2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
42 #include <asm/irq_regs.h>
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
51 static void remote_function(void *data)
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 tfc->ret = tfc->func(tfc->info);
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 struct remote_function_call data = {
85 .ret = -ESRCH, /* No such (running) process */
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
99 * Calls the function @func on the remote cpu.
101 * returns: @func return value or -ENXIO when the cpu is offline
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 struct remote_function_call data = {
109 .ret = -ENXIO, /* No such CPU */
112 smp_call_function_single(cpu, remote_function, &data, 1);
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
122 EVENT_FLEXIBLE = 0x1,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
131 struct jump_label_key_deferred perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
149 int sysctl_perf_event_paranoid __read_mostly = 1;
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
155 * max perf event sample rate
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
176 static atomic64_t perf_event_id;
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 enum event_type_t event_type,
183 struct task_struct *task);
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
188 static void ring_buffer_attach(struct perf_event *event,
189 struct ring_buffer *rb);
191 void __weak perf_event_print_debug(void) { }
193 extern __weak const char *perf_pmu_name(void)
198 static inline u64 perf_clock(void)
200 return local_clock();
203 static inline struct perf_cpu_context *
204 __get_cpu_context(struct perf_event_context *ctx)
206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 struct perf_event_context *ctx)
212 raw_spin_lock(&cpuctx->ctx.lock);
214 raw_spin_lock(&ctx->lock);
217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
221 raw_spin_unlock(&ctx->lock);
222 raw_spin_unlock(&cpuctx->ctx.lock);
225 #ifdef CONFIG_CGROUP_PERF
228 * Must ensure cgroup is pinned (css_get) before calling
229 * this function. In other words, we cannot call this function
230 * if there is no cgroup event for the current CPU context.
232 static inline struct perf_cgroup *
233 perf_cgroup_from_task(struct task_struct *task)
235 return container_of(task_subsys_state(task, perf_subsys_id),
236 struct perf_cgroup, css);
240 perf_cgroup_match(struct perf_event *event)
242 struct perf_event_context *ctx = event->ctx;
243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
245 return !event->cgrp || event->cgrp == cpuctx->cgrp;
248 static inline void perf_get_cgroup(struct perf_event *event)
250 css_get(&event->cgrp->css);
253 static inline void perf_put_cgroup(struct perf_event *event)
255 css_put(&event->cgrp->css);
258 static inline void perf_detach_cgroup(struct perf_event *event)
260 perf_put_cgroup(event);
264 static inline int is_cgroup_event(struct perf_event *event)
266 return event->cgrp != NULL;
269 static inline u64 perf_cgroup_event_time(struct perf_event *event)
271 struct perf_cgroup_info *t;
273 t = per_cpu_ptr(event->cgrp->info, event->cpu);
277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
279 struct perf_cgroup_info *info;
284 info = this_cpu_ptr(cgrp->info);
286 info->time += now - info->timestamp;
287 info->timestamp = now;
290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
292 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
294 __update_cgrp_time(cgrp_out);
297 static inline void update_cgrp_time_from_event(struct perf_event *event)
299 struct perf_cgroup *cgrp;
302 * ensure we access cgroup data only when needed and
303 * when we know the cgroup is pinned (css_get)
305 if (!is_cgroup_event(event))
308 cgrp = perf_cgroup_from_task(current);
310 * Do not update time when cgroup is not active
312 if (cgrp == event->cgrp)
313 __update_cgrp_time(event->cgrp);
317 perf_cgroup_set_timestamp(struct task_struct *task,
318 struct perf_event_context *ctx)
320 struct perf_cgroup *cgrp;
321 struct perf_cgroup_info *info;
324 * ctx->lock held by caller
325 * ensure we do not access cgroup data
326 * unless we have the cgroup pinned (css_get)
328 if (!task || !ctx->nr_cgroups)
331 cgrp = perf_cgroup_from_task(task);
332 info = this_cpu_ptr(cgrp->info);
333 info->timestamp = ctx->timestamp;
336 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
337 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
340 * reschedule events based on the cgroup constraint of task.
342 * mode SWOUT : schedule out everything
343 * mode SWIN : schedule in based on cgroup for next
345 void perf_cgroup_switch(struct task_struct *task, int mode)
347 struct perf_cpu_context *cpuctx;
352 * disable interrupts to avoid geting nr_cgroup
353 * changes via __perf_event_disable(). Also
356 local_irq_save(flags);
359 * we reschedule only in the presence of cgroup
360 * constrained events.
364 list_for_each_entry_rcu(pmu, &pmus, entry) {
365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
368 * perf_cgroup_events says at least one
369 * context on this CPU has cgroup events.
371 * ctx->nr_cgroups reports the number of cgroup
372 * events for a context.
374 if (cpuctx->ctx.nr_cgroups > 0) {
375 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 perf_pmu_disable(cpuctx->ctx.pmu);
378 if (mode & PERF_CGROUP_SWOUT) {
379 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
381 * must not be done before ctxswout due
382 * to event_filter_match() in event_sched_out()
387 if (mode & PERF_CGROUP_SWIN) {
388 WARN_ON_ONCE(cpuctx->cgrp);
389 /* set cgrp before ctxsw in to
390 * allow event_filter_match() to not
391 * have to pass task around
393 cpuctx->cgrp = perf_cgroup_from_task(task);
394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
396 perf_pmu_enable(cpuctx->ctx.pmu);
397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
403 local_irq_restore(flags);
406 static inline void perf_cgroup_sched_out(struct task_struct *task,
407 struct task_struct *next)
409 struct perf_cgroup *cgrp1;
410 struct perf_cgroup *cgrp2 = NULL;
413 * we come here when we know perf_cgroup_events > 0
415 cgrp1 = perf_cgroup_from_task(task);
418 * next is NULL when called from perf_event_enable_on_exec()
419 * that will systematically cause a cgroup_switch()
422 cgrp2 = perf_cgroup_from_task(next);
425 * only schedule out current cgroup events if we know
426 * that we are switching to a different cgroup. Otherwise,
427 * do no touch the cgroup events.
430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
433 static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 struct task_struct *task)
436 struct perf_cgroup *cgrp1;
437 struct perf_cgroup *cgrp2 = NULL;
440 * we come here when we know perf_cgroup_events > 0
442 cgrp1 = perf_cgroup_from_task(task);
444 /* prev can never be NULL */
445 cgrp2 = perf_cgroup_from_task(prev);
448 * only need to schedule in cgroup events if we are changing
449 * cgroup during ctxsw. Cgroup events were not scheduled
450 * out of ctxsw out if that was not the case.
453 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
456 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 struct perf_event_attr *attr,
458 struct perf_event *group_leader)
460 struct perf_cgroup *cgrp;
461 struct cgroup_subsys_state *css;
463 int ret = 0, fput_needed;
465 file = fget_light(fd, &fput_needed);
469 css = cgroup_css_from_dir(file, perf_subsys_id);
475 cgrp = container_of(css, struct perf_cgroup, css);
478 /* must be done before we fput() the file */
479 perf_get_cgroup(event);
482 * all events in a group must monitor
483 * the same cgroup because a task belongs
484 * to only one perf cgroup at a time
486 if (group_leader && group_leader->cgrp != cgrp) {
487 perf_detach_cgroup(event);
491 fput_light(file, fput_needed);
496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
498 struct perf_cgroup_info *t;
499 t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 event->shadow_ctx_time = now - t->timestamp;
504 perf_cgroup_defer_enabled(struct perf_event *event)
507 * when the current task's perf cgroup does not match
508 * the event's, we need to remember to call the
509 * perf_mark_enable() function the first time a task with
510 * a matching perf cgroup is scheduled in.
512 if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 event->cgrp_defer_enabled = 1;
517 perf_cgroup_mark_enabled(struct perf_event *event,
518 struct perf_event_context *ctx)
520 struct perf_event *sub;
521 u64 tstamp = perf_event_time(event);
523 if (!event->cgrp_defer_enabled)
526 event->cgrp_defer_enabled = 0;
528 event->tstamp_enabled = tstamp - event->total_time_enabled;
529 list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 sub->cgrp_defer_enabled = 0;
536 #else /* !CONFIG_CGROUP_PERF */
539 perf_cgroup_match(struct perf_event *event)
544 static inline void perf_detach_cgroup(struct perf_event *event)
547 static inline int is_cgroup_event(struct perf_event *event)
552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
557 static inline void update_cgrp_time_from_event(struct perf_event *event)
561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
565 static inline void perf_cgroup_sched_out(struct task_struct *task,
566 struct task_struct *next)
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 struct perf_event_attr *attr,
577 struct perf_event *group_leader)
583 perf_cgroup_set_timestamp(struct task_struct *task,
584 struct perf_event_context *ctx)
589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
598 static inline u64 perf_cgroup_event_time(struct perf_event *event)
604 perf_cgroup_defer_enabled(struct perf_event *event)
609 perf_cgroup_mark_enabled(struct perf_event *event,
610 struct perf_event_context *ctx)
615 void perf_pmu_disable(struct pmu *pmu)
617 int *count = this_cpu_ptr(pmu->pmu_disable_count);
619 pmu->pmu_disable(pmu);
622 void perf_pmu_enable(struct pmu *pmu)
624 int *count = this_cpu_ptr(pmu->pmu_disable_count);
626 pmu->pmu_enable(pmu);
629 static DEFINE_PER_CPU(struct list_head, rotation_list);
632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633 * because they're strictly cpu affine and rotate_start is called with IRQs
634 * disabled, while rotate_context is called from IRQ context.
636 static void perf_pmu_rotate_start(struct pmu *pmu)
638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 struct list_head *head = &__get_cpu_var(rotation_list);
641 WARN_ON(!irqs_disabled());
643 if (list_empty(&cpuctx->rotation_list))
644 list_add(&cpuctx->rotation_list, head);
647 static void get_ctx(struct perf_event_context *ctx)
649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
652 static void put_ctx(struct perf_event_context *ctx)
654 if (atomic_dec_and_test(&ctx->refcount)) {
656 put_ctx(ctx->parent_ctx);
658 put_task_struct(ctx->task);
659 kfree_rcu(ctx, rcu_head);
663 static void unclone_ctx(struct perf_event_context *ctx)
665 if (ctx->parent_ctx) {
666 put_ctx(ctx->parent_ctx);
667 ctx->parent_ctx = NULL;
671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
674 * only top level events have the pid namespace they were created in
677 event = event->parent;
679 return task_tgid_nr_ns(p, event->ns);
682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
685 * only top level events have the pid namespace they were created in
688 event = event->parent;
690 return task_pid_nr_ns(p, event->ns);
694 * If we inherit events we want to return the parent event id
697 static u64 primary_event_id(struct perf_event *event)
702 id = event->parent->id;
708 * Get the perf_event_context for a task and lock it.
709 * This has to cope with with the fact that until it is locked,
710 * the context could get moved to another task.
712 static struct perf_event_context *
713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
715 struct perf_event_context *ctx;
719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
722 * If this context is a clone of another, it might
723 * get swapped for another underneath us by
724 * perf_event_task_sched_out, though the
725 * rcu_read_lock() protects us from any context
726 * getting freed. Lock the context and check if it
727 * got swapped before we could get the lock, and retry
728 * if so. If we locked the right context, then it
729 * can't get swapped on us any more.
731 raw_spin_lock_irqsave(&ctx->lock, *flags);
732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
737 if (!atomic_inc_not_zero(&ctx->refcount)) {
738 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
747 * Get the context for a task and increment its pin_count so it
748 * can't get swapped to another task. This also increments its
749 * reference count so that the context can't get freed.
751 static struct perf_event_context *
752 perf_pin_task_context(struct task_struct *task, int ctxn)
754 struct perf_event_context *ctx;
757 ctx = perf_lock_task_context(task, ctxn, &flags);
760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
765 static void perf_unpin_context(struct perf_event_context *ctx)
769 raw_spin_lock_irqsave(&ctx->lock, flags);
771 raw_spin_unlock_irqrestore(&ctx->lock, flags);
775 * Update the record of the current time in a context.
777 static void update_context_time(struct perf_event_context *ctx)
779 u64 now = perf_clock();
781 ctx->time += now - ctx->timestamp;
782 ctx->timestamp = now;
785 static u64 perf_event_time(struct perf_event *event)
787 struct perf_event_context *ctx = event->ctx;
789 if (is_cgroup_event(event))
790 return perf_cgroup_event_time(event);
792 return ctx ? ctx->time : 0;
796 * Update the total_time_enabled and total_time_running fields for a event.
797 * The caller of this function needs to hold the ctx->lock.
799 static void update_event_times(struct perf_event *event)
801 struct perf_event_context *ctx = event->ctx;
804 if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
808 * in cgroup mode, time_enabled represents
809 * the time the event was enabled AND active
810 * tasks were in the monitored cgroup. This is
811 * independent of the activity of the context as
812 * there may be a mix of cgroup and non-cgroup events.
814 * That is why we treat cgroup events differently
817 if (is_cgroup_event(event))
818 run_end = perf_event_time(event);
819 else if (ctx->is_active)
822 run_end = event->tstamp_stopped;
824 event->total_time_enabled = run_end - event->tstamp_enabled;
826 if (event->state == PERF_EVENT_STATE_INACTIVE)
827 run_end = event->tstamp_stopped;
829 run_end = perf_event_time(event);
831 event->total_time_running = run_end - event->tstamp_running;
836 * Update total_time_enabled and total_time_running for all events in a group.
838 static void update_group_times(struct perf_event *leader)
840 struct perf_event *event;
842 update_event_times(leader);
843 list_for_each_entry(event, &leader->sibling_list, group_entry)
844 update_event_times(event);
847 static struct list_head *
848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
850 if (event->attr.pinned)
851 return &ctx->pinned_groups;
853 return &ctx->flexible_groups;
857 * Add a event from the lists for its context.
858 * Must be called with ctx->mutex and ctx->lock held.
861 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 event->attach_state |= PERF_ATTACH_CONTEXT;
867 * If we're a stand alone event or group leader, we go to the context
868 * list, group events are kept attached to the group so that
869 * perf_group_detach can, at all times, locate all siblings.
871 if (event->group_leader == event) {
872 struct list_head *list;
874 if (is_software_event(event))
875 event->group_flags |= PERF_GROUP_SOFTWARE;
877 list = ctx_group_list(event, ctx);
878 list_add_tail(&event->group_entry, list);
881 if (is_cgroup_event(event))
884 list_add_rcu(&event->event_entry, &ctx->event_list);
886 perf_pmu_rotate_start(ctx->pmu);
888 if (event->attr.inherit_stat)
893 * Called at perf_event creation and when events are attached/detached from a
896 static void perf_event__read_size(struct perf_event *event)
898 int entry = sizeof(u64); /* value */
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
908 if (event->attr.read_format & PERF_FORMAT_ID)
909 entry += sizeof(u64);
911 if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 nr += event->group_leader->nr_siblings;
917 event->read_size = size;
920 static void perf_event__header_size(struct perf_event *event)
922 struct perf_sample_data *data;
923 u64 sample_type = event->attr.sample_type;
926 perf_event__read_size(event);
928 if (sample_type & PERF_SAMPLE_IP)
929 size += sizeof(data->ip);
931 if (sample_type & PERF_SAMPLE_ADDR)
932 size += sizeof(data->addr);
934 if (sample_type & PERF_SAMPLE_PERIOD)
935 size += sizeof(data->period);
937 if (sample_type & PERF_SAMPLE_READ)
938 size += event->read_size;
940 event->header_size = size;
943 static void perf_event__id_header_size(struct perf_event *event)
945 struct perf_sample_data *data;
946 u64 sample_type = event->attr.sample_type;
949 if (sample_type & PERF_SAMPLE_TID)
950 size += sizeof(data->tid_entry);
952 if (sample_type & PERF_SAMPLE_TIME)
953 size += sizeof(data->time);
955 if (sample_type & PERF_SAMPLE_ID)
956 size += sizeof(data->id);
958 if (sample_type & PERF_SAMPLE_STREAM_ID)
959 size += sizeof(data->stream_id);
961 if (sample_type & PERF_SAMPLE_CPU)
962 size += sizeof(data->cpu_entry);
964 event->id_header_size = size;
967 static void perf_group_attach(struct perf_event *event)
969 struct perf_event *group_leader = event->group_leader, *pos;
972 * We can have double attach due to group movement in perf_event_open.
974 if (event->attach_state & PERF_ATTACH_GROUP)
977 event->attach_state |= PERF_ATTACH_GROUP;
979 if (group_leader == event)
982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 !is_software_event(event))
984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
986 list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 group_leader->nr_siblings++;
989 perf_event__header_size(group_leader);
991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 perf_event__header_size(pos);
996 * Remove a event from the lists for its context.
997 * Must be called with ctx->mutex and ctx->lock held.
1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1002 struct perf_cpu_context *cpuctx;
1004 * We can have double detach due to exit/hot-unplug + close.
1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1009 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1011 if (is_cgroup_event(event)) {
1013 cpuctx = __get_cpu_context(ctx);
1015 * if there are no more cgroup events
1016 * then cler cgrp to avoid stale pointer
1017 * in update_cgrp_time_from_cpuctx()
1019 if (!ctx->nr_cgroups)
1020 cpuctx->cgrp = NULL;
1024 if (event->attr.inherit_stat)
1027 list_del_rcu(&event->event_entry);
1029 if (event->group_leader == event)
1030 list_del_init(&event->group_entry);
1032 update_group_times(event);
1035 * If event was in error state, then keep it
1036 * that way, otherwise bogus counts will be
1037 * returned on read(). The only way to get out
1038 * of error state is by explicit re-enabling
1041 if (event->state > PERF_EVENT_STATE_OFF)
1042 event->state = PERF_EVENT_STATE_OFF;
1045 static void perf_group_detach(struct perf_event *event)
1047 struct perf_event *sibling, *tmp;
1048 struct list_head *list = NULL;
1051 * We can have double detach due to exit/hot-unplug + close.
1053 if (!(event->attach_state & PERF_ATTACH_GROUP))
1056 event->attach_state &= ~PERF_ATTACH_GROUP;
1059 * If this is a sibling, remove it from its group.
1061 if (event->group_leader != event) {
1062 list_del_init(&event->group_entry);
1063 event->group_leader->nr_siblings--;
1067 if (!list_empty(&event->group_entry))
1068 list = &event->group_entry;
1071 * If this was a group event with sibling events then
1072 * upgrade the siblings to singleton events by adding them
1073 * to whatever list we are on.
1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1077 list_move_tail(&sibling->group_entry, list);
1078 sibling->group_leader = sibling;
1080 /* Inherit group flags from the previous leader */
1081 sibling->group_flags = event->group_flags;
1085 perf_event__header_size(event->group_leader);
1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 perf_event__header_size(tmp);
1092 event_filter_match(struct perf_event *event)
1094 return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 && perf_cgroup_match(event);
1099 event_sched_out(struct perf_event *event,
1100 struct perf_cpu_context *cpuctx,
1101 struct perf_event_context *ctx)
1103 u64 tstamp = perf_event_time(event);
1106 * An event which could not be activated because of
1107 * filter mismatch still needs to have its timings
1108 * maintained, otherwise bogus information is return
1109 * via read() for time_enabled, time_running:
1111 if (event->state == PERF_EVENT_STATE_INACTIVE
1112 && !event_filter_match(event)) {
1113 delta = tstamp - event->tstamp_stopped;
1114 event->tstamp_running += delta;
1115 event->tstamp_stopped = tstamp;
1118 if (event->state != PERF_EVENT_STATE_ACTIVE)
1121 event->state = PERF_EVENT_STATE_INACTIVE;
1122 if (event->pending_disable) {
1123 event->pending_disable = 0;
1124 event->state = PERF_EVENT_STATE_OFF;
1126 event->tstamp_stopped = tstamp;
1127 event->pmu->del(event, 0);
1130 if (!is_software_event(event))
1131 cpuctx->active_oncpu--;
1133 if (event->attr.freq && event->attr.sample_freq)
1135 if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 cpuctx->exclusive = 0;
1140 group_sched_out(struct perf_event *group_event,
1141 struct perf_cpu_context *cpuctx,
1142 struct perf_event_context *ctx)
1144 struct perf_event *event;
1145 int state = group_event->state;
1147 event_sched_out(group_event, cpuctx, ctx);
1150 * Schedule out siblings (if any):
1152 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153 event_sched_out(event, cpuctx, ctx);
1155 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 cpuctx->exclusive = 0;
1160 * Cross CPU call to remove a performance event
1162 * We disable the event on the hardware level first. After that we
1163 * remove it from the context list.
1165 static int __perf_remove_from_context(void *info)
1167 struct perf_event *event = info;
1168 struct perf_event_context *ctx = event->ctx;
1169 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1171 raw_spin_lock(&ctx->lock);
1172 event_sched_out(event, cpuctx, ctx);
1173 list_del_event(event, ctx);
1174 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1176 cpuctx->task_ctx = NULL;
1178 raw_spin_unlock(&ctx->lock);
1185 * Remove the event from a task's (or a CPU's) list of events.
1187 * CPU events are removed with a smp call. For task events we only
1188 * call when the task is on a CPU.
1190 * If event->ctx is a cloned context, callers must make sure that
1191 * every task struct that event->ctx->task could possibly point to
1192 * remains valid. This is OK when called from perf_release since
1193 * that only calls us on the top-level context, which can't be a clone.
1194 * When called from perf_event_exit_task, it's OK because the
1195 * context has been detached from its task.
1197 static void perf_remove_from_context(struct perf_event *event)
1199 struct perf_event_context *ctx = event->ctx;
1200 struct task_struct *task = ctx->task;
1202 lockdep_assert_held(&ctx->mutex);
1206 * Per cpu events are removed via an smp call and
1207 * the removal is always successful.
1209 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1214 if (!task_function_call(task, __perf_remove_from_context, event))
1217 raw_spin_lock_irq(&ctx->lock);
1219 * If we failed to find a running task, but find the context active now
1220 * that we've acquired the ctx->lock, retry.
1222 if (ctx->is_active) {
1223 raw_spin_unlock_irq(&ctx->lock);
1228 * Since the task isn't running, its safe to remove the event, us
1229 * holding the ctx->lock ensures the task won't get scheduled in.
1231 list_del_event(event, ctx);
1232 raw_spin_unlock_irq(&ctx->lock);
1236 * Cross CPU call to disable a performance event
1238 static int __perf_event_disable(void *info)
1240 struct perf_event *event = info;
1241 struct perf_event_context *ctx = event->ctx;
1242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1245 * If this is a per-task event, need to check whether this
1246 * event's task is the current task on this cpu.
1248 * Can trigger due to concurrent perf_event_context_sched_out()
1249 * flipping contexts around.
1251 if (ctx->task && cpuctx->task_ctx != ctx)
1254 raw_spin_lock(&ctx->lock);
1257 * If the event is on, turn it off.
1258 * If it is in error state, leave it in error state.
1260 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261 update_context_time(ctx);
1262 update_cgrp_time_from_event(event);
1263 update_group_times(event);
1264 if (event == event->group_leader)
1265 group_sched_out(event, cpuctx, ctx);
1267 event_sched_out(event, cpuctx, ctx);
1268 event->state = PERF_EVENT_STATE_OFF;
1271 raw_spin_unlock(&ctx->lock);
1279 * If event->ctx is a cloned context, callers must make sure that
1280 * every task struct that event->ctx->task could possibly point to
1281 * remains valid. This condition is satisifed when called through
1282 * perf_event_for_each_child or perf_event_for_each because they
1283 * hold the top-level event's child_mutex, so any descendant that
1284 * goes to exit will block in sync_child_event.
1285 * When called from perf_pending_event it's OK because event->ctx
1286 * is the current context on this CPU and preemption is disabled,
1287 * hence we can't get into perf_event_task_sched_out for this context.
1289 void perf_event_disable(struct perf_event *event)
1291 struct perf_event_context *ctx = event->ctx;
1292 struct task_struct *task = ctx->task;
1296 * Disable the event on the cpu that it's on
1298 cpu_function_call(event->cpu, __perf_event_disable, event);
1303 if (!task_function_call(task, __perf_event_disable, event))
1306 raw_spin_lock_irq(&ctx->lock);
1308 * If the event is still active, we need to retry the cross-call.
1310 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311 raw_spin_unlock_irq(&ctx->lock);
1313 * Reload the task pointer, it might have been changed by
1314 * a concurrent perf_event_context_sched_out().
1321 * Since we have the lock this context can't be scheduled
1322 * in, so we can change the state safely.
1324 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 update_group_times(event);
1326 event->state = PERF_EVENT_STATE_OFF;
1328 raw_spin_unlock_irq(&ctx->lock);
1330 EXPORT_SYMBOL_GPL(perf_event_disable);
1332 static void perf_set_shadow_time(struct perf_event *event,
1333 struct perf_event_context *ctx,
1337 * use the correct time source for the time snapshot
1339 * We could get by without this by leveraging the
1340 * fact that to get to this function, the caller
1341 * has most likely already called update_context_time()
1342 * and update_cgrp_time_xx() and thus both timestamp
1343 * are identical (or very close). Given that tstamp is,
1344 * already adjusted for cgroup, we could say that:
1345 * tstamp - ctx->timestamp
1347 * tstamp - cgrp->timestamp.
1349 * Then, in perf_output_read(), the calculation would
1350 * work with no changes because:
1351 * - event is guaranteed scheduled in
1352 * - no scheduled out in between
1353 * - thus the timestamp would be the same
1355 * But this is a bit hairy.
1357 * So instead, we have an explicit cgroup call to remain
1358 * within the time time source all along. We believe it
1359 * is cleaner and simpler to understand.
1361 if (is_cgroup_event(event))
1362 perf_cgroup_set_shadow_time(event, tstamp);
1364 event->shadow_ctx_time = tstamp - ctx->timestamp;
1367 #define MAX_INTERRUPTS (~0ULL)
1369 static void perf_log_throttle(struct perf_event *event, int enable);
1372 event_sched_in(struct perf_event *event,
1373 struct perf_cpu_context *cpuctx,
1374 struct perf_event_context *ctx)
1376 u64 tstamp = perf_event_time(event);
1378 if (event->state <= PERF_EVENT_STATE_OFF)
1381 event->state = PERF_EVENT_STATE_ACTIVE;
1382 event->oncpu = smp_processor_id();
1385 * Unthrottle events, since we scheduled we might have missed several
1386 * ticks already, also for a heavily scheduling task there is little
1387 * guarantee it'll get a tick in a timely manner.
1389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390 perf_log_throttle(event, 1);
1391 event->hw.interrupts = 0;
1395 * The new state must be visible before we turn it on in the hardware:
1399 if (event->pmu->add(event, PERF_EF_START)) {
1400 event->state = PERF_EVENT_STATE_INACTIVE;
1405 event->tstamp_running += tstamp - event->tstamp_stopped;
1407 perf_set_shadow_time(event, ctx, tstamp);
1409 if (!is_software_event(event))
1410 cpuctx->active_oncpu++;
1412 if (event->attr.freq && event->attr.sample_freq)
1415 if (event->attr.exclusive)
1416 cpuctx->exclusive = 1;
1422 group_sched_in(struct perf_event *group_event,
1423 struct perf_cpu_context *cpuctx,
1424 struct perf_event_context *ctx)
1426 struct perf_event *event, *partial_group = NULL;
1427 struct pmu *pmu = group_event->pmu;
1428 u64 now = ctx->time;
1429 bool simulate = false;
1431 if (group_event->state == PERF_EVENT_STATE_OFF)
1434 pmu->start_txn(pmu);
1436 if (event_sched_in(group_event, cpuctx, ctx)) {
1437 pmu->cancel_txn(pmu);
1442 * Schedule in siblings as one group (if any):
1444 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445 if (event_sched_in(event, cpuctx, ctx)) {
1446 partial_group = event;
1451 if (!pmu->commit_txn(pmu))
1456 * Groups can be scheduled in as one unit only, so undo any
1457 * partial group before returning:
1458 * The events up to the failed event are scheduled out normally,
1459 * tstamp_stopped will be updated.
1461 * The failed events and the remaining siblings need to have
1462 * their timings updated as if they had gone thru event_sched_in()
1463 * and event_sched_out(). This is required to get consistent timings
1464 * across the group. This also takes care of the case where the group
1465 * could never be scheduled by ensuring tstamp_stopped is set to mark
1466 * the time the event was actually stopped, such that time delta
1467 * calculation in update_event_times() is correct.
1469 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470 if (event == partial_group)
1474 event->tstamp_running += now - event->tstamp_stopped;
1475 event->tstamp_stopped = now;
1477 event_sched_out(event, cpuctx, ctx);
1480 event_sched_out(group_event, cpuctx, ctx);
1482 pmu->cancel_txn(pmu);
1488 * Work out whether we can put this event group on the CPU now.
1490 static int group_can_go_on(struct perf_event *event,
1491 struct perf_cpu_context *cpuctx,
1495 * Groups consisting entirely of software events can always go on.
1497 if (event->group_flags & PERF_GROUP_SOFTWARE)
1500 * If an exclusive group is already on, no other hardware
1503 if (cpuctx->exclusive)
1506 * If this group is exclusive and there are already
1507 * events on the CPU, it can't go on.
1509 if (event->attr.exclusive && cpuctx->active_oncpu)
1512 * Otherwise, try to add it if all previous groups were able
1518 static void add_event_to_ctx(struct perf_event *event,
1519 struct perf_event_context *ctx)
1521 u64 tstamp = perf_event_time(event);
1523 list_add_event(event, ctx);
1524 perf_group_attach(event);
1525 event->tstamp_enabled = tstamp;
1526 event->tstamp_running = tstamp;
1527 event->tstamp_stopped = tstamp;
1530 static void task_ctx_sched_out(struct perf_event_context *ctx);
1532 ctx_sched_in(struct perf_event_context *ctx,
1533 struct perf_cpu_context *cpuctx,
1534 enum event_type_t event_type,
1535 struct task_struct *task);
1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538 struct perf_event_context *ctx,
1539 struct task_struct *task)
1541 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1543 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1546 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1550 * Cross CPU call to install and enable a performance event
1552 * Must be called with ctx->mutex held
1554 static int __perf_install_in_context(void *info)
1556 struct perf_event *event = info;
1557 struct perf_event_context *ctx = event->ctx;
1558 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560 struct task_struct *task = current;
1562 perf_ctx_lock(cpuctx, task_ctx);
1563 perf_pmu_disable(cpuctx->ctx.pmu);
1566 * If there was an active task_ctx schedule it out.
1569 task_ctx_sched_out(task_ctx);
1572 * If the context we're installing events in is not the
1573 * active task_ctx, flip them.
1575 if (ctx->task && task_ctx != ctx) {
1577 raw_spin_unlock(&task_ctx->lock);
1578 raw_spin_lock(&ctx->lock);
1583 cpuctx->task_ctx = task_ctx;
1584 task = task_ctx->task;
1587 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1589 update_context_time(ctx);
1591 * update cgrp time only if current cgrp
1592 * matches event->cgrp. Must be done before
1593 * calling add_event_to_ctx()
1595 update_cgrp_time_from_event(event);
1597 add_event_to_ctx(event, ctx);
1600 * Schedule everything back in
1602 perf_event_sched_in(cpuctx, task_ctx, task);
1604 perf_pmu_enable(cpuctx->ctx.pmu);
1605 perf_ctx_unlock(cpuctx, task_ctx);
1611 * Attach a performance event to a context
1613 * First we add the event to the list with the hardware enable bit
1614 * in event->hw_config cleared.
1616 * If the event is attached to a task which is on a CPU we use a smp
1617 * call to enable it in the task context. The task might have been
1618 * scheduled away, but we check this in the smp call again.
1621 perf_install_in_context(struct perf_event_context *ctx,
1622 struct perf_event *event,
1625 struct task_struct *task = ctx->task;
1627 lockdep_assert_held(&ctx->mutex);
1633 * Per cpu events are installed via an smp call and
1634 * the install is always successful.
1636 cpu_function_call(cpu, __perf_install_in_context, event);
1641 if (!task_function_call(task, __perf_install_in_context, event))
1644 raw_spin_lock_irq(&ctx->lock);
1646 * If we failed to find a running task, but find the context active now
1647 * that we've acquired the ctx->lock, retry.
1649 if (ctx->is_active) {
1650 raw_spin_unlock_irq(&ctx->lock);
1655 * Since the task isn't running, its safe to add the event, us holding
1656 * the ctx->lock ensures the task won't get scheduled in.
1658 add_event_to_ctx(event, ctx);
1659 raw_spin_unlock_irq(&ctx->lock);
1663 * Put a event into inactive state and update time fields.
1664 * Enabling the leader of a group effectively enables all
1665 * the group members that aren't explicitly disabled, so we
1666 * have to update their ->tstamp_enabled also.
1667 * Note: this works for group members as well as group leaders
1668 * since the non-leader members' sibling_lists will be empty.
1670 static void __perf_event_mark_enabled(struct perf_event *event)
1672 struct perf_event *sub;
1673 u64 tstamp = perf_event_time(event);
1675 event->state = PERF_EVENT_STATE_INACTIVE;
1676 event->tstamp_enabled = tstamp - event->total_time_enabled;
1677 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1684 * Cross CPU call to enable a performance event
1686 static int __perf_event_enable(void *info)
1688 struct perf_event *event = info;
1689 struct perf_event_context *ctx = event->ctx;
1690 struct perf_event *leader = event->group_leader;
1691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1694 if (WARN_ON_ONCE(!ctx->is_active))
1697 raw_spin_lock(&ctx->lock);
1698 update_context_time(ctx);
1700 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1704 * set current task's cgroup time reference point
1706 perf_cgroup_set_timestamp(current, ctx);
1708 __perf_event_mark_enabled(event);
1710 if (!event_filter_match(event)) {
1711 if (is_cgroup_event(event))
1712 perf_cgroup_defer_enabled(event);
1717 * If the event is in a group and isn't the group leader,
1718 * then don't put it on unless the group is on.
1720 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1723 if (!group_can_go_on(event, cpuctx, 1)) {
1726 if (event == leader)
1727 err = group_sched_in(event, cpuctx, ctx);
1729 err = event_sched_in(event, cpuctx, ctx);
1734 * If this event can't go on and it's part of a
1735 * group, then the whole group has to come off.
1737 if (leader != event)
1738 group_sched_out(leader, cpuctx, ctx);
1739 if (leader->attr.pinned) {
1740 update_group_times(leader);
1741 leader->state = PERF_EVENT_STATE_ERROR;
1746 raw_spin_unlock(&ctx->lock);
1754 * If event->ctx is a cloned context, callers must make sure that
1755 * every task struct that event->ctx->task could possibly point to
1756 * remains valid. This condition is satisfied when called through
1757 * perf_event_for_each_child or perf_event_for_each as described
1758 * for perf_event_disable.
1760 void perf_event_enable(struct perf_event *event)
1762 struct perf_event_context *ctx = event->ctx;
1763 struct task_struct *task = ctx->task;
1767 * Enable the event on the cpu that it's on
1769 cpu_function_call(event->cpu, __perf_event_enable, event);
1773 raw_spin_lock_irq(&ctx->lock);
1774 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1778 * If the event is in error state, clear that first.
1779 * That way, if we see the event in error state below, we
1780 * know that it has gone back into error state, as distinct
1781 * from the task having been scheduled away before the
1782 * cross-call arrived.
1784 if (event->state == PERF_EVENT_STATE_ERROR)
1785 event->state = PERF_EVENT_STATE_OFF;
1788 if (!ctx->is_active) {
1789 __perf_event_mark_enabled(event);
1793 raw_spin_unlock_irq(&ctx->lock);
1795 if (!task_function_call(task, __perf_event_enable, event))
1798 raw_spin_lock_irq(&ctx->lock);
1801 * If the context is active and the event is still off,
1802 * we need to retry the cross-call.
1804 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1806 * task could have been flipped by a concurrent
1807 * perf_event_context_sched_out()
1814 raw_spin_unlock_irq(&ctx->lock);
1816 EXPORT_SYMBOL_GPL(perf_event_enable);
1818 int perf_event_refresh(struct perf_event *event, int refresh)
1821 * not supported on inherited events
1823 if (event->attr.inherit || !is_sampling_event(event))
1826 atomic_add(refresh, &event->event_limit);
1827 perf_event_enable(event);
1831 EXPORT_SYMBOL_GPL(perf_event_refresh);
1833 static void ctx_sched_out(struct perf_event_context *ctx,
1834 struct perf_cpu_context *cpuctx,
1835 enum event_type_t event_type)
1837 struct perf_event *event;
1838 int is_active = ctx->is_active;
1840 ctx->is_active &= ~event_type;
1841 if (likely(!ctx->nr_events))
1844 update_context_time(ctx);
1845 update_cgrp_time_from_cpuctx(cpuctx);
1846 if (!ctx->nr_active)
1849 perf_pmu_disable(ctx->pmu);
1850 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852 group_sched_out(event, cpuctx, ctx);
1855 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857 group_sched_out(event, cpuctx, ctx);
1859 perf_pmu_enable(ctx->pmu);
1863 * Test whether two contexts are equivalent, i.e. whether they
1864 * have both been cloned from the same version of the same context
1865 * and they both have the same number of enabled events.
1866 * If the number of enabled events is the same, then the set
1867 * of enabled events should be the same, because these are both
1868 * inherited contexts, therefore we can't access individual events
1869 * in them directly with an fd; we can only enable/disable all
1870 * events via prctl, or enable/disable all events in a family
1871 * via ioctl, which will have the same effect on both contexts.
1873 static int context_equiv(struct perf_event_context *ctx1,
1874 struct perf_event_context *ctx2)
1876 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877 && ctx1->parent_gen == ctx2->parent_gen
1878 && !ctx1->pin_count && !ctx2->pin_count;
1881 static void __perf_event_sync_stat(struct perf_event *event,
1882 struct perf_event *next_event)
1886 if (!event->attr.inherit_stat)
1890 * Update the event value, we cannot use perf_event_read()
1891 * because we're in the middle of a context switch and have IRQs
1892 * disabled, which upsets smp_call_function_single(), however
1893 * we know the event must be on the current CPU, therefore we
1894 * don't need to use it.
1896 switch (event->state) {
1897 case PERF_EVENT_STATE_ACTIVE:
1898 event->pmu->read(event);
1901 case PERF_EVENT_STATE_INACTIVE:
1902 update_event_times(event);
1910 * In order to keep per-task stats reliable we need to flip the event
1911 * values when we flip the contexts.
1913 value = local64_read(&next_event->count);
1914 value = local64_xchg(&event->count, value);
1915 local64_set(&next_event->count, value);
1917 swap(event->total_time_enabled, next_event->total_time_enabled);
1918 swap(event->total_time_running, next_event->total_time_running);
1921 * Since we swizzled the values, update the user visible data too.
1923 perf_event_update_userpage(event);
1924 perf_event_update_userpage(next_event);
1927 #define list_next_entry(pos, member) \
1928 list_entry(pos->member.next, typeof(*pos), member)
1930 static void perf_event_sync_stat(struct perf_event_context *ctx,
1931 struct perf_event_context *next_ctx)
1933 struct perf_event *event, *next_event;
1938 update_context_time(ctx);
1940 event = list_first_entry(&ctx->event_list,
1941 struct perf_event, event_entry);
1943 next_event = list_first_entry(&next_ctx->event_list,
1944 struct perf_event, event_entry);
1946 while (&event->event_entry != &ctx->event_list &&
1947 &next_event->event_entry != &next_ctx->event_list) {
1949 __perf_event_sync_stat(event, next_event);
1951 event = list_next_entry(event, event_entry);
1952 next_event = list_next_entry(next_event, event_entry);
1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957 struct task_struct *next)
1959 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 struct perf_event_context *next_ctx;
1961 struct perf_event_context *parent;
1962 struct perf_cpu_context *cpuctx;
1968 cpuctx = __get_cpu_context(ctx);
1969 if (!cpuctx->task_ctx)
1973 parent = rcu_dereference(ctx->parent_ctx);
1974 next_ctx = next->perf_event_ctxp[ctxn];
1975 if (parent && next_ctx &&
1976 rcu_dereference(next_ctx->parent_ctx) == parent) {
1978 * Looks like the two contexts are clones, so we might be
1979 * able to optimize the context switch. We lock both
1980 * contexts and check that they are clones under the
1981 * lock (including re-checking that neither has been
1982 * uncloned in the meantime). It doesn't matter which
1983 * order we take the locks because no other cpu could
1984 * be trying to lock both of these tasks.
1986 raw_spin_lock(&ctx->lock);
1987 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988 if (context_equiv(ctx, next_ctx)) {
1990 * XXX do we need a memory barrier of sorts
1991 * wrt to rcu_dereference() of perf_event_ctxp
1993 task->perf_event_ctxp[ctxn] = next_ctx;
1994 next->perf_event_ctxp[ctxn] = ctx;
1996 next_ctx->task = task;
1999 perf_event_sync_stat(ctx, next_ctx);
2001 raw_spin_unlock(&next_ctx->lock);
2002 raw_spin_unlock(&ctx->lock);
2007 raw_spin_lock(&ctx->lock);
2008 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009 cpuctx->task_ctx = NULL;
2010 raw_spin_unlock(&ctx->lock);
2014 #define for_each_task_context_nr(ctxn) \
2015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2018 * Called from scheduler to remove the events of the current task,
2019 * with interrupts disabled.
2021 * We stop each event and update the event value in event->count.
2023 * This does not protect us against NMI, but disable()
2024 * sets the disabled bit in the control field of event _before_
2025 * accessing the event control register. If a NMI hits, then it will
2026 * not restart the event.
2028 void __perf_event_task_sched_out(struct task_struct *task,
2029 struct task_struct *next)
2033 for_each_task_context_nr(ctxn)
2034 perf_event_context_sched_out(task, ctxn, next);
2037 * if cgroup events exist on this CPU, then we need
2038 * to check if we have to switch out PMU state.
2039 * cgroup event are system-wide mode only
2041 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042 perf_cgroup_sched_out(task, next);
2045 static void task_ctx_sched_out(struct perf_event_context *ctx)
2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2049 if (!cpuctx->task_ctx)
2052 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2055 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 cpuctx->task_ctx = NULL;
2060 * Called with IRQs disabled
2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063 enum event_type_t event_type)
2065 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2069 ctx_pinned_sched_in(struct perf_event_context *ctx,
2070 struct perf_cpu_context *cpuctx)
2072 struct perf_event *event;
2074 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075 if (event->state <= PERF_EVENT_STATE_OFF)
2077 if (!event_filter_match(event))
2080 /* may need to reset tstamp_enabled */
2081 if (is_cgroup_event(event))
2082 perf_cgroup_mark_enabled(event, ctx);
2084 if (group_can_go_on(event, cpuctx, 1))
2085 group_sched_in(event, cpuctx, ctx);
2088 * If this pinned group hasn't been scheduled,
2089 * put it in error state.
2091 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092 update_group_times(event);
2093 event->state = PERF_EVENT_STATE_ERROR;
2099 ctx_flexible_sched_in(struct perf_event_context *ctx,
2100 struct perf_cpu_context *cpuctx)
2102 struct perf_event *event;
2105 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106 /* Ignore events in OFF or ERROR state */
2107 if (event->state <= PERF_EVENT_STATE_OFF)
2110 * Listen to the 'cpu' scheduling filter constraint
2113 if (!event_filter_match(event))
2116 /* may need to reset tstamp_enabled */
2117 if (is_cgroup_event(event))
2118 perf_cgroup_mark_enabled(event, ctx);
2120 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121 if (group_sched_in(event, cpuctx, ctx))
2128 ctx_sched_in(struct perf_event_context *ctx,
2129 struct perf_cpu_context *cpuctx,
2130 enum event_type_t event_type,
2131 struct task_struct *task)
2134 int is_active = ctx->is_active;
2136 ctx->is_active |= event_type;
2137 if (likely(!ctx->nr_events))
2141 ctx->timestamp = now;
2142 perf_cgroup_set_timestamp(task, ctx);
2144 * First go through the list and put on any pinned groups
2145 * in order to give them the best chance of going on.
2147 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148 ctx_pinned_sched_in(ctx, cpuctx);
2150 /* Then walk through the lower prio flexible groups */
2151 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152 ctx_flexible_sched_in(ctx, cpuctx);
2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2156 enum event_type_t event_type,
2157 struct task_struct *task)
2159 struct perf_event_context *ctx = &cpuctx->ctx;
2161 ctx_sched_in(ctx, cpuctx, event_type, task);
2164 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165 struct task_struct *task)
2167 struct perf_cpu_context *cpuctx;
2169 cpuctx = __get_cpu_context(ctx);
2170 if (cpuctx->task_ctx == ctx)
2173 perf_ctx_lock(cpuctx, ctx);
2174 perf_pmu_disable(ctx->pmu);
2176 * We want to keep the following priority order:
2177 * cpu pinned (that don't need to move), task pinned,
2178 * cpu flexible, task flexible.
2180 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2183 cpuctx->task_ctx = ctx;
2185 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2187 perf_pmu_enable(ctx->pmu);
2188 perf_ctx_unlock(cpuctx, ctx);
2191 * Since these rotations are per-cpu, we need to ensure the
2192 * cpu-context we got scheduled on is actually rotating.
2194 perf_pmu_rotate_start(ctx->pmu);
2198 * Called from scheduler to add the events of the current task
2199 * with interrupts disabled.
2201 * We restore the event value and then enable it.
2203 * This does not protect us against NMI, but enable()
2204 * sets the enabled bit in the control field of event _before_
2205 * accessing the event control register. If a NMI hits, then it will
2206 * keep the event running.
2208 void __perf_event_task_sched_in(struct task_struct *prev,
2209 struct task_struct *task)
2211 struct perf_event_context *ctx;
2214 for_each_task_context_nr(ctxn) {
2215 ctx = task->perf_event_ctxp[ctxn];
2219 perf_event_context_sched_in(ctx, task);
2222 * if cgroup events exist on this CPU, then we need
2223 * to check if we have to switch in PMU state.
2224 * cgroup event are system-wide mode only
2226 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227 perf_cgroup_sched_in(prev, task);
2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2232 u64 frequency = event->attr.sample_freq;
2233 u64 sec = NSEC_PER_SEC;
2234 u64 divisor, dividend;
2236 int count_fls, nsec_fls, frequency_fls, sec_fls;
2238 count_fls = fls64(count);
2239 nsec_fls = fls64(nsec);
2240 frequency_fls = fls64(frequency);
2244 * We got @count in @nsec, with a target of sample_freq HZ
2245 * the target period becomes:
2248 * period = -------------------
2249 * @nsec * sample_freq
2254 * Reduce accuracy by one bit such that @a and @b converge
2255 * to a similar magnitude.
2257 #define REDUCE_FLS(a, b) \
2259 if (a##_fls > b##_fls) { \
2269 * Reduce accuracy until either term fits in a u64, then proceed with
2270 * the other, so that finally we can do a u64/u64 division.
2272 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273 REDUCE_FLS(nsec, frequency);
2274 REDUCE_FLS(sec, count);
2277 if (count_fls + sec_fls > 64) {
2278 divisor = nsec * frequency;
2280 while (count_fls + sec_fls > 64) {
2281 REDUCE_FLS(count, sec);
2285 dividend = count * sec;
2287 dividend = count * sec;
2289 while (nsec_fls + frequency_fls > 64) {
2290 REDUCE_FLS(nsec, frequency);
2294 divisor = nsec * frequency;
2300 return div64_u64(dividend, divisor);
2303 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2305 struct hw_perf_event *hwc = &event->hw;
2306 s64 period, sample_period;
2309 period = perf_calculate_period(event, nsec, count);
2311 delta = (s64)(period - hwc->sample_period);
2312 delta = (delta + 7) / 8; /* low pass filter */
2314 sample_period = hwc->sample_period + delta;
2319 hwc->sample_period = sample_period;
2321 if (local64_read(&hwc->period_left) > 8*sample_period) {
2322 event->pmu->stop(event, PERF_EF_UPDATE);
2323 local64_set(&hwc->period_left, 0);
2324 event->pmu->start(event, PERF_EF_RELOAD);
2328 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2330 struct perf_event *event;
2331 struct hw_perf_event *hwc;
2332 u64 interrupts, now;
2338 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2339 if (event->state != PERF_EVENT_STATE_ACTIVE)
2342 if (!event_filter_match(event))
2347 interrupts = hwc->interrupts;
2348 hwc->interrupts = 0;
2351 * unthrottle events on the tick
2353 if (interrupts == MAX_INTERRUPTS) {
2354 perf_log_throttle(event, 1);
2355 event->pmu->start(event, 0);
2358 if (!event->attr.freq || !event->attr.sample_freq)
2361 event->pmu->read(event);
2362 now = local64_read(&event->count);
2363 delta = now - hwc->freq_count_stamp;
2364 hwc->freq_count_stamp = now;
2367 perf_adjust_period(event, period, delta);
2372 * Round-robin a context's events:
2374 static void rotate_ctx(struct perf_event_context *ctx)
2377 * Rotate the first entry last of non-pinned groups. Rotation might be
2378 * disabled by the inheritance code.
2380 if (!ctx->rotate_disable)
2381 list_rotate_left(&ctx->flexible_groups);
2385 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2386 * because they're strictly cpu affine and rotate_start is called with IRQs
2387 * disabled, while rotate_context is called from IRQ context.
2389 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2391 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2392 struct perf_event_context *ctx = NULL;
2393 int rotate = 0, remove = 1, freq = 0;
2395 if (cpuctx->ctx.nr_events) {
2397 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2399 if (cpuctx->ctx.nr_freq)
2403 ctx = cpuctx->task_ctx;
2404 if (ctx && ctx->nr_events) {
2406 if (ctx->nr_events != ctx->nr_active)
2412 if (!rotate && !freq)
2415 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2416 perf_pmu_disable(cpuctx->ctx.pmu);
2419 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2421 perf_ctx_adjust_freq(ctx, interval);
2425 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2427 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2429 rotate_ctx(&cpuctx->ctx);
2433 perf_event_sched_in(cpuctx, ctx, current);
2436 perf_pmu_enable(cpuctx->ctx.pmu);
2437 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2441 list_del_init(&cpuctx->rotation_list);
2444 void perf_event_task_tick(void)
2446 struct list_head *head = &__get_cpu_var(rotation_list);
2447 struct perf_cpu_context *cpuctx, *tmp;
2449 WARN_ON(!irqs_disabled());
2451 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2452 if (cpuctx->jiffies_interval == 1 ||
2453 !(jiffies % cpuctx->jiffies_interval))
2454 perf_rotate_context(cpuctx);
2458 static int event_enable_on_exec(struct perf_event *event,
2459 struct perf_event_context *ctx)
2461 if (!event->attr.enable_on_exec)
2464 event->attr.enable_on_exec = 0;
2465 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2468 __perf_event_mark_enabled(event);
2474 * Enable all of a task's events that have been marked enable-on-exec.
2475 * This expects task == current.
2477 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2479 struct perf_event *event;
2480 unsigned long flags;
2484 local_irq_save(flags);
2485 if (!ctx || !ctx->nr_events)
2489 * We must ctxsw out cgroup events to avoid conflict
2490 * when invoking perf_task_event_sched_in() later on
2491 * in this function. Otherwise we end up trying to
2492 * ctxswin cgroup events which are already scheduled
2495 perf_cgroup_sched_out(current, NULL);
2497 raw_spin_lock(&ctx->lock);
2498 task_ctx_sched_out(ctx);
2500 list_for_each_entry(event, &ctx->event_list, event_entry) {
2501 ret = event_enable_on_exec(event, ctx);
2507 * Unclone this context if we enabled any event.
2512 raw_spin_unlock(&ctx->lock);
2515 * Also calls ctxswin for cgroup events, if any:
2517 perf_event_context_sched_in(ctx, ctx->task);
2519 local_irq_restore(flags);
2523 * Cross CPU call to read the hardware event
2525 static void __perf_event_read(void *info)
2527 struct perf_event *event = info;
2528 struct perf_event_context *ctx = event->ctx;
2529 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2532 * If this is a task context, we need to check whether it is
2533 * the current task context of this cpu. If not it has been
2534 * scheduled out before the smp call arrived. In that case
2535 * event->count would have been updated to a recent sample
2536 * when the event was scheduled out.
2538 if (ctx->task && cpuctx->task_ctx != ctx)
2541 raw_spin_lock(&ctx->lock);
2542 if (ctx->is_active) {
2543 update_context_time(ctx);
2544 update_cgrp_time_from_event(event);
2546 update_event_times(event);
2547 if (event->state == PERF_EVENT_STATE_ACTIVE)
2548 event->pmu->read(event);
2549 raw_spin_unlock(&ctx->lock);
2552 static inline u64 perf_event_count(struct perf_event *event)
2554 return local64_read(&event->count) + atomic64_read(&event->child_count);
2557 static u64 perf_event_read(struct perf_event *event)
2560 * If event is enabled and currently active on a CPU, update the
2561 * value in the event structure:
2563 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2564 smp_call_function_single(event->oncpu,
2565 __perf_event_read, event, 1);
2566 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2567 struct perf_event_context *ctx = event->ctx;
2568 unsigned long flags;
2570 raw_spin_lock_irqsave(&ctx->lock, flags);
2572 * may read while context is not active
2573 * (e.g., thread is blocked), in that case
2574 * we cannot update context time
2576 if (ctx->is_active) {
2577 update_context_time(ctx);
2578 update_cgrp_time_from_event(event);
2580 update_event_times(event);
2581 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2584 return perf_event_count(event);
2588 * Initialize the perf_event context in a task_struct:
2590 static void __perf_event_init_context(struct perf_event_context *ctx)
2592 raw_spin_lock_init(&ctx->lock);
2593 mutex_init(&ctx->mutex);
2594 INIT_LIST_HEAD(&ctx->pinned_groups);
2595 INIT_LIST_HEAD(&ctx->flexible_groups);
2596 INIT_LIST_HEAD(&ctx->event_list);
2597 atomic_set(&ctx->refcount, 1);
2600 static struct perf_event_context *
2601 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2603 struct perf_event_context *ctx;
2605 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2609 __perf_event_init_context(ctx);
2612 get_task_struct(task);
2619 static struct task_struct *
2620 find_lively_task_by_vpid(pid_t vpid)
2622 struct task_struct *task;
2629 task = find_task_by_vpid(vpid);
2631 get_task_struct(task);
2635 return ERR_PTR(-ESRCH);
2637 /* Reuse ptrace permission checks for now. */
2639 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2644 put_task_struct(task);
2645 return ERR_PTR(err);
2650 * Returns a matching context with refcount and pincount.
2652 static struct perf_event_context *
2653 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2655 struct perf_event_context *ctx;
2656 struct perf_cpu_context *cpuctx;
2657 unsigned long flags;
2661 /* Must be root to operate on a CPU event: */
2662 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2663 return ERR_PTR(-EACCES);
2666 * We could be clever and allow to attach a event to an
2667 * offline CPU and activate it when the CPU comes up, but
2670 if (!cpu_online(cpu))
2671 return ERR_PTR(-ENODEV);
2673 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2682 ctxn = pmu->task_ctx_nr;
2687 ctx = perf_lock_task_context(task, ctxn, &flags);
2691 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2693 ctx = alloc_perf_context(pmu, task);
2699 mutex_lock(&task->perf_event_mutex);
2701 * If it has already passed perf_event_exit_task().
2702 * we must see PF_EXITING, it takes this mutex too.
2704 if (task->flags & PF_EXITING)
2706 else if (task->perf_event_ctxp[ctxn])
2711 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2713 mutex_unlock(&task->perf_event_mutex);
2715 if (unlikely(err)) {
2727 return ERR_PTR(err);
2730 static void perf_event_free_filter(struct perf_event *event);
2732 static void free_event_rcu(struct rcu_head *head)
2734 struct perf_event *event;
2736 event = container_of(head, struct perf_event, rcu_head);
2738 put_pid_ns(event->ns);
2739 perf_event_free_filter(event);
2743 static void ring_buffer_put(struct ring_buffer *rb);
2745 static void free_event(struct perf_event *event)
2747 irq_work_sync(&event->pending);
2749 if (!event->parent) {
2750 if (event->attach_state & PERF_ATTACH_TASK)
2751 jump_label_dec_deferred(&perf_sched_events);
2752 if (event->attr.mmap || event->attr.mmap_data)
2753 atomic_dec(&nr_mmap_events);
2754 if (event->attr.comm)
2755 atomic_dec(&nr_comm_events);
2756 if (event->attr.task)
2757 atomic_dec(&nr_task_events);
2758 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2759 put_callchain_buffers();
2760 if (is_cgroup_event(event)) {
2761 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2762 jump_label_dec_deferred(&perf_sched_events);
2767 ring_buffer_put(event->rb);
2771 if (is_cgroup_event(event))
2772 perf_detach_cgroup(event);
2775 event->destroy(event);
2778 put_ctx(event->ctx);
2780 call_rcu(&event->rcu_head, free_event_rcu);
2783 int perf_event_release_kernel(struct perf_event *event)
2785 struct perf_event_context *ctx = event->ctx;
2787 WARN_ON_ONCE(ctx->parent_ctx);
2789 * There are two ways this annotation is useful:
2791 * 1) there is a lock recursion from perf_event_exit_task
2792 * see the comment there.
2794 * 2) there is a lock-inversion with mmap_sem through
2795 * perf_event_read_group(), which takes faults while
2796 * holding ctx->mutex, however this is called after
2797 * the last filedesc died, so there is no possibility
2798 * to trigger the AB-BA case.
2800 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2801 raw_spin_lock_irq(&ctx->lock);
2802 perf_group_detach(event);
2803 raw_spin_unlock_irq(&ctx->lock);
2804 perf_remove_from_context(event);
2805 mutex_unlock(&ctx->mutex);
2811 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2814 * Called when the last reference to the file is gone.
2816 static int perf_release(struct inode *inode, struct file *file)
2818 struct perf_event *event = file->private_data;
2819 struct task_struct *owner;
2821 file->private_data = NULL;
2824 owner = ACCESS_ONCE(event->owner);
2826 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2827 * !owner it means the list deletion is complete and we can indeed
2828 * free this event, otherwise we need to serialize on
2829 * owner->perf_event_mutex.
2831 smp_read_barrier_depends();
2834 * Since delayed_put_task_struct() also drops the last
2835 * task reference we can safely take a new reference
2836 * while holding the rcu_read_lock().
2838 get_task_struct(owner);
2843 mutex_lock(&owner->perf_event_mutex);
2845 * We have to re-check the event->owner field, if it is cleared
2846 * we raced with perf_event_exit_task(), acquiring the mutex
2847 * ensured they're done, and we can proceed with freeing the
2851 list_del_init(&event->owner_entry);
2852 mutex_unlock(&owner->perf_event_mutex);
2853 put_task_struct(owner);
2856 return perf_event_release_kernel(event);
2859 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2861 struct perf_event *child;
2867 mutex_lock(&event->child_mutex);
2868 total += perf_event_read(event);
2869 *enabled += event->total_time_enabled +
2870 atomic64_read(&event->child_total_time_enabled);
2871 *running += event->total_time_running +
2872 atomic64_read(&event->child_total_time_running);
2874 list_for_each_entry(child, &event->child_list, child_list) {
2875 total += perf_event_read(child);
2876 *enabled += child->total_time_enabled;
2877 *running += child->total_time_running;
2879 mutex_unlock(&event->child_mutex);
2883 EXPORT_SYMBOL_GPL(perf_event_read_value);
2885 static int perf_event_read_group(struct perf_event *event,
2886 u64 read_format, char __user *buf)
2888 struct perf_event *leader = event->group_leader, *sub;
2889 int n = 0, size = 0, ret = -EFAULT;
2890 struct perf_event_context *ctx = leader->ctx;
2892 u64 count, enabled, running;
2894 mutex_lock(&ctx->mutex);
2895 count = perf_event_read_value(leader, &enabled, &running);
2897 values[n++] = 1 + leader->nr_siblings;
2898 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2899 values[n++] = enabled;
2900 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2901 values[n++] = running;
2902 values[n++] = count;
2903 if (read_format & PERF_FORMAT_ID)
2904 values[n++] = primary_event_id(leader);
2906 size = n * sizeof(u64);
2908 if (copy_to_user(buf, values, size))
2913 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2916 values[n++] = perf_event_read_value(sub, &enabled, &running);
2917 if (read_format & PERF_FORMAT_ID)
2918 values[n++] = primary_event_id(sub);
2920 size = n * sizeof(u64);
2922 if (copy_to_user(buf + ret, values, size)) {
2930 mutex_unlock(&ctx->mutex);
2935 static int perf_event_read_one(struct perf_event *event,
2936 u64 read_format, char __user *buf)
2938 u64 enabled, running;
2942 values[n++] = perf_event_read_value(event, &enabled, &running);
2943 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2944 values[n++] = enabled;
2945 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2946 values[n++] = running;
2947 if (read_format & PERF_FORMAT_ID)
2948 values[n++] = primary_event_id(event);
2950 if (copy_to_user(buf, values, n * sizeof(u64)))
2953 return n * sizeof(u64);
2957 * Read the performance event - simple non blocking version for now
2960 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2962 u64 read_format = event->attr.read_format;
2966 * Return end-of-file for a read on a event that is in
2967 * error state (i.e. because it was pinned but it couldn't be
2968 * scheduled on to the CPU at some point).
2970 if (event->state == PERF_EVENT_STATE_ERROR)
2973 if (count < event->read_size)
2976 WARN_ON_ONCE(event->ctx->parent_ctx);
2977 if (read_format & PERF_FORMAT_GROUP)
2978 ret = perf_event_read_group(event, read_format, buf);
2980 ret = perf_event_read_one(event, read_format, buf);
2986 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2988 struct perf_event *event = file->private_data;
2990 return perf_read_hw(event, buf, count);
2993 static unsigned int perf_poll(struct file *file, poll_table *wait)
2995 struct perf_event *event = file->private_data;
2996 struct ring_buffer *rb;
2997 unsigned int events = POLL_HUP;
3000 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3001 * grabs the rb reference but perf_event_set_output() overrides it.
3002 * Here is the timeline for two threads T1, T2:
3003 * t0: T1, rb = rcu_dereference(event->rb)
3004 * t1: T2, old_rb = event->rb
3005 * t2: T2, event->rb = new rb
3006 * t3: T2, ring_buffer_detach(old_rb)
3007 * t4: T1, ring_buffer_attach(rb1)
3008 * t5: T1, poll_wait(event->waitq)
3010 * To avoid this problem, we grab mmap_mutex in perf_poll()
3011 * thereby ensuring that the assignment of the new ring buffer
3012 * and the detachment of the old buffer appear atomic to perf_poll()
3014 mutex_lock(&event->mmap_mutex);
3017 rb = rcu_dereference(event->rb);
3019 ring_buffer_attach(event, rb);
3020 events = atomic_xchg(&rb->poll, 0);
3024 mutex_unlock(&event->mmap_mutex);
3026 poll_wait(file, &event->waitq, wait);
3031 static void perf_event_reset(struct perf_event *event)
3033 (void)perf_event_read(event);
3034 local64_set(&event->count, 0);
3035 perf_event_update_userpage(event);
3039 * Holding the top-level event's child_mutex means that any
3040 * descendant process that has inherited this event will block
3041 * in sync_child_event if it goes to exit, thus satisfying the
3042 * task existence requirements of perf_event_enable/disable.
3044 static void perf_event_for_each_child(struct perf_event *event,
3045 void (*func)(struct perf_event *))
3047 struct perf_event *child;
3049 WARN_ON_ONCE(event->ctx->parent_ctx);
3050 mutex_lock(&event->child_mutex);
3052 list_for_each_entry(child, &event->child_list, child_list)
3054 mutex_unlock(&event->child_mutex);
3057 static void perf_event_for_each(struct perf_event *event,
3058 void (*func)(struct perf_event *))
3060 struct perf_event_context *ctx = event->ctx;
3061 struct perf_event *sibling;
3063 WARN_ON_ONCE(ctx->parent_ctx);
3064 mutex_lock(&ctx->mutex);
3065 event = event->group_leader;
3067 perf_event_for_each_child(event, func);
3069 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3070 perf_event_for_each_child(event, func);
3071 mutex_unlock(&ctx->mutex);
3074 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3076 struct perf_event_context *ctx = event->ctx;
3080 if (!is_sampling_event(event))
3083 if (copy_from_user(&value, arg, sizeof(value)))
3089 raw_spin_lock_irq(&ctx->lock);
3090 if (event->attr.freq) {
3091 if (value > sysctl_perf_event_sample_rate) {
3096 event->attr.sample_freq = value;
3098 event->attr.sample_period = value;
3099 event->hw.sample_period = value;
3102 raw_spin_unlock_irq(&ctx->lock);
3107 static const struct file_operations perf_fops;
3109 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3113 file = fget_light(fd, fput_needed);
3115 return ERR_PTR(-EBADF);
3117 if (file->f_op != &perf_fops) {
3118 fput_light(file, *fput_needed);
3120 return ERR_PTR(-EBADF);
3123 return file->private_data;
3126 static int perf_event_set_output(struct perf_event *event,
3127 struct perf_event *output_event);
3128 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3130 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3132 struct perf_event *event = file->private_data;
3133 void (*func)(struct perf_event *);
3137 case PERF_EVENT_IOC_ENABLE:
3138 func = perf_event_enable;
3140 case PERF_EVENT_IOC_DISABLE:
3141 func = perf_event_disable;
3143 case PERF_EVENT_IOC_RESET:
3144 func = perf_event_reset;
3147 case PERF_EVENT_IOC_REFRESH:
3148 return perf_event_refresh(event, arg);
3150 case PERF_EVENT_IOC_PERIOD:
3151 return perf_event_period(event, (u64 __user *)arg);
3153 case PERF_EVENT_IOC_SET_OUTPUT:
3155 struct perf_event *output_event = NULL;
3156 int fput_needed = 0;
3160 output_event = perf_fget_light(arg, &fput_needed);
3161 if (IS_ERR(output_event))
3162 return PTR_ERR(output_event);
3165 ret = perf_event_set_output(event, output_event);
3167 fput_light(output_event->filp, fput_needed);
3172 case PERF_EVENT_IOC_SET_FILTER:
3173 return perf_event_set_filter(event, (void __user *)arg);
3179 if (flags & PERF_IOC_FLAG_GROUP)
3180 perf_event_for_each(event, func);
3182 perf_event_for_each_child(event, func);
3187 int perf_event_task_enable(void)
3189 struct perf_event *event;
3191 mutex_lock(¤t->perf_event_mutex);
3192 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
3193 perf_event_for_each_child(event, perf_event_enable);
3194 mutex_unlock(¤t->perf_event_mutex);
3199 int perf_event_task_disable(void)
3201 struct perf_event *event;
3203 mutex_lock(¤t->perf_event_mutex);
3204 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
3205 perf_event_for_each_child(event, perf_event_disable);
3206 mutex_unlock(¤t->perf_event_mutex);
3211 static int perf_event_index(struct perf_event *event)
3213 if (event->hw.state & PERF_HES_STOPPED)
3216 if (event->state != PERF_EVENT_STATE_ACTIVE)
3219 return event->pmu->event_idx(event);
3222 static void calc_timer_values(struct perf_event *event,
3229 ctx_time = event->shadow_ctx_time + now;
3230 *enabled = ctx_time - event->tstamp_enabled;
3231 *running = ctx_time - event->tstamp_running;
3235 * Callers need to ensure there can be no nesting of this function, otherwise
3236 * the seqlock logic goes bad. We can not serialize this because the arch
3237 * code calls this from NMI context.
3239 void perf_event_update_userpage(struct perf_event *event)
3241 struct perf_event_mmap_page *userpg;
3242 struct ring_buffer *rb;
3243 u64 enabled, running;
3247 * compute total_time_enabled, total_time_running
3248 * based on snapshot values taken when the event
3249 * was last scheduled in.
3251 * we cannot simply called update_context_time()
3252 * because of locking issue as we can be called in
3255 calc_timer_values(event, &enabled, &running);
3256 rb = rcu_dereference(event->rb);
3260 userpg = rb->user_page;
3263 * Disable preemption so as to not let the corresponding user-space
3264 * spin too long if we get preempted.
3269 userpg->index = perf_event_index(event);
3270 userpg->offset = perf_event_count(event);
3272 userpg->offset -= local64_read(&event->hw.prev_count);
3274 userpg->time_enabled = enabled +
3275 atomic64_read(&event->child_total_time_enabled);
3277 userpg->time_running = running +
3278 atomic64_read(&event->child_total_time_running);
3287 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3289 struct perf_event *event = vma->vm_file->private_data;
3290 struct ring_buffer *rb;
3291 int ret = VM_FAULT_SIGBUS;
3293 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3294 if (vmf->pgoff == 0)
3300 rb = rcu_dereference(event->rb);
3304 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3307 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3311 get_page(vmf->page);
3312 vmf->page->mapping = vma->vm_file->f_mapping;
3313 vmf->page->index = vmf->pgoff;
3322 static void ring_buffer_attach(struct perf_event *event,
3323 struct ring_buffer *rb)
3325 unsigned long flags;
3327 if (!list_empty(&event->rb_entry))
3330 spin_lock_irqsave(&rb->event_lock, flags);
3331 if (!list_empty(&event->rb_entry))
3334 list_add(&event->rb_entry, &rb->event_list);
3336 spin_unlock_irqrestore(&rb->event_lock, flags);
3339 static void ring_buffer_detach(struct perf_event *event,
3340 struct ring_buffer *rb)
3342 unsigned long flags;
3344 if (list_empty(&event->rb_entry))
3347 spin_lock_irqsave(&rb->event_lock, flags);
3348 list_del_init(&event->rb_entry);
3349 wake_up_all(&event->waitq);
3350 spin_unlock_irqrestore(&rb->event_lock, flags);
3353 static void ring_buffer_wakeup(struct perf_event *event)
3355 struct ring_buffer *rb;
3358 rb = rcu_dereference(event->rb);
3359 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3360 wake_up_all(&event->waitq);
3365 static void rb_free_rcu(struct rcu_head *rcu_head)
3367 struct ring_buffer *rb;
3369 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3373 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3375 struct ring_buffer *rb;
3378 rb = rcu_dereference(event->rb);
3380 if (!atomic_inc_not_zero(&rb->refcount))
3388 static void ring_buffer_put(struct ring_buffer *rb)
3390 struct perf_event *event, *n;
3391 unsigned long flags;
3393 if (!atomic_dec_and_test(&rb->refcount))
3396 spin_lock_irqsave(&rb->event_lock, flags);
3397 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3398 list_del_init(&event->rb_entry);
3399 wake_up_all(&event->waitq);
3401 spin_unlock_irqrestore(&rb->event_lock, flags);
3403 call_rcu(&rb->rcu_head, rb_free_rcu);
3406 static void perf_mmap_open(struct vm_area_struct *vma)
3408 struct perf_event *event = vma->vm_file->private_data;
3410 atomic_inc(&event->mmap_count);
3413 static void perf_mmap_close(struct vm_area_struct *vma)
3415 struct perf_event *event = vma->vm_file->private_data;
3417 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3418 unsigned long size = perf_data_size(event->rb);
3419 struct user_struct *user = event->mmap_user;
3420 struct ring_buffer *rb = event->rb;
3422 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3423 vma->vm_mm->pinned_vm -= event->mmap_locked;
3424 rcu_assign_pointer(event->rb, NULL);
3425 ring_buffer_detach(event, rb);
3426 mutex_unlock(&event->mmap_mutex);
3428 ring_buffer_put(rb);
3433 static const struct vm_operations_struct perf_mmap_vmops = {
3434 .open = perf_mmap_open,
3435 .close = perf_mmap_close,
3436 .fault = perf_mmap_fault,
3437 .page_mkwrite = perf_mmap_fault,
3440 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3442 struct perf_event *event = file->private_data;
3443 unsigned long user_locked, user_lock_limit;
3444 struct user_struct *user = current_user();
3445 unsigned long locked, lock_limit;
3446 struct ring_buffer *rb;
3447 unsigned long vma_size;
3448 unsigned long nr_pages;
3449 long user_extra, extra;
3450 int ret = 0, flags = 0;
3453 * Don't allow mmap() of inherited per-task counters. This would
3454 * create a performance issue due to all children writing to the
3457 if (event->cpu == -1 && event->attr.inherit)
3460 if (!(vma->vm_flags & VM_SHARED))
3463 vma_size = vma->vm_end - vma->vm_start;
3464 nr_pages = (vma_size / PAGE_SIZE) - 1;
3467 * If we have rb pages ensure they're a power-of-two number, so we
3468 * can do bitmasks instead of modulo.
3470 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3473 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3476 if (vma->vm_pgoff != 0)
3479 WARN_ON_ONCE(event->ctx->parent_ctx);
3480 mutex_lock(&event->mmap_mutex);
3482 if (event->rb->nr_pages == nr_pages)
3483 atomic_inc(&event->rb->refcount);
3489 user_extra = nr_pages + 1;
3490 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3493 * Increase the limit linearly with more CPUs:
3495 user_lock_limit *= num_online_cpus();
3497 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3500 if (user_locked > user_lock_limit)
3501 extra = user_locked - user_lock_limit;
3503 lock_limit = rlimit(RLIMIT_MEMLOCK);
3504 lock_limit >>= PAGE_SHIFT;
3505 locked = vma->vm_mm->pinned_vm + extra;
3507 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3508 !capable(CAP_IPC_LOCK)) {
3515 if (vma->vm_flags & VM_WRITE)
3516 flags |= RING_BUFFER_WRITABLE;
3518 rb = rb_alloc(nr_pages,
3519 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3526 rcu_assign_pointer(event->rb, rb);
3528 atomic_long_add(user_extra, &user->locked_vm);
3529 event->mmap_locked = extra;
3530 event->mmap_user = get_current_user();
3531 vma->vm_mm->pinned_vm += event->mmap_locked;
3533 perf_event_update_userpage(event);
3537 atomic_inc(&event->mmap_count);
3538 mutex_unlock(&event->mmap_mutex);
3540 vma->vm_flags |= VM_RESERVED;
3541 vma->vm_ops = &perf_mmap_vmops;
3546 static int perf_fasync(int fd, struct file *filp, int on)
3548 struct inode *inode = filp->f_path.dentry->d_inode;
3549 struct perf_event *event = filp->private_data;
3552 mutex_lock(&inode->i_mutex);
3553 retval = fasync_helper(fd, filp, on, &event->fasync);
3554 mutex_unlock(&inode->i_mutex);
3562 static const struct file_operations perf_fops = {
3563 .llseek = no_llseek,
3564 .release = perf_release,
3567 .unlocked_ioctl = perf_ioctl,
3568 .compat_ioctl = perf_ioctl,
3570 .fasync = perf_fasync,
3576 * If there's data, ensure we set the poll() state and publish everything
3577 * to user-space before waking everybody up.
3580 void perf_event_wakeup(struct perf_event *event)
3582 ring_buffer_wakeup(event);
3584 if (event->pending_kill) {
3585 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3586 event->pending_kill = 0;
3590 static void perf_pending_event(struct irq_work *entry)
3592 struct perf_event *event = container_of(entry,
3593 struct perf_event, pending);
3595 if (event->pending_disable) {
3596 event->pending_disable = 0;
3597 __perf_event_disable(event);
3600 if (event->pending_wakeup) {
3601 event->pending_wakeup = 0;
3602 perf_event_wakeup(event);
3607 * We assume there is only KVM supporting the callbacks.
3608 * Later on, we might change it to a list if there is
3609 * another virtualization implementation supporting the callbacks.
3611 struct perf_guest_info_callbacks *perf_guest_cbs;
3613 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3615 perf_guest_cbs = cbs;
3618 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3620 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3622 perf_guest_cbs = NULL;
3625 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3627 static void __perf_event_header__init_id(struct perf_event_header *header,
3628 struct perf_sample_data *data,
3629 struct perf_event *event)
3631 u64 sample_type = event->attr.sample_type;
3633 data->type = sample_type;
3634 header->size += event->id_header_size;
3636 if (sample_type & PERF_SAMPLE_TID) {
3637 /* namespace issues */
3638 data->tid_entry.pid = perf_event_pid(event, current);
3639 data->tid_entry.tid = perf_event_tid(event, current);
3642 if (sample_type & PERF_SAMPLE_TIME)
3643 data->time = perf_clock();
3645 if (sample_type & PERF_SAMPLE_ID)
3646 data->id = primary_event_id(event);
3648 if (sample_type & PERF_SAMPLE_STREAM_ID)
3649 data->stream_id = event->id;
3651 if (sample_type & PERF_SAMPLE_CPU) {
3652 data->cpu_entry.cpu = raw_smp_processor_id();
3653 data->cpu_entry.reserved = 0;
3657 void perf_event_header__init_id(struct perf_event_header *header,
3658 struct perf_sample_data *data,
3659 struct perf_event *event)
3661 if (event->attr.sample_id_all)
3662 __perf_event_header__init_id(header, data, event);
3665 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3666 struct perf_sample_data *data)
3668 u64 sample_type = data->type;
3670 if (sample_type & PERF_SAMPLE_TID)
3671 perf_output_put(handle, data->tid_entry);
3673 if (sample_type & PERF_SAMPLE_TIME)
3674 perf_output_put(handle, data->time);
3676 if (sample_type & PERF_SAMPLE_ID)
3677 perf_output_put(handle, data->id);
3679 if (sample_type & PERF_SAMPLE_STREAM_ID)
3680 perf_output_put(handle, data->stream_id);
3682 if (sample_type & PERF_SAMPLE_CPU)
3683 perf_output_put(handle, data->cpu_entry);
3686 void perf_event__output_id_sample(struct perf_event *event,
3687 struct perf_output_handle *handle,
3688 struct perf_sample_data *sample)
3690 if (event->attr.sample_id_all)
3691 __perf_event__output_id_sample(handle, sample);
3694 static void perf_output_read_one(struct perf_output_handle *handle,
3695 struct perf_event *event,
3696 u64 enabled, u64 running)
3698 u64 read_format = event->attr.read_format;
3702 values[n++] = perf_event_count(event);
3703 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3704 values[n++] = enabled +
3705 atomic64_read(&event->child_total_time_enabled);
3707 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3708 values[n++] = running +
3709 atomic64_read(&event->child_total_time_running);
3711 if (read_format & PERF_FORMAT_ID)
3712 values[n++] = primary_event_id(event);
3714 __output_copy(handle, values, n * sizeof(u64));
3718 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3720 static void perf_output_read_group(struct perf_output_handle *handle,
3721 struct perf_event *event,
3722 u64 enabled, u64 running)
3724 struct perf_event *leader = event->group_leader, *sub;
3725 u64 read_format = event->attr.read_format;
3729 values[n++] = 1 + leader->nr_siblings;
3731 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3732 values[n++] = enabled;
3734 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3735 values[n++] = running;
3737 if (leader != event)
3738 leader->pmu->read(leader);
3740 values[n++] = perf_event_count(leader);
3741 if (read_format & PERF_FORMAT_ID)
3742 values[n++] = primary_event_id(leader);
3744 __output_copy(handle, values, n * sizeof(u64));
3746 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3750 sub->pmu->read(sub);
3752 values[n++] = perf_event_count(sub);
3753 if (read_format & PERF_FORMAT_ID)
3754 values[n++] = primary_event_id(sub);
3756 __output_copy(handle, values, n * sizeof(u64));
3760 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3761 PERF_FORMAT_TOTAL_TIME_RUNNING)
3763 static void perf_output_read(struct perf_output_handle *handle,
3764 struct perf_event *event)
3766 u64 enabled = 0, running = 0;
3767 u64 read_format = event->attr.read_format;
3770 * compute total_time_enabled, total_time_running
3771 * based on snapshot values taken when the event
3772 * was last scheduled in.
3774 * we cannot simply called update_context_time()
3775 * because of locking issue as we are called in
3778 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3779 calc_timer_values(event, &enabled, &running);
3781 if (event->attr.read_format & PERF_FORMAT_GROUP)
3782 perf_output_read_group(handle, event, enabled, running);
3784 perf_output_read_one(handle, event, enabled, running);
3787 void perf_output_sample(struct perf_output_handle *handle,
3788 struct perf_event_header *header,
3789 struct perf_sample_data *data,
3790 struct perf_event *event)
3792 u64 sample_type = data->type;
3794 perf_output_put(handle, *header);
3796 if (sample_type & PERF_SAMPLE_IP)
3797 perf_output_put(handle, data->ip);
3799 if (sample_type & PERF_SAMPLE_TID)
3800 perf_output_put(handle, data->tid_entry);
3802 if (sample_type & PERF_SAMPLE_TIME)
3803 perf_output_put(handle, data->time);
3805 if (sample_type & PERF_SAMPLE_ADDR)
3806 perf_output_put(handle, data->addr);
3808 if (sample_type & PERF_SAMPLE_ID)
3809 perf_output_put(handle, data->id);
3811 if (sample_type & PERF_SAMPLE_STREAM_ID)
3812 perf_output_put(handle, data->stream_id);
3814 if (sample_type & PERF_SAMPLE_CPU)
3815 perf_output_put(handle, data->cpu_entry);
3817 if (sample_type & PERF_SAMPLE_PERIOD)
3818 perf_output_put(handle, data->period);
3820 if (sample_type & PERF_SAMPLE_READ)
3821 perf_output_read(handle, event);
3823 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3824 if (data->callchain) {
3827 if (data->callchain)
3828 size += data->callchain->nr;
3830 size *= sizeof(u64);
3832 __output_copy(handle, data->callchain, size);
3835 perf_output_put(handle, nr);
3839 if (sample_type & PERF_SAMPLE_RAW) {
3841 perf_output_put(handle, data->raw->size);
3842 __output_copy(handle, data->raw->data,
3849 .size = sizeof(u32),
3852 perf_output_put(handle, raw);
3856 if (!event->attr.watermark) {
3857 int wakeup_events = event->attr.wakeup_events;
3859 if (wakeup_events) {
3860 struct ring_buffer *rb = handle->rb;
3861 int events = local_inc_return(&rb->events);
3863 if (events >= wakeup_events) {
3864 local_sub(wakeup_events, &rb->events);
3865 local_inc(&rb->wakeup);
3871 void perf_prepare_sample(struct perf_event_header *header,
3872 struct perf_sample_data *data,
3873 struct perf_event *event,
3874 struct pt_regs *regs)
3876 u64 sample_type = event->attr.sample_type;
3878 header->type = PERF_RECORD_SAMPLE;
3879 header->size = sizeof(*header) + event->header_size;
3882 header->misc |= perf_misc_flags(regs);
3884 __perf_event_header__init_id(header, data, event);
3886 if (sample_type & PERF_SAMPLE_IP)
3887 data->ip = perf_instruction_pointer(regs);
3889 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3892 data->callchain = perf_callchain(regs);
3894 if (data->callchain)
3895 size += data->callchain->nr;
3897 header->size += size * sizeof(u64);
3900 if (sample_type & PERF_SAMPLE_RAW) {
3901 int size = sizeof(u32);
3904 size += data->raw->size;
3906 size += sizeof(u32);
3908 WARN_ON_ONCE(size & (sizeof(u64)-1));
3909 header->size += size;
3913 static void perf_event_output(struct perf_event *event,
3914 struct perf_sample_data *data,
3915 struct pt_regs *regs)
3917 struct perf_output_handle handle;
3918 struct perf_event_header header;
3920 /* protect the callchain buffers */
3923 perf_prepare_sample(&header, data, event, regs);
3925 if (perf_output_begin(&handle, event, header.size))
3928 perf_output_sample(&handle, &header, data, event);
3930 perf_output_end(&handle);
3940 struct perf_read_event {
3941 struct perf_event_header header;
3948 perf_event_read_event(struct perf_event *event,
3949 struct task_struct *task)
3951 struct perf_output_handle handle;
3952 struct perf_sample_data sample;
3953 struct perf_read_event read_event = {
3955 .type = PERF_RECORD_READ,
3957 .size = sizeof(read_event) + event->read_size,
3959 .pid = perf_event_pid(event, task),
3960 .tid = perf_event_tid(event, task),
3964 perf_event_header__init_id(&read_event.header, &sample, event);
3965 ret = perf_output_begin(&handle, event, read_event.header.size);
3969 perf_output_put(&handle, read_event);
3970 perf_output_read(&handle, event);
3971 perf_event__output_id_sample(event, &handle, &sample);
3973 perf_output_end(&handle);
3977 * task tracking -- fork/exit
3979 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3982 struct perf_task_event {
3983 struct task_struct *task;
3984 struct perf_event_context *task_ctx;
3987 struct perf_event_header header;
3997 static void perf_event_task_output(struct perf_event *event,
3998 struct perf_task_event *task_event)
4000 struct perf_output_handle handle;
4001 struct perf_sample_data sample;
4002 struct task_struct *task = task_event->task;
4003 int ret, size = task_event->event_id.header.size;
4005 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4007 ret = perf_output_begin(&handle, event,
4008 task_event->event_id.header.size);
4012 task_event->event_id.pid = perf_event_pid(event, task);
4013 task_event->event_id.ppid = perf_event_pid(event, current);
4015 task_event->event_id.tid = perf_event_tid(event, task);
4016 task_event->event_id.ptid = perf_event_tid(event, current);
4018 perf_output_put(&handle, task_event->event_id);
4020 perf_event__output_id_sample(event, &handle, &sample);
4022 perf_output_end(&handle);
4024 task_event->event_id.header.size = size;
4027 static int perf_event_task_match(struct perf_event *event)
4029 if (event->state < PERF_EVENT_STATE_INACTIVE)
4032 if (!event_filter_match(event))
4035 if (event->attr.comm || event->attr.mmap ||
4036 event->attr.mmap_data || event->attr.task)
4042 static void perf_event_task_ctx(struct perf_event_context *ctx,
4043 struct perf_task_event *task_event)
4045 struct perf_event *event;
4047 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4048 if (perf_event_task_match(event))
4049 perf_event_task_output(event, task_event);
4053 static void perf_event_task_event(struct perf_task_event *task_event)
4055 struct perf_cpu_context *cpuctx;
4056 struct perf_event_context *ctx;
4061 list_for_each_entry_rcu(pmu, &pmus, entry) {
4062 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4063 if (cpuctx->active_pmu != pmu)
4065 perf_event_task_ctx(&cpuctx->ctx, task_event);
4067 ctx = task_event->task_ctx;
4069 ctxn = pmu->task_ctx_nr;
4072 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4075 perf_event_task_ctx(ctx, task_event);
4077 put_cpu_ptr(pmu->pmu_cpu_context);
4082 static void perf_event_task(struct task_struct *task,
4083 struct perf_event_context *task_ctx,
4086 struct perf_task_event task_event;
4088 if (!atomic_read(&nr_comm_events) &&
4089 !atomic_read(&nr_mmap_events) &&
4090 !atomic_read(&nr_task_events))
4093 task_event = (struct perf_task_event){
4095 .task_ctx = task_ctx,
4098 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4100 .size = sizeof(task_event.event_id),
4106 .time = perf_clock(),
4110 perf_event_task_event(&task_event);
4113 void perf_event_fork(struct task_struct *task)
4115 perf_event_task(task, NULL, 1);
4122 struct perf_comm_event {
4123 struct task_struct *task;
4128 struct perf_event_header header;
4135 static void perf_event_comm_output(struct perf_event *event,
4136 struct perf_comm_event *comm_event)
4138 struct perf_output_handle handle;
4139 struct perf_sample_data sample;
4140 int size = comm_event->event_id.header.size;
4143 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4144 ret = perf_output_begin(&handle, event,
4145 comm_event->event_id.header.size);
4150 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4151 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);