4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy)
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
131 static inline int task_has_rt_policy(struct task_struct *p)
133 return rt_policy(p->policy);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
149 struct hrtimer rt_period_timer;
152 static struct rt_bandwidth def_rt_bandwidth;
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171 idle = do_sched_rt_period_timer(rt_b, overrun);
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime >= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 if (hrtimer_active(&rt_b->rt_period_timer))
205 raw_spin_lock(&rt_b->rt_runtime_lock);
210 if (hrtimer_active(&rt_b->rt_period_timer))
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 hrtimer_cancel(&rt_b->rt_period_timer);
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
244 static LIST_HEAD(task_groups);
246 /* task group related information */
248 struct cgroup_subsys_state css;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
262 struct rt_bandwidth rt_bandwidth;
266 struct list_head list;
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group.children);
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
314 struct load_weight load;
315 unsigned long nr_running;
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
323 struct list_head tasks;
324 struct list_head *balance_iterator;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity *curr, *next, *last;
332 unsigned int nr_spread_over;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
360 unsigned long h_load;
363 * this cpu's part of tg->shares
365 unsigned long shares;
368 * load.weight at the time we set shares
370 unsigned long rq_weight;
375 /* Real-Time classes' related field in a runqueue: */
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 int curr; /* highest queued rt task prio */
383 int next; /* next highest */
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
391 struct plist_head pushable_tasks;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
421 cpumask_var_t online;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask;
429 struct cpupri cpupri;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
461 unsigned char nohz_balance_kick;
463 unsigned int skip_clock_update;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible;
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
499 struct root_domain *rd;
500 struct sched_domain *sd;
502 unsigned long cpu_power;
504 unsigned char idle_at_tick;
505 /* For active balancing */
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
514 unsigned long avg_load_per_task;
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
530 #ifdef CONFIG_SCHED_HRTICK
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
535 struct hrtimer hrtick_timer;
538 #ifdef CONFIG_SCHEDSTATS
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
557 unsigned int bkl_count;
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
564 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
566 static inline int cpu_of(struct rq *rq)
575 #define rcu_dereference_check_sched_domain(p) \
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582 * See detach_destroy_domains: synchronize_sched for details.
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
587 #define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591 #define this_rq() (&__get_cpu_var(runqueues))
592 #define task_rq(p) cpu_rq(task_cpu(p))
593 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594 #define raw_rq() (&__raw_get_cpu_var(runqueues))
596 #ifdef CONFIG_CGROUP_SCHED
599 * Return the group to which this tasks belongs.
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
606 static inline struct task_group *task_group(struct task_struct *p)
608 struct cgroup_subsys_state *css;
610 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
611 lockdep_is_held(&task_rq(p)->lock));
612 return container_of(css, struct task_group, css);
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
629 #else /* CONFIG_CGROUP_SCHED */
631 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632 static inline struct task_group *task_group(struct task_struct *p)
637 #endif /* CONFIG_CGROUP_SCHED */
639 static void update_rq_clock_task(struct rq *rq, s64 delta);
641 static void update_rq_clock(struct rq *rq)
645 if (rq->skip_clock_update)
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
650 update_rq_clock_task(rq, delta);
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
659 # define const_debug static const
664 * @cpu: the processor in question.
666 * Returns true if the current cpu runqueue is locked.
667 * This interface allows printk to be called with the runqueue lock
668 * held and know whether or not it is OK to wake up the klogd.
670 int runqueue_is_locked(int cpu)
672 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
676 * Debugging: various feature bits
679 #define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
683 #include "sched_features.h"
688 #define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
691 const_debug unsigned int sysctl_sched_features =
692 #include "sched_features.h"
697 #ifdef CONFIG_SCHED_DEBUG
698 #define SCHED_FEAT(name, enabled) \
701 static __read_mostly char *sched_feat_names[] = {
702 #include "sched_features.h"
708 static int sched_feat_show(struct seq_file *m, void *v)
712 for (i = 0; sched_feat_names[i]; i++) {
713 if (!(sysctl_sched_features & (1UL << i)))
715 seq_printf(m, "%s ", sched_feat_names[i]);
723 sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
734 if (copy_from_user(&buf, ubuf, cnt))
740 if (strncmp(buf, "NO_", 3) == 0) {
745 for (i = 0; sched_feat_names[i]; i++) {
746 if (strcmp(cmp, sched_feat_names[i]) == 0) {
748 sysctl_sched_features &= ~(1UL << i);
750 sysctl_sched_features |= (1UL << i);
755 if (!sched_feat_names[i])
763 static int sched_feat_open(struct inode *inode, struct file *filp)
765 return single_open(filp, sched_feat_show, NULL);
768 static const struct file_operations sched_feat_fops = {
769 .open = sched_feat_open,
770 .write = sched_feat_write,
773 .release = single_release,
776 static __init int sched_init_debug(void)
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 late_initcall(sched_init_debug);
787 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
793 const_debug unsigned int sysctl_sched_nr_migrate = 32;
796 * ratelimit for updating the group shares.
799 unsigned int sysctl_sched_shares_ratelimit = 250000;
800 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
807 unsigned int sysctl_sched_shares_thresh = 4;
810 * period over which we average the RT time consumption, measured
815 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
818 * period over which we measure -rt task cpu usage in us.
821 unsigned int sysctl_sched_rt_period = 1000000;
823 static __read_mostly int scheduler_running;
826 * part of the period that we allow rt tasks to run in us.
829 int sysctl_sched_rt_runtime = 950000;
831 static inline u64 global_rt_period(void)
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
836 static inline u64 global_rt_runtime(void)
838 if (sysctl_sched_rt_runtime < 0)
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
844 #ifndef prepare_arch_switch
845 # define prepare_arch_switch(next) do { } while (0)
847 #ifndef finish_arch_switch
848 # define finish_arch_switch(prev) do { } while (0)
851 static inline int task_current(struct rq *rq, struct task_struct *p)
853 return rq->curr == p;
856 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
857 static inline int task_running(struct rq *rq, struct task_struct *p)
859 return task_current(rq, p);
862 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
866 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
868 #ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq->lock.owner = current;
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
877 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
879 raw_spin_unlock_irq(&rq->lock);
882 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
883 static inline int task_running(struct rq *rq, struct task_struct *p)
888 return task_current(rq, p);
892 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
902 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 raw_spin_unlock_irq(&rq->lock);
905 raw_spin_unlock(&rq->lock);
909 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
920 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
924 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
930 static inline int task_is_waking(struct task_struct *p)
932 return unlikely(p->state == TASK_WAKING);
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
939 static inline struct rq *__task_rq_lock(struct task_struct *p)
946 raw_spin_lock(&rq->lock);
947 if (likely(rq == task_rq(p)))
949 raw_spin_unlock(&rq->lock);
954 * task_rq_lock - lock the runqueue a given task resides on and disable
955 * interrupts. Note the ordering: we can safely lookup the task_rq without
956 * explicitly disabling preemption.
958 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
964 local_irq_save(*flags);
966 raw_spin_lock(&rq->lock);
967 if (likely(rq == task_rq(p)))
969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
973 static void __task_rq_unlock(struct rq *rq)
976 raw_spin_unlock(&rq->lock);
979 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
986 * this_rq_lock - lock this runqueue and disable interrupts.
988 static struct rq *this_rq_lock(void)
995 raw_spin_lock(&rq->lock);
1000 #ifdef CONFIG_SCHED_HRTICK
1002 * Use HR-timers to deliver accurate preemption points.
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1014 * - enabled by features
1015 * - hrtimer is actually high res
1017 static inline int hrtick_enabled(struct rq *rq)
1019 if (!sched_feat(HRTICK))
1021 if (!cpu_active(cpu_of(rq)))
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026 static void hrtick_clear(struct rq *rq)
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1036 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1042 raw_spin_lock(&rq->lock);
1043 update_rq_clock(rq);
1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1045 raw_spin_unlock(&rq->lock);
1047 return HRTIMER_NORESTART;
1052 * called from hardirq (IPI) context
1054 static void __hrtick_start(void *arg)
1056 struct rq *rq = arg;
1058 raw_spin_lock(&rq->lock);
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
1061 raw_spin_unlock(&rq->lock);
1065 * Called to set the hrtick timer state.
1067 * called with rq->lock held and irqs disabled
1069 static void hrtick_start(struct rq *rq, u64 delay)
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1074 hrtimer_set_expires(timer, time);
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1080 rq->hrtick_csd_pending = 1;
1085 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1087 int cpu = (int)(long)hcpu;
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1095 case CPU_DEAD_FROZEN:
1096 hrtick_clear(cpu_rq(cpu));
1103 static __init void init_hrtick(void)
1105 hotcpu_notifier(hotplug_hrtick, 0);
1109 * Called to set the hrtick timer state.
1111 * called with rq->lock held and irqs disabled
1113 static void hrtick_start(struct rq *rq, u64 delay)
1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1116 HRTIMER_MODE_REL_PINNED, 0);
1119 static inline void init_hrtick(void)
1122 #endif /* CONFIG_SMP */
1124 static void init_rq_hrtick(struct rq *rq)
1127 rq->hrtick_csd_pending = 0;
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
1137 #else /* CONFIG_SCHED_HRTICK */
1138 static inline void hrtick_clear(struct rq *rq)
1142 static inline void init_rq_hrtick(struct rq *rq)
1146 static inline void init_hrtick(void)
1149 #endif /* CONFIG_SCHED_HRTICK */
1152 * resched_task - mark a task 'to be rescheduled now'.
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1160 #ifndef tsk_is_polling
1161 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164 static void resched_task(struct task_struct *p)
1168 assert_raw_spin_locked(&task_rq(p)->lock);
1170 if (test_tsk_need_resched(p))
1173 set_tsk_need_resched(p);
1176 if (cpu == smp_processor_id())
1179 /* NEED_RESCHED must be visible before we test polling */
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1185 static void resched_cpu(int cpu)
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1192 resched_task(cpu_curr(cpu));
1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1205 int get_nohz_timer_target(void)
1207 int cpu = smp_processor_id();
1209 struct sched_domain *sd;
1211 for_each_domain(cpu, sd) {
1212 for_each_cpu(i, sched_domain_span(sd))
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1228 void wake_up_idle_cpu(int cpu)
1230 struct rq *rq = cpu_rq(cpu);
1232 if (cpu == smp_processor_id())
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1242 if (rq->curr != rq->idle)
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1250 set_tsk_need_resched(rq->idle);
1252 /* NEED_RESCHED must be visible before we test polling */
1254 if (!tsk_is_polling(rq->idle))
1255 smp_send_reschedule(cpu);
1258 #endif /* CONFIG_NO_HZ */
1260 static u64 sched_avg_period(void)
1262 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1265 static void sched_avg_update(struct rq *rq)
1267 s64 period = sched_avg_period();
1269 while ((s64)(rq->clock - rq->age_stamp) > period) {
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1275 asm("" : "+rm" (rq->age_stamp));
1276 rq->age_stamp += period;
1281 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283 rq->rt_avg += rt_delta;
1284 sched_avg_update(rq);
1287 #else /* !CONFIG_SMP */
1288 static void resched_task(struct task_struct *p)
1290 assert_raw_spin_locked(&task_rq(p)->lock);
1291 set_tsk_need_resched(p);
1294 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1298 static void sched_avg_update(struct rq *rq)
1301 #endif /* CONFIG_SMP */
1303 #if BITS_PER_LONG == 32
1304 # define WMULT_CONST (~0UL)
1306 # define WMULT_CONST (1UL << 32)
1309 #define WMULT_SHIFT 32
1312 * Shift right and round:
1314 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1317 * delta *= weight / lw
1319 static unsigned long
1320 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1321 struct load_weight *lw)
1325 if (!lw->inv_weight) {
1326 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1329 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1333 tmp = (u64)delta_exec * weight;
1335 * Check whether we'd overflow the 64-bit multiplication:
1337 if (unlikely(tmp > WMULT_CONST))
1338 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1341 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1343 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1346 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1352 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1359 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1360 * of tasks with abnormal "nice" values across CPUs the contribution that
1361 * each task makes to its run queue's load is weighted according to its
1362 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1363 * scaled version of the new time slice allocation that they receive on time
1367 #define WEIGHT_IDLEPRIO 3
1368 #define WMULT_IDLEPRIO 1431655765
1371 * Nice levels are multiplicative, with a gentle 10% change for every
1372 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1373 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1374 * that remained on nice 0.
1376 * The "10% effect" is relative and cumulative: from _any_ nice level,
1377 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1378 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1379 * If a task goes up by ~10% and another task goes down by ~10% then
1380 * the relative distance between them is ~25%.)
1382 static const int prio_to_weight[40] = {
1383 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1384 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1385 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1386 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1387 /* 0 */ 1024, 820, 655, 526, 423,
1388 /* 5 */ 335, 272, 215, 172, 137,
1389 /* 10 */ 110, 87, 70, 56, 45,
1390 /* 15 */ 36, 29, 23, 18, 15,
1394 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1396 * In cases where the weight does not change often, we can use the
1397 * precalculated inverse to speed up arithmetics by turning divisions
1398 * into multiplications:
1400 static const u32 prio_to_wmult[40] = {
1401 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1402 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1403 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1404 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1405 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1406 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1407 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1408 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1411 /* Time spent by the tasks of the cpu accounting group executing in ... */
1412 enum cpuacct_stat_index {
1413 CPUACCT_STAT_USER, /* ... user mode */
1414 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1416 CPUACCT_STAT_NSTATS,
1419 #ifdef CONFIG_CGROUP_CPUACCT
1420 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1421 static void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val);
1424 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1425 static inline void cpuacct_update_stats(struct task_struct *tsk,
1426 enum cpuacct_stat_index idx, cputime_t val) {}
1429 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1431 update_load_add(&rq->load, load);
1434 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1436 update_load_sub(&rq->load, load);
1439 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1440 typedef int (*tg_visitor)(struct task_group *, void *);
1443 * Iterate the full tree, calling @down when first entering a node and @up when
1444 * leaving it for the final time.
1446 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1448 struct task_group *parent, *child;
1452 parent = &root_task_group;
1454 ret = (*down)(parent, data);
1457 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 ret = (*up)(parent, data);
1469 parent = parent->parent;
1478 static int tg_nop(struct task_group *tg, void *data)
1485 /* Used instead of source_load when we know the type == 0 */
1486 static unsigned long weighted_cpuload(const int cpu)
1488 return cpu_rq(cpu)->load.weight;
1492 * Return a low guess at the load of a migration-source cpu weighted
1493 * according to the scheduling class and "nice" value.
1495 * We want to under-estimate the load of migration sources, to
1496 * balance conservatively.
1498 static unsigned long source_load(int cpu, int type)
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1503 if (type == 0 || !sched_feat(LB_BIAS))
1506 return min(rq->cpu_load[type-1], total);
1510 * Return a high guess at the load of a migration-target cpu weighted
1511 * according to the scheduling class and "nice" value.
1513 static unsigned long target_load(int cpu, int type)
1515 struct rq *rq = cpu_rq(cpu);
1516 unsigned long total = weighted_cpuload(cpu);
1518 if (type == 0 || !sched_feat(LB_BIAS))
1521 return max(rq->cpu_load[type-1], total);
1524 static unsigned long power_of(int cpu)
1526 return cpu_rq(cpu)->cpu_power;
1529 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1531 static unsigned long cpu_avg_load_per_task(int cpu)
1533 struct rq *rq = cpu_rq(cpu);
1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
1539 rq->avg_load_per_task = 0;
1541 return rq->avg_load_per_task;
1544 #ifdef CONFIG_FAIR_GROUP_SCHED
1546 static __read_mostly unsigned long __percpu *update_shares_data;
1548 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1551 * Calculate and set the cpu's group shares.
1553 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
1556 unsigned long *usd_rq_weight)
1558 unsigned long shares, rq_weight;
1561 rq_weight = usd_rq_weight[cpu];
1564 rq_weight = NICE_0_LOAD;
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
1580 raw_spin_lock_irqsave(&rq->lock, flags);
1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1583 __set_se_shares(tg->se[cpu], shares);
1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
1593 static int tg_shares_up(struct task_group *tg, void *data)
1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1596 unsigned long *usd_rq_weight;
1597 struct sched_domain *sd = data;
1598 unsigned long flags;
1604 local_irq_save(flags);
1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1607 for_each_cpu(i, sched_domain_span(sd)) {
1608 weight = tg->cfs_rq[i]->load.weight;
1609 usd_rq_weight[i] = weight;
1611 rq_weight += weight;
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1618 weight = NICE_0_LOAD;
1620 sum_weight += weight;
1621 shares += tg->cfs_rq[i]->shares;
1625 rq_weight = sum_weight;
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
1633 for_each_cpu(i, sched_domain_span(sd))
1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1636 local_irq_restore(flags);
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
1646 static int tg_load_down(struct task_group *tg, void *data)
1649 long cpu = (long)data;
1652 load = cpu_rq(cpu)->load.weight;
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1659 tg->cfs_rq[cpu]->h_load = load;
1664 static void update_shares(struct sched_domain *sd)
1669 if (root_task_group_empty())
1672 now = local_clock();
1673 elapsed = now - sd->last_update;
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
1681 static void update_h_load(long cpu)
1683 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1688 static inline void update_shares(struct sched_domain *sd)
1694 #ifdef CONFIG_PREEMPT
1696 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1699 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1700 * way at the expense of forcing extra atomic operations in all
1701 * invocations. This assures that the double_lock is acquired using the
1702 * same underlying policy as the spinlock_t on this architecture, which
1703 * reduces latency compared to the unfair variant below. However, it
1704 * also adds more overhead and therefore may reduce throughput.
1706 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1711 raw_spin_unlock(&this_rq->lock);
1712 double_rq_lock(this_rq, busiest);
1719 * Unfair double_lock_balance: Optimizes throughput at the expense of
1720 * latency by eliminating extra atomic operations when the locks are
1721 * already in proper order on entry. This favors lower cpu-ids and will
1722 * grant the double lock to lower cpus over higher ids under contention,
1723 * regardless of entry order into the function.
1725 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1726 __releases(this_rq->lock)
1727 __acquires(busiest->lock)
1728 __acquires(this_rq->lock)
1732 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1733 if (busiest < this_rq) {
1734 raw_spin_unlock(&this_rq->lock);
1735 raw_spin_lock(&busiest->lock);
1736 raw_spin_lock_nested(&this_rq->lock,
1737 SINGLE_DEPTH_NESTING);
1740 raw_spin_lock_nested(&busiest->lock,
1741 SINGLE_DEPTH_NESTING);
1746 #endif /* CONFIG_PREEMPT */
1749 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1751 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1753 if (unlikely(!irqs_disabled())) {
1754 /* printk() doesn't work good under rq->lock */
1755 raw_spin_unlock(&this_rq->lock);
1759 return _double_lock_balance(this_rq, busiest);
1762 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(busiest->lock)
1765 raw_spin_unlock(&busiest->lock);
1766 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1770 * double_rq_lock - safely lock two runqueues
1772 * Note this does not disable interrupts like task_rq_lock,
1773 * you need to do so manually before calling.
1775 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1776 __acquires(rq1->lock)
1777 __acquires(rq2->lock)
1779 BUG_ON(!irqs_disabled());
1781 raw_spin_lock(&rq1->lock);
1782 __acquire(rq2->lock); /* Fake it out ;) */
1785 raw_spin_lock(&rq1->lock);
1786 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1788 raw_spin_lock(&rq2->lock);
1789 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1795 * double_rq_unlock - safely unlock two runqueues
1797 * Note this does not restore interrupts like task_rq_unlock,
1798 * you need to do so manually after calling.
1800 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1801 __releases(rq1->lock)
1802 __releases(rq2->lock)
1804 raw_spin_unlock(&rq1->lock);
1806 raw_spin_unlock(&rq2->lock);
1808 __release(rq2->lock);
1813 #ifdef CONFIG_FAIR_GROUP_SCHED
1814 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1817 cfs_rq->shares = shares;
1822 static void calc_load_account_idle(struct rq *this_rq);
1823 static void update_sysctl(void);
1824 static int get_update_sysctl_factor(void);
1825 static void update_cpu_load(struct rq *this_rq);
1827 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1829 set_task_rq(p, cpu);
1832 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1833 * successfuly executed on another CPU. We must ensure that updates of
1834 * per-task data have been completed by this moment.
1837 task_thread_info(p)->cpu = cpu;
1841 static const struct sched_class rt_sched_class;
1843 #define sched_class_highest (&stop_sched_class)
1844 #define for_each_class(class) \
1845 for (class = sched_class_highest; class; class = class->next)
1847 #include "sched_stats.h"
1849 static void inc_nr_running(struct rq *rq)
1854 static void dec_nr_running(struct rq *rq)
1859 static void set_load_weight(struct task_struct *p)
1862 * SCHED_IDLE tasks get minimal weight:
1864 if (p->policy == SCHED_IDLE) {
1865 p->se.load.weight = WEIGHT_IDLEPRIO;
1866 p->se.load.inv_weight = WMULT_IDLEPRIO;
1870 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1871 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1874 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1876 update_rq_clock(rq);
1877 sched_info_queued(p);
1878 p->sched_class->enqueue_task(rq, p, flags);
1882 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1884 update_rq_clock(rq);
1885 sched_info_dequeued(p);
1886 p->sched_class->dequeue_task(rq, p, flags);
1891 * activate_task - move a task to the runqueue.
1893 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible--;
1898 enqueue_task(rq, p, flags);
1903 * deactivate_task - remove a task from the runqueue.
1905 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1907 if (task_contributes_to_load(p))
1908 rq->nr_uninterruptible++;
1910 dequeue_task(rq, p, flags);
1914 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1917 * There are no locks covering percpu hardirq/softirq time.
1918 * They are only modified in account_system_vtime, on corresponding CPU
1919 * with interrupts disabled. So, writes are safe.
1920 * They are read and saved off onto struct rq in update_rq_clock().
1921 * This may result in other CPU reading this CPU's irq time and can
1922 * race with irq/account_system_vtime on this CPU. We would either get old
1923 * or new value with a side effect of accounting a slice of irq time to wrong
1924 * task when irq is in progress while we read rq->clock. That is a worthy
1925 * compromise in place of having locks on each irq in account_system_time.
1927 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1928 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1930 static DEFINE_PER_CPU(u64, irq_start_time);
1931 static int sched_clock_irqtime;
1933 void enable_sched_clock_irqtime(void)
1935 sched_clock_irqtime = 1;
1938 void disable_sched_clock_irqtime(void)
1940 sched_clock_irqtime = 0;
1943 #ifndef CONFIG_64BIT
1944 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1946 static inline void irq_time_write_begin(void)
1948 __this_cpu_inc(irq_time_seq.sequence);
1952 static inline void irq_time_write_end(void)
1955 __this_cpu_inc(irq_time_seq.sequence);
1958 static inline u64 irq_time_read(int cpu)
1964 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1965 irq_time = per_cpu(cpu_softirq_time, cpu) +
1966 per_cpu(cpu_hardirq_time, cpu);
1967 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1971 #else /* CONFIG_64BIT */
1972 static inline void irq_time_write_begin(void)
1976 static inline void irq_time_write_end(void)
1980 static inline u64 irq_time_read(int cpu)
1982 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1984 #endif /* CONFIG_64BIT */
1987 * Called before incrementing preempt_count on {soft,}irq_enter
1988 * and before decrementing preempt_count on {soft,}irq_exit.
1990 void account_system_vtime(struct task_struct *curr)
1992 unsigned long flags;
1996 if (!sched_clock_irqtime)
1999 local_irq_save(flags);
2001 cpu = smp_processor_id();
2002 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2003 __this_cpu_add(irq_start_time, delta);
2005 irq_time_write_begin();
2007 * We do not account for softirq time from ksoftirqd here.
2008 * We want to continue accounting softirq time to ksoftirqd thread
2009 * in that case, so as not to confuse scheduler with a special task
2010 * that do not consume any time, but still wants to run.
2012 if (hardirq_count())
2013 __this_cpu_add(cpu_hardirq_time, delta);
2014 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
2015 __this_cpu_add(cpu_softirq_time, delta);
2017 irq_time_write_end();
2018 local_irq_restore(flags);
2020 EXPORT_SYMBOL_GPL(account_system_vtime);
2022 static void update_rq_clock_task(struct rq *rq, s64 delta)
2026 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2029 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2030 * this case when a previous update_rq_clock() happened inside a
2031 * {soft,}irq region.
2033 * When this happens, we stop ->clock_task and only update the
2034 * prev_irq_time stamp to account for the part that fit, so that a next
2035 * update will consume the rest. This ensures ->clock_task is
2038 * It does however cause some slight miss-attribution of {soft,}irq
2039 * time, a more accurate solution would be to update the irq_time using
2040 * the current rq->clock timestamp, except that would require using
2043 if (irq_delta > delta)
2046 rq->prev_irq_time += irq_delta;
2048 rq->clock_task += delta;
2050 if (irq_delta && sched_feat(NONIRQ_POWER))
2051 sched_rt_avg_update(rq, irq_delta);
2054 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2056 static void update_rq_clock_task(struct rq *rq, s64 delta)
2058 rq->clock_task += delta;
2061 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2063 #include "sched_idletask.c"
2064 #include "sched_fair.c"
2065 #include "sched_rt.c"
2066 #include "sched_stoptask.c"
2067 #ifdef CONFIG_SCHED_DEBUG
2068 # include "sched_debug.c"
2071 void sched_set_stop_task(int cpu, struct task_struct *stop)
2073 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2074 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2078 * Make it appear like a SCHED_FIFO task, its something
2079 * userspace knows about and won't get confused about.
2081 * Also, it will make PI more or less work without too
2082 * much confusion -- but then, stop work should not
2083 * rely on PI working anyway.
2085 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2087 stop->sched_class = &stop_sched_class;
2090 cpu_rq(cpu)->stop = stop;
2094 * Reset it back to a normal scheduling class so that
2095 * it can die in pieces.
2097 old_stop->sched_class = &rt_sched_class;
2102 * __normal_prio - return the priority that is based on the static prio
2104 static inline int __normal_prio(struct task_struct *p)
2106 return p->static_prio;
2110 * Calculate the expected normal priority: i.e. priority
2111 * without taking RT-inheritance into account. Might be
2112 * boosted by interactivity modifiers. Changes upon fork,
2113 * setprio syscalls, and whenever the interactivity
2114 * estimator recalculates.
2116 static inline int normal_prio(struct task_struct *p)
2120 if (task_has_rt_policy(p))
2121 prio = MAX_RT_PRIO-1 - p->rt_priority;
2123 prio = __normal_prio(p);
2128 * Calculate the current priority, i.e. the priority
2129 * taken into account by the scheduler. This value might
2130 * be boosted by RT tasks, or might be boosted by
2131 * interactivity modifiers. Will be RT if the task got
2132 * RT-boosted. If not then it returns p->normal_prio.
2134 static int effective_prio(struct task_struct *p)
2136 p->normal_prio = normal_prio(p);
2138 * If we are RT tasks or we were boosted to RT priority,
2139 * keep the priority unchanged. Otherwise, update priority
2140 * to the normal priority:
2142 if (!rt_prio(p->prio))
2143 return p->normal_prio;
2148 * task_curr - is this task currently executing on a CPU?
2149 * @p: the task in question.
2151 inline int task_curr(const struct task_struct *p)
2153 return cpu_curr(task_cpu(p)) == p;
2156 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2157 const struct sched_class *prev_class,
2158 int oldprio, int running)
2160 if (prev_class != p->sched_class) {
2161 if (prev_class->switched_from)
2162 prev_class->switched_from(rq, p, running);
2163 p->sched_class->switched_to(rq, p, running);
2165 p->sched_class->prio_changed(rq, p, oldprio, running);
2168 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2170 const struct sched_class *class;
2172 if (p->sched_class == rq->curr->sched_class) {
2173 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2175 for_each_class(class) {
2176 if (class == rq->curr->sched_class)
2178 if (class == p->sched_class) {
2179 resched_task(rq->curr);
2186 * A queue event has occurred, and we're going to schedule. In
2187 * this case, we can save a useless back to back clock update.
2189 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2190 rq->skip_clock_update = 1;
2195 * Is this task likely cache-hot:
2198 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2202 if (p->sched_class != &fair_sched_class)
2205 if (unlikely(p->policy == SCHED_IDLE))
2209 * Buddy candidates are cache hot:
2211 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2212 (&p->se == cfs_rq_of(&p->se)->next ||
2213 &p->se == cfs_rq_of(&p->se)->last))
2216 if (sysctl_sched_migration_cost == -1)
2218 if (sysctl_sched_migration_cost == 0)
2221 delta = now - p->se.exec_start;
2223 return delta < (s64)sysctl_sched_migration_cost;
2226 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2228 #ifdef CONFIG_SCHED_DEBUG
2230 * We should never call set_task_cpu() on a blocked task,
2231 * ttwu() will sort out the placement.
2233 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2234 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2237 trace_sched_migrate_task(p, new_cpu);
2239 if (task_cpu(p) != new_cpu) {
2240 p->se.nr_migrations++;
2241 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2244 __set_task_cpu(p, new_cpu);
2247 struct migration_arg {
2248 struct task_struct *task;
2252 static int migration_cpu_stop(void *data);
2255 * The task's runqueue lock must be held.
2256 * Returns true if you have to wait for migration thread.
2258 static bool migrate_task(struct task_struct *p, int dest_cpu)
2260 struct rq *rq = task_rq(p);
2263 * If the task is not on a runqueue (and not running), then
2264 * the next wake-up will properly place the task.
2266 return p->se.on_rq || task_running(rq, p);
2270 * wait_task_inactive - wait for a thread to unschedule.
2272 * If @match_state is nonzero, it's the @p->state value just checked and
2273 * not expected to change. If it changes, i.e. @p might have woken up,
2274 * then return zero. When we succeed in waiting for @p to be off its CPU,
2275 * we return a positive number (its total switch count). If a second call
2276 * a short while later returns the same number, the caller can be sure that
2277 * @p has remained unscheduled the whole time.
2279 * The caller must ensure that the task *will* unschedule sometime soon,
2280 * else this function might spin for a *long* time. This function can't
2281 * be called with interrupts off, or it may introduce deadlock with
2282 * smp_call_function() if an IPI is sent by the same process we are
2283 * waiting to become inactive.
2285 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2287 unsigned long flags;
2294 * We do the initial early heuristics without holding
2295 * any task-queue locks at all. We'll only try to get
2296 * the runqueue lock when things look like they will
2302 * If the task is actively running on another CPU
2303 * still, just relax and busy-wait without holding
2306 * NOTE! Since we don't hold any locks, it's not
2307 * even sure that "rq" stays as the right runqueue!
2308 * But we don't care, since "task_running()" will
2309 * return false if the runqueue has changed and p
2310 * is actually now running somewhere else!
2312 while (task_running(rq, p)) {
2313 if (match_state && unlikely(p->state != match_state))
2319 * Ok, time to look more closely! We need the rq
2320 * lock now, to be *sure*. If we're wrong, we'll
2321 * just go back and repeat.
2323 rq = task_rq_lock(p, &flags);
2324 trace_sched_wait_task(p);
2325 running = task_running(rq, p);
2326 on_rq = p->se.on_rq;
2328 if (!match_state || p->state == match_state)
2329 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2330 task_rq_unlock(rq, &flags);
2333 * If it changed from the expected state, bail out now.
2335 if (unlikely(!ncsw))
2339 * Was it really running after all now that we
2340 * checked with the proper locks actually held?
2342 * Oops. Go back and try again..
2344 if (unlikely(running)) {
2350 * It's not enough that it's not actively running,
2351 * it must be off the runqueue _entirely_, and not
2354 * So if it was still runnable (but just not actively
2355 * running right now), it's preempted, and we should
2356 * yield - it could be a while.
2358 if (unlikely(on_rq)) {
2359 schedule_timeout_uninterruptible(1);
2364 * Ahh, all good. It wasn't running, and it wasn't
2365 * runnable, which means that it will never become
2366 * running in the future either. We're all done!
2375 * kick_process - kick a running thread to enter/exit the kernel
2376 * @p: the to-be-kicked thread
2378 * Cause a process which is running on another CPU to enter
2379 * kernel-mode, without any delay. (to get signals handled.)
2381 * NOTE: this function doesnt have to take the runqueue lock,
2382 * because all it wants to ensure is that the remote task enters
2383 * the kernel. If the IPI races and the task has been migrated
2384 * to another CPU then no harm is done and the purpose has been
2387 void kick_process(struct task_struct *p)
2393 if ((cpu != smp_processor_id()) && task_curr(p))
2394 smp_send_reschedule(cpu);
2397 EXPORT_SYMBOL_GPL(kick_process);
2398 #endif /* CONFIG_SMP */
2401 * task_oncpu_function_call - call a function on the cpu on which a task runs
2402 * @p: the task to evaluate
2403 * @func: the function to be called
2404 * @info: the function call argument
2406 * Calls the function @func when the task is currently running. This might
2407 * be on the current CPU, which just calls the function directly
2409 void task_oncpu_function_call(struct task_struct *p,
2410 void (*func) (void *info), void *info)
2417 smp_call_function_single(cpu, func, info, 1);
2423 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2425 static int select_fallback_rq(int cpu, struct task_struct *p)
2428 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2430 /* Look for allowed, online CPU in same node. */
2431 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2432 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2435 /* Any allowed, online CPU? */
2436 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2437 if (dest_cpu < nr_cpu_ids)
2440 /* No more Mr. Nice Guy. */
2441 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2442 dest_cpu = cpuset_cpus_allowed_fallback(p);
2444 * Don't tell them about moving exiting tasks or
2445 * kernel threads (both mm NULL), since they never
2448 if (p->mm && printk_ratelimit()) {
2449 printk(KERN_INFO "process %d (%s) no "
2450 "longer affine to cpu%d\n",
2451 task_pid_nr(p), p->comm, cpu);
2459 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2462 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2464 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2467 * In order not to call set_task_cpu() on a blocking task we need
2468 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2471 * Since this is common to all placement strategies, this lives here.
2473 * [ this allows ->select_task() to simply return task_cpu(p) and
2474 * not worry about this generic constraint ]
2476 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2478 cpu = select_fallback_rq(task_cpu(p), p);
2483 static void update_avg(u64 *avg, u64 sample)
2485 s64 diff = sample - *avg;
2490 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2491 bool is_sync, bool is_migrate, bool is_local,
2492 unsigned long en_flags)
2494 schedstat_inc(p, se.statistics.nr_wakeups);
2496 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2498 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2500 schedstat_inc(p, se.statistics.nr_wakeups_local);
2502 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2504 activate_task(rq, p, en_flags);
2507 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2508 int wake_flags, bool success)
2510 trace_sched_wakeup(p, success);
2511 check_preempt_curr(rq, p, wake_flags);
2513 p->state = TASK_RUNNING;
2515 if (p->sched_class->task_woken)
2516 p->sched_class->task_woken(rq, p);
2518 if (unlikely(rq->idle_stamp)) {
2519 u64 delta = rq->clock - rq->idle_stamp;
2520 u64 max = 2*sysctl_sched_migration_cost;
2525 update_avg(&rq->avg_idle, delta);
2529 /* if a worker is waking up, notify workqueue */
2530 if ((p->flags & PF_WQ_WORKER) && success)
2531 wq_worker_waking_up(p, cpu_of(rq));
2535 * try_to_wake_up - wake up a thread
2536 * @p: the thread to be awakened
2537 * @state: the mask of task states that can be woken
2538 * @wake_flags: wake modifier flags (WF_*)
2540 * Put it on the run-queue if it's not already there. The "current"
2541 * thread is always on the run-queue (except when the actual
2542 * re-schedule is in progress), and as such you're allowed to do
2543 * the simpler "current->state = TASK_RUNNING" to mark yourself
2544 * runnable without the overhead of this.
2546 * Returns %true if @p was woken up, %false if it was already running
2547 * or @state didn't match @p's state.
2549 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2552 int cpu, orig_cpu, this_cpu, success = 0;
2553 unsigned long flags;
2554 unsigned long en_flags = ENQUEUE_WAKEUP;
2557 this_cpu = get_cpu();
2560 rq = task_rq_lock(p, &flags);
2561 if (!(p->state & state))
2571 if (unlikely(task_running(rq, p)))
2575 * In order to handle concurrent wakeups and release the rq->lock
2576 * we put the task in TASK_WAKING state.
2578 * First fix up the nr_uninterruptible count:
2580 if (task_contributes_to_load(p)) {
2581 if (likely(cpu_online(orig_cpu)))
2582 rq->nr_uninterruptible--;
2584 this_rq()->nr_uninterruptible--;
2586 p->state = TASK_WAKING;
2588 if (p->sched_class->task_waking) {
2589 p->sched_class->task_waking(rq, p);
2590 en_flags |= ENQUEUE_WAKING;
2593 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2594 if (cpu != orig_cpu)
2595 set_task_cpu(p, cpu);
2596 __task_rq_unlock(rq);
2599 raw_spin_lock(&rq->lock);
2602 * We migrated the task without holding either rq->lock, however
2603 * since the task is not on the task list itself, nobody else
2604 * will try and migrate the task, hence the rq should match the
2605 * cpu we just moved it to.
2607 WARN_ON(task_cpu(p) != cpu);
2608 WARN_ON(p->state != TASK_WAKING);
2610 #ifdef CONFIG_SCHEDSTATS
2611 schedstat_inc(rq, ttwu_count);
2612 if (cpu == this_cpu)
2613 schedstat_inc(rq, ttwu_local);
2615 struct sched_domain *sd;
2616 for_each_domain(this_cpu, sd) {
2617 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2618 schedstat_inc(sd, ttwu_wake_remote);
2623 #endif /* CONFIG_SCHEDSTATS */
2626 #endif /* CONFIG_SMP */
2627 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2628 cpu == this_cpu, en_flags);
2631 ttwu_post_activation(p, rq, wake_flags, success);
2633 task_rq_unlock(rq, &flags);
2640 * try_to_wake_up_local - try to wake up a local task with rq lock held
2641 * @p: the thread to be awakened
2643 * Put @p on the run-queue if it's not alredy there. The caller must
2644 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2645 * the current task. this_rq() stays locked over invocation.
2647 static void try_to_wake_up_local(struct task_struct *p)
2649 struct rq *rq = task_rq(p);
2650 bool success = false;
2652 BUG_ON(rq != this_rq());
2653 BUG_ON(p == current);
2654 lockdep_assert_held(&rq->lock);
2656 if (!(p->state & TASK_NORMAL))
2660 if (likely(!task_running(rq, p))) {
2661 schedstat_inc(rq, ttwu_count);
2662 schedstat_inc(rq, ttwu_local);
2664 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2667 ttwu_post_activation(p, rq, 0, success);
2671 * wake_up_process - Wake up a specific process
2672 * @p: The process to be woken up.
2674 * Attempt to wake up the nominated process and move it to the set of runnable
2675 * processes. Returns 1 if the process was woken up, 0 if it was already
2678 * It may be assumed that this function implies a write memory barrier before
2679 * changing the task state if and only if any tasks are woken up.
2681 int wake_up_process(struct task_struct *p)
2683 return try_to_wake_up(p, TASK_ALL, 0);
2685 EXPORT_SYMBOL(wake_up_process);
2687 int wake_up_state(struct task_struct *p, unsigned int state)
2689 return try_to_wake_up(p, state, 0);
2693 * Perform scheduler related setup for a newly forked process p.
2694 * p is forked by current.
2696 * __sched_fork() is basic setup used by init_idle() too:
2698 static void __sched_fork(struct task_struct *p)
2700 p->se.exec_start = 0;
2701 p->se.sum_exec_runtime = 0;
2702 p->se.prev_sum_exec_runtime = 0;
2703 p->se.nr_migrations = 0;
2705 #ifdef CONFIG_SCHEDSTATS
2706 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2709 INIT_LIST_HEAD(&p->rt.run_list);
2711 INIT_LIST_HEAD(&p->se.group_node);
2713 #ifdef CONFIG_PREEMPT_NOTIFIERS
2714 INIT_HLIST_HEAD(&p->preempt_notifiers);
2719 * fork()/clone()-time setup:
2721 void sched_fork(struct task_struct *p, int clone_flags)
2723 int cpu = get_cpu();
2727 * We mark the process as running here. This guarantees that
2728 * nobody will actually run it, and a signal or other external
2729 * event cannot wake it up and insert it on the runqueue either.
2731 p->state = TASK_RUNNING;
2734 * Revert to default priority/policy on fork if requested.
2736 if (unlikely(p->sched_reset_on_fork)) {
2737 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2738 p->policy = SCHED_NORMAL;
2739 p->normal_prio = p->static_prio;
2742 if (PRIO_TO_NICE(p->static_prio) < 0) {
2743 p->static_prio = NICE_TO_PRIO(0);
2744 p->normal_prio = p->static_prio;
2749 * We don't need the reset flag anymore after the fork. It has
2750 * fulfilled its duty:
2752 p->sched_reset_on_fork = 0;
2756 * Make sure we do not leak PI boosting priority to the child.
2758 p->prio = current->normal_prio;
2760 if (!rt_prio(p->prio))
2761 p->sched_class = &fair_sched_class;
2763 if (p->sched_class->task_fork)
2764 p->sched_class->task_fork(p);
2767 * The child is not yet in the pid-hash so no cgroup attach races,
2768 * and the cgroup is pinned to this child due to cgroup_fork()
2769 * is ran before sched_fork().
2771 * Silence PROVE_RCU.
2774 set_task_cpu(p, cpu);
2777 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2778 if (likely(sched_info_on()))
2779 memset(&p->sched_info, 0, sizeof(p->sched_info));
2781 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2784 #ifdef CONFIG_PREEMPT
2785 /* Want to start with kernel preemption disabled. */
2786 task_thread_info(p)->preempt_count = 1;
2788 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2794 * wake_up_new_task - wake up a newly created task for the first time.
2796 * This function will do some initial scheduler statistics housekeeping
2797 * that must be done for every newly created context, then puts the task
2798 * on the runqueue and wakes it.
2800 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2802 unsigned long flags;
2804 int cpu __maybe_unused = get_cpu();
2807 rq = task_rq_lock(p, &flags);
2808 p->state = TASK_WAKING;
2811 * Fork balancing, do it here and not earlier because:
2812 * - cpus_allowed can change in the fork path
2813 * - any previously selected cpu might disappear through hotplug
2815 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2816 * without people poking at ->cpus_allowed.
2818 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2819 set_task_cpu(p, cpu);
2821 p->state = TASK_RUNNING;
2822 task_rq_unlock(rq, &flags);
2825 rq = task_rq_lock(p, &flags);
2826 activate_task(rq, p, 0);
2827 trace_sched_wakeup_new(p, 1);
2828 check_preempt_curr(rq, p, WF_FORK);
2830 if (p->sched_class->task_woken)
2831 p->sched_class->task_woken(rq, p);
2833 task_rq_unlock(rq, &flags);
2837 #ifdef CONFIG_PREEMPT_NOTIFIERS
2840 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2841 * @notifier: notifier struct to register
2843 void preempt_notifier_register(struct preempt_notifier *notifier)
2845 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2847 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2850 * preempt_notifier_unregister - no longer interested in preemption notifications
2851 * @notifier: notifier struct to unregister
2853 * This is safe to call from within a preemption notifier.
2855 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2857 hlist_del(¬ifier->link);
2859 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2861 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2863 struct preempt_notifier *notifier;
2864 struct hlist_node *node;
2866 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2867 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2871 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2872 struct task_struct *next)
2874 struct preempt_notifier *notifier;
2875 struct hlist_node *node;
2877 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2878 notifier->ops->sched_out(notifier, next);
2881 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2883 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2888 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2889 struct task_struct *next)
2893 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2896 * prepare_task_switch - prepare to switch tasks
2897 * @rq: the runqueue preparing to switch
2898 * @prev: the current task that is being switched out
2899 * @next: the task we are going to switch to.
2901 * This is called with the rq lock held and interrupts off. It must
2902 * be paired with a subsequent finish_task_switch after the context
2905 * prepare_task_switch sets up locking and calls architecture specific
2909 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2910 struct task_struct *next)
2912 fire_sched_out_preempt_notifiers(prev, next);
2913 prepare_lock_switch(rq, next);
2914 prepare_arch_switch(next);
2918 * finish_task_switch - clean up after a task-switch
2919 * @rq: runqueue associated with task-switch
2920 * @prev: the thread we just switched away from.
2922 * finish_task_switch must be called after the context switch, paired
2923 * with a prepare_task_switch call before the context switch.
2924 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2925 * and do any other architecture-specific cleanup actions.
2927 * Note that we may have delayed dropping an mm in context_switch(). If
2928 * so, we finish that here outside of the runqueue lock. (Doing it
2929 * with the lock held can cause deadlocks; see schedule() for
2932 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2933 __releases(rq->lock)
2935 struct mm_struct *mm = rq->prev_mm;
2941 * A task struct has one reference for the use as "current".
2942 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2943 * schedule one last time. The schedule call will never return, and
2944 * the scheduled task must drop that reference.
2945 * The test for TASK_DEAD must occur while the runqueue locks are
2946 * still held, otherwise prev could be scheduled on another cpu, die
2947 * there before we look at prev->state, and then the reference would
2949 * Manfred Spraul <manfred@colorfullife.com>
2951 prev_state = prev->state;
2952 finish_arch_switch(prev);
2953 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2954 local_irq_disable();
2955 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2956 perf_event_task_sched_in(current);
2957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2960 finish_lock_switch(rq, prev);
2962 fire_sched_in_preempt_notifiers(current);
2965 if (unlikely(prev_state == TASK_DEAD)) {
2967 * Remove function-return probe instances associated with this
2968 * task and put them back on the free list.
2970 kprobe_flush_task(prev);
2971 put_task_struct(prev);
2977 /* assumes rq->lock is held */
2978 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2980 if (prev->sched_class->pre_schedule)
2981 prev->sched_class->pre_schedule(rq, prev);
2984 /* rq->lock is NOT held, but preemption is disabled */
2985 static inline void post_schedule(struct rq *rq)
2987 if (rq->post_schedule) {
2988 unsigned long flags;
2990 raw_spin_lock_irqsave(&rq->lock, flags);
2991 if (rq->curr->sched_class->post_schedule)
2992 rq->curr->sched_class->post_schedule(rq);
2993 raw_spin_unlock_irqrestore(&rq->lock, flags);
2995 rq->post_schedule = 0;
3001 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3005 static inline void post_schedule(struct rq *rq)
3012 * schedule_tail - first thing a freshly forked thread must call.
3013 * @prev: the thread we just switched away from.
3015 asmlinkage void schedule_tail(struct task_struct *prev)
3016 __releases(rq->lock)
3018 struct rq *rq = this_rq();
3020 finish_task_switch(rq, prev);
3023 * FIXME: do we need to worry about rq being invalidated by the
3028 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3029 /* In this case, finish_task_switch does not reenable preemption */
3032 if (current->set_child_tid)
3033 put_user(task_pid_vnr(current), current->set_child_tid);
3037 * context_switch - switch to the new MM and the new
3038 * thread's register state.
3041 context_switch(struct rq *rq, struct task_struct *prev,
3042 struct task_struct *next)
3044 struct mm_struct *mm, *oldmm;
3046 prepare_task_switch(rq, prev, next);
3047 trace_sched_switch(prev, next);
3049 oldmm = prev->active_mm;
3051 * For paravirt, this is coupled with an exit in switch_to to
3052 * combine the page table reload and the switch backend into
3055 arch_start_context_switch(prev);
3058 next->active_mm = oldmm;
3059 atomic_inc(&oldmm->mm_count);
3060 enter_lazy_tlb(oldmm, next);
3062 switch_mm(oldmm, mm, next);
3065 prev->active_mm = NULL;
3066 rq->prev_mm = oldmm;
3069 * Since the runqueue lock will be released by the next
3070 * task (which is an invalid locking op but in the case
3071 * of the scheduler it's an obvious special-case), so we
3072 * do an early lockdep release here:
3074 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3075 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3078 /* Here we just switch the register state and the stack. */
3079 switch_to(prev, next, prev);
3083 * this_rq must be evaluated again because prev may have moved
3084 * CPUs since it called schedule(), thus the 'rq' on its stack
3085 * frame will be invalid.
3087 finish_task_switch(this_rq(), prev);
3091 * nr_running, nr_uninterruptible and nr_context_switches:
3093 * externally visible scheduler statistics: current number of runnable
3094 * threads, current number of uninterruptible-sleeping threads, total
3095 * number of context switches performed since bootup.
3097 unsigned long nr_running(void)
3099 unsigned long i, sum = 0;
3101 for_each_online_cpu(i)
3102 sum += cpu_rq(i)->nr_running;
3107 unsigned long nr_uninterruptible(void)
3109 unsigned long i, sum = 0;
3111 for_each_possible_cpu(i)
3112 sum += cpu_rq(i)->nr_uninterruptible;
3115 * Since we read the counters lockless, it might be slightly
3116 * inaccurate. Do not allow it to go below zero though:
3118 if (unlikely((long)sum < 0))
3124 unsigned long long nr_context_switches(void)
3127 unsigned long long sum = 0;
3129 for_each_possible_cpu(i)
3130 sum += cpu_rq(i)->nr_switches;
3135 unsigned long nr_iowait(void)
3137 unsigned long i, sum = 0;
3139 for_each_possible_cpu(i)
3140 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3145 unsigned long nr_iowait_cpu(int cpu)
3147 struct rq *this = cpu_rq(cpu);
3148 return atomic_read(&this->nr_iowait);
3151 unsigned long this_cpu_load(void)
3153 struct rq *this = this_rq();
3154 return this->cpu_load[0];
3158 /* Variables and functions for calc_load */
3159 static atomic_long_t calc_load_tasks;
3160 static unsigned long calc_load_update;
3161 unsigned long avenrun[3];
3162 EXPORT_SYMBOL(avenrun);
3164 static long calc_load_fold_active(struct rq *this_rq)
3166 long nr_active, delta = 0;
3168 nr_active = this_rq->nr_running;
3169 nr_active += (long) this_rq->nr_uninterruptible;
3171 if (nr_active != this_rq->calc_load_active) {
3172 delta = nr_active - this_rq->calc_load_active;
3173 this_rq->calc_load_active = nr_active;
3179 static unsigned long
3180 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3183 load += active * (FIXED_1 - exp);
3184 load += 1UL << (FSHIFT - 1);
3185 return load >> FSHIFT;
3190 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3192 * When making the ILB scale, we should try to pull this in as well.
3194 static atomic_long_t calc_load_tasks_idle;
3196 static void calc_load_account_idle(struct rq *this_rq)
3200 delta = calc_load_fold_active(this_rq);
3202 atomic_long_add(delta, &calc_load_tasks_idle);
3205 static long calc_load_fold_idle(void)
3210 * Its got a race, we don't care...
3212 if (atomic_long_read(&calc_load_tasks_idle))
3213 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3219 * fixed_power_int - compute: x^n, in O(log n) time
3221 * @x: base of the power
3222 * @frac_bits: fractional bits of @x
3223 * @n: power to raise @x to.
3225 * By exploiting the relation between the definition of the natural power
3226 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3227 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3228 * (where: n_i \elem {0, 1}, the binary vector representing n),
3229 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3230 * of course trivially computable in O(log_2 n), the length of our binary
3233 static unsigned long
3234 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3236 unsigned long result = 1UL << frac_bits;
3241 result += 1UL << (frac_bits - 1);
3242 result >>= frac_bits;
3248 x += 1UL << (frac_bits - 1);
3256 * a1 = a0 * e + a * (1 - e)
3258 * a2 = a1 * e + a * (1 - e)
3259 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3260 * = a0 * e^2 + a * (1 - e) * (1 + e)
3262 * a3 = a2 * e + a * (1 - e)
3263 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3264 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3268 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3269 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3270 * = a0 * e^n + a * (1 - e^n)
3272 * [1] application of the geometric series:
3275 * S_n := \Sum x^i = -------------
3278 static unsigned long
3279 calc_load_n(unsigned long load, unsigned long exp,
3280 unsigned long active, unsigned int n)
3283 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3287 * NO_HZ can leave us missing all per-cpu ticks calling
3288 * calc_load_account_active(), but since an idle CPU folds its delta into
3289 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3290 * in the pending idle delta if our idle period crossed a load cycle boundary.
3292 * Once we've updated the global active value, we need to apply the exponential
3293 * weights adjusted to the number of cycles missed.
3295 static void calc_global_nohz(unsigned long ticks)
3297 long delta, active, n;
3299 if (time_before(jiffies, calc_load_update))
3303 * If we crossed a calc_load_update boundary, make sure to fold
3304 * any pending idle changes, the respective CPUs might have
3305 * missed the tick driven calc_load_account_active() update
3308 delta = calc_load_fold_idle();
3310 atomic_long_add(delta, &calc_load_tasks);
3313 * If we were idle for multiple load cycles, apply them.
3315 if (ticks >= LOAD_FREQ) {
3316 n = ticks / LOAD_FREQ;
3318 active = atomic_long_read(&calc_load_tasks);
3319 active = active > 0 ? active * FIXED_1 : 0;
3321 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3322 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3323 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3325 calc_load_update += n * LOAD_FREQ;
3329 * Its possible the remainder of the above division also crosses
3330 * a LOAD_FREQ period, the regular check in calc_global_load()
3331 * which comes after this will take care of that.
3333 * Consider us being 11 ticks before a cycle completion, and us
3334 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3335 * age us 4 cycles, and the test in calc_global_load() will
3336 * pick up the final one.
3340 static void calc_load_account_idle(struct rq *this_rq)
3344 static inline long calc_load_fold_idle(void)
3349 static void calc_global_nohz(unsigned long ticks)
3355 * get_avenrun - get the load average array
3356 * @loads: pointer to dest load array
3357 * @offset: offset to add
3358 * @shift: shift count to shift the result left
3360 * These values are estimates at best, so no need for locking.
3362 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3364 loads[0] = (avenrun[0] + offset) << shift;
3365 loads[1] = (avenrun[1] + offset) << shift;
3366 loads[2] = (avenrun[2] + offset) << shift;
3370 * calc_load - update the avenrun load estimates 10 ticks after the
3371 * CPUs have updated calc_load_tasks.
3373 void calc_global_load(unsigned long ticks)
3377 calc_global_nohz(ticks);
3379 if (time_before(jiffies, calc_load_update + 10))
3382 active = atomic_long_read(&calc_load_tasks);
3383 active = active > 0 ? active * FIXED_1 : 0;
3385 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3386 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3387 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3389 calc_load_update += LOAD_FREQ;
3393 * Called from update_cpu_load() to periodically update this CPU's
3396 static void calc_load_account_active(struct rq *this_rq)
3400 if (time_before(jiffies, this_rq->calc_load_update))
3403 delta = calc_load_fold_active(this_rq);
3404 delta += calc_load_fold_idle();
3406 atomic_long_add(delta, &calc_load_tasks);
3408 this_rq->calc_load_update += LOAD_FREQ;
3412 * The exact cpuload at various idx values, calculated at every tick would be
3413 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3415 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3416 * on nth tick when cpu may be busy, then we have:
3417 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3418 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3420 * decay_load_missed() below does efficient calculation of
3421 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3422 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3424 * The calculation is approximated on a 128 point scale.
3425 * degrade_zero_ticks is the number of ticks after which load at any
3426 * particular idx is approximated to be zero.
3427 * degrade_factor is a precomputed table, a row for each load idx.
3428 * Each column corresponds to degradation factor for a power of two ticks,
3429 * based on 128 point scale.
3431 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3432 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3434 * With this power of 2 load factors, we can degrade the load n times
3435 * by looking at 1 bits in n and doing as many mult/shift instead of
3436 * n mult/shifts needed by the exact degradation.
3438 #define DEGRADE_SHIFT 7
3439 static const unsigned char
3440 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3441 static const unsigned char
3442 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3443 {0, 0, 0, 0, 0, 0, 0, 0},
3444 {64, 32, 8, 0, 0, 0, 0, 0},
3445 {96, 72, 40, 12, 1, 0, 0},
3446 {112, 98, 75, 43, 15, 1, 0},
3447 {120, 112, 98, 76, 45, 16, 2} };
3450 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3451 * would be when CPU is idle and so we just decay the old load without
3452 * adding any new load.
3454 static unsigned long
3455 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3459 if (!missed_updates)
3462 if (missed_updates >= degrade_zero_ticks[idx])
3466 return load >> missed_updates;
3468 while (missed_updates) {
3469 if (missed_updates % 2)
3470 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3472 missed_updates >>= 1;
3479 * Update rq->cpu_load[] statistics. This function is usually called every
3480 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3481 * every tick. We fix it up based on jiffies.
3483 static void update_cpu_load(struct rq *this_rq)
3485 unsigned long this_load = this_rq->load.weight;
3486 unsigned long curr_jiffies = jiffies;
3487 unsigned long pending_updates;
3490 this_rq->nr_load_updates++;
3492 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3493 if (curr_jiffies == this_rq->last_load_update_tick)
3496 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3497 this_rq->last_load_update_tick = curr_jiffies;
3499 /* Update our load: */
3500 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3501 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3502 unsigned long old_load, new_load;
3504 /* scale is effectively 1 << i now, and >> i divides by scale */
3506 old_load = this_rq->cpu_load[i];
3507 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3508 new_load = this_load;
3510 * Round up the averaging division if load is increasing. This
3511 * prevents us from getting stuck on 9 if the load is 10, for
3514 if (new_load > old_load)
3515 new_load += scale - 1;
3517 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3520 sched_avg_update(this_rq);
3523 static void update_cpu_load_active(struct rq *this_rq)
3525 update_cpu_load(this_rq);
3527 calc_load_account_active(this_rq);
3533 * sched_exec - execve() is a valuable balancing opportunity, because at
3534 * this point the task has the smallest effective memory and cache footprint.
3536 void sched_exec(void)
3538 struct task_struct *p = current;
3539 unsigned long flags;
3543 rq = task_rq_lock(p, &flags);
3544 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3545 if (dest_cpu == smp_processor_id())
3549 * select_task_rq() can race against ->cpus_allowed
3551 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3552 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3553 struct migration_arg arg = { p, dest_cpu };
3555 task_rq_unlock(rq, &flags);
3556 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3560 task_rq_unlock(rq, &flags);
3565 DEFINE_PER_CPU(struct kernel_stat, kstat);
3567 EXPORT_PER_CPU_SYMBOL(kstat);
3570 * Return any ns on the sched_clock that have not yet been accounted in
3571 * @p in case that task is currently running.
3573 * Called with task_rq_lock() held on @rq.
3575 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3579 if (task_current(rq, p)) {
3580 update_rq_clock(rq);
3581 ns = rq->clock_task - p->se.exec_start;
3589 unsigned long long task_delta_exec(struct task_struct *p)
3591 unsigned long flags;
3595 rq = task_rq_lock(p, &flags);
3596 ns = do_task_delta_exec(p, rq);
3597 task_rq_unlock(rq, &flags);
3603 * Return accounted runtime for the task.
3604 * In case the task is currently running, return the runtime plus current's
3605 * pending runtime that have not been accounted yet.
3607 unsigned long long task_sched_runtime(struct task_struct *p)
3609 unsigned long flags;
3613 rq = task_rq_lock(p, &flags);
3614 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3615 task_rq_unlock(rq, &flags);
3621 * Return sum_exec_runtime for the thread group.
3622 * In case the task is currently running, return the sum plus current's
3623 * pending runtime that have not been accounted yet.
3625 * Note that the thread group might have other running tasks as well,
3626 * so the return value not includes other pending runtime that other
3627 * running tasks might have.
3629 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3631 struct task_cputime totals;
3632 unsigned long flags;
3636 rq = task_rq_lock(p, &flags);
3637 thread_group_cputime(p, &totals);
3638 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3639 task_rq_unlock(rq, &flags);
3645 * Account user cpu time to a process.
3646 * @p: the process that the cpu time gets accounted to
3647 * @cputime: the cpu time spent in user space since the last update
3648 * @cputime_scaled: cputime scaled by cpu frequency
3650 void account_user_time(struct task_struct *p, cputime_t cputime,
3651 cputime_t cputime_scaled)
3653 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3656 /* Add user time to process. */
3657 p->utime = cputime_add(p->utime, cputime);
3658 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3659 account_group_user_time(p, cputime);
3661 /* Add user time to cpustat. */
3662 tmp = cputime_to_cputime64(cputime);
3663 if (TASK_NICE(p) > 0)
3664 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3666 cpustat->user = cputime64_add(cpustat->user, tmp);
3668 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3669 /* Account for user time used */
3670 acct_update_integrals(p);
3674 * Account guest cpu time to a process.
3675 * @p: the process that the cpu time gets accounted to
3676 * @cputime: the cpu time spent in virtual machine since the last update
3677 * @cputime_scaled: cputime scaled by cpu frequency
3679 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3680 cputime_t cputime_scaled)
3683 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3685 tmp = cputime_to_cputime64(cputime);
3687 /* Add guest time to process. */
3688 p->utime = cputime_add(p->utime, cputime);
3689 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3690 account_group_user_time(p, cputime);
3691 p->gtime = cputime_add(p->gtime, cputime);
3693 /* Add guest time to cpustat. */
3694 if (TASK_NICE(p) > 0) {
3695 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3696 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3698 cpustat->user = cputime64_add(cpustat->user, tmp);
3699 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3704 * Account system cpu time to a process.
3705 * @p: the process that the cpu time gets accounted to
3706 * @hardirq_offset: the offset to subtract from hardirq_count()
3707 * @cputime: the cpu time spent in kernel space since the last update
3708 * @cputime_scaled: cputime scaled by cpu frequency
3710 void account_system_time(struct task_struct *p, int hardirq_offset,
3711 cputime_t cputime, cputime_t cputime_scaled)
3713 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3716 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3717 account_guest_time(p, cputime, cputime_scaled);
3721 /* Add system time to process. */
3722 p->stime = cputime_add(p->stime, cputime);
3723 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3724 account_group_system_time(p, cputime);
3726 /* Add system time to cpustat. */
3727 tmp = cputime_to_cputime64(cputime);
3728 if (hardirq_count() - hardirq_offset)
3729 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3730 else if (in_serving_softirq())
3731 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3733 cpustat->system = cputime64_add(cpustat->system, tmp);
3735 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3737 /* Account for system time used */
3738 acct_update_integrals(p);
3742 * Account for involuntary wait time.
3743 * @steal: the cpu time spent in involuntary wait
3745 void account_steal_time(cputime_t cputime)
3747 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3748 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3750 cpustat->steal = cputime64_add(cpustat->steal, cputime64);