4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
77 #include <asm/switch_to.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
86 #include "../workqueue_sched.h"
87 #include "../smpboot.h"
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
95 ktime_t soft, hard, now;
98 if (hrtimer_active(period_timer))
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 void update_rq_clock(struct rq *rq)
121 if (rq->skip_clock_update > 0)
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 update_rq_clock_task(rq, delta);
130 * Debugging: various feature bits
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
152 static int sched_feat_show(struct seq_file *m, void *v)
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
159 seq_printf(m, "%s ", sched_feat_names[i]);
166 #ifdef HAVE_JUMP_LABEL
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
180 static void sched_feat_disable(int i)
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
186 static void sched_feat_enable(int i)
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
196 static int sched_feat_set(char *cmp)
201 if (strncmp(cmp, "NO_", 3) == 0) {
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
233 if (copy_from_user(&buf, ubuf, cnt))
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
248 static int sched_feat_open(struct inode *inode, struct file *filp)
250 return single_open(filp, sched_feat_show, NULL);
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
258 .release = single_release,
261 static __init int sched_init_debug(void)
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
278 * period over which we average the RT time consumption, measured
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
286 * period over which we measure -rt task cpu usage in us.
289 unsigned int sysctl_sched_rt_period = 1000000;
291 __read_mostly int scheduler_running;
294 * part of the period that we allow rt tasks to run in us.
297 int sysctl_sched_rt_runtime = 950000;
302 * __task_rq_lock - lock the rq @p resides on.
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
309 lockdep_assert_held(&p->pi_lock);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
316 raw_spin_unlock(&rq->lock);
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
340 static void __task_rq_unlock(struct rq *rq)
343 raw_spin_unlock(&rq->lock);
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
349 __releases(p->pi_lock)
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
356 * this_rq_lock - lock this runqueue and disable interrupts.
358 static struct rq *this_rq_lock(void)
365 raw_spin_lock(&rq->lock);
370 #ifdef CONFIG_SCHED_HRTICK
372 * Use HR-timers to deliver accurate preemption points.
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
382 static void hrtick_clear(struct rq *rq)
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
398 raw_spin_lock(&rq->lock);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
403 return HRTIMER_NORESTART;
408 * called from hardirq (IPI) context
410 static void __hrtick_start(void *arg)
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
421 * Called to set the hrtick timer state.
423 * called with rq->lock held and irqs disabled
425 void hrtick_start(struct rq *rq, u64 delay)
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430 hrtimer_set_expires(timer, time);
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443 int cpu = (int)(long)hcpu;
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
459 static __init void init_hrtick(void)
461 hotcpu_notifier(hotplug_hrtick, 0);
465 * Called to set the hrtick timer state.
467 * called with rq->lock held and irqs disabled
469 void hrtick_start(struct rq *rq, u64 delay)
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
475 static inline void init_hrtick(void)
478 #endif /* CONFIG_SMP */
480 static void init_rq_hrtick(struct rq *rq)
483 rq->hrtick_csd_pending = 0;
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
498 static inline void init_rq_hrtick(struct rq *rq)
502 static inline void init_hrtick(void)
505 #endif /* CONFIG_SCHED_HRTICK */
508 * resched_task - mark a task 'to be rescheduled now'.
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
520 void resched_task(struct task_struct *p)
524 assert_raw_spin_locked(&task_rq(p)->lock);
526 if (test_tsk_need_resched(p))
529 set_tsk_need_resched(p);
532 if (cpu == smp_processor_id())
535 /* NEED_RESCHED must be visible before we test polling */
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
541 void resched_cpu(int cpu)
543 struct rq *rq = cpu_rq(cpu);
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
561 int get_nohz_timer_target(void)
563 int cpu = smp_processor_id();
565 struct sched_domain *sd;
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
590 void wake_up_idle_cpu(int cpu)
592 struct rq *rq = cpu_rq(cpu);
594 if (cpu == smp_processor_id())
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
604 if (rq->curr != rq->idle)
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
612 set_tsk_need_resched(rq->idle);
614 /* NEED_RESCHED must be visible before we test polling */
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
620 static inline bool got_nohz_idle_kick(void)
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
626 #else /* CONFIG_NO_HZ */
628 static inline bool got_nohz_idle_kick(void)
633 #endif /* CONFIG_NO_HZ */
635 void sched_avg_update(struct rq *rq)
637 s64 period = sched_avg_period();
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
645 asm("" : "+rm" (rq->age_stamp));
646 rq->age_stamp += period;
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
654 assert_raw_spin_locked(&task_rq(p)->lock);
655 set_tsk_need_resched(p);
657 #endif /* CONFIG_SMP */
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
665 * Caller must hold rcu_lock or sufficient equivalent.
667 int walk_tg_tree_from(struct task_group *from,
668 tg_visitor down, tg_visitor up, void *data)
670 struct task_group *parent, *child;
676 ret = (*down)(parent, data);
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
686 ret = (*up)(parent, data);
687 if (ret || parent == from)
691 parent = parent->parent;
698 int tg_nop(struct task_group *tg, void *data)
704 static void set_load_weight(struct task_struct *p)
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
710 * SCHED_IDLE tasks get minimal weight:
712 if (p->policy == SCHED_IDLE) {
713 load->weight = scale_load(WEIGHT_IDLEPRIO);
714 load->inv_weight = WMULT_IDLEPRIO;
718 load->weight = scale_load(prio_to_weight[prio]);
719 load->inv_weight = prio_to_wmult[prio];
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
725 sched_info_queued(p);
726 p->sched_class->enqueue_task(rq, p, flags);
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
732 sched_info_dequeued(p);
733 p->sched_class->dequeue_task(rq, p, flags);
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
741 enqueue_task(rq, p, flags);
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
749 dequeue_task(rq, p, flags);
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
779 if (irq_delta > delta)
782 rq->prev_irq_time += irq_delta;
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 if (static_key_false((¶virt_steal_rq_enabled))) {
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
792 if (unlikely(steal > delta))
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
798 rq->prev_steal_time_rq += steal;
804 rq->clock_task += delta;
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
828 stop->sched_class = &stop_sched_class;
831 cpu_rq(cpu)->stop = stop;
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
838 old_stop->sched_class = &rt_sched_class;
843 * __normal_prio - return the priority that is based on the static prio
845 static inline int __normal_prio(struct task_struct *p)
847 return p->static_prio;
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
857 static inline int normal_prio(struct task_struct *p)
861 if (task_has_rt_policy(p))
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
864 prio = __normal_prio(p);
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
875 static int effective_prio(struct task_struct *p)
877 p->normal_prio = normal_prio(p);
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
892 inline int task_curr(const struct task_struct *p)
894 return cpu_curr(task_cpu(p)) == p;
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
911 const struct sched_class *class;
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 rq->skip_clock_update = 1;
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
936 void register_task_migration_notifier(struct notifier_block *n)
938 atomic_notifier_chain_register(&task_migration_notifier, n);
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
944 #ifdef CONFIG_SCHED_DEBUG
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
952 #ifdef CONFIG_LOCKDEP
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
957 * sched_move_task() holds both and thus holding either pins the cgroup,
960 * Furthermore, all task_rq users should acquire both locks, see
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
968 trace_sched_migrate_task(p, new_cpu);
970 if (task_cpu(p) != new_cpu) {
971 struct task_migration_notifier tmn;
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
975 p->se.nr_migrations++;
976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
985 __set_task_cpu(p, new_cpu);
988 struct migration_arg {
989 struct task_struct *task;
993 static int migration_cpu_stop(void *data);
996 * wait_task_inactive - wait for a thread to unschedule.
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1013 unsigned long flags;
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1049 rq = task_rq_lock(p, &flags);
1050 trace_sched_wait_task(p);
1051 running = task_running(rq, p);
1054 if (!match_state || p->state == match_state)
1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 task_rq_unlock(rq, p, &flags);
1059 * If it changed from the expected state, bail out now.
1061 if (unlikely(!ncsw))
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1068 * Oops. Go back and try again..
1070 if (unlikely(running)) {
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1080 * So if it was still runnable (but just not actively
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1084 if (unlikely(on_rq)) {
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1116 void kick_process(struct task_struct *p)
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1135 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136 enum { cpuset, possible, fail } state = cpuset;
1139 /* Look for allowed, online CPU in same node. */
1140 for_each_cpu(dest_cpu, nodemask) {
1141 if (!cpu_online(dest_cpu))
1143 if (!cpu_active(dest_cpu))
1145 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1150 /* Any allowed, online CPU? */
1151 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152 if (!cpu_online(dest_cpu))
1154 if (!cpu_active(dest_cpu))
1161 /* No more Mr. Nice Guy. */
1162 cpuset_cpus_allowed_fallback(p);
1167 do_set_cpus_allowed(p, cpu_possible_mask);
1178 if (state != cpuset) {
1180 * Don't tell them about moving exiting tasks or
1181 * kernel threads (both mm NULL), since they never
1184 if (p->mm && printk_ratelimit()) {
1185 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186 task_pid_nr(p), p->comm, cpu);
1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1197 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1199 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1202 * In order not to call set_task_cpu() on a blocking task we need
1203 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1206 * Since this is common to all placement strategies, this lives here.
1208 * [ this allows ->select_task() to simply return task_cpu(p) and
1209 * not worry about this generic constraint ]
1211 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1213 cpu = select_fallback_rq(task_cpu(p), p);
1218 static void update_avg(u64 *avg, u64 sample)
1220 s64 diff = sample - *avg;
1226 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1228 #ifdef CONFIG_SCHEDSTATS
1229 struct rq *rq = this_rq();
1232 int this_cpu = smp_processor_id();
1234 if (cpu == this_cpu) {
1235 schedstat_inc(rq, ttwu_local);
1236 schedstat_inc(p, se.statistics.nr_wakeups_local);
1238 struct sched_domain *sd;
1240 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1242 for_each_domain(this_cpu, sd) {
1243 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244 schedstat_inc(sd, ttwu_wake_remote);
1251 if (wake_flags & WF_MIGRATED)
1252 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1254 #endif /* CONFIG_SMP */
1256 schedstat_inc(rq, ttwu_count);
1257 schedstat_inc(p, se.statistics.nr_wakeups);
1259 if (wake_flags & WF_SYNC)
1260 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1262 #endif /* CONFIG_SCHEDSTATS */
1265 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1267 activate_task(rq, p, en_flags);
1270 /* if a worker is waking up, notify workqueue */
1271 if (p->flags & PF_WQ_WORKER)
1272 wq_worker_waking_up(p, cpu_of(rq));
1276 * Mark the task runnable and perform wakeup-preemption.
1279 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1281 trace_sched_wakeup(p, true);
1282 check_preempt_curr(rq, p, wake_flags);
1284 p->state = TASK_RUNNING;
1286 if (p->sched_class->task_woken)
1287 p->sched_class->task_woken(rq, p);
1289 if (rq->idle_stamp) {
1290 u64 delta = rq->clock - rq->idle_stamp;
1291 u64 max = 2*sysctl_sched_migration_cost;
1296 update_avg(&rq->avg_idle, delta);
1303 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1306 if (p->sched_contributes_to_load)
1307 rq->nr_uninterruptible--;
1310 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311 ttwu_do_wakeup(rq, p, wake_flags);
1315 * Called in case the task @p isn't fully descheduled from its runqueue,
1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317 * since all we need to do is flip p->state to TASK_RUNNING, since
1318 * the task is still ->on_rq.
1320 static int ttwu_remote(struct task_struct *p, int wake_flags)
1325 rq = __task_rq_lock(p);
1327 ttwu_do_wakeup(rq, p, wake_flags);
1330 __task_rq_unlock(rq);
1336 static void sched_ttwu_pending(void)
1338 struct rq *rq = this_rq();
1339 struct llist_node *llist = llist_del_all(&rq->wake_list);
1340 struct task_struct *p;
1342 raw_spin_lock(&rq->lock);
1345 p = llist_entry(llist, struct task_struct, wake_entry);
1346 llist = llist_next(llist);
1347 ttwu_do_activate(rq, p, 0);
1350 raw_spin_unlock(&rq->lock);
1353 void scheduler_ipi(void)
1355 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1359 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360 * traditionally all their work was done from the interrupt return
1361 * path. Now that we actually do some work, we need to make sure
1364 * Some archs already do call them, luckily irq_enter/exit nest
1367 * Arguably we should visit all archs and update all handlers,
1368 * however a fair share of IPIs are still resched only so this would
1369 * somewhat pessimize the simple resched case.
1372 sched_ttwu_pending();
1375 * Check if someone kicked us for doing the nohz idle load balance.
1377 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378 this_rq()->idle_balance = 1;
1379 raise_softirq_irqoff(SCHED_SOFTIRQ);
1384 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1386 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387 smp_send_reschedule(cpu);
1390 bool cpus_share_cache(int this_cpu, int that_cpu)
1392 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1394 #endif /* CONFIG_SMP */
1396 static void ttwu_queue(struct task_struct *p, int cpu)
1398 struct rq *rq = cpu_rq(cpu);
1400 #if defined(CONFIG_SMP)
1401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403 ttwu_queue_remote(p, cpu);
1408 raw_spin_lock(&rq->lock);
1409 ttwu_do_activate(rq, p, 0);
1410 raw_spin_unlock(&rq->lock);
1414 * try_to_wake_up - wake up a thread
1415 * @p: the thread to be awakened
1416 * @state: the mask of task states that can be woken
1417 * @wake_flags: wake modifier flags (WF_*)
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1425 * Returns %true if @p was woken up, %false if it was already running
1426 * or @state didn't match @p's state.
1429 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1431 unsigned long flags;
1432 int cpu, success = 0;
1435 raw_spin_lock_irqsave(&p->pi_lock, flags);
1436 if (!(p->state & state))
1439 success = 1; /* we're going to change ->state */
1442 if (p->on_rq && ttwu_remote(p, wake_flags))
1447 * If the owning (remote) cpu is still in the middle of schedule() with
1448 * this task as prev, wait until its done referencing the task.
1453 * Pairs with the smp_wmb() in finish_lock_switch().
1457 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1458 p->state = TASK_WAKING;
1460 if (p->sched_class->task_waking)
1461 p->sched_class->task_waking(p);
1463 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464 if (task_cpu(p) != cpu) {
1465 wake_flags |= WF_MIGRATED;
1466 set_task_cpu(p, cpu);
1468 #endif /* CONFIG_SMP */
1472 ttwu_stat(p, cpu, wake_flags);
1474 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1480 * try_to_wake_up_local - try to wake up a local task with rq lock held
1481 * @p: the thread to be awakened
1483 * Put @p on the run-queue if it's not already there. The caller must
1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1487 static void try_to_wake_up_local(struct task_struct *p)
1489 struct rq *rq = task_rq(p);
1491 BUG_ON(rq != this_rq());
1492 BUG_ON(p == current);
1493 lockdep_assert_held(&rq->lock);
1495 if (!raw_spin_trylock(&p->pi_lock)) {
1496 raw_spin_unlock(&rq->lock);
1497 raw_spin_lock(&p->pi_lock);
1498 raw_spin_lock(&rq->lock);
1501 if (!(p->state & TASK_NORMAL))
1505 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1507 ttwu_do_wakeup(rq, p, 0);
1508 ttwu_stat(p, smp_processor_id(), 0);
1510 raw_spin_unlock(&p->pi_lock);
1514 * wake_up_process - Wake up a specific process
1515 * @p: The process to be woken up.
1517 * Attempt to wake up the nominated process and move it to the set of runnable
1518 * processes. Returns 1 if the process was woken up, 0 if it was already
1521 * It may be assumed that this function implies a write memory barrier before
1522 * changing the task state if and only if any tasks are woken up.
1524 int wake_up_process(struct task_struct *p)
1526 WARN_ON(task_is_stopped_or_traced(p));
1527 return try_to_wake_up(p, TASK_NORMAL, 0);
1529 EXPORT_SYMBOL(wake_up_process);
1531 int wake_up_state(struct task_struct *p, unsigned int state)
1533 return try_to_wake_up(p, state, 0);
1537 * Perform scheduler related setup for a newly forked process p.
1538 * p is forked by current.
1540 * __sched_fork() is basic setup used by init_idle() too:
1542 static void __sched_fork(struct task_struct *p)
1547 p->se.exec_start = 0;
1548 p->se.sum_exec_runtime = 0;
1549 p->se.prev_sum_exec_runtime = 0;
1550 p->se.nr_migrations = 0;
1552 INIT_LIST_HEAD(&p->se.group_node);
1555 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1556 * removed when useful for applications beyond shares distribution (e.g.
1559 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1560 p->se.avg.runnable_avg_period = 0;
1561 p->se.avg.runnable_avg_sum = 0;
1563 #ifdef CONFIG_SCHEDSTATS
1564 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1567 INIT_LIST_HEAD(&p->rt.run_list);
1569 #ifdef CONFIG_PREEMPT_NOTIFIERS
1570 INIT_HLIST_HEAD(&p->preempt_notifiers);
1573 #ifdef CONFIG_NUMA_BALANCING
1574 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1575 p->mm->numa_next_scan = jiffies;
1576 p->mm->numa_next_reset = jiffies;
1577 p->mm->numa_scan_seq = 0;
1580 p->node_stamp = 0ULL;
1581 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1582 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1583 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1584 p->numa_work.next = &p->numa_work;
1585 #endif /* CONFIG_NUMA_BALANCING */
1588 #ifdef CONFIG_NUMA_BALANCING
1589 #ifdef CONFIG_SCHED_DEBUG
1590 void set_numabalancing_state(bool enabled)
1593 sched_feat_set("NUMA");
1595 sched_feat_set("NO_NUMA");
1598 __read_mostly bool numabalancing_enabled;
1600 void set_numabalancing_state(bool enabled)
1602 numabalancing_enabled = enabled;
1604 #endif /* CONFIG_SCHED_DEBUG */
1605 #endif /* CONFIG_NUMA_BALANCING */
1608 * fork()/clone()-time setup:
1610 void sched_fork(struct task_struct *p)
1612 unsigned long flags;
1613 int cpu = get_cpu();
1617 * We mark the process as running here. This guarantees that
1618 * nobody will actually run it, and a signal or other external
1619 * event cannot wake it up and insert it on the runqueue either.
1621 p->state = TASK_RUNNING;
1624 * Make sure we do not leak PI boosting priority to the child.
1626 p->prio = current->normal_prio;
1629 * Revert to default priority/policy on fork if requested.
1631 if (unlikely(p->sched_reset_on_fork)) {
1632 if (task_has_rt_policy(p)) {
1633 p->policy = SCHED_NORMAL;
1634 p->static_prio = NICE_TO_PRIO(0);
1636 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1637 p->static_prio = NICE_TO_PRIO(0);
1639 p->prio = p->normal_prio = __normal_prio(p);
1643 * We don't need the reset flag anymore after the fork. It has
1644 * fulfilled its duty:
1646 p->sched_reset_on_fork = 0;
1649 if (!rt_prio(p->prio))
1650 p->sched_class = &fair_sched_class;
1652 if (p->sched_class->task_fork)
1653 p->sched_class->task_fork(p);
1656 * The child is not yet in the pid-hash so no cgroup attach races,
1657 * and the cgroup is pinned to this child due to cgroup_fork()
1658 * is ran before sched_fork().
1660 * Silence PROVE_RCU.
1662 raw_spin_lock_irqsave(&p->pi_lock, flags);
1663 set_task_cpu(p, cpu);
1664 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1666 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1667 if (likely(sched_info_on()))
1668 memset(&p->sched_info, 0, sizeof(p->sched_info));
1670 #if defined(CONFIG_SMP)
1673 #ifdef CONFIG_PREEMPT_COUNT
1674 /* Want to start with kernel preemption disabled. */
1675 task_thread_info(p)->preempt_count = 1;
1678 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1685 * wake_up_new_task - wake up a newly created task for the first time.
1687 * This function will do some initial scheduler statistics housekeeping
1688 * that must be done for every newly created context, then puts the task
1689 * on the runqueue and wakes it.
1691 void wake_up_new_task(struct task_struct *p)
1693 unsigned long flags;
1696 raw_spin_lock_irqsave(&p->pi_lock, flags);
1699 * Fork balancing, do it here and not earlier because:
1700 * - cpus_allowed can change in the fork path
1701 * - any previously selected cpu might disappear through hotplug
1703 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1706 rq = __task_rq_lock(p);
1707 activate_task(rq, p, 0);
1709 trace_sched_wakeup_new(p, true);
1710 check_preempt_curr(rq, p, WF_FORK);
1712 if (p->sched_class->task_woken)
1713 p->sched_class->task_woken(rq, p);
1715 task_rq_unlock(rq, p, &flags);
1718 #ifdef CONFIG_PREEMPT_NOTIFIERS
1721 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1722 * @notifier: notifier struct to register
1724 void preempt_notifier_register(struct preempt_notifier *notifier)
1726 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
1728 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1731 * preempt_notifier_unregister - no longer interested in preemption notifications
1732 * @notifier: notifier struct to unregister
1734 * This is safe to call from within a preemption notifier.
1736 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1738 hlist_del(¬ifier->link);
1740 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1742 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1744 struct preempt_notifier *notifier;
1745 struct hlist_node *node;
1747 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1748 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1752 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1753 struct task_struct *next)
1755 struct preempt_notifier *notifier;
1756 struct hlist_node *node;
1758 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1759 notifier->ops->sched_out(notifier, next);
1762 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1764 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1769 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1770 struct task_struct *next)
1774 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1777 * prepare_task_switch - prepare to switch tasks
1778 * @rq: the runqueue preparing to switch
1779 * @prev: the current task that is being switched out
1780 * @next: the task we are going to switch to.
1782 * This is called with the rq lock held and interrupts off. It must
1783 * be paired with a subsequent finish_task_switch after the context
1786 * prepare_task_switch sets up locking and calls architecture specific
1790 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1791 struct task_struct *next)
1793 trace_sched_switch(prev, next);
1794 sched_info_switch(prev, next);
1795 perf_event_task_sched_out(prev, next);
1796 fire_sched_out_preempt_notifiers(prev, next);
1797 prepare_lock_switch(rq, next);
1798 prepare_arch_switch(next);
1802 * finish_task_switch - clean up after a task-switch
1803 * @rq: runqueue associated with task-switch
1804 * @prev: the thread we just switched away from.
1806 * finish_task_switch must be called after the context switch, paired
1807 * with a prepare_task_switch call before the context switch.
1808 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1809 * and do any other architecture-specific cleanup actions.
1811 * Note that we may have delayed dropping an mm in context_switch(). If
1812 * so, we finish that here outside of the runqueue lock. (Doing it
1813 * with the lock held can cause deadlocks; see schedule() for
1816 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1817 __releases(rq->lock)
1819 struct mm_struct *mm = rq->prev_mm;
1825 * A task struct has one reference for the use as "current".
1826 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1827 * schedule one last time. The schedule call will never return, and
1828 * the scheduled task must drop that reference.
1829 * The test for TASK_DEAD must occur while the runqueue locks are
1830 * still held, otherwise prev could be scheduled on another cpu, die
1831 * there before we look at prev->state, and then the reference would
1833 * Manfred Spraul <manfred@colorfullife.com>
1835 prev_state = prev->state;
1836 vtime_task_switch(prev);
1837 finish_arch_switch(prev);
1838 perf_event_task_sched_in(prev, current);
1839 finish_lock_switch(rq, prev);
1840 finish_arch_post_lock_switch();
1842 fire_sched_in_preempt_notifiers(current);
1845 if (unlikely(prev_state == TASK_DEAD)) {
1847 * Remove function-return probe instances associated with this
1848 * task and put them back on the free list.
1850 kprobe_flush_task(prev);
1851 put_task_struct(prev);
1857 /* assumes rq->lock is held */
1858 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1860 if (prev->sched_class->pre_schedule)
1861 prev->sched_class->pre_schedule(rq, prev);
1864 /* rq->lock is NOT held, but preemption is disabled */
1865 static inline void post_schedule(struct rq *rq)
1867 if (rq->post_schedule) {
1868 unsigned long flags;
1870 raw_spin_lock_irqsave(&rq->lock, flags);
1871 if (rq->curr->sched_class->post_schedule)
1872 rq->curr->sched_class->post_schedule(rq);
1873 raw_spin_unlock_irqrestore(&rq->lock, flags);
1875 rq->post_schedule = 0;
1881 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1885 static inline void post_schedule(struct rq *rq)
1892 * schedule_tail - first thing a freshly forked thread must call.
1893 * @prev: the thread we just switched away from.
1895 asmlinkage void schedule_tail(struct task_struct *prev)
1896 __releases(rq->lock)
1898 struct rq *rq = this_rq();
1900 finish_task_switch(rq, prev);
1903 * FIXME: do we need to worry about rq being invalidated by the
1908 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1909 /* In this case, finish_task_switch does not reenable preemption */
1912 if (current->set_child_tid)
1913 put_user(task_pid_vnr(current), current->set_child_tid);
1917 * context_switch - switch to the new MM and the new
1918 * thread's register state.
1921 context_switch(struct rq *rq, struct task_struct *prev,
1922 struct task_struct *next)
1924 struct mm_struct *mm, *oldmm;
1926 prepare_task_switch(rq, prev, next);
1929 oldmm = prev->active_mm;
1931 * For paravirt, this is coupled with an exit in switch_to to
1932 * combine the page table reload and the switch backend into
1935 arch_start_context_switch(prev);
1938 next->active_mm = oldmm;
1939 atomic_inc(&oldmm->mm_count);
1940 enter_lazy_tlb(oldmm, next);
1942 switch_mm(oldmm, mm, next);
1945 prev->active_mm = NULL;
1946 rq->prev_mm = oldmm;
1949 * Since the runqueue lock will be released by the next
1950 * task (which is an invalid locking op but in the case
1951 * of the scheduler it's an obvious special-case), so we
1952 * do an early lockdep release here:
1954 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1955 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1958 context_tracking_task_switch(prev, next);
1959 /* Here we just switch the register state and the stack. */
1960 switch_to(prev, next, prev);
1964 * this_rq must be evaluated again because prev may have moved
1965 * CPUs since it called schedule(), thus the 'rq' on its stack
1966 * frame will be invalid.
1968 finish_task_switch(this_rq(), prev);
1972 * nr_running, nr_uninterruptible and nr_context_switches:
1974 * externally visible scheduler statistics: current number of runnable
1975 * threads, current number of uninterruptible-sleeping threads, total
1976 * number of context switches performed since bootup.
1978 unsigned long nr_running(void)
1980 unsigned long i, sum = 0;
1982 for_each_online_cpu(i)
1983 sum += cpu_rq(i)->nr_running;
1988 unsigned long nr_uninterruptible(void)
1990 unsigned long i, sum = 0;
1992 for_each_possible_cpu(i)
1993 sum += cpu_rq(i)->nr_uninterruptible;
1996 * Since we read the counters lockless, it might be slightly
1997 * inaccurate. Do not allow it to go below zero though:
1999 if (unlikely((long)sum < 0))
2005 unsigned long long nr_context_switches(void)
2008 unsigned long long sum = 0;
2010 for_each_possible_cpu(i)
2011 sum += cpu_rq(i)->nr_switches;
2016 unsigned long nr_iowait(void)
2018 unsigned long i, sum = 0;
2020 for_each_possible_cpu(i)
2021 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2026 unsigned long nr_iowait_cpu(int cpu)
2028 struct rq *this = cpu_rq(cpu);
2029 return atomic_read(&this->nr_iowait);
2032 unsigned long this_cpu_load(void)
2034 struct rq *this = this_rq();
2035 return this->cpu_load[0];
2040 * Global load-average calculations
2042 * We take a distributed and async approach to calculating the global load-avg
2043 * in order to minimize overhead.
2045 * The global load average is an exponentially decaying average of nr_running +
2046 * nr_uninterruptible.
2048 * Once every LOAD_FREQ:
2051 * for_each_possible_cpu(cpu)
2052 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2054 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2056 * Due to a number of reasons the above turns in the mess below:
2058 * - for_each_possible_cpu() is prohibitively expensive on machines with
2059 * serious number of cpus, therefore we need to take a distributed approach
2060 * to calculating nr_active.
2062 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2063 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2065 * So assuming nr_active := 0 when we start out -- true per definition, we
2066 * can simply take per-cpu deltas and fold those into a global accumulate
2067 * to obtain the same result. See calc_load_fold_active().
2069 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2070 * across the machine, we assume 10 ticks is sufficient time for every
2071 * cpu to have completed this task.
2073 * This places an upper-bound on the IRQ-off latency of the machine. Then
2074 * again, being late doesn't loose the delta, just wrecks the sample.
2076 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2077 * this would add another cross-cpu cacheline miss and atomic operation
2078 * to the wakeup path. Instead we increment on whatever cpu the task ran
2079 * when it went into uninterruptible state and decrement on whatever cpu
2080 * did the wakeup. This means that only the sum of nr_uninterruptible over
2081 * all cpus yields the correct result.
2083 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2086 /* Variables and functions for calc_load */
2087 static atomic_long_t calc_load_tasks;
2088 static unsigned long calc_load_update;
2089 unsigned long avenrun[3];
2090 EXPORT_SYMBOL(avenrun); /* should be removed */
2093 * get_avenrun - get the load average array
2094 * @loads: pointer to dest load array
2095 * @offset: offset to add
2096 * @shift: shift count to shift the result left
2098 * These values are estimates at best, so no need for locking.
2100 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2102 loads[0] = (avenrun[0] + offset) << shift;
2103 loads[1] = (avenrun[1] + offset) << shift;
2104 loads[2] = (avenrun[2] + offset) << shift;
2107 static long calc_load_fold_active(struct rq *this_rq)
2109 long nr_active, delta = 0;
2111 nr_active = this_rq->nr_running;
2112 nr_active += (long) this_rq->nr_uninterruptible;
2114 if (nr_active != this_rq->calc_load_active) {
2115 delta = nr_active - this_rq->calc_load_active;
2116 this_rq->calc_load_active = nr_active;
2123 * a1 = a0 * e + a * (1 - e)
2125 static unsigned long
2126 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2129 load += active * (FIXED_1 - exp);
2130 load += 1UL << (FSHIFT - 1);
2131 return load >> FSHIFT;
2136 * Handle NO_HZ for the global load-average.
2138 * Since the above described distributed algorithm to compute the global
2139 * load-average relies on per-cpu sampling from the tick, it is affected by
2142 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2143 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2144 * when we read the global state.
2146 * Obviously reality has to ruin such a delightfully simple scheme:
2148 * - When we go NO_HZ idle during the window, we can negate our sample
2149 * contribution, causing under-accounting.
2151 * We avoid this by keeping two idle-delta counters and flipping them
2152 * when the window starts, thus separating old and new NO_HZ load.
2154 * The only trick is the slight shift in index flip for read vs write.
2158 * |-|-----------|-|-----------|-|-----------|-|
2159 * r:0 0 1 1 0 0 1 1 0
2160 * w:0 1 1 0 0 1 1 0 0
2162 * This ensures we'll fold the old idle contribution in this window while
2163 * accumlating the new one.
2165 * - When we wake up from NO_HZ idle during the window, we push up our
2166 * contribution, since we effectively move our sample point to a known
2169 * This is solved by pushing the window forward, and thus skipping the
2170 * sample, for this cpu (effectively using the idle-delta for this cpu which
2171 * was in effect at the time the window opened). This also solves the issue
2172 * of having to deal with a cpu having been in NOHZ idle for multiple
2173 * LOAD_FREQ intervals.
2175 * When making the ILB scale, we should try to pull this in as well.
2177 static atomic_long_t calc_load_idle[2];
2178 static int calc_load_idx;
2180 static inline int calc_load_write_idx(void)
2182 int idx = calc_load_idx;
2185 * See calc_global_nohz(), if we observe the new index, we also
2186 * need to observe the new update time.
2191 * If the folding window started, make sure we start writing in the
2194 if (!time_before(jiffies, calc_load_update))
2200 static inline int calc_load_read_idx(void)
2202 return calc_load_idx & 1;
2205 void calc_load_enter_idle(void)
2207 struct rq *this_rq = this_rq();
2211 * We're going into NOHZ mode, if there's any pending delta, fold it
2212 * into the pending idle delta.
2214 delta = calc_load_fold_active(this_rq);
2216 int idx = calc_load_write_idx();
2217 atomic_long_add(delta, &calc_load_idle[idx]);
2221 void calc_load_exit_idle(void)
2223 struct rq *this_rq = this_rq();
2226 * If we're still before the sample window, we're done.
2228 if (time_before(jiffies, this_rq->calc_load_update))
2232 * We woke inside or after the sample window, this means we're already
2233 * accounted through the nohz accounting, so skip the entire deal and
2234 * sync up for the next window.
2236 this_rq->calc_load_update = calc_load_update;
2237 if (time_before(jiffies, this_rq->calc_load_update + 10))
2238 this_rq->calc_load_update += LOAD_FREQ;
2241 static long calc_load_fold_idle(void)
2243 int idx = calc_load_read_idx();
2246 if (atomic_long_read(&calc_load_idle[idx]))
2247 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2253 * fixed_power_int - compute: x^n, in O(log n) time
2255 * @x: base of the power
2256 * @frac_bits: fractional bits of @x
2257 * @n: power to raise @x to.
2259 * By exploiting the relation between the definition of the natural power
2260 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2261 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2262 * (where: n_i \elem {0, 1}, the binary vector representing n),
2263 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2264 * of course trivially computable in O(log_2 n), the length of our binary
2267 static unsigned long
2268 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2270 unsigned long result = 1UL << frac_bits;
2275 result += 1UL << (frac_bits - 1);
2276 result >>= frac_bits;
2282 x += 1UL << (frac_bits - 1);
2290 * a1 = a0 * e + a * (1 - e)
2292 * a2 = a1 * e + a * (1 - e)
2293 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2294 * = a0 * e^2 + a * (1 - e) * (1 + e)
2296 * a3 = a2 * e + a * (1 - e)
2297 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2298 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2302 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2303 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2304 * = a0 * e^n + a * (1 - e^n)
2306 * [1] application of the geometric series:
2309 * S_n := \Sum x^i = -------------
2312 static unsigned long
2313 calc_load_n(unsigned long load, unsigned long exp,
2314 unsigned long active, unsigned int n)
2317 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2321 * NO_HZ can leave us missing all per-cpu ticks calling
2322 * calc_load_account_active(), but since an idle CPU folds its delta into
2323 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2324 * in the pending idle delta if our idle period crossed a load cycle boundary.
2326 * Once we've updated the global active value, we need to apply the exponential
2327 * weights adjusted to the number of cycles missed.
2329 static void calc_global_nohz(void)
2331 long delta, active, n;
2333 if (!time_before(jiffies, calc_load_update + 10)) {
2335 * Catch-up, fold however many we are behind still
2337 delta = jiffies - calc_load_update - 10;
2338 n = 1 + (delta / LOAD_FREQ);
2340 active = atomic_long_read(&calc_load_tasks);
2341 active = active > 0 ? active * FIXED_1 : 0;
2343 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2344 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2345 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2347 calc_load_update += n * LOAD_FREQ;
2351 * Flip the idle index...
2353 * Make sure we first write the new time then flip the index, so that
2354 * calc_load_write_idx() will see the new time when it reads the new
2355 * index, this avoids a double flip messing things up.
2360 #else /* !CONFIG_NO_HZ */
2362 static inline long calc_load_fold_idle(void) { return 0; }
2363 static inline void calc_global_nohz(void) { }
2365 #endif /* CONFIG_NO_HZ */
2368 * calc_load - update the avenrun load estimates 10 ticks after the
2369 * CPUs have updated calc_load_tasks.
2371 void calc_global_load(unsigned long ticks)
2375 if (time_before(jiffies, calc_load_update + 10))
2379 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2381 delta = calc_load_fold_idle();
2383 atomic_long_add(delta, &calc_load_tasks);
2385 active = atomic_long_read(&calc_load_tasks);
2386 active = active > 0 ? active * FIXED_1 : 0;
2388 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2389 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2390 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2392 calc_load_update += LOAD_FREQ;
2395 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2401 * Called from update_cpu_load() to periodically update this CPU's
2404 static void calc_load_account_active(struct rq *this_rq)
2408 if (time_before(jiffies, this_rq->calc_load_update))
2411 delta = calc_load_fold_active(this_rq);
2413 atomic_long_add(delta, &calc_load_tasks);
2415 this_rq->calc_load_update += LOAD_FREQ;
2419 * End of global load-average stuff
2423 * The exact cpuload at various idx values, calculated at every tick would be
2424 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2426 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2427 * on nth tick when cpu may be busy, then we have:
2428 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2429 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2431 * decay_load_missed() below does efficient calculation of
2432 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2433 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2435 * The calculation is approximated on a 128 point scale.
2436 * degrade_zero_ticks is the number of ticks after which load at any
2437 * particular idx is approximated to be zero.
2438 * degrade_factor is a precomputed table, a row for each load idx.
2439 * Each column corresponds to degradation factor for a power of two ticks,
2440 * based on 128 point scale.
2442 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2443 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2445 * With this power of 2 load factors, we can degrade the load n times
2446 * by looking at 1 bits in n and doing as many mult/shift instead of
2447 * n mult/shifts needed by the exact degradation.
2449 #define DEGRADE_SHIFT 7
2450 static const unsigned char
2451 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2452 static const unsigned char
2453 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2454 {0, 0, 0, 0, 0, 0, 0, 0},
2455 {64, 32, 8, 0, 0, 0, 0, 0},
2456 {96, 72, 40, 12, 1, 0, 0},
2457 {112, 98, 75, 43, 15, 1, 0},
2458 {120, 112, 98, 76, 45, 16, 2} };
2461 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2462 * would be when CPU is idle and so we just decay the old load without
2463 * adding any new load.
2465 static unsigned long
2466 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2470 if (!missed_updates)
2473 if (missed_updates >= degrade_zero_ticks[idx])
2477 return load >> missed_updates;
2479 while (missed_updates) {
2480 if (missed_updates % 2)
2481 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2483 missed_updates >>= 1;
2490 * Update rq->cpu_load[] statistics. This function is usually called every
2491 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2492 * every tick. We fix it up based on jiffies.
2494 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2495 unsigned long pending_updates)
2499 this_rq->nr_load_updates++;
2501 /* Update our load: */
2502 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2503 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2504 unsigned long old_load, new_load;
2506 /* scale is effectively 1 << i now, and >> i divides by scale */
2508 old_load = this_rq->cpu_load[i];
2509 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2510 new_load = this_load;
2512 * Round up the averaging division if load is increasing. This
2513 * prevents us from getting stuck on 9 if the load is 10, for
2516 if (new_load > old_load)
2517 new_load += scale - 1;
2519 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2522 sched_avg_update(this_rq);
2527 * There is no sane way to deal with nohz on smp when using jiffies because the
2528 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2529 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2531 * Therefore we cannot use the delta approach from the regular tick since that
2532 * would seriously skew the load calculation. However we'll make do for those
2533 * updates happening while idle (nohz_idle_balance) or coming out of idle
2534 * (tick_nohz_idle_exit).
2536 * This means we might still be one tick off for nohz periods.
2540 * Called from nohz_idle_balance() to update the load ratings before doing the
2543 void update_idle_cpu_load(struct rq *this_rq)
2545 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2546 unsigned long load = this_rq->load.weight;
2547 unsigned long pending_updates;
2550 * bail if there's load or we're actually up-to-date.
2552 if (load || curr_jiffies == this_rq->last_load_update_tick)
2555 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2556 this_rq->last_load_update_tick = curr_jiffies;
2558 __update_cpu_load(this_rq, load, pending_updates);
2562 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2564 void update_cpu_load_nohz(void)
2566 struct rq *this_rq = this_rq();
2567 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2568 unsigned long pending_updates;
2570 if (curr_jiffies == this_rq->last_load_update_tick)
2573 raw_spin_lock(&this_rq->lock);
2574 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2575 if (pending_updates) {
2576 this_rq->last_load_update_tick = curr_jiffies;
2578 * We were idle, this means load 0, the current load might be
2579 * !0 due to remote wakeups and the sort.
2581 __update_cpu_load(this_rq, 0, pending_updates);
2583 raw_spin_unlock(&this_rq->lock);
2585 #endif /* CONFIG_NO_HZ */
2588 * Called from scheduler_tick()
2590 static void update_cpu_load_active(struct rq *this_rq)
2593 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2595 this_rq->last_load_update_tick = jiffies;
2596 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2598 calc_load_account_active(this_rq);
2604 * sched_exec - execve() is a valuable balancing opportunity, because at
2605 * this point the task has the smallest effective memory and cache footprint.
2607 void sched_exec(void)
2609 struct task_struct *p = current;
2610 unsigned long flags;
2613 raw_spin_lock_irqsave(&p->pi_lock, flags);
2614 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2615 if (dest_cpu == smp_processor_id())
2618 if (likely(cpu_active(dest_cpu))) {
2619 struct migration_arg arg = { p, dest_cpu };
2621 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2622 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2626 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2631 DEFINE_PER_CPU(struct kernel_stat, kstat);
2632 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2634 EXPORT_PER_CPU_SYMBOL(kstat);
2635 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2638 * Return any ns on the sched_clock that have not yet been accounted in
2639 * @p in case that task is currently running.
2641 * Called with task_rq_lock() held on @rq.
2643 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2647 if (task_current(rq, p)) {
2648 update_rq_clock(rq);
2649 ns = rq->clock_task - p->se.exec_start;
2657 unsigned long long task_delta_exec(struct task_struct *p)
2659 unsigned long flags;
2663 rq = task_rq_lock(p, &flags);
2664 ns = do_task_delta_exec(p, rq);
2665 task_rq_unlock(rq, p, &flags);
2671 * Return accounted runtime for the task.
2672 * In case the task is currently running, return the runtime plus current's
2673 * pending runtime that have not been accounted yet.
2675 unsigned long long task_sched_runtime(struct task_struct *p)
2677 unsigned long flags;
2681 rq = task_rq_lock(p, &flags);
2682 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2683 task_rq_unlock(rq, p, &flags);
2689 * This function gets called by the timer code, with HZ frequency.
2690 * We call it with interrupts disabled.
2692 void scheduler_tick(void)
2694 int cpu = smp_processor_id();
2695 struct rq *rq = cpu_rq(cpu);
2696 struct task_struct *curr = rq->curr;
2700 raw_spin_lock(&rq->lock);
2701 update_rq_clock(rq);
2702 update_cpu_load_active(rq);
2703 curr->sched_class->task_tick(rq, curr, 0);
2704 raw_spin_unlock(&rq->lock);
2706 perf_event_task_tick();
2709 rq->idle_balance = idle_cpu(cpu);
2710 trigger_load_balance(rq, cpu);
2714 notrace unsigned long get_parent_ip(unsigned long addr)
2716 if (in_lock_functions(addr)) {
2717 addr = CALLER_ADDR2;
2718 if (in_lock_functions(addr))
2719 addr = CALLER_ADDR3;
2724 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2725 defined(CONFIG_PREEMPT_TRACER))
2727 void __kprobes add_preempt_count(int val)
2729 #ifdef CONFIG_DEBUG_PREEMPT
2733 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2736 preempt_count() += val;
2737 #ifdef CONFIG_DEBUG_PREEMPT
2739 * Spinlock count overflowing soon?
2741 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2744 if (preempt_count() == val)
2745 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2747 EXPORT_SYMBOL(add_preempt_count);
2749 void __kprobes sub_preempt_count(int val)
2751 #ifdef CONFIG_DEBUG_PREEMPT
2755 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2758 * Is the spinlock portion underflowing?
2760 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2761 !(preempt_count() & PREEMPT_MASK)))
2765 if (preempt_count() == val)
2766 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2767 preempt_count() -= val;
2769 EXPORT_SYMBOL(sub_preempt_count);
2774 * Print scheduling while atomic bug:
2776 static noinline void __schedule_bug(struct task_struct *prev)
2778 if (oops_in_progress)
2781 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2782 prev->comm, prev->pid, preempt_count());
2784 debug_show_held_locks(prev);
2786 if (irqs_disabled())
2787 print_irqtrace_events(prev);
2789 add_taint(TAINT_WARN);
2793 * Various schedule()-time debugging checks and statistics:
2795 static inline void schedule_debug(struct task_struct *prev)
2798 * Test if we are atomic. Since do_exit() needs to call into
2799 * schedule() atomically, we ignore that path for now.
2800 * Otherwise, whine if we are scheduling when we should not be.
2802 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2803 __schedule_bug(prev);
2806 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2808 schedstat_inc(this_rq(), sched_count);
2811 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2813 if (prev->on_rq || rq->skip_clock_update < 0)
2814 update_rq_clock(rq);
2815 prev->sched_class->put_prev_task(rq, prev);
2819 * Pick up the highest-prio task:
2821 static inline struct task_struct *
2822 pick_next_task(struct rq *rq)
2824 const struct sched_class *class;
2825 struct task_struct *p;
2828 * Optimization: we know that if all tasks are in
2829 * the fair class we can call that function directly:
2831 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2832 p = fair_sched_class.pick_next_task(rq);
2837 for_each_class(class) {
2838 p = class->pick_next_task(rq);
2843 BUG(); /* the idle class will always have a runnable task */
2847 * __schedule() is the main scheduler function.
2849 * The main means of driving the scheduler and thus entering this function are:
2851 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2853 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2854 * paths. For example, see arch/x86/entry_64.S.
2856 * To drive preemption between tasks, the scheduler sets the flag in timer
2857 * interrupt handler scheduler_tick().
2859 * 3. Wakeups don't really cause entry into schedule(). They add a
2860 * task to the run-queue and that's it.
2862 * Now, if the new task added to the run-queue preempts the current
2863 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2864 * called on the nearest possible occasion:
2866 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2868 * - in syscall or exception context, at the next outmost
2869 * preempt_enable(). (this might be as soon as the wake_up()'s
2872 * - in IRQ context, return from interrupt-handler to
2873 * preemptible context
2875 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2878 * - cond_resched() call
2879 * - explicit schedule() call
2880 * - return from syscall or exception to user-space
2881 * - return from interrupt-handler to user-space
2883 static void __sched __schedule(void)
2885 struct task_struct *prev, *next;
2886 unsigned long *switch_count;
2892 cpu = smp_processor_id();
2894 rcu_note_context_switch(cpu);
2897 schedule_debug(prev);
2899 if (sched_feat(HRTICK))
2902 raw_spin_lock_irq(&rq->lock);
2904 switch_count = &prev->nivcsw;
2905 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2906 if (unlikely(signal_pending_state(prev->state, prev))) {
2907 prev->state = TASK_RUNNING;
2909 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2913 * If a worker went to sleep, notify and ask workqueue
2914 * whether it wants to wake up a task to maintain
2917 if (prev->flags & PF_WQ_WORKER) {
2918 struct task_struct *to_wakeup;
2920 to_wakeup = wq_worker_sleeping(prev, cpu);
2922 try_to_wake_up_local(to_wakeup);
2925 switch_count = &prev->nvcsw;
2928 pre_schedule(rq, prev);
2930 if (unlikely(!rq->nr_running))
2931 idle_balance(cpu, rq);
2933 put_prev_task(rq, prev);
2934 next = pick_next_task(rq);
2935 clear_tsk_need_resched(prev);
2936 rq->skip_clock_update = 0;
2938 if (likely(prev != next)) {
2943 context_switch(rq, prev, next); /* unlocks the rq */
2945 * The context switch have flipped the stack from under us
2946 * and restored the local variables which were saved when
2947 * this task called schedule() in the past. prev == current
2948 * is still correct, but it can be moved to another cpu/rq.
2950 cpu = smp_processor_id();
2953 raw_spin_unlock_irq(&rq->lock);
2957 sched_preempt_enable_no_resched();
2962 static inline void sched_submit_work(struct task_struct *tsk)
2964 if (!tsk->state || tsk_is_pi_blocked(tsk))
2967 * If we are going to sleep and we have plugged IO queued,
2968 * make sure to submit it to avoid deadlocks.
2970 if (blk_needs_flush_plug(tsk))
2971 blk_schedule_flush_plug(tsk);
2974 asmlinkage void __sched schedule(void)
2976 struct task_struct *tsk = current;
2978 sched_submit_work(tsk);
2981 EXPORT_SYMBOL(schedule);
2983 #ifdef CONFIG_CONTEXT_TRACKING
2984 asmlinkage void __sched schedule_user(void)
2987 * If we come here after a random call to set_need_resched(),
2988 * or we have been woken up remotely but the IPI has not yet arrived,
2989 * we haven't yet exited the RCU idle mode. Do it here manually until
2990 * we find a better solution.
2999 * schedule_preempt_disabled - called with preemption disabled
3001 * Returns with preemption disabled. Note: preempt_count must be 1
3003 void __sched schedule_preempt_disabled(void)
3005 sched_preempt_enable_no_resched();
3010 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3012 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3014 if (lock->owner != owner)
3018 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3019 * lock->owner still matches owner, if that fails, owner might
3020 * point to free()d memory, if it still matches, the rcu_read_lock()
3021 * ensures the memory stays valid.
3025 return owner->on_cpu;
3029 * Look out! "owner" is an entirely speculative pointer
3030 * access and not reliable.
3032 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3034 if (!sched_feat(OWNER_SPIN))
3038 while (owner_running(lock, owner)) {
3042 arch_mutex_cpu_relax();
3047 * We break out the loop above on need_resched() and when the
3048 * owner changed, which is a sign for heavy contention. Return
3049 * success only when lock->owner is NULL.
3051 return lock->owner == NULL;
3055 #ifdef CONFIG_PREEMPT
3057 * this is the entry point to schedule() from in-kernel preemption
3058 * off of preempt_enable. Kernel preemptions off return from interrupt
3059 * occur there and call schedule directly.
3061 asmlinkage void __sched notrace preempt_schedule(void)
3063 struct thread_info *ti = current_thread_info();
3066 * If there is a non-zero preempt_count or interrupts are disabled,
3067 * we do not want to preempt the current task. Just return..
3069 if (likely(ti->preempt_count || irqs_disabled()))
3073 add_preempt_count_notrace(PREEMPT_ACTIVE);
3075 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3078 * Check again in case we missed a preemption opportunity
3079 * between schedule and now.
3082 } while (need_resched());
3084 EXPORT_SYMBOL(preempt_schedule);
3087 * this is the entry point to schedule() from kernel preemption
3088 * off of irq context.
3089 * Note, that this is called and return with irqs disabled. This will
3090 * protect us against recursive calling from irq.
3092 asmlinkage void __sched preempt_schedule_irq(void)
3094 struct thread_info *ti = current_thread_info();
3096 /* Catch callers which need to be fixed */
3097 BUG_ON(ti->preempt_count || !irqs_disabled());
3101 add_preempt_count(PREEMPT_ACTIVE);
3104 local_irq_disable();
3105 sub_preempt_count(PREEMPT_ACTIVE);
3108 * Check again in case we missed a preemption opportunity
3109 * between schedule and now.
3112 } while (need_resched());
3115 #endif /* CONFIG_PREEMPT */
3117 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3120 return try_to_wake_up(curr->private, mode, wake_flags);
3122 EXPORT_SYMBOL(default_wake_function);
3125 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3126 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3127 * number) then we wake all the non-exclusive tasks and one exclusive task.
3129 * There are circumstances in which we can try to wake a task which has already
3130 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3131 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3133 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3134 int nr_exclusive, int wake_flags, void *key)
3136 wait_queue_t *curr, *next;
3138 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3139 unsigned flags = curr->flags;
3141 if (curr->func(curr, mode, wake_flags, key) &&
3142 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3148 * __wake_up - wake up threads blocked on a waitqueue.
3150 * @mode: which threads
3151 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3152 * @key: is directly passed to the wakeup function
3154 * It may be assumed that this function implies a write memory barrier before
3155 * changing the task state if and only if any tasks are woken up.
3157 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3158 int nr_exclusive, void *key)
3160 unsigned long flags;
3162 spin_lock_irqsave(&q->lock, flags);
3163 __wake_up_common(q, mode, nr_exclusive, 0, key);
3164 spin_unlock_irqrestore(&q->lock, flags);
3166 EXPORT_SYMBOL(__wake_up);
3169 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3171 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3173 __wake_up_common(q, mode, nr, 0, NULL);
3175 EXPORT_SYMBOL_GPL(__wake_up_locked);
3177 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3179 __wake_up_common(q, mode, 1, 0, key);
3181 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3184 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3186 * @mode: which threads
3187 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3188 * @key: opaque value to be passed to wakeup targets
3190 * The sync wakeup differs that the waker knows that it will schedule
3191 * away soon, so while the target thread will be woken up, it will not
3192 * be migrated to another CPU - ie. the two threads are 'synchronized'
3193 * with each other. This can prevent needless bouncing between CPUs.
3195 * On UP it can prevent extra preemption.
3197 * It may be assumed that this function implies a write memory barrier before
3198 * changing the task state if and only if any tasks are woken up.
3200 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3201 int nr_exclusive, void *key)
3203 unsigned long flags;
3204 int wake_flags = WF_SYNC;
3209 if (unlikely(!nr_exclusive))
3212 spin_lock_irqsave(&q->lock, flags);
3213 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3214 spin_unlock_irqrestore(&q->lock, flags);
3216 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3219 * __wake_up_sync - see __wake_up_sync_key()
3221 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3223 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3225 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3228 * complete: - signals a single thread waiting on this completion
3229 * @x: holds the state of this particular completion
3231 * This will wake up a single thread waiting on this completion. Threads will be
3232 * awakened in the same order in which they were queued.
3234 * See also complete_all(), wait_for_completion() and related routines.
3236 * It may be assumed that this function implies a write memory barrier before
3237 * changing the task state if and only if any tasks are woken up.
3239 void complete(struct completion *x)
3241 unsigned long flags;
3243 spin_lock_irqsave(&x->wait.lock, flags);
3245 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3246 spin_unlock_irqrestore(&x->wait.lock, flags);
3248 EXPORT_SYMBOL(complete);
3251 * complete_all: - signals all threads waiting on this completion
3252 * @x: holds the state of this particular completion
3254 * This will wake up all threads waiting on this particular completion event.
3256 * It may be assumed that this function implies a write memory barrier before
3257 * changing the task state if and only if any tasks are woken up.
3259 void complete_all(struct completion *x)
3261 unsigned long flags;
3263 spin_lock_irqsave(&x->wait.lock, flags);
3264 x->done += UINT_MAX/2;
3265 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3266 spin_unlock_irqrestore(&x->wait.lock, flags);
3268 EXPORT_SYMBOL(complete_all);
3270 static inline long __sched
3271 do_wait_for_common(struct completion *x, long timeout, int state)
3274 DECLARE_WAITQUEUE(wait, current);
3276 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3278 if (signal_pending_state(state, current)) {
3279 timeout = -ERESTARTSYS;
3282 __set_current_state(state);
3283 spin_unlock_irq(&x->wait.lock);
3284 timeout = schedule_timeout(timeout);
3285 spin_lock_irq(&x->wait.lock);
3286 } while (!x->done && timeout);
3287 __remove_wait_queue(&x->wait, &wait);
3292 return timeout ?: 1;
3296 wait_for_common(struct completion *x, long timeout, int state)
3300 spin_lock_irq(&x->wait.lock);
3301 timeout = do_wait_for_common(x, timeout, state);
3302 spin_unlock_irq(&x->wait.lock);
3307 * wait_for_completion: - waits for completion of a task
3308 * @x: holds the state of this particular completion
3310 * This waits to be signaled for completion of a specific task. It is NOT
3311 * interruptible and there is no timeout.
3313 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3314 * and interrupt capability. Also see complete().
3316 void __sched wait_for_completion(struct completion *x)
3318 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3320 EXPORT_SYMBOL(wait_for_completion);
3323 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3324 * @x: holds the state of this particular completion
3325 * @timeout: timeout value in jiffies
3327 * This waits for either a completion of a specific task to be signaled or for a
3328 * specified timeout to expire. The timeout is in jiffies. It is not
3331 * The return value is 0 if timed out, and positive (at least 1, or number of
3332 * jiffies left till timeout) if completed.
3334 unsigned long __sched
3335 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3337 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3339 EXPORT_SYMBOL(wait_for_completion_timeout);
3342 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3343 * @x: holds the state of this particular completion
3345 * This waits for completion of a specific task to be signaled. It is
3348 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3350 int __sched wait_for_completion_interruptible(struct completion *x)
3352 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3353 if (t == -ERESTARTSYS)
3357 EXPORT_SYMBOL(wait_for_completion_interruptible);
3360 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3361 * @x: holds the state of this particular completion
3362 * @timeout: timeout value in jiffies
3364 * This waits for either a completion of a specific task to be signaled or for a
3365 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3367 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3368 * positive (at least 1, or number of jiffies left till timeout) if completed.
3371 wait_for_completion_interruptible_timeout(struct completion *x,
3372 unsigned long timeout)
3374 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3376 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3379 * wait_for_completion_killable: - waits for completion of a task (killable)
3380 * @x: holds the state of this particular completion
3382 * This waits to be signaled for completion of a specific task. It can be
3383 * interrupted by a kill signal.
3385 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3387 int __sched wait_for_completion_killable(struct completion *x)
3389 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3390 if (t == -ERESTARTSYS)
3394 EXPORT_SYMBOL(wait_for_completion_killable);
3397 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3398 * @x: holds the state of this particular completion
3399 * @timeout: timeout value in jiffies
3401 * This waits for either a completion of a specific task to be
3402 * signaled or for a specified timeout to expire. It can be
3403 * interrupted by a kill signal. The timeout is in jiffies.
3405 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3406 * positive (at least 1, or number of jiffies left till timeout) if completed.
3409 wait_for_completion_killable_timeout(struct completion *x,
3410 unsigned long timeout)
3412 return wait_for_common(x, timeout, TASK_KILLABLE);
3414 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3417 * try_wait_for_completion - try to decrement a completion without blocking
3418 * @x: completion structure
3420 * Returns: 0 if a decrement cannot be done without blocking
3421 * 1 if a decrement succeeded.
3423 * If a completion is being used as a counting completion,
3424 * attempt to decrement the counter without blocking. This
3425 * enables us to avoid waiting if the resource the completion
3426 * is protecting is not available.
3428 bool try_wait_for_completion(struct completion *x)
3430 unsigned long flags;
3433 spin_lock_irqsave(&x->wait.lock, flags);
3438 spin_unlock_irqrestore(&x->wait.lock, flags);
3441 EXPORT_SYMBOL(try_wait_for_completion);
3444 * completion_done - Test to see if a completion has any waiters
3445 * @x: completion structure
3447 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3448 * 1 if there are no waiters.
3451 bool completion_done(struct completion *x)
3453 unsigned long flags;
3456 spin_lock_irqsave(&x->wait.lock, flags);
3459 spin_unlock_irqrestore(&x->wait.lock, flags);
3462 EXPORT_SYMBOL(completion_done);
3465 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3467 unsigned long flags;
3470 init_waitqueue_entry(&wait, current);
3472 __set_current_state(state);
3474 spin_lock_irqsave(&q->lock, flags);
3475 __add_wait_queue(q, &wait);
3476 spin_unlock(&q->lock);
3477 timeout = schedule_timeout(timeout);
3478 spin_lock_irq(&q->lock);
3479 __remove_wait_queue(q, &wait);
3480 spin_unlock_irqrestore(&q->lock, flags);
3485 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3487 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3489 EXPORT_SYMBOL(interruptible_sleep_on);
3492 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3494 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3496 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3498 void __sched sleep_on(wait_queue_head_t *q)
3500 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3502 EXPORT_SYMBOL(sleep_on);
3504 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3506 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3508 EXPORT_SYMBOL(sleep_on_timeout);
3510 #ifdef CONFIG_RT_MUTEXES
3513 * rt_mutex_setprio - set the current priority of a task
3515 * @prio: prio value (kernel-internal form)
3517 * This function changes the 'effective' priority of a task. It does
3518 * not touch ->normal_prio like __setscheduler().
3520 * Used by the rt_mutex code to implement priority inheritance logic.
3522 void rt_mutex_setprio(struct task_struct *p, int prio)
3524 int oldprio, on_rq, running;
3526 const struct sched_class *prev_class;
3528 BUG_ON(prio < 0 || prio > MAX_PRIO);
3530 rq = __task_rq_lock(p);
3533 * Idle task boosting is a nono in general. There is one
3534 * exception, when PREEMPT_RT and NOHZ is active:
3536 * The idle task calls get_next_timer_interrupt() and holds
3537 * the timer wheel base->lock on the CPU and another CPU wants
3538 * to access the timer (probably to cancel it). We can safely
3539 * ignore the boosting request, as the idle CPU runs this code
3540 * with interrupts disabled and will complete the lock
3541 * protected section without being interrupted. So there is no
3542 * real need to boost.
3544 if (unlikely(p == rq->idle)) {
3545 WARN_ON(p != rq->curr);
3546 WARN_ON(p->pi_blocked_on);
3550 trace_sched_pi_setprio(p, prio);
3552 prev_class = p->sched_class;
3554 running = task_current(rq, p);
3556 dequeue_task(rq, p, 0);
3558 p->sched_class->put_prev_task(rq, p);
3561 p->sched_class = &rt_sched_class;
3563 p->sched_class = &fair_sched_class;
3568 p->sched_class->set_curr_task(rq);
3570 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3572 check_class_changed(rq, p, prev_class, oldprio);
3574 __task_rq_unlock(rq);
3577 void set_user_nice(struct task_struct *p, long nice)
3579 int old_prio, delta, on_rq;
3580 unsigned long flags;
3583 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3586 * We have to be careful, if called from sys_setpriority(),
3587 * the task might be in the middle of scheduling on another CPU.
3589 rq = task_rq_lock(p, &flags);
3591 * The RT priorities are set via sched_setscheduler(), but we still
3592 * allow the 'normal' nice value to be set - but as expected
3593 * it wont have any effect on scheduling until the task is
3594 * SCHED_FIFO/SCHED_RR:
3596 if (task_has_rt_policy(p)) {
3597 p->static_prio = NICE_TO_PRIO(nice);
3602 dequeue_task(rq, p, 0);
3604 p->static_prio = NICE_TO_PRIO(nice);
3607 p->prio = effective_prio(p);
3608 delta = p->prio - old_prio;
3611 enqueue_task(rq, p, 0);
3613 * If the task increased its priority or is running and
3614 * lowered its priority, then reschedule its CPU:
3616 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3617 resched_task(rq->curr);
3620 task_rq_unlock(rq, p, &flags);
3622 EXPORT_SYMBOL(set_user_nice);
3625 * can_nice - check if a task can reduce its nice value
3629 int can_nice(const struct task_struct *p, const int nice)
3631 /* convert nice value [19,-20] to rlimit style value [1,40] */
3632 int nice_rlim = 20 - nice;
3634 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3635 capable(CAP_SYS_NICE));
3638 #ifdef __ARCH_WANT_SYS_NICE
3641 * sys_nice - change the priority of the current process.
3642 * @increment: priority increment
3644 * sys_setpriority is a more