4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy)
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
131 static inline int task_has_rt_policy(struct task_struct *p)
133 return rt_policy(p->policy);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
149 struct hrtimer rt_period_timer;
152 static struct rt_bandwidth def_rt_bandwidth;
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171 idle = do_sched_rt_period_timer(rt_b, overrun);
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime >= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 if (hrtimer_active(&rt_b->rt_period_timer))
205 raw_spin_lock(&rt_b->rt_runtime_lock);
210 if (hrtimer_active(&rt_b->rt_period_timer))
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 hrtimer_cancel(&rt_b->rt_period_timer);
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
244 static LIST_HEAD(task_groups);
246 /* task group related information */
248 struct cgroup_subsys_state css;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
262 struct rt_bandwidth rt_bandwidth;
266 struct list_head list;
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group.children);
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
314 struct load_weight load;
315 unsigned long nr_running;
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
323 struct list_head tasks;
324 struct list_head *balance_iterator;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity *curr, *next, *last;
332 unsigned int nr_spread_over;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
360 unsigned long h_load;
363 * this cpu's part of tg->shares
365 unsigned long shares;
368 * load.weight at the time we set shares
370 unsigned long rq_weight;
375 /* Real-Time classes' related field in a runqueue: */
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 int curr; /* highest queued rt task prio */
383 int next; /* next highest */
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
391 struct plist_head pushable_tasks;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
421 cpumask_var_t online;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask;
429 struct cpupri cpupri;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
461 unsigned char nohz_balance_kick;
463 unsigned int skip_clock_update;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible;
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
499 struct root_domain *rd;
500 struct sched_domain *sd;
502 unsigned long cpu_power;
504 unsigned char idle_at_tick;
505 /* For active balancing */
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
514 unsigned long avg_load_per_task;
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
530 #ifdef CONFIG_SCHED_HRTICK
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
535 struct hrtimer hrtick_timer;
538 #ifdef CONFIG_SCHEDSTATS
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
557 unsigned int bkl_count;
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
564 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
566 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
569 * A queue event has occurred, and we're going to schedule. In
570 * this case, we can save a useless back to back clock update.
572 if (test_tsk_need_resched(p))
573 rq->skip_clock_update = 1;
576 static inline int cpu_of(struct rq *rq)
585 #define rcu_dereference_check_sched_domain(p) \
586 rcu_dereference_check((p), \
587 rcu_read_lock_sched_held() || \
588 lockdep_is_held(&sched_domains_mutex))
591 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
592 * See detach_destroy_domains: synchronize_sched for details.
594 * The domain tree of any CPU may only be accessed from within
595 * preempt-disabled sections.
597 #define for_each_domain(cpu, __sd) \
598 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
600 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
601 #define this_rq() (&__get_cpu_var(runqueues))
602 #define task_rq(p) cpu_rq(task_cpu(p))
603 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
604 #define raw_rq() (&__raw_get_cpu_var(runqueues))
606 #ifdef CONFIG_CGROUP_SCHED
609 * Return the group to which this tasks belongs.
611 * We use task_subsys_state_check() and extend the RCU verification
612 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
613 * holds that lock for each task it moves into the cgroup. Therefore
614 * by holding that lock, we pin the task to the current cgroup.
616 static inline struct task_group *task_group(struct task_struct *p)
618 struct cgroup_subsys_state *css;
620 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
621 lockdep_is_held(&task_rq(p)->lock));
622 return container_of(css, struct task_group, css);
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
639 #else /* CONFIG_CGROUP_SCHED */
641 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642 static inline struct task_group *task_group(struct task_struct *p)
647 #endif /* CONFIG_CGROUP_SCHED */
649 static u64 irq_time_cpu(int cpu);
650 static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
652 inline void update_rq_clock(struct rq *rq)
654 if (!rq->skip_clock_update) {
655 int cpu = cpu_of(rq);
658 rq->clock = sched_clock_cpu(cpu);
659 irq_time = irq_time_cpu(cpu);
660 if (rq->clock - irq_time > rq->clock_task)
661 rq->clock_task = rq->clock - irq_time;
663 sched_irq_time_avg_update(rq, irq_time);
668 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 #ifdef CONFIG_SCHED_DEBUG
671 # define const_debug __read_mostly
673 # define const_debug static const
678 * @cpu: the processor in question.
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
684 int runqueue_is_locked(int cpu)
686 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
690 * Debugging: various feature bits
693 #define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
697 #include "sched_features.h"
702 #define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
705 const_debug unsigned int sysctl_sched_features =
706 #include "sched_features.h"
711 #ifdef CONFIG_SCHED_DEBUG
712 #define SCHED_FEAT(name, enabled) \
715 static __read_mostly char *sched_feat_names[] = {
716 #include "sched_features.h"
722 static int sched_feat_show(struct seq_file *m, void *v)
726 for (i = 0; sched_feat_names[i]; i++) {
727 if (!(sysctl_sched_features & (1UL << i)))
729 seq_printf(m, "%s ", sched_feat_names[i]);
737 sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
748 if (copy_from_user(&buf, ubuf, cnt))
754 if (strncmp(buf, "NO_", 3) == 0) {
759 for (i = 0; sched_feat_names[i]; i++) {
760 if (strcmp(cmp, sched_feat_names[i]) == 0) {
762 sysctl_sched_features &= ~(1UL << i);
764 sysctl_sched_features |= (1UL << i);
769 if (!sched_feat_names[i])
777 static int sched_feat_open(struct inode *inode, struct file *filp)
779 return single_open(filp, sched_feat_show, NULL);
782 static const struct file_operations sched_feat_fops = {
783 .open = sched_feat_open,
784 .write = sched_feat_write,
787 .release = single_release,
790 static __init int sched_init_debug(void)
792 debugfs_create_file("sched_features", 0644, NULL, NULL,
797 late_initcall(sched_init_debug);
801 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
807 const_debug unsigned int sysctl_sched_nr_migrate = 32;
810 * ratelimit for updating the group shares.
813 unsigned int sysctl_sched_shares_ratelimit = 250000;
814 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
821 unsigned int sysctl_sched_shares_thresh = 4;
824 * period over which we average the RT time consumption, measured
829 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832 * period over which we measure -rt task cpu usage in us.
835 unsigned int sysctl_sched_rt_period = 1000000;
837 static __read_mostly int scheduler_running;
840 * part of the period that we allow rt tasks to run in us.
843 int sysctl_sched_rt_runtime = 950000;
845 static inline u64 global_rt_period(void)
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850 static inline u64 global_rt_runtime(void)
852 if (sysctl_sched_rt_runtime < 0)
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858 #ifndef prepare_arch_switch
859 # define prepare_arch_switch(next) do { } while (0)
861 #ifndef finish_arch_switch
862 # define finish_arch_switch(prev) do { } while (0)
865 static inline int task_current(struct rq *rq, struct task_struct *p)
867 return rq->curr == p;
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline int task_running(struct rq *rq, struct task_struct *p)
873 return task_current(rq, p);
876 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
882 #ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893 raw_spin_unlock_irq(&rq->lock);
896 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
897 static inline int task_running(struct rq *rq, struct task_struct *p)
902 return task_current(rq, p);
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
916 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 raw_spin_unlock_irq(&rq->lock);
919 raw_spin_unlock(&rq->lock);
923 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
934 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
944 static inline int task_is_waking(struct task_struct *p)
946 return unlikely(p->state == TASK_WAKING);
950 * __task_rq_lock - lock the runqueue a given task resides on.
951 * Must be called interrupts disabled.
953 static inline struct rq *__task_rq_lock(struct task_struct *p)
960 raw_spin_lock(&rq->lock);
961 if (likely(rq == task_rq(p)))
963 raw_spin_unlock(&rq->lock);
968 * task_rq_lock - lock the runqueue a given task resides on and disable
969 * interrupts. Note the ordering: we can safely lookup the task_rq without
970 * explicitly disabling preemption.
972 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
978 local_irq_save(*flags);
980 raw_spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
983 raw_spin_unlock_irqrestore(&rq->lock, *flags);
987 static void __task_rq_unlock(struct rq *rq)
990 raw_spin_unlock(&rq->lock);
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1007 local_irq_disable();
1009 raw_spin_lock(&rq->lock);
1014 #ifdef CONFIG_SCHED_HRTICK
1016 * Use HR-timers to deliver accurate preemption points.
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1028 * - enabled by features
1029 * - hrtimer is actually high res
1031 static inline int hrtick_enabled(struct rq *rq)
1033 if (!sched_feat(HRTICK))
1035 if (!cpu_active(cpu_of(rq)))
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040 static void hrtick_clear(struct rq *rq)
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1056 raw_spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 raw_spin_unlock(&rq->lock);
1061 return HRTIMER_NORESTART;
1066 * called from hardirq (IPI) context
1068 static void __hrtick_start(void *arg)
1070 struct rq *rq = arg;
1072 raw_spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 raw_spin_unlock(&rq->lock);
1079 * Called to set the hrtick timer state.
1081 * called with rq->lock held and irqs disabled
1083 static void hrtick_start(struct rq *rq, u64 delay)
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1088 hrtimer_set_expires(timer, time);
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 rq->hrtick_csd_pending = 1;
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1101 int cpu = (int)(long)hcpu;
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1117 static __init void init_hrtick(void)
1119 hotcpu_notifier(hotplug_hrtick, 0);
1123 * Called to set the hrtick timer state.
1125 * called with rq->lock held and irqs disabled
1127 static void hrtick_start(struct rq *rq, u64 delay)
1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130 HRTIMER_MODE_REL_PINNED, 0);
1133 static inline void init_hrtick(void)
1136 #endif /* CONFIG_SMP */
1138 static void init_rq_hrtick(struct rq *rq)
1141 rq->hrtick_csd_pending = 0;
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq *rq)
1156 static inline void init_rq_hrtick(struct rq *rq)
1160 static inline void init_hrtick(void)
1163 #endif /* CONFIG_SCHED_HRTICK */
1166 * resched_task - mark a task 'to be rescheduled now'.
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 static void resched_task(struct task_struct *p)
1182 assert_raw_spin_locked(&task_rq(p)->lock);
1184 if (test_tsk_need_resched(p))
1187 set_tsk_need_resched(p);
1190 if (cpu == smp_processor_id())
1193 /* NEED_RESCHED must be visible before we test polling */
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1199 static void resched_cpu(int cpu)
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1206 resched_task(cpu_curr(cpu));
1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1212 * In the semi idle case, use the nearest busy cpu for migrating timers
1213 * from an idle cpu. This is good for power-savings.
1215 * We don't do similar optimization for completely idle system, as
1216 * selecting an idle cpu will add more delays to the timers than intended
1217 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1219 int get_nohz_timer_target(void)
1221 int cpu = smp_processor_id();
1223 struct sched_domain *sd;
1225 for_each_domain(cpu, sd) {
1226 for_each_cpu(i, sched_domain_span(sd))
1233 * When add_timer_on() enqueues a timer into the timer wheel of an
1234 * idle CPU then this timer might expire before the next timer event
1235 * which is scheduled to wake up that CPU. In case of a completely
1236 * idle system the next event might even be infinite time into the
1237 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1238 * leaves the inner idle loop so the newly added timer is taken into
1239 * account when the CPU goes back to idle and evaluates the timer
1240 * wheel for the next timer event.
1242 void wake_up_idle_cpu(int cpu)
1244 struct rq *rq = cpu_rq(cpu);
1246 if (cpu == smp_processor_id())
1250 * This is safe, as this function is called with the timer
1251 * wheel base lock of (cpu) held. When the CPU is on the way
1252 * to idle and has not yet set rq->curr to idle then it will
1253 * be serialized on the timer wheel base lock and take the new
1254 * timer into account automatically.
1256 if (rq->curr != rq->idle)
1260 * We can set TIF_RESCHED on the idle task of the other CPU
1261 * lockless. The worst case is that the other CPU runs the
1262 * idle task through an additional NOOP schedule()
1264 set_tsk_need_resched(rq->idle);
1266 /* NEED_RESCHED must be visible before we test polling */
1268 if (!tsk_is_polling(rq->idle))
1269 smp_send_reschedule(cpu);
1272 #endif /* CONFIG_NO_HZ */
1274 static u64 sched_avg_period(void)
1276 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1279 static void sched_avg_update(struct rq *rq)
1281 s64 period = sched_avg_period();
1283 while ((s64)(rq->clock - rq->age_stamp) > period) {
1285 * Inline assembly required to prevent the compiler
1286 * optimising this loop into a divmod call.
1287 * See __iter_div_u64_rem() for another example of this.
1289 asm("" : "+rm" (rq->age_stamp));
1290 rq->age_stamp += period;
1295 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1297 rq->rt_avg += rt_delta;
1298 sched_avg_update(rq);
1301 #else /* !CONFIG_SMP */
1302 static void resched_task(struct task_struct *p)
1304 assert_raw_spin_locked(&task_rq(p)->lock);
1305 set_tsk_need_resched(p);
1308 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1312 static void sched_avg_update(struct rq *rq)
1315 #endif /* CONFIG_SMP */
1317 #if BITS_PER_LONG == 32
1318 # define WMULT_CONST (~0UL)
1320 # define WMULT_CONST (1UL << 32)
1323 #define WMULT_SHIFT 32
1326 * Shift right and round:
1328 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1331 * delta *= weight / lw
1333 static unsigned long
1334 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1335 struct load_weight *lw)
1339 if (!lw->inv_weight) {
1340 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1343 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1347 tmp = (u64)delta_exec * weight;
1349 * Check whether we'd overflow the 64-bit multiplication:
1351 if (unlikely(tmp > WMULT_CONST))
1352 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1355 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1357 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1360 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1366 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1373 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1374 * of tasks with abnormal "nice" values across CPUs the contribution that
1375 * each task makes to its run queue's load is weighted according to its
1376 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1377 * scaled version of the new time slice allocation that they receive on time
1381 #define WEIGHT_IDLEPRIO 3
1382 #define WMULT_IDLEPRIO 1431655765
1385 * Nice levels are multiplicative, with a gentle 10% change for every
1386 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1387 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1388 * that remained on nice 0.
1390 * The "10% effect" is relative and cumulative: from _any_ nice level,
1391 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1392 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1393 * If a task goes up by ~10% and another task goes down by ~10% then
1394 * the relative distance between them is ~25%.)
1396 static const int prio_to_weight[40] = {
1397 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1398 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1399 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1400 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1401 /* 0 */ 1024, 820, 655, 526, 423,
1402 /* 5 */ 335, 272, 215, 172, 137,
1403 /* 10 */ 110, 87, 70, 56, 45,
1404 /* 15 */ 36, 29, 23, 18, 15,
1408 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1410 * In cases where the weight does not change often, we can use the
1411 * precalculated inverse to speed up arithmetics by turning divisions
1412 * into multiplications:
1414 static const u32 prio_to_wmult[40] = {
1415 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1416 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1417 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1418 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1419 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1420 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1421 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1422 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1425 /* Time spent by the tasks of the cpu accounting group executing in ... */
1426 enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1430 CPUACCT_STAT_NSTATS,
1433 #ifdef CONFIG_CGROUP_CPUACCT
1434 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
1438 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
1443 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1445 update_load_add(&rq->load, load);
1448 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1450 update_load_sub(&rq->load, load);
1453 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1454 typedef int (*tg_visitor)(struct task_group *, void *);
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1460 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1462 struct task_group *parent, *child;
1466 parent = &root_task_group;
1468 ret = (*down)(parent, data);
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1478 ret = (*up)(parent, data);
1483 parent = parent->parent;
1492 static int tg_nop(struct task_group *tg, void *data)
1499 /* Used instead of source_load when we know the type == 0 */
1500 static unsigned long weighted_cpuload(const int cpu)
1502 return cpu_rq(cpu)->load.weight;
1506 * Return a low guess at the load of a migration-source cpu weighted
1507 * according to the scheduling class and "nice" value.
1509 * We want to under-estimate the load of migration sources, to
1510 * balance conservatively.
1512 static unsigned long source_load(int cpu, int type)
1514 struct rq *rq = cpu_rq(cpu);
1515 unsigned long total = weighted_cpuload(cpu);
1517 if (type == 0 || !sched_feat(LB_BIAS))
1520 return min(rq->cpu_load[type-1], total);
1524 * Return a high guess at the load of a migration-target cpu weighted
1525 * according to the scheduling class and "nice" value.
1527 static unsigned long target_load(int cpu, int type)
1529 struct rq *rq = cpu_rq(cpu);
1530 unsigned long total = weighted_cpuload(cpu);
1532 if (type == 0 || !sched_feat(LB_BIAS))
1535 return max(rq->cpu_load[type-1], total);
1538 static unsigned long power_of(int cpu)
1540 return cpu_rq(cpu)->cpu_power;
1543 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1545 static unsigned long cpu_avg_load_per_task(int cpu)
1547 struct rq *rq = cpu_rq(cpu);
1548 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1551 rq->avg_load_per_task = rq->load.weight / nr_running;
1553 rq->avg_load_per_task = 0;
1555 return rq->avg_load_per_task;
1558 #ifdef CONFIG_FAIR_GROUP_SCHED
1560 static __read_mostly unsigned long __percpu *update_shares_data;
1562 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1565 * Calculate and set the cpu's group shares.
1567 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1568 unsigned long sd_shares,
1569 unsigned long sd_rq_weight,
1570 unsigned long *usd_rq_weight)
1572 unsigned long shares, rq_weight;
1575 rq_weight = usd_rq_weight[cpu];
1578 rq_weight = NICE_0_LOAD;
1582 * \Sum_j shares_j * rq_weight_i
1583 * shares_i = -----------------------------
1584 * \Sum_j rq_weight_j
1586 shares = (sd_shares * rq_weight) / sd_rq_weight;
1587 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1589 if (abs(shares - tg->se[cpu]->load.weight) >
1590 sysctl_sched_shares_thresh) {
1591 struct rq *rq = cpu_rq(cpu);
1592 unsigned long flags;
1594 raw_spin_lock_irqsave(&rq->lock, flags);
1595 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1596 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1597 __set_se_shares(tg->se[cpu], shares);
1598 raw_spin_unlock_irqrestore(&rq->lock, flags);
1603 * Re-compute the task group their per cpu shares over the given domain.
1604 * This needs to be done in a bottom-up fashion because the rq weight of a
1605 * parent group depends on the shares of its child groups.
1607 static int tg_shares_up(struct task_group *tg, void *data)
1609 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1610 unsigned long *usd_rq_weight;
1611 struct sched_domain *sd = data;
1612 unsigned long flags;
1618 local_irq_save(flags);
1619 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1621 for_each_cpu(i, sched_domain_span(sd)) {
1622 weight = tg->cfs_rq[i]->load.weight;
1623 usd_rq_weight[i] = weight;
1625 rq_weight += weight;
1627 * If there are currently no tasks on the cpu pretend there
1628 * is one of average load so that when a new task gets to
1629 * run here it will not get delayed by group starvation.
1632 weight = NICE_0_LOAD;
1634 sum_weight += weight;
1635 shares += tg->cfs_rq[i]->shares;
1639 rq_weight = sum_weight;
1641 if ((!shares && rq_weight) || shares > tg->shares)
1642 shares = tg->shares;
1644 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1645 shares = tg->shares;
1647 for_each_cpu(i, sched_domain_span(sd))
1648 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1650 local_irq_restore(flags);
1656 * Compute the cpu's hierarchical load factor for each task group.
1657 * This needs to be done in a top-down fashion because the load of a child
1658 * group is a fraction of its parents load.
1660 static int tg_load_down(struct task_group *tg, void *data)
1663 long cpu = (long)data;
1666 load = cpu_rq(cpu)->load.weight;
1668 load = tg->parent->cfs_rq[cpu]->h_load;
1669 load *= tg->cfs_rq[cpu]->shares;
1670 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1673 tg->cfs_rq[cpu]->h_load = load;
1678 static void update_shares(struct sched_domain *sd)
1683 if (root_task_group_empty())
1686 now = local_clock();
1687 elapsed = now - sd->last_update;
1689 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1690 sd->last_update = now;
1691 walk_tg_tree(tg_nop, tg_shares_up, sd);
1695 static void update_h_load(long cpu)
1697 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1702 static inline void update_shares(struct sched_domain *sd)
1708 #ifdef CONFIG_PREEMPT
1710 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1713 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1714 * way at the expense of forcing extra atomic operations in all
1715 * invocations. This assures that the double_lock is acquired using the
1716 * same underlying policy as the spinlock_t on this architecture, which
1717 * reduces latency compared to the unfair variant below. However, it
1718 * also adds more overhead and therefore may reduce throughput.
1720 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1721 __releases(this_rq->lock)
1722 __acquires(busiest->lock)
1723 __acquires(this_rq->lock)
1725 raw_spin_unlock(&this_rq->lock);
1726 double_rq_lock(this_rq, busiest);
1733 * Unfair double_lock_balance: Optimizes throughput at the expense of
1734 * latency by eliminating extra atomic operations when the locks are
1735 * already in proper order on entry. This favors lower cpu-ids and will
1736 * grant the double lock to lower cpus over higher ids under contention,
1737 * regardless of entry order into the function.
1739 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1740 __releases(this_rq->lock)
1741 __acquires(busiest->lock)
1742 __acquires(this_rq->lock)
1746 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1747 if (busiest < this_rq) {
1748 raw_spin_unlock(&this_rq->lock);
1749 raw_spin_lock(&busiest->lock);
1750 raw_spin_lock_nested(&this_rq->lock,
1751 SINGLE_DEPTH_NESTING);
1754 raw_spin_lock_nested(&busiest->lock,
1755 SINGLE_DEPTH_NESTING);
1760 #endif /* CONFIG_PREEMPT */
1763 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1765 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1767 if (unlikely(!irqs_disabled())) {
1768 /* printk() doesn't work good under rq->lock */
1769 raw_spin_unlock(&this_rq->lock);
1773 return _double_lock_balance(this_rq, busiest);
1776 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1777 __releases(busiest->lock)
1779 raw_spin_unlock(&busiest->lock);
1780 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1784 * double_rq_lock - safely lock two runqueues
1786 * Note this does not disable interrupts like task_rq_lock,
1787 * you need to do so manually before calling.
1789 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1790 __acquires(rq1->lock)
1791 __acquires(rq2->lock)
1793 BUG_ON(!irqs_disabled());
1795 raw_spin_lock(&rq1->lock);
1796 __acquire(rq2->lock); /* Fake it out ;) */
1799 raw_spin_lock(&rq1->lock);
1800 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1802 raw_spin_lock(&rq2->lock);
1803 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1809 * double_rq_unlock - safely unlock two runqueues
1811 * Note this does not restore interrupts like task_rq_unlock,
1812 * you need to do so manually after calling.
1814 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1815 __releases(rq1->lock)
1816 __releases(rq2->lock)
1818 raw_spin_unlock(&rq1->lock);
1820 raw_spin_unlock(&rq2->lock);
1822 __release(rq2->lock);
1827 #ifdef CONFIG_FAIR_GROUP_SCHED
1828 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1831 cfs_rq->shares = shares;
1836 static void calc_load_account_idle(struct rq *this_rq);
1837 static void update_sysctl(void);
1838 static int get_update_sysctl_factor(void);
1839 static void update_cpu_load(struct rq *this_rq);
1841 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1843 set_task_rq(p, cpu);
1846 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1847 * successfuly executed on another CPU. We must ensure that updates of
1848 * per-task data have been completed by this moment.
1851 task_thread_info(p)->cpu = cpu;
1855 static const struct sched_class rt_sched_class;
1857 #define sched_class_highest (&stop_sched_class)
1858 #define for_each_class(class) \
1859 for (class = sched_class_highest; class; class = class->next)
1861 #include "sched_stats.h"
1863 static void inc_nr_running(struct rq *rq)
1868 static void dec_nr_running(struct rq *rq)
1873 static void set_load_weight(struct task_struct *p)
1876 * SCHED_IDLE tasks get minimal weight:
1878 if (p->policy == SCHED_IDLE) {
1879 p->se.load.weight = WEIGHT_IDLEPRIO;
1880 p->se.load.inv_weight = WMULT_IDLEPRIO;
1884 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1885 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1888 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1890 update_rq_clock(rq);
1891 sched_info_queued(p);
1892 p->sched_class->enqueue_task(rq, p, flags);
1896 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1898 update_rq_clock(rq);
1899 sched_info_dequeued(p);
1900 p->sched_class->dequeue_task(rq, p, flags);
1905 * activate_task - move a task to the runqueue.
1907 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1909 if (task_contributes_to_load(p))
1910 rq->nr_uninterruptible--;
1912 enqueue_task(rq, p, flags);
1917 * deactivate_task - remove a task from the runqueue.
1919 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1921 if (task_contributes_to_load(p))
1922 rq->nr_uninterruptible++;
1924 dequeue_task(rq, p, flags);
1928 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1931 * There are no locks covering percpu hardirq/softirq time.
1932 * They are only modified in account_system_vtime, on corresponding CPU
1933 * with interrupts disabled. So, writes are safe.
1934 * They are read and saved off onto struct rq in update_rq_clock().
1935 * This may result in other CPU reading this CPU's irq time and can
1936 * race with irq/account_system_vtime on this CPU. We would either get old
1937 * or new value (or semi updated value on 32 bit) with a side effect of
1938 * accounting a slice of irq time to wrong task when irq is in progress
1939 * while we read rq->clock. That is a worthy compromise in place of having
1940 * locks on each irq in account_system_time.
1942 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1943 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1945 static DEFINE_PER_CPU(u64, irq_start_time);
1946 static int sched_clock_irqtime;
1948 void enable_sched_clock_irqtime(void)
1950 sched_clock_irqtime = 1;
1953 void disable_sched_clock_irqtime(void)
1955 sched_clock_irqtime = 0;
1958 static u64 irq_time_cpu(int cpu)
1960 if (!sched_clock_irqtime)
1963 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1966 void account_system_vtime(struct task_struct *curr)
1968 unsigned long flags;
1972 if (!sched_clock_irqtime)
1975 local_irq_save(flags);
1977 cpu = smp_processor_id();
1978 now = sched_clock_cpu(cpu);
1979 delta = now - per_cpu(irq_start_time, cpu);
1980 per_cpu(irq_start_time, cpu) = now;
1982 * We do not account for softirq time from ksoftirqd here.
1983 * We want to continue accounting softirq time to ksoftirqd thread
1984 * in that case, so as not to confuse scheduler with a special task
1985 * that do not consume any time, but still wants to run.
1987 if (hardirq_count())
1988 per_cpu(cpu_hardirq_time, cpu) += delta;
1989 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1990 per_cpu(cpu_softirq_time, cpu) += delta;
1992 local_irq_restore(flags);
1994 EXPORT_SYMBOL_GPL(account_system_vtime);
1996 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1998 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1999 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
2000 rq->prev_irq_time = curr_irq_time;
2001 sched_rt_avg_update(rq, delta_irq);
2007 static u64 irq_time_cpu(int cpu)
2012 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
2016 #include "sched_idletask.c"
2017 #include "sched_fair.c"
2018 #include "sched_rt.c"
2019 #include "sched_stoptask.c"
2020 #ifdef CONFIG_SCHED_DEBUG
2021 # include "sched_debug.c"
2024 void sched_set_stop_task(int cpu, struct task_struct *stop)
2026 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2027 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2031 * Make it appear like a SCHED_FIFO task, its something
2032 * userspace knows about and won't get confused about.
2034 * Also, it will make PI more or less work without too
2035 * much confusion -- but then, stop work should not
2036 * rely on PI working anyway.
2038 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2040 stop->sched_class = &stop_sched_class;
2043 cpu_rq(cpu)->stop = stop;
2047 * Reset it back to a normal scheduling class so that
2048 * it can die in pieces.
2050 old_stop->sched_class = &rt_sched_class;
2055 * __normal_prio - return the priority that is based on the static prio
2057 static inline int __normal_prio(struct task_struct *p)
2059 return p->static_prio;
2063 * Calculate the expected normal priority: i.e. priority
2064 * without taking RT-inheritance into account. Might be
2065 * boosted by interactivity modifiers. Changes upon fork,
2066 * setprio syscalls, and whenever the interactivity
2067 * estimator recalculates.
2069 static inline int normal_prio(struct task_struct *p)
2073 if (task_has_rt_policy(p))
2074 prio = MAX_RT_PRIO-1 - p->rt_priority;
2076 prio = __normal_prio(p);
2081 * Calculate the current priority, i.e. the priority
2082 * taken into account by the scheduler. This value might
2083 * be boosted by RT tasks, or might be boosted by
2084 * interactivity modifiers. Will be RT if the task got
2085 * RT-boosted. If not then it returns p->normal_prio.
2087 static int effective_prio(struct task_struct *p)
2089 p->normal_prio = normal_prio(p);
2091 * If we are RT tasks or we were boosted to RT priority,
2092 * keep the priority unchanged. Otherwise, update priority
2093 * to the normal priority:
2095 if (!rt_prio(p->prio))
2096 return p->normal_prio;
2101 * task_curr - is this task currently executing on a CPU?
2102 * @p: the task in question.
2104 inline int task_curr(const struct task_struct *p)
2106 return cpu_curr(task_cpu(p)) == p;
2109 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2110 const struct sched_class *prev_class,
2111 int oldprio, int running)
2113 if (prev_class != p->sched_class) {
2114 if (prev_class->switched_from)
2115 prev_class->switched_from(rq, p, running);
2116 p->sched_class->switched_to(rq, p, running);
2118 p->sched_class->prio_changed(rq, p, oldprio, running);
2123 * Is this task likely cache-hot:
2126 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2130 if (p->sched_class != &fair_sched_class)
2133 if (unlikely(p->policy == SCHED_IDLE))
2137 * Buddy candidates are cache hot:
2139 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2140 (&p->se == cfs_rq_of(&p->se)->next ||
2141 &p->se == cfs_rq_of(&p->se)->last))
2144 if (sysctl_sched_migration_cost == -1)
2146 if (sysctl_sched_migration_cost == 0)
2149 delta = now - p->se.exec_start;
2151 return delta < (s64)sysctl_sched_migration_cost;
2154 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2156 #ifdef CONFIG_SCHED_DEBUG
2158 * We should never call set_task_cpu() on a blocked task,
2159 * ttwu() will sort out the placement.
2161 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2162 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2165 trace_sched_migrate_task(p, new_cpu);
2167 if (task_cpu(p) != new_cpu) {
2168 p->se.nr_migrations++;
2169 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2172 __set_task_cpu(p, new_cpu);
2175 struct migration_arg {
2176 struct task_struct *task;
2180 static int migration_cpu_stop(void *data);
2183 * The task's runqueue lock must be held.
2184 * Returns true if you have to wait for migration thread.
2186 static bool migrate_task(struct task_struct *p, int dest_cpu)
2188 struct rq *rq = task_rq(p);
2191 * If the task is not on a runqueue (and not running), then
2192 * the next wake-up will properly place the task.
2194 return p->se.on_rq || task_running(rq, p);
2198 * wait_task_inactive - wait for a thread to unschedule.
2200 * If @match_state is nonzero, it's the @p->state value just checked and
2201 * not expected to change. If it changes, i.e. @p might have woken up,
2202 * then return zero. When we succeed in waiting for @p to be off its CPU,
2203 * we return a positive number (its total switch count). If a second call
2204 * a short while later returns the same number, the caller can be sure that
2205 * @p has remained unscheduled the whole time.
2207 * The caller must ensure that the task *will* unschedule sometime soon,
2208 * else this function might spin for a *long* time. This function can't
2209 * be called with interrupts off, or it may introduce deadlock with
2210 * smp_call_function() if an IPI is sent by the same process we are
2211 * waiting to become inactive.
2213 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2215 unsigned long flags;
2222 * We do the initial early heuristics without holding
2223 * any task-queue locks at all. We'll only try to get
2224 * the runqueue lock when things look like they will
2230 * If the task is actively running on another CPU
2231 * still, just relax and busy-wait without holding
2234 * NOTE! Since we don't hold any locks, it's not
2235 * even sure that "rq" stays as the right runqueue!
2236 * But we don't care, since "task_running()" will
2237 * return false if the runqueue has changed and p
2238 * is actually now running somewhere else!
2240 while (task_running(rq, p)) {
2241 if (match_state && unlikely(p->state != match_state))
2247 * Ok, time to look more closely! We need the rq
2248 * lock now, to be *sure*. If we're wrong, we'll
2249 * just go back and repeat.
2251 rq = task_rq_lock(p, &flags);
2252 trace_sched_wait_task(p);
2253 running = task_running(rq, p);
2254 on_rq = p->se.on_rq;
2256 if (!match_state || p->state == match_state)
2257 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2258 task_rq_unlock(rq, &flags);
2261 * If it changed from the expected state, bail out now.
2263 if (unlikely(!ncsw))
2267 * Was it really running after all now that we
2268 * checked with the proper locks actually held?
2270 * Oops. Go back and try again..
2272 if (unlikely(running)) {
2278 * It's not enough that it's not actively running,
2279 * it must be off the runqueue _entirely_, and not
2282 * So if it was still runnable (but just not actively
2283 * running right now), it's preempted, and we should
2284 * yield - it could be a while.
2286 if (unlikely(on_rq)) {
2287 schedule_timeout_uninterruptible(1);
2292 * Ahh, all good. It wasn't running, and it wasn't
2293 * runnable, which means that it will never become
2294 * running in the future either. We're all done!
2303 * kick_process - kick a running thread to enter/exit the kernel
2304 * @p: the to-be-kicked thread
2306 * Cause a process which is running on another CPU to enter
2307 * kernel-mode, without any delay. (to get signals handled.)
2309 * NOTE: this function doesnt have to take the runqueue lock,
2310 * because all it wants to ensure is that the remote task enters
2311 * the kernel. If the IPI races and the task has been migrated
2312 * to another CPU then no harm is done and the purpose has been
2315 void kick_process(struct task_struct *p)
2321 if ((cpu != smp_processor_id()) && task_curr(p))
2322 smp_send_reschedule(cpu);
2325 EXPORT_SYMBOL_GPL(kick_process);
2326 #endif /* CONFIG_SMP */
2329 * task_oncpu_function_call - call a function on the cpu on which a task runs
2330 * @p: the task to evaluate
2331 * @func: the function to be called
2332 * @info: the function call argument
2334 * Calls the function @func when the task is currently running. This might
2335 * be on the current CPU, which just calls the function directly
2337 void task_oncpu_function_call(struct task_struct *p,
2338 void (*func) (void *info), void *info)
2345 smp_call_function_single(cpu, func, info, 1);
2351 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2353 static int select_fallback_rq(int cpu, struct task_struct *p)
2356 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2358 /* Look for allowed, online CPU in same node. */
2359 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2360 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2363 /* Any allowed, online CPU? */
2364 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2365 if (dest_cpu < nr_cpu_ids)
2368 /* No more Mr. Nice Guy. */
2369 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2370 dest_cpu = cpuset_cpus_allowed_fallback(p);
2372 * Don't tell them about moving exiting tasks or
2373 * kernel threads (both mm NULL), since they never
2376 if (p->mm && printk_ratelimit()) {
2377 printk(KERN_INFO "process %d (%s) no "
2378 "longer affine to cpu%d\n",
2379 task_pid_nr(p), p->comm, cpu);
2387 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2390 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2392 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2395 * In order not to call set_task_cpu() on a blocking task we need
2396 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2399 * Since this is common to all placement strategies, this lives here.
2401 * [ this allows ->select_task() to simply return task_cpu(p) and
2402 * not worry about this generic constraint ]
2404 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2406 cpu = select_fallback_rq(task_cpu(p), p);
2411 static void update_avg(u64 *avg, u64 sample)
2413 s64 diff = sample - *avg;
2418 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2419 bool is_sync, bool is_migrate, bool is_local,
2420 unsigned long en_flags)
2422 schedstat_inc(p, se.statistics.nr_wakeups);
2424 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2426 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2428 schedstat_inc(p, se.statistics.nr_wakeups_local);
2430 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2432 activate_task(rq, p, en_flags);
2435 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2436 int wake_flags, bool success)
2438 trace_sched_wakeup(p, success);
2439 check_preempt_curr(rq, p, wake_flags);
2441 p->state = TASK_RUNNING;
2443 if (p->sched_class->task_woken)
2444 p->sched_class->task_woken(rq, p);
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2453 update_avg(&rq->avg_idle, delta);
2457 /* if a worker is waking up, notify workqueue */
2458 if ((p->flags & PF_WQ_WORKER) && success)
2459 wq_worker_waking_up(p, cpu_of(rq));
2463 * try_to_wake_up - wake up a thread
2464 * @p: the thread to be awakened
2465 * @state: the mask of task states that can be woken
2466 * @wake_flags: wake modifier flags (WF_*)
2468 * Put it on the run-queue if it's not already there. The "current"
2469 * thread is always on the run-queue (except when the actual
2470 * re-schedule is in progress), and as such you're allowed to do
2471 * the simpler "current->state = TASK_RUNNING" to mark yourself
2472 * runnable without the overhead of this.
2474 * Returns %true if @p was woken up, %false if it was already running
2475 * or @state didn't match @p's state.
2477 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2480 int cpu, orig_cpu, this_cpu, success = 0;
2481 unsigned long flags;
2482 unsigned long en_flags = ENQUEUE_WAKEUP;
2485 this_cpu = get_cpu();
2488 rq = task_rq_lock(p, &flags);
2489 if (!(p->state & state))
2499 if (unlikely(task_running(rq, p)))
2503 * In order to handle concurrent wakeups and release the rq->lock
2504 * we put the task in TASK_WAKING state.
2506 * First fix up the nr_uninterruptible count:
2508 if (task_contributes_to_load(p)) {
2509 if (likely(cpu_online(orig_cpu)))
2510 rq->nr_uninterruptible--;
2512 this_rq()->nr_uninterruptible--;
2514 p->state = TASK_WAKING;
2516 if (p->sched_class->task_waking) {
2517 p->sched_class->task_waking(rq, p);
2518 en_flags |= ENQUEUE_WAKING;
2521 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2522 if (cpu != orig_cpu)
2523 set_task_cpu(p, cpu);
2524 __task_rq_unlock(rq);
2527 raw_spin_lock(&rq->lock);
2530 * We migrated the task without holding either rq->lock, however
2531 * since the task is not on the task list itself, nobody else
2532 * will try and migrate the task, hence the rq should match the
2533 * cpu we just moved it to.
2535 WARN_ON(task_cpu(p) != cpu);
2536 WARN_ON(p->state != TASK_WAKING);
2538 #ifdef CONFIG_SCHEDSTATS
2539 schedstat_inc(rq, ttwu_count);
2540 if (cpu == this_cpu)
2541 schedstat_inc(rq, ttwu_local);
2543 struct sched_domain *sd;
2544 for_each_domain(this_cpu, sd) {
2545 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2546 schedstat_inc(sd, ttwu_wake_remote);
2551 #endif /* CONFIG_SCHEDSTATS */
2554 #endif /* CONFIG_SMP */
2555 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2556 cpu == this_cpu, en_flags);
2559 ttwu_post_activation(p, rq, wake_flags, success);
2561 task_rq_unlock(rq, &flags);
2568 * try_to_wake_up_local - try to wake up a local task with rq lock held
2569 * @p: the thread to be awakened
2571 * Put @p on the run-queue if it's not alredy there. The caller must
2572 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2573 * the current task. this_rq() stays locked over invocation.
2575 static void try_to_wake_up_local(struct task_struct *p)
2577 struct rq *rq = task_rq(p);
2578 bool success = false;
2580 BUG_ON(rq != this_rq());
2581 BUG_ON(p == current);
2582 lockdep_assert_held(&rq->lock);
2584 if (!(p->state & TASK_NORMAL))
2588 if (likely(!task_running(rq, p))) {
2589 schedstat_inc(rq, ttwu_count);
2590 schedstat_inc(rq, ttwu_local);
2592 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2595 ttwu_post_activation(p, rq, 0, success);
2599 * wake_up_process - Wake up a specific process
2600 * @p: The process to be woken up.
2602 * Attempt to wake up the nominated process and move it to the set of runnable
2603 * processes. Returns 1 if the process was woken up, 0 if it was already
2606 * It may be assumed that this function implies a write memory barrier before
2607 * changing the task state if and only if any tasks are woken up.
2609 int wake_up_process(struct task_struct *p)
2611 return try_to_wake_up(p, TASK_ALL, 0);
2613 EXPORT_SYMBOL(wake_up_process);
2615 int wake_up_state(struct task_struct *p, unsigned int state)
2617 return try_to_wake_up(p, state, 0);
2621 * Perform scheduler related setup for a newly forked process p.
2622 * p is forked by current.
2624 * __sched_fork() is basic setup used by init_idle() too:
2626 static void __sched_fork(struct task_struct *p)
2628 p->se.exec_start = 0;
2629 p->se.sum_exec_runtime = 0;
2630 p->se.prev_sum_exec_runtime = 0;
2631 p->se.nr_migrations = 0;
2633 #ifdef CONFIG_SCHEDSTATS
2634 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2637 INIT_LIST_HEAD(&p->rt.run_list);
2639 INIT_LIST_HEAD(&p->se.group_node);
2641 #ifdef CONFIG_PREEMPT_NOTIFIERS
2642 INIT_HLIST_HEAD(&p->preempt_notifiers);
2647 * fork()/clone()-time setup:
2649 void sched_fork(struct task_struct *p, int clone_flags)
2651 int cpu = get_cpu();
2655 * We mark the process as running here. This guarantees that
2656 * nobody will actually run it, and a signal or other external
2657 * event cannot wake it up and insert it on the runqueue either.
2659 p->state = TASK_RUNNING;
2662 * Revert to default priority/policy on fork if requested.
2664 if (unlikely(p->sched_reset_on_fork)) {
2665 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2666 p->policy = SCHED_NORMAL;
2667 p->normal_prio = p->static_prio;
2670 if (PRIO_TO_NICE(p->static_prio) < 0) {
2671 p->static_prio = NICE_TO_PRIO(0);
2672 p->normal_prio = p->static_prio;
2677 * We don't need the reset flag anymore after the fork. It has
2678 * fulfilled its duty:
2680 p->sched_reset_on_fork = 0;
2684 * Make sure we do not leak PI boosting priority to the child.
2686 p->prio = current->normal_prio;
2688 if (!rt_prio(p->prio))
2689 p->sched_class = &fair_sched_class;
2691 if (p->sched_class->task_fork)
2692 p->sched_class->task_fork(p);
2695 * The child is not yet in the pid-hash so no cgroup attach races,
2696 * and the cgroup is pinned to this child due to cgroup_fork()
2697 * is ran before sched_fork().
2699 * Silence PROVE_RCU.
2702 set_task_cpu(p, cpu);
2705 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2706 if (likely(sched_info_on()))
2707 memset(&p->sched_info, 0, sizeof(p->sched_info));
2709 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2712 #ifdef CONFIG_PREEMPT
2713 /* Want to start with kernel preemption disabled. */
2714 task_thread_info(p)->preempt_count = 1;
2716 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2722 * wake_up_new_task - wake up a newly created task for the first time.
2724 * This function will do some initial scheduler statistics housekeeping
2725 * that must be done for every newly created context, then puts the task
2726 * on the runqueue and wakes it.
2728 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2730 unsigned long flags;
2732 int cpu __maybe_unused = get_cpu();
2735 rq = task_rq_lock(p, &flags);
2736 p->state = TASK_WAKING;
2739 * Fork balancing, do it here and not earlier because:
2740 * - cpus_allowed can change in the fork path
2741 * - any previously selected cpu might disappear through hotplug
2743 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2744 * without people poking at ->cpus_allowed.
2746 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2747 set_task_cpu(p, cpu);
2749 p->state = TASK_RUNNING;
2750 task_rq_unlock(rq, &flags);
2753 rq = task_rq_lock(p, &flags);
2754 activate_task(rq, p, 0);
2755 trace_sched_wakeup_new(p, 1);
2756 check_preempt_curr(rq, p, WF_FORK);
2758 if (p->sched_class->task_woken)
2759 p->sched_class->task_woken(rq, p);
2761 task_rq_unlock(rq, &flags);
2765 #ifdef CONFIG_PREEMPT_NOTIFIERS
2768 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2769 * @notifier: notifier struct to register
2771 void preempt_notifier_register(struct preempt_notifier *notifier)
2773 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2775 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2778 * preempt_notifier_unregister - no longer interested in preemption notifications
2779 * @notifier: notifier struct to unregister
2781 * This is safe to call from within a preemption notifier.
2783 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2785 hlist_del(¬ifier->link);
2787 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2789 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2791 struct preempt_notifier *notifier;
2792 struct hlist_node *node;
2794 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2795 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2799 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2800 struct task_struct *next)
2802 struct preempt_notifier *notifier;
2803 struct hlist_node *node;
2805 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2806 notifier->ops->sched_out(notifier, next);
2809 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2811 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2816 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2817 struct task_struct *next)
2821 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2824 * prepare_task_switch - prepare to switch tasks
2825 * @rq: the runqueue preparing to switch
2826 * @prev: the current task that is being switched out
2827 * @next: the task we are going to switch to.
2829 * This is called with the rq lock held and interrupts off. It must
2830 * be paired with a subsequent finish_task_switch after the context
2833 * prepare_task_switch sets up locking and calls architecture specific
2837 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2838 struct task_struct *next)
2840 fire_sched_out_preempt_notifiers(prev, next);
2841 prepare_lock_switch(rq, next);
2842 prepare_arch_switch(next);
2846 * finish_task_switch - clean up after a task-switch
2847 * @rq: runqueue associated with task-switch
2848 * @prev: the thread we just switched away from.
2850 * finish_task_switch must be called after the context switch, paired
2851 * with a prepare_task_switch call before the context switch.
2852 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2853 * and do any other architecture-specific cleanup actions.
2855 * Note that we may have delayed dropping an mm in context_switch(). If
2856 * so, we finish that here outside of the runqueue lock. (Doing it
2857 * with the lock held can cause deadlocks; see schedule() for
2860 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2861 __releases(rq->lock)
2863 struct mm_struct *mm = rq->prev_mm;
2869 * A task struct has one reference for the use as "current".
2870 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2871 * schedule one last time. The schedule call will never return, and
2872 * the scheduled task must drop that reference.
2873 * The test for TASK_DEAD must occur while the runqueue locks are
2874 * still held, otherwise prev could be scheduled on another cpu, die
2875 * there before we look at prev->state, and then the reference would
2877 * Manfred Spraul <manfred@colorfullife.com>
2879 prev_state = prev->state;
2880 finish_arch_switch(prev);
2881 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2882 local_irq_disable();
2883 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2884 perf_event_task_sched_in(current);
2885 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2887 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2888 finish_lock_switch(rq, prev);
2890 fire_sched_in_preempt_notifiers(current);
2893 if (unlikely(prev_state == TASK_DEAD)) {
2895 * Remove function-return probe instances associated with this
2896 * task and put them back on the free list.
2898 kprobe_flush_task(prev);
2899 put_task_struct(prev);
2905 /* assumes rq->lock is held */
2906 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2908 if (prev->sched_class->pre_schedule)
2909 prev->sched_class->pre_schedule(rq, prev);
2912 /* rq->lock is NOT held, but preemption is disabled */
2913 static inline void post_schedule(struct rq *rq)
2915 if (rq->post_schedule) {
2916 unsigned long flags;
2918 raw_spin_lock_irqsave(&rq->lock, flags);
2919 if (rq->curr->sched_class->post_schedule)
2920 rq->curr->sched_class->post_schedule(rq);
2921 raw_spin_unlock_irqrestore(&rq->lock, flags);
2923 rq->post_schedule = 0;
2929 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2933 static inline void post_schedule(struct rq *rq)
2940 * schedule_tail - first thing a freshly forked thread must call.
2941 * @prev: the thread we just switched away from.
2943 asmlinkage void schedule_tail(struct task_struct *prev)
2944 __releases(rq->lock)
2946 struct rq *rq = this_rq();
2948 finish_task_switch(rq, prev);
2951 * FIXME: do we need to worry about rq being invalidated by the
2956 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2957 /* In this case, finish_task_switch does not reenable preemption */
2960 if (current->set_child_tid)
2961 put_user(task_pid_vnr(current), current->set_child_tid);
2965 * context_switch - switch to the new MM and the new
2966 * thread's register state.
2969 context_switch(struct rq *rq, struct task_struct *prev,
2970 struct task_struct *next)
2972 struct mm_struct *mm, *oldmm;
2974 prepare_task_switch(rq, prev, next);
2975 trace_sched_switch(prev, next);
2977 oldmm = prev->active_mm;
2979 * For paravirt, this is coupled with an exit in switch_to to
2980 * combine the page table reload and the switch backend into
2983 arch_start_context_switch(prev);
2986 next->active_mm = oldmm;
2987 atomic_inc(&oldmm->mm_count);
2988 enter_lazy_tlb(oldmm, next);
2990 switch_mm(oldmm, mm, next);
2993 prev->active_mm = NULL;
2994 rq->prev_mm = oldmm;
2997 * Since the runqueue lock will be released by the next
2998 * task (which is an invalid locking op but in the case
2999 * of the scheduler it's an obvious special-case), so we
3000 * do an early lockdep release here:
3002 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3003 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3006 /* Here we just switch the register state and the stack. */
3007 switch_to(prev, next, prev);
3011 * this_rq must be evaluated again because prev may have moved
3012 * CPUs since it called schedule(), thus the 'rq' on its stack
3013 * frame will be invalid.
3015 finish_task_switch(this_rq(), prev);
3019 * nr_running, nr_uninterruptible and nr_context_switches:
3021 * externally visible scheduler statistics: current number of runnable
3022 * threads, current number of uninterruptible-sleeping threads, total
3023 * number of context switches performed since bootup.
3025 unsigned long nr_running(void)
3027 unsigned long i, sum = 0;
3029 for_each_online_cpu(i)
3030 sum += cpu_rq(i)->nr_running;
3035 unsigned long nr_uninterruptible(void)
3037 unsigned long i, sum = 0;
3039 for_each_possible_cpu(i)
3040 sum += cpu_rq(i)->nr_uninterruptible;
3043 * Since we read the counters lockless, it might be slightly
3044 * inaccurate. Do not allow it to go below zero though:
3046 if (unlikely((long)sum < 0))
3052 unsigned long long nr_context_switches(void)
3055 unsigned long long sum = 0;
3057 for_each_possible_cpu(i)
3058 sum += cpu_rq(i)->nr_switches;
3063 unsigned long nr_iowait(void)
3065 unsigned long i, sum = 0;
3067 for_each_possible_cpu(i)
3068 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3073 unsigned long nr_iowait_cpu(int cpu)
3075 struct rq *this = cpu_rq(cpu);
3076 return atomic_read(&this->nr_iowait);
3079 unsigned long this_cpu_load(void)
3081 struct rq *this = this_rq();
3082 return this->cpu_load[0];
3086 /* Variables and functions for calc_load */
3087 static atomic_long_t calc_load_tasks;
3088 static unsigned long calc_load_update;
3089 unsigned long avenrun[3];
3090 EXPORT_SYMBOL(avenrun);
3092 static long calc_load_fold_active(struct rq *this_rq)
3094 long nr_active, delta = 0;
3096 nr_active = this_rq->nr_running;
3097 nr_active += (long) this_rq->nr_uninterruptible;
3099 if (nr_active != this_rq->calc_load_active) {
3100 delta = nr_active - this_rq->calc_load_active;
3101 this_rq->calc_load_active = nr_active;
3109 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3111 * When making the ILB scale, we should try to pull this in as well.
3113 static atomic_long_t calc_load_tasks_idle;
3115 static void calc_load_account_idle(struct rq *this_rq)
3119 delta = calc_load_fold_active(this_rq);
3121 atomic_long_add(delta, &calc_load_tasks_idle);
3124 static long calc_load_fold_idle(void)
3129 * Its got a race, we don't care...
3131 if (atomic_long_read(&calc_load_tasks_idle))
3132 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3137 static void calc_load_account_idle(struct rq *this_rq)
3141 static inline long calc_load_fold_idle(void)
3148 * get_avenrun - get the load average array
3149 * @loads: pointer to dest load array
3150 * @offset: offset to add
3151 * @shift: shift count to shift the result left
3153 * These values are estimates at best, so no need for locking.
3155 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3157 loads[0] = (avenrun[0] + offset) << shift;
3158 loads[1] = (avenrun[1] + offset) << shift;
3159 loads[2] = (avenrun[2] + offset) << shift;
3162 static unsigned long
3163 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3166 load += active * (FIXED_1 - exp);
3167 return load >> FSHIFT;
3171 * calc_load - update the avenrun load estimates 10 ticks after the
3172 * CPUs have updated calc_load_tasks.
3174 void calc_global_load(void)
3176 unsigned long upd = calc_load_update + 10;
3179 if (time_before(jiffies, upd))
3182 active = atomic_long_read(&calc_load_tasks);
3183 active = active > 0 ? active * FIXED_1 : 0;
3185 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3186 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3187 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3189 calc_load_update += LOAD_FREQ;
3193 * Called from update_cpu_load() to periodically update this CPU's
3196 static void calc_load_account_active(struct rq *this_rq)
3200 if (time_before(jiffies, this_rq->calc_load_update))
3203 delta = calc_load_fold_active(this_rq);
3204 delta += calc_load_fold_idle();
3206 atomic_long_add(delta, &calc_load_tasks);
3208 this_rq->calc_load_update += LOAD_FREQ;
3212 * The exact cpuload at various idx values, calculated at every tick would be
3213 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3215 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3216 * on nth tick when cpu may be busy, then we have:
3217 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3218 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3220 * decay_load_missed() below does efficient calculation of
3221 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3222 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3224 * The calculation is approximated on a 128 point scale.
3225 * degrade_zero_ticks is the number of ticks after which load at any
3226 * particular idx is approximated to be zero.
3227 * degrade_factor is a precomputed table, a row for each load idx.
3228 * Each column corresponds to degradation factor for a power of two ticks,
3229 * based on 128 point scale.
3231 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3232 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3234 * With this power of 2 load factors, we can degrade the load n times
3235 * by looking at 1 bits in n and doing as many mult/shift instead of
3236 * n mult/shifts needed by the exact degradation.
3238 #define DEGRADE_SHIFT 7
3239 static const unsigned char
3240 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3241 static const unsigned char
3242 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3243 {0, 0, 0, 0, 0, 0, 0, 0},
3244 {64, 32, 8, 0, 0, 0, 0, 0},
3245 {96, 72, 40, 12, 1, 0, 0},
3246 {112, 98, 75, 43, 15, 1, 0},
3247 {120, 112, 98, 76, 45, 16, 2} };
3250 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3251 * would be when CPU is idle and so we just decay the old load without
3252 * adding any new load.
3254 static unsigned long
3255 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3259 if (!missed_updates)
3262 if (missed_updates >= degrade_zero_ticks[idx])
3266 return load >> missed_updates;
3268 while (missed_updates) {
3269 if (missed_updates % 2)
3270 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3272 missed_updates >>= 1;
3279 * Update rq->cpu_load[] statistics. This function is usually called every
3280 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3281 * every tick. We fix it up based on jiffies.
3283 static void update_cpu_load(struct rq *this_rq)
3285 unsigned long this_load = this_rq->load.weight;
3286 unsigned long curr_jiffies = jiffies;
3287 unsigned long pending_updates;
3290 this_rq->nr_load_updates++;
3292 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3293 if (curr_jiffies == this_rq->last_load_update_tick)
3296 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3297 this_rq->last_load_update_tick = curr_jiffies;
3299 /* Update our load: */
3300 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3301 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3302 unsigned long old_load, new_load;
3304 /* scale is effectively 1 << i now, and >> i divides by scale */
3306 old_load = this_rq->cpu_load[i];
3307 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3308 new_load = this_load;
3310 * Round up the averaging division if load is increasing. This
3311 * prevents us from getting stuck on 9 if the load is 10, for
3314 if (new_load > old_load)
3315 new_load += scale - 1;
3317 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3320 sched_avg_update(this_rq);
3323 static void update_cpu_load_active(struct rq *this_rq)
3325 update_cpu_load(this_rq);
3327 calc_load_account_active(this_rq);
3333 * sched_exec - execve() is a valuable balancing opportunity, because at
3334 * this point the task has the smallest effective memory and cache footprint.
3336 void sched_exec(void)
3338 struct task_struct *p = current;
3339 unsigned long flags;
3343 rq = task_rq_lock(p, &flags);
3344 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3345 if (dest_cpu == smp_processor_id())
3349 * select_task_rq() can race against ->cpus_allowed
3351 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3352 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3353 struct migration_arg arg = { p, dest_cpu };
3355 task_rq_unlock(rq, &flags);
3356 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3360 task_rq_unlock(rq, &flags);
3365 DEFINE_PER_CPU(struct kernel_stat, kstat);
3367 EXPORT_PER_CPU_SYMBOL(kstat);
3370 * Return any ns on the sched_clock that have not yet been accounted in
3371 * @p in case that task is currently running.
3373 * Called with task_rq_lock() held on @rq.
3375 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3379 if (task_current(rq, p)) {
3380 update_rq_clock(rq);
3381 ns = rq->clock_task - p->se.exec_start;
3389 unsigned long long task_delta_exec(struct task_struct *p)
3391 unsigned long flags;
3395 rq = task_rq_lock(p, &flags);
3396 ns = do_task_delta_exec(p, rq);
3397 task_rq_unlock(rq, &flags);
3403 * Return accounted runtime for the task.
3404 * In case the task is currently running, return the runtime plus current's
3405 * pending runtime that have not been accounted yet.
3407 unsigned long long task_sched_runtime(struct task_struct *p)
3409 unsigned long flags;
3413 rq = task_rq_lock(p, &flags);
3414 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3415 task_rq_unlock(rq, &flags);
3421 * Return sum_exec_runtime for the thread group.
3422 * In case the task is currently running, return the sum plus current's
3423 * pending runtime that have not been accounted yet.
3425 * Note that the thread group might have other running tasks as well,
3426 * so the return value not includes other pending runtime that other
3427 * running tasks might have.
3429 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3431 struct task_cputime totals;
3432 unsigned long flags;
3436 rq = task_rq_lock(p, &flags);
3437 thread_group_cputime(p, &totals);
3438 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3439 task_rq_unlock(rq, &flags);
3445 * Account user cpu time to a process.
3446 * @p: the process that the cpu time gets accounted to
3447 * @cputime: the cpu time spent in user space since the last update
3448 * @cputime_scaled: cputime scaled by cpu frequency
3450 void account_user_time(struct task_struct *p, cputime_t cputime,
3451 cputime_t cputime_scaled)
3453 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3456 /* Add user time to process. */
3457 p->utime = cputime_add(p->utime, cputime);
3458 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3459 account_group_user_time(p, cputime);
3461 /* Add user time to cpustat. */
3462 tmp = cputime_to_cputime64(cputime);
3463 if (TASK_NICE(p) > 0)
3464 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3466 cpustat->user = cputime64_add(cpustat->user, tmp);
3468 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3469 /* Account for user time used */
3470 acct_update_integrals(p);
3474 * Account guest cpu time to a process.
3475 * @p: the process that the cpu time gets accounted to
3476 * @cputime: the cpu time spent in virtual machine since the last update
3477 * @cputime_scaled: cputime scaled by cpu frequency
3479 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3480 cputime_t cputime_scaled)
3483 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3485 tmp = cputime_to_cputime64(cputime);
3487 /* Add guest time to process. */
3488 p->utime = cputime_add(p->utime, cputime);
3489 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3490 account_group_user_time(p, cputime);
3491 p->gtime = cputime_add(p->gtime, cputime);
3493 /* Add guest time to cpustat. */
3494 if (TASK_NICE(p) > 0) {
3495 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3496 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3498 cpustat->user = cputime64_add(cpustat->user, tmp);
3499 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3504 * Account system cpu time to a process.
3505 * @p: the process that the cpu time gets accounted to
3506 * @hardirq_offset: the offset to subtract from hardirq_count()
3507 * @cputime: the cpu time spent in kernel space since the last update
3508 * @cputime_scaled: cputime scaled by cpu frequency
3510 void account_system_time(struct task_struct *p, int hardirq_offset,
3511 cputime_t cputime, cputime_t cputime_scaled)
3513 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3516 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3517 account_guest_time(p, cputime, cputime_scaled);
3521 /* Add system time to process. */
3522 p->stime = cputime_add(p->stime, cputime);
3523 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3524 account_group_system_time(p, cputime);
3526 /* Add system time to cpustat. */
3527 tmp = cputime_to_cputime64(cputime);
3528 if (hardirq_count() - hardirq_offset)
3529 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3530 else if (in_serving_softirq())
3531 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3533 cpustat->system = cputime64_add(cpustat->system, tmp);
3535 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3537 /* Account for system time used */
3538 acct_update_integrals(p);
3542 * Account for involuntary wait time.
3543 * @steal: the cpu time spent in involuntary wait
3545 void account_steal_time(cputime_t cputime)
3547 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3548 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3550 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3554 * Account for idle time.
3555 * @cputime: the cpu time spent in idle wait
3557 void account_idle_time(cputime_t cputime)
3559 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3560 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3561 struct rq *rq = this_rq();
3563 if (atomic_read(&rq->nr_iowait) > 0)
3564 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3566 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3569 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3572 * Account a single tick of cpu time.
3573 * @p: the process that the cpu time gets accounted to
3574 * @user_tick: indicates if the tick is a user or a system tick
3576 void account_process_tick(struct task_struct *p, int user_tick)
3578 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3579 struct rq *rq = this_rq();
3582 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3583 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3584 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3587 account_idle_time(cputime_one_jiffy);
3591 * Account multiple ticks of steal time.
3592 * @p: the process from which the cpu time has been stolen
3593 * @ticks: number of stolen ticks
3595 void account_steal_ticks(unsigned long ticks)
3597 account_steal_time(jiffies_to_cputime(ticks));
3601 * Account multiple ticks of idle time.
3602 * @ticks: number of stolen ticks
3604 void account_idle_ticks(unsigned long ticks)
3606 account_idle_time(jiffies_to_cputime(ticks));
3612 * Use precise platform statistics if available:
3614 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3615 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3621 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3623 struct task_cputime cputime;
3625 thread_group_cputime(p, &cputime);
3627 *ut = cputime.utime;
3628 *st = cputime.stime;
3632 #ifndef nsecs_to_cputime
3633 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3636 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3638 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3641 * Use CFS's precise accounting:
3643 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3649 do_div(temp, total);
3650 utime = (cputime_t)temp;
3655 * Compare with previous values, to keep monotonicity:
3657 p->prev_utime = max(p->prev_utime, utime);
3658 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3660 *ut = p->prev_utime;
3661 *st = p->prev_stime;
3665 * Must be called with siglock held.
3667 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3669 struct signal_struct *sig = p->signal;
3670 struct task_cputime cputime;
3671 cputime_t rtime, utime, total;
3673 thread_group_cputime(p, &cputime);
3675 total = cputime_add(cputime.utime, cputime.stime);
3676 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3681 temp *= cputime.utime;
3682 do_div(temp, total);
3683 utime = (cputime_t)temp;
3687 sig->prev_utime = max(sig->prev_utime, utime);
3688 sig->prev_stime = max(sig->prev_stime,
3689 cputime_sub(rtime, sig->prev_utime));
3691 *ut = sig->prev_utime;
3692 *st = sig->prev_stime;
3697 * This function gets called by the timer code, with HZ frequency.
3698 * We call it with interrupts disabled.
3700 * It also gets called by the fork code, when changing the parent's
3703 void scheduler_tick(void)
3705 int cpu = smp_processor_id();
3706 struct rq *rq = cpu_rq(cpu);
3707 struct task_struct *curr = rq->curr;
3711 raw_spin_lock(&rq->lock);
3712 update_rq_clock(rq);
3713 update_cpu_load_active(rq);
3714 curr->sched_class->task_tick(rq, curr, 0);
3715 raw_spin_unlock(&rq->lock);
3717 perf_event_task_tick();
3720 rq->idle_at_tick = idle_cpu(cpu);
3721 trigger_load_balance(rq, cpu);
3725 notrace unsigned long get_parent_ip(unsigned long addr)
3727 if (in_lock_functions(addr)) {
3728 addr = CALLER_ADDR2;
3729 if (in_lock_functions(addr))
3730 addr = CALLER_ADDR3;
3735 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3736 defined(CONFIG_PREEMPT_TRACER))
3738 void __kprobes add_preempt_count(int val)
3740 #ifdef CONFIG_DEBUG_PREEMPT
3744 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3747 preempt_count() += val;
3748 #ifdef CONFIG_DEBUG_PREEMPT
3750 * Spinlock count overflowing soon?
3752 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3755 if (preempt_count() == val)
3756 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3758 EXPORT_SYMBOL(add_preempt_count);
3760 void __kprobes sub_preempt_count(int val)
3762 #ifdef CONFIG_DEBUG_PREEMPT