_bad_page(struct page *page);
202 #endif
203 #else /* CONFIG_MEMCG */
204 struct mem_cgroup;
205
206 static inline int mem_cgroup_newpage_charge(struct page *page,
207                                         struct mm_struct *mm, gfp_t gfp_mask)
208 {
209         return 0;
210 }
211
212 static inline int mem_cgroup_cache_charge(struct page *page,
213                                         struct mm_struct *mm, gfp_t gfp_mask)
214 {
215         return 0;
216 }
217
218 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
219                 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
220 {
221         return 0;
222 }
223
224 static inline void mem_cgroup_commit_charge_swapin(struct page *page,
225                                           struct mem_cgroup *memcg)
226 {
227 }
228
229 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
230 {
231 }
232
233 static inline void mem_cgroup_uncharge_start(void)
234 {
235 }
236
237 static inline void mem_cgroup_uncharge_end(void)
238 {
239 }
240
241 static inline void mem_cgroup_uncharge_page(struct page *page)
242 {
243 }
244
245 static inline void mem_cgroup_uncharge_cache_page(struct page *page)
246 {
247 }
248
249 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
250                                                     struct mem_cgroup *memcg)
251 {
252         return &zone->lruvec;
253 }
254
255 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
256                                                     struct zone *zone)
257 {
258         return &zone->lruvec;
259 }
260
261 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
262 {
263         return NULL;
264 }
265
266 static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
267 {
268         return NULL;
269 }
270
271 static inline bool mm_match_cgroup(struct mm_struct *mm,
272                 struct mem_cgroup *memcg)
273 {
274         return true;
275 }
276
277 static inline int task_in_mem_cgroup(struct task_struct *task,
278                                      const struct mem_cgroup *memcg)
279 {
280         return 1;
281 }
282
283 static inline struct cgroup_subsys_state
284                 *mem_cgroup_css(struct mem_cgroup *memcg)
285 {
286         return NULL;
287 }
288
289 static inline void
290 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
291                              struct mem_cgroup **memcgp)
292 {
293 }
294
295 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
296                 struct page *oldpage, struct page *newpage, bool migration_ok)
297 {
298 }
299
300 static inline struct mem_cgroup *
301 mem_cgroup_iter(struct mem_cgroup *root,
302                 struct mem_cgroup *prev,
303                 struct mem_cgroup_reclaim_cookie *reclaim)
304 {
305         return NULL;
306 }
307
308 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
309                                          struct mem_cgroup *prev)
310 {
311 }
312
313 static inline bool mem_cgroup_disabled(void)
314 {
315         return true;
316 }
317
318 static inline int
319 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
320 {
321         return 1;
322 }
323
324 static inline int
325 mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
326 {
327         return 1;
328 }
329
330 static inline unsigned long
331 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
332 {
333         return 0;
334 }
335
336 static inline void
337 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
338                               int increment)
339 {
340 }
341
342 static inline void
343 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
344 {
345 }
346
347 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
348                                         bool *locked, unsigned long *flags)
349 {
350 }
351
352 static inline void mem_cgroup_end_update_page_stat(struct page *page,
353                                         bool *locked, unsigned long *flags)
354 {
355 }
356
357 static inline void mem_cgroup_inc_page_stat(struct page *page,
358                                             enum mem_cgroup_page_stat_item idx)
359 {
360 }
361
362 static inline void mem_cgroup_dec_page_stat(struct page *page,
363                                             enum mem_cgroup_page_stat_item idx)
364 {
365 }
366
367 static inline
368 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
369                                             gfp_t gfp_mask,
370                                             unsigned long *total_scanned)
371 {
372         return 0;
373 }
374
375 static inline void mem_cgroup_split_huge_fixup(struct page *head)
376 {
377 }
378
379 static inline
380 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
381 {
382 }
383 static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
384                                 struct page *newpage)
385 {
386 }
387 #endif /* CONFIG_MEMCG */
388
389 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
390 static inline bool
391 mem_cgroup_bad_page_check(struct page *page)
392 {
393         return false;
394 }
395
396 static inline void
397 mem_cgroup_print_bad_page(struct page *page)
398 {
399 }
400 #endif
401
402 enum {
403         UNDER_LIMIT,
404         SOFT_LIMIT,
405         OVER_LIMIT,
406 };
407
408 struct sock;
409 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
410 void sock_update_memcg(struct sock *sk);
411 void sock_release_memcg(struct sock *sk);
412 #else
413 static inline void sock_update_memcg(struct sock *sk)
414 {
415 }
416 static inline void sock_release_memcg(struct sock *sk)
417 {
418 }
419 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
420
421 #ifdef CONFIG_MEMCG_KMEM
422 extern struct static_key memcg_kmem_enabled_key;
423
424 extern int memcg_limited_groups_array_size;
425 #define for_each_memcg_cache_index(_idx)        \
426         for ((_idx) = 0; i < memcg_limited_groups_array_size; (_idx)++)
427
428 static inline bool memcg_kmem_enabled(void)
429 {
430         return static_key_false(&memcg_kmem_enabled_key);
431 }
432
433 /*
434  * In general, we'll do everything in our power to not incur in any overhead
435  * for non-memcg users for the kmem functions. Not even a function call, if we
436  * can avoid it.
437  *
438  * Therefore, we'll inline all those functions so that in the best case, we'll
439  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
440  * we'll still do most of the flag checking inline. We check a lot of
441  * conditions, but because they are pretty simple, they are expected to be
442  * fast.
443  */
444 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
445                                         int order);
446 void __memcg_kmem_commit_charge(struct page *page,
447                                        struct mem_cgroup *memcg, int order);
448 void __memcg_kmem_uncharge_pages(struct page *page, int order);
449
450 int memcg_cache_id(struct mem_cgroup *memcg);
451 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
452                          struct kmem_cache *root_cache);
453 void memcg_release_cache(struct kmem_cache *cachep);
454 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);
455
456 int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
457 void memcg_update_array_size(int num_groups);
458
459 struct kmem_cache *
460 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
461
462 void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
463 void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
464
465 /**
466  * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
467  * @gfp: the gfp allocation flags.
468  * @memcg: a pointer to the memcg this was charged against.
469  * @order: allocation order.
470  *
471  * returns true if the memcg where the current task belongs can hold this
472  * allocation.
473  *
474  * We return true automatically if this allocation is not to be accounted to
475  * any memcg.
476  */
477 static inline bool
478 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
479 {
480         if (!memcg_kmem_enabled())
481                 return true;
482
483         /*
484          * __GFP_NOFAIL allocations will move on even if charging is not
485          * possible. Therefore we don't even try, and have this allocation
486          * unaccounted. We could in theory charge it with
487          * res_counter_charge_nofail, but we hope those allocations are rare,
488          * and won't be worth the trouble.
489          */
490         if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
491                 return true;
492         if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
493                 return true;
494
495         /* If the test is dying, just let it go. */
496         if (unlikely(fatal_signal_pending(current)))
497                 return true;
498
499         return __memcg_kmem_newpage_charge(gfp, memcg, order);
500 }
501
502 /**
503  * memcg_kmem_uncharge_pages: uncharge pages from memcg
504  * @page: pointer to struct page being freed
505  * @order: allocation order.
506  *
507  * there is no need to specify memcg here, since it is embedded in page_cgroup
508  */
509 static inline void
510 memcg_kmem_uncharge_pages(struct page *page, int order)
511 {
512         if (memcg_kmem_enabled())
513                 __memcg_kmem_uncharge_pages(page, order);
514 }
515
516 /**
517  * memcg_kmem_commit_charge: embeds correct memcg in a page
518  * @page: pointer to struct page recently allocated
519  * @memcg: the memcg structure we charged against
520  * @order: allocation order.
521  *
522  * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
523  * failure of the allocation. if @page is NULL, this function will revert the
524  * charges. Otherwise, it will commit the memcg given by @memcg to the
525  * corresponding page_cgroup.
526  */
527 static inline void
528 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
529 {
530         if (memcg_kmem_enabled() && memcg)
531                 __memcg_kmem_commit_charge(page, memcg, order);
532 }
533
534 /**
535  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
536  * @cachep: the original global kmem cache
537  * @gfp: allocation flags.
538  *
539  * This function assumes that the task allocating, which determines the memcg
540  * in the page allocator, belongs to the same cgroup throughout the whole
541  * process.  Misacounting can happen if the task calls memcg_kmem_get_cache()
542  * while belonging to a cgroup, and later on changes. This is considered
543  * acceptable, and should only happen upon task migration.
544  *
545  * Before the cache is created by the memcg core, there is also a possible
546  * imbalance: the task belongs to a memcg, but the cache being allocated from
547  * is the global cache, since the child cache is not yet guaranteed to be
548  * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
549  * passed and the page allocator will not attempt any cgroup accounting.
550  */
551 static __always_inline struct kmem_cache *
552 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
553 {
554         if (!memcg_kmem_enabled())
555                 return cachep;
556         if (gfp & __GFP_NOFAIL)
557                 return cachep;
558         if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
559                 return cachep;
560         if (unlikely(fatal_signal_pending(current)))
561                 return cachep;
562
563         return __memcg_kmem_get_cache(cachep, gfp);
564 }
565 #else
566 #define for_each_memcg_cache_index(_idx)        \
567         for (; NULL; )
568
569 static inline bool memcg_kmem_enabled(void)
570 {
571         return false;
572 }
573
574 static inline bool
575 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
576 {
577         return true;
578 }
579
580 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
581 {
582 }
583
584 static inline void
585 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
586 {
587 }
588
589 static inline int memcg_cache_id(struct mem_cgroup *memcg)
590 {
591         return -1;
592 }
593
594 static inline int
595 memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
596                      struct kmem_cache *root_cache)
597 {
598         return 0;
599 }
600
601 static inline void memcg_release_cache(struct kmem_cache *cachep)
602 {
603 }
604
605 static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
606                                         struct kmem_cache *s)
607 {
608 }
609
610 static inline struct kmem_cache *
611 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
612 {
613         return cachep;
614 }
615
616 static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
617 {
618 }
619 #endif /* CONFIG_MEMCG_KMEM */
620 #endif /* _LINUX_MEMCONTROL_H */
621