ia64: kill thread_matches(), unexport ptrace_check_attach()
[~shefty/rdma-dev.git] / include / linux / ptrace.h
1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3
4 #include <linux/compiler.h>             /* For unlikely.  */
5 #include <linux/sched.h>                /* For struct task_struct.  */
6 #include <linux/err.h>                  /* for IS_ERR_VALUE */
7 #include <linux/bug.h>                  /* For BUG_ON.  */
8 #include <uapi/linux/ptrace.h>
9
10 /*
11  * Ptrace flags
12  *
13  * The owner ship rules for task->ptrace which holds the ptrace
14  * flags is simple.  When a task is running it owns it's task->ptrace
15  * flags.  When the a task is stopped the ptracer owns task->ptrace.
16  */
17
18 #define PT_SEIZED       0x00010000      /* SEIZE used, enable new behavior */
19 #define PT_PTRACED      0x00000001
20 #define PT_DTRACE       0x00000002      /* delayed trace (used on m68k, i386) */
21 #define PT_PTRACE_CAP   0x00000004      /* ptracer can follow suid-exec */
22
23 #define PT_OPT_FLAG_SHIFT       3
24 /* PT_TRACE_* event enable flags */
25 #define PT_EVENT_FLAG(event)    (1 << (PT_OPT_FLAG_SHIFT + (event)))
26 #define PT_TRACESYSGOOD         PT_EVENT_FLAG(0)
27 #define PT_TRACE_FORK           PT_EVENT_FLAG(PTRACE_EVENT_FORK)
28 #define PT_TRACE_VFORK          PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
29 #define PT_TRACE_CLONE          PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
30 #define PT_TRACE_EXEC           PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
31 #define PT_TRACE_VFORK_DONE     PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
32 #define PT_TRACE_EXIT           PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
33 #define PT_TRACE_SECCOMP        PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
34
35 #define PT_EXITKILL             (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
36
37 /* single stepping state bits (used on ARM and PA-RISC) */
38 #define PT_SINGLESTEP_BIT       31
39 #define PT_SINGLESTEP           (1<<PT_SINGLESTEP_BIT)
40 #define PT_BLOCKSTEP_BIT        30
41 #define PT_BLOCKSTEP            (1<<PT_BLOCKSTEP_BIT)
42
43 extern long arch_ptrace(struct task_struct *child, long request,
44                         unsigned long addr, unsigned long data);
45 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
46 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
47 extern void ptrace_disable(struct task_struct *);
48 extern int ptrace_request(struct task_struct *child, long request,
49                           unsigned long addr, unsigned long data);
50 extern void ptrace_notify(int exit_code);
51 extern void __ptrace_link(struct task_struct *child,
52                           struct task_struct *new_parent);
53 extern void __ptrace_unlink(struct task_struct *child);
54 extern void exit_ptrace(struct task_struct *tracer);
55 #define PTRACE_MODE_READ        0x01
56 #define PTRACE_MODE_ATTACH      0x02
57 #define PTRACE_MODE_NOAUDIT     0x04
58 /* Returns true on success, false on denial. */
59 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
60
61 static inline int ptrace_reparented(struct task_struct *child)
62 {
63         return !same_thread_group(child->real_parent, child->parent);
64 }
65
66 static inline void ptrace_unlink(struct task_struct *child)
67 {
68         if (unlikely(child->ptrace))
69                 __ptrace_unlink(child);
70 }
71
72 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
73                             unsigned long data);
74 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
75                             unsigned long data);
76
77 /**
78  * ptrace_parent - return the task that is tracing the given task
79  * @task: task to consider
80  *
81  * Returns %NULL if no one is tracing @task, or the &struct task_struct
82  * pointer to its tracer.
83  *
84  * Must called under rcu_read_lock().  The pointer returned might be kept
85  * live only by RCU.  During exec, this may be called with task_lock() held
86  * on @task, still held from when check_unsafe_exec() was called.
87  */
88 static inline struct task_struct *ptrace_parent(struct task_struct *task)
89 {
90         if (unlikely(task->ptrace))
91                 return rcu_dereference(task->parent);
92         return NULL;
93 }
94
95 /**
96  * ptrace_event_enabled - test whether a ptrace event is enabled
97  * @task: ptracee of interest
98  * @event: %PTRACE_EVENT_* to test
99  *
100  * Test whether @event is enabled for ptracee @task.
101  *
102  * Returns %true if @event is enabled, %false otherwise.
103  */
104 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
105 {
106         return task->ptrace & PT_EVENT_FLAG(event);
107 }
108
109 /**
110  * ptrace_event - possibly stop for a ptrace event notification
111  * @event:      %PTRACE_EVENT_* value to report
112  * @message:    value for %PTRACE_GETEVENTMSG to return
113  *
114  * Check whether @event is enabled and, if so, report @event and @message
115  * to the ptrace parent.
116  *
117  * Called without locks.
118  */
119 static inline void ptrace_event(int event, unsigned long message)
120 {
121         if (unlikely(ptrace_event_enabled(current, event))) {
122                 current->ptrace_message = message;
123                 ptrace_notify((event << 8) | SIGTRAP);
124         } else if (event == PTRACE_EVENT_EXEC) {
125                 /* legacy EXEC report via SIGTRAP */
126                 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
127                         send_sig(SIGTRAP, current, 0);
128         }
129 }
130
131 /**
132  * ptrace_init_task - initialize ptrace state for a new child
133  * @child:              new child task
134  * @ptrace:             true if child should be ptrace'd by parent's tracer
135  *
136  * This is called immediately after adding @child to its parent's children
137  * list.  @ptrace is false in the normal case, and true to ptrace @child.
138  *
139  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
140  */
141 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
142 {
143         INIT_LIST_HEAD(&child->ptrace_entry);
144         INIT_LIST_HEAD(&child->ptraced);
145 #ifdef CONFIG_HAVE_HW_BREAKPOINT
146         atomic_set(&child->ptrace_bp_refcnt, 1);
147 #endif
148         child->jobctl = 0;
149         child->ptrace = 0;
150         child->parent = child->real_parent;
151
152         if (unlikely(ptrace) && current->ptrace) {
153                 child->ptrace = current->ptrace;
154                 __ptrace_link(child, current->parent);
155
156                 if (child->ptrace & PT_SEIZED)
157                         task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
158                 else
159                         sigaddset(&child->pending.signal, SIGSTOP);
160
161                 set_tsk_thread_flag(child, TIF_SIGPENDING);
162         }
163 }
164
165 /**
166  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
167  * @task:       task in %EXIT_DEAD state
168  *
169  * Called with write_lock(&tasklist_lock) held.
170  */
171 static inline void ptrace_release_task(struct task_struct *task)
172 {
173         BUG_ON(!list_empty(&task->ptraced));
174         ptrace_unlink(task);
175         BUG_ON(!list_empty(&task->ptrace_entry));
176 }
177
178 #ifndef force_successful_syscall_return
179 /*
180  * System call handlers that, upon successful completion, need to return a
181  * negative value should call force_successful_syscall_return() right before
182  * returning.  On architectures where the syscall convention provides for a
183  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
184  * others), this macro can be used to ensure that the error flag will not get
185  * set.  On architectures which do not support a separate error flag, the macro
186  * is a no-op and the spurious error condition needs to be filtered out by some
187  * other means (e.g., in user-level, by passing an extra argument to the
188  * syscall handler, or something along those lines).
189  */
190 #define force_successful_syscall_return() do { } while (0)
191 #endif
192
193 #ifndef is_syscall_success
194 /*
195  * On most systems we can tell if a syscall is a success based on if the retval
196  * is an error value.  On some systems like ia64 and powerpc they have different
197  * indicators of success/failure and must define their own.
198  */
199 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
200 #endif
201
202 /*
203  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
204  *
205  * These do-nothing inlines are used when the arch does not
206  * implement single-step.  The kerneldoc comments are here
207  * to document the interface for all arch definitions.
208  */
209
210 #ifndef arch_has_single_step
211 /**
212  * arch_has_single_step - does this CPU support user-mode single-step?
213  *
214  * If this is defined, then there must be function declarations or
215  * inlines for user_enable_single_step() and user_disable_single_step().
216  * arch_has_single_step() should evaluate to nonzero iff the machine
217  * supports instruction single-step for user mode.
218  * It can be a constant or it can test a CPU feature bit.
219  */
220 #define arch_has_single_step()          (0)
221
222 /**
223  * user_enable_single_step - single-step in user-mode task
224  * @task: either current or a task stopped in %TASK_TRACED
225  *
226  * This can only be called when arch_has_single_step() has returned nonzero.
227  * Set @task so that when it returns to user mode, it will trap after the
228  * next single instruction executes.  If arch_has_block_step() is defined,
229  * this must clear the effects of user_enable_block_step() too.
230  */
231 static inline void user_enable_single_step(struct task_struct *task)
232 {
233         BUG();                  /* This can never be called.  */
234 }
235
236 /**
237  * user_disable_single_step - cancel user-mode single-step
238  * @task: either current or a task stopped in %TASK_TRACED
239  *
240  * Clear @task of the effects of user_enable_single_step() and
241  * user_enable_block_step().  This can be called whether or not either
242  * of those was ever called on @task, and even if arch_has_single_step()
243  * returned zero.
244  */
245 static inline void user_disable_single_step(struct task_struct *task)
246 {
247 }
248 #else
249 extern void user_enable_single_step(struct task_struct *);
250 extern void user_disable_single_step(struct task_struct *);
251 #endif  /* arch_has_single_step */
252
253 #ifndef arch_has_block_step
254 /**
255  * arch_has_block_step - does this CPU support user-mode block-step?
256  *
257  * If this is defined, then there must be a function declaration or inline
258  * for user_enable_block_step(), and arch_has_single_step() must be defined
259  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
260  * supports step-until-branch for user mode.  It can be a constant or it
261  * can test a CPU feature bit.
262  */
263 #define arch_has_block_step()           (0)
264
265 /**
266  * user_enable_block_step - step until branch in user-mode task
267  * @task: either current or a task stopped in %TASK_TRACED
268  *
269  * This can only be called when arch_has_block_step() has returned nonzero,
270  * and will never be called when single-instruction stepping is being used.
271  * Set @task so that when it returns to user mode, it will trap after the
272  * next branch or trap taken.
273  */
274 static inline void user_enable_block_step(struct task_struct *task)
275 {
276         BUG();                  /* This can never be called.  */
277 }
278 #else
279 extern void user_enable_block_step(struct task_struct *);
280 #endif  /* arch_has_block_step */
281
282 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
283 extern void user_single_step_siginfo(struct task_struct *tsk,
284                                 struct pt_regs *regs, siginfo_t *info);
285 #else
286 static inline void user_single_step_siginfo(struct task_struct *tsk,
287                                 struct pt_regs *regs, siginfo_t *info)
288 {
289         memset(info, 0, sizeof(*info));
290         info->si_signo = SIGTRAP;
291 }
292 #endif
293
294 #ifndef arch_ptrace_stop_needed
295 /**
296  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
297  * @code:       current->exit_code value ptrace will stop with
298  * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
299  *
300  * This is called with the siglock held, to decide whether or not it's
301  * necessary to release the siglock and call arch_ptrace_stop() with the
302  * same @code and @info arguments.  It can be defined to a constant if
303  * arch_ptrace_stop() is never required, or always is.  On machines where
304  * this makes sense, it should be defined to a quick test to optimize out
305  * calling arch_ptrace_stop() when it would be superfluous.  For example,
306  * if the thread has not been back to user mode since the last stop, the
307  * thread state might indicate that nothing needs to be done.
308  */
309 #define arch_ptrace_stop_needed(code, info)     (0)
310 #endif
311
312 #ifndef arch_ptrace_stop
313 /**
314  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
315  * @code:       current->exit_code value ptrace will stop with
316  * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
317  *
318  * This is called with no locks held when arch_ptrace_stop_needed() has
319  * just returned nonzero.  It is allowed to block, e.g. for user memory
320  * access.  The arch can have machine-specific work to be done before
321  * ptrace stops.  On ia64, register backing store gets written back to user
322  * memory here.  Since this can be costly (requires dropping the siglock),
323  * we only do it when the arch requires it for this particular stop, as
324  * indicated by arch_ptrace_stop_needed().
325  */
326 #define arch_ptrace_stop(code, info)            do { } while (0)
327 #endif
328
329 #ifndef current_pt_regs
330 #define current_pt_regs() task_pt_regs(current)
331 #endif
332
333 #ifndef ptrace_signal_deliver
334 #define ptrace_signal_deliver() ((void)0)
335 #endif
336
337 /*
338  * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
339  * on *all* architectures; the only reason to have a per-arch definition
340  * is optimisation.
341  */
342 #ifndef signal_pt_regs
343 #define signal_pt_regs() task_pt_regs(current)
344 #endif
345
346 #ifndef current_user_stack_pointer
347 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
348 #endif
349
350 extern int task_current_syscall(struct task_struct *target, long *callno,
351                                 unsigned long args[6], unsigned int maxargs,
352                                 unsigned long *sp, unsigned long *pc);
353
354 #ifdef CONFIG_HAVE_HW_BREAKPOINT
355 extern int ptrace_get_breakpoints(struct task_struct *tsk);
356 extern void ptrace_put_breakpoints(struct task_struct *tsk);
357 #else
358 static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
359 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
360
361 #endif