2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
30 #include <trace/events/sched.h>
35 * Targeted preemption latency for CPU-bound tasks:
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
38 * NOTE: this latency value is not the same as the concept of
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
62 * Minimal preemption granularity for CPU-bound tasks:
63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
71 static unsigned int sched_nr_latency = 8;
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
93 * The exponential sliding window over which load is averaged for shares
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
99 #ifdef CONFIG_CFS_BANDWIDTH
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
108 * default: 5 msec, units: microseconds
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
120 * This idea comes from the SD scheduler of Con Kolivas:
122 static int get_update_sysctl_factor(void)
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
131 case SCHED_TUNABLESCALING_LINEAR:
134 case SCHED_TUNABLESCALING_LOG:
136 factor = 1 + ilog2(cpus);
143 static void update_sysctl(void)
145 unsigned int factor = get_update_sysctl_factor();
147 #define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
155 void sched_init_granularity(void)
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST (~0UL)
163 # define WMULT_CONST (1UL << 32)
166 #define WMULT_SHIFT 32
169 * Shift right and round:
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
174 * delta *= weight / lw
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
190 tmp = (u64)delta_exec;
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
200 lw->inv_weight = WMULT_CONST / w;
204 * Check whether we'd overflow the 64-bit multiplication:
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 const struct sched_class fair_sched_class;
218 /**************************************************************
219 * CFS operations on generic schedulable entities:
222 #ifdef CONFIG_FAIR_GROUP_SCHED
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se) (!se->my_q)
233 static inline struct task_struct *task_of(struct sched_entity *se)
235 #ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
238 return container_of(se, struct task_struct, se);
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
264 if (!cfs_rq->on_list) {
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
296 /* Do the two (enqueued) entities belong to the same group ? */
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
300 if (se->cfs_rq == pse->cfs_rq)
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
316 for_each_sched_entity(se)
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
325 int se_depth, pse_depth;
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
338 while (se_depth > pse_depth) {
340 *se = parent_entity(*se);
343 while (pse_depth > se_depth) {
345 *pse = parent_entity(*pse);
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
354 #else /* !CONFIG_FAIR_GROUP_SCHED */
356 static inline struct task_struct *task_of(struct sched_entity *se)
358 return container_of(se, struct task_struct, se);
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
363 return container_of(cfs_rq, struct rq, cfs);
366 #define entity_is_task(se) 1
368 #define for_each_sched_entity(se) \
369 for (; se; se = NULL)
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
373 return &task_rq(p)->cfs;
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
417 #endif /* CONFIG_FAIR_GROUP_SCHED */
419 static __always_inline
420 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
422 /**************************************************************
423 * Scheduling class tree data structure manipulation methods:
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
428 s64 delta = (s64)(vruntime - min_vruntime);
430 min_vruntime = vruntime;
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
437 s64 delta = (s64)(vruntime - min_vruntime);
439 min_vruntime = vruntime;
444 static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
447 return (s64)(a->vruntime - b->vruntime) < 0;
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
452 u64 vruntime = cfs_rq->min_vruntime;
455 vruntime = cfs_rq->curr->vruntime;
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
463 vruntime = se->vruntime;
465 vruntime = min_vruntime(vruntime, se->vruntime);
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
476 * Enqueue an entity into the rb-tree:
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
486 * Find the right place in the rbtree:
490 entry = rb_entry(parent, struct sched_entity, run_node);
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
495 if (entity_before(se, entry)) {
496 link = &parent->rb_left;
498 link = &parent->rb_right;
504 * Maintain a cache of leftmost tree entries (it is frequently
508 cfs_rq->rb_leftmost = &se->run_node;
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
528 struct rb_node *left = cfs_rq->rb_leftmost;
533 return rb_entry(left, struct sched_entity, run_node);
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
538 struct rb_node *next = rb_next(&se->run_node);
543 return rb_entry(next, struct sched_entity, run_node);
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
554 return rb_entry(last, struct sched_entity, run_node);
557 /**************************************************************
558 * Scheduling class statistics methods:
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 void __user *buffer, size_t *lenp,
565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 int factor = get_update_sysctl_factor();
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
574 #define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
598 * The idea is to set a period in which each task runs once.
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
603 * p = (nr <= nl) ? l : l*nr/nl
605 static u64 __sched_period(unsigned long nr_running)
607 u64 period = sysctl_sched_latency;
608 unsigned long nr_latency = sched_nr_latency;
610 if (unlikely(nr_running > nr_latency)) {
611 period = sysctl_sched_min_granularity;
612 period *= nr_running;
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
628 for_each_sched_entity(se) {
629 struct load_weight *load;
630 struct load_weight lw;
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
635 if (unlikely(!se->on_rq)) {
638 update_load_add(&lw, se->load.weight);
641 slice = calc_delta_mine(slice, se->load.weight, load);
647 * We calculate the vruntime slice of a to be inserted task
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
667 unsigned long delta_exec_weighted;
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
672 curr->sum_exec_runtime += delta_exec;
673 schedstat_add(cfs_rq, exec_clock, delta_exec);
674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
676 curr->vruntime += delta_exec_weighted;
677 update_min_vruntime(cfs_rq);
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 cfs_rq->load_unacc_exec_time += delta_exec;
684 static void update_curr(struct cfs_rq *cfs_rq)
686 struct sched_entity *curr = cfs_rq->curr;
687 u64 now = rq_of(cfs_rq)->clock_task;
688 unsigned long delta_exec;
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
698 delta_exec = (unsigned long)(now - curr->exec_start);
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 cpuacct_charge(curtask, delta_exec);
710 account_group_exec_runtime(curtask, delta_exec);
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
723 * Task is being enqueued - update stats:
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
731 if (se != cfs_rq->curr)
732 update_stats_wait_start(cfs_rq, se);
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
749 schedstat_set(se->statistics.wait_start, 0);
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 * Mark the end of the wait period if dequeueing a
759 if (se != cfs_rq->curr)
760 update_stats_wait_end(cfs_rq, se);
764 * We are picking a new current task - update its stats:
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 * We are starting a new run period:
772 se->exec_start = rq_of(cfs_rq)->clock_task;
775 /**************************************************
776 * Scheduling class queueing methods:
780 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 update_load_add(&cfs_rq->load, se->load.weight);
783 if (!parent_entity(se))
784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
786 if (entity_is_task(se))
787 list_add_tail(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
789 cfs_rq->nr_running++;
793 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
795 update_load_sub(&cfs_rq->load, se->load.weight);
796 if (!parent_entity(se))
797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
798 if (entity_is_task(se))
799 list_del_init(&se->group_node);
800 cfs_rq->nr_running--;
803 #ifdef CONFIG_FAIR_GROUP_SCHED
804 /* we need this in update_cfs_load and load-balance functions below */
805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
807 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
810 struct task_group *tg = cfs_rq->tg;
813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 load_avg -= cfs_rq->load_contribution;
816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 atomic_add(load_avg, &tg->load_weight);
818 cfs_rq->load_contribution += load_avg;
822 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
824 u64 period = sysctl_sched_shares_window;
826 unsigned long load = cfs_rq->load.weight;
828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
831 now = rq_of(cfs_rq)->clock_task;
832 delta = now - cfs_rq->load_stamp;
834 /* truncate load history at 4 idle periods */
835 if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 now - cfs_rq->load_last > 4 * period) {
837 cfs_rq->load_period = 0;
838 cfs_rq->load_avg = 0;
842 cfs_rq->load_stamp = now;
843 cfs_rq->load_unacc_exec_time = 0;
844 cfs_rq->load_period += delta;
846 cfs_rq->load_last = now;
847 cfs_rq->load_avg += delta * load;
850 /* consider updating load contribution on each fold or truncate */
851 if (global_update || cfs_rq->load_period > period
852 || !cfs_rq->load_period)
853 update_cfs_rq_load_contribution(cfs_rq, global_update);
855 while (cfs_rq->load_period > period) {
857 * Inline assembly required to prevent the compiler
858 * optimising this loop into a divmod call.
859 * See __iter_div_u64_rem() for another example of this.
861 asm("" : "+rm" (cfs_rq->load_period));
862 cfs_rq->load_period /= 2;
863 cfs_rq->load_avg /= 2;
866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 list_del_leaf_cfs_rq(cfs_rq);
870 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
875 * Use this CPU's actual weight instead of the last load_contribution
876 * to gain a more accurate current total weight. See
877 * update_cfs_rq_load_contribution().
879 tg_weight = atomic_read(&tg->load_weight);
880 tg_weight -= cfs_rq->load_contribution;
881 tg_weight += cfs_rq->load.weight;
886 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
888 long tg_weight, load, shares;
890 tg_weight = calc_tg_weight(tg, cfs_rq);
891 load = cfs_rq->load.weight;
893 shares = (tg->shares * load);
897 if (shares < MIN_SHARES)
899 if (shares > tg->shares)
905 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 update_cfs_load(cfs_rq, 0);
909 update_cfs_shares(cfs_rq);
912 # else /* CONFIG_SMP */
913 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
917 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
922 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
925 # endif /* CONFIG_SMP */
926 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 unsigned long weight)
930 /* commit outstanding execution time */
931 if (cfs_rq->curr == se)
933 account_entity_dequeue(cfs_rq, se);
936 update_load_set(&se->load, weight);
939 account_entity_enqueue(cfs_rq, se);
942 static void update_cfs_shares(struct cfs_rq *cfs_rq)
944 struct task_group *tg;
945 struct sched_entity *se;
949 se = tg->se[cpu_of(rq_of(cfs_rq))];
950 if (!se || throttled_hierarchy(cfs_rq))
953 if (likely(se->load.weight == tg->shares))
956 shares = calc_cfs_shares(cfs_rq, tg);
958 reweight_entity(cfs_rq_of(se), se, shares);
960 #else /* CONFIG_FAIR_GROUP_SCHED */
961 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
965 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
969 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
972 #endif /* CONFIG_FAIR_GROUP_SCHED */
974 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
976 #ifdef CONFIG_SCHEDSTATS
977 struct task_struct *tsk = NULL;
979 if (entity_is_task(se))
982 if (se->statistics.sleep_start) {
983 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
988 if (unlikely(delta > se->statistics.sleep_max))
989 se->statistics.sleep_max = delta;
991 se->statistics.sleep_start = 0;
992 se->statistics.sum_sleep_runtime += delta;
995 account_scheduler_latency(tsk, delta >> 10, 1);
996 trace_sched_stat_sleep(tsk, delta);
999 if (se->statistics.block_start) {
1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1005 if (unlikely(delta > se->statistics.block_max))
1006 se->statistics.block_max = delta;
1008 se->statistics.block_start = 0;
1009 se->statistics.sum_sleep_runtime += delta;
1012 if (tsk->in_iowait) {
1013 se->statistics.iowait_sum += delta;
1014 se->statistics.iowait_count++;
1015 trace_sched_stat_iowait(tsk, delta);
1018 trace_sched_stat_blocked(tsk, delta);
1021 * Blocking time is in units of nanosecs, so shift by
1022 * 20 to get a milliseconds-range estimation of the
1023 * amount of time that the task spent sleeping:
1025 if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 profile_hits(SLEEP_PROFILING,
1027 (void *)get_wchan(tsk),
1030 account_scheduler_latency(tsk, delta >> 10, 0);
1036 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038 #ifdef CONFIG_SCHED_DEBUG
1039 s64 d = se->vruntime - cfs_rq->min_vruntime;
1044 if (d > 3*sysctl_sched_latency)
1045 schedstat_inc(cfs_rq, nr_spread_over);
1050 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1052 u64 vruntime = cfs_rq->min_vruntime;
1055 * The 'current' period is already promised to the current tasks,
1056 * however the extra weight of the new task will slow them down a
1057 * little, place the new task so that it fits in the slot that
1058 * stays open at the end.
1060 if (initial && sched_feat(START_DEBIT))
1061 vruntime += sched_vslice(cfs_rq, se);
1063 /* sleeps up to a single latency don't count. */
1065 unsigned long thresh = sysctl_sched_latency;
1068 * Halve their sleep time's effect, to allow
1069 * for a gentler effect of sleepers:
1071 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1077 /* ensure we never gain time by being placed backwards. */
1078 vruntime = max_vruntime(se->vruntime, vruntime);
1080 se->vruntime = vruntime;
1083 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1086 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1089 * Update the normalized vruntime before updating min_vruntime
1090 * through callig update_curr().
1092 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1093 se->vruntime += cfs_rq->min_vruntime;
1096 * Update run-time statistics of the 'current'.
1098 update_curr(cfs_rq);
1099 update_cfs_load(cfs_rq, 0);
1100 account_entity_enqueue(cfs_rq, se);
1101 update_cfs_shares(cfs_rq);
1103 if (flags & ENQUEUE_WAKEUP) {
1104 place_entity(cfs_rq, se, 0);
1105 enqueue_sleeper(cfs_rq, se);
1108 update_stats_enqueue(cfs_rq, se);
1109 check_spread(cfs_rq, se);
1110 if (se != cfs_rq->curr)
1111 __enqueue_entity(cfs_rq, se);
1114 if (cfs_rq->nr_running == 1) {
1115 list_add_leaf_cfs_rq(cfs_rq);
1116 check_enqueue_throttle(cfs_rq);
1120 static void __clear_buddies_last(struct sched_entity *se)
1122 for_each_sched_entity(se) {
1123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 if (cfs_rq->last == se)
1125 cfs_rq->last = NULL;
1131 static void __clear_buddies_next(struct sched_entity *se)
1133 for_each_sched_entity(se) {
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 if (cfs_rq->next == se)
1136 cfs_rq->next = NULL;
1142 static void __clear_buddies_skip(struct sched_entity *se)
1144 for_each_sched_entity(se) {
1145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 if (cfs_rq->skip == se)
1147 cfs_rq->skip = NULL;
1153 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1155 if (cfs_rq->last == se)
1156 __clear_buddies_last(se);
1158 if (cfs_rq->next == se)
1159 __clear_buddies_next(se);
1161 if (cfs_rq->skip == se)
1162 __clear_buddies_skip(se);
1165 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1168 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1171 * Update run-time statistics of the 'current'.
1173 update_curr(cfs_rq);
1175 update_stats_dequeue(cfs_rq, se);
1176 if (flags & DEQUEUE_SLEEP) {
1177 #ifdef CONFIG_SCHEDSTATS
1178 if (entity_is_task(se)) {
1179 struct task_struct *tsk = task_of(se);
1181 if (tsk->state & TASK_INTERRUPTIBLE)
1182 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1183 if (tsk->state & TASK_UNINTERRUPTIBLE)
1184 se->statistics.block_start = rq_of(cfs_rq)->clock;
1189 clear_buddies(cfs_rq, se);
1191 if (se != cfs_rq->curr)
1192 __dequeue_entity(cfs_rq, se);
1194 update_cfs_load(cfs_rq, 0);
1195 account_entity_dequeue(cfs_rq, se);
1198 * Normalize the entity after updating the min_vruntime because the
1199 * update can refer to the ->curr item and we need to reflect this
1200 * movement in our normalized position.
1202 if (!(flags & DEQUEUE_SLEEP))
1203 se->vruntime -= cfs_rq->min_vruntime;
1205 /* return excess runtime on last dequeue */
1206 return_cfs_rq_runtime(cfs_rq);
1208 update_min_vruntime(cfs_rq);
1209 update_cfs_shares(cfs_rq);
1213 * Preempt the current task with a newly woken task if needed:
1216 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1218 unsigned long ideal_runtime, delta_exec;
1219 struct sched_entity *se;
1222 ideal_runtime = sched_slice(cfs_rq, curr);
1223 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1224 if (delta_exec > ideal_runtime) {
1225 resched_task(rq_of(cfs_rq)->curr);
1227 * The current task ran long enough, ensure it doesn't get
1228 * re-elected due to buddy favours.
1230 clear_buddies(cfs_rq, curr);
1235 * Ensure that a task that missed wakeup preemption by a
1236 * narrow margin doesn't have to wait for a full slice.
1237 * This also mitigates buddy induced latencies under load.
1239 if (delta_exec < sysctl_sched_min_granularity)
1242 se = __pick_first_entity(cfs_rq);
1243 delta = curr->vruntime - se->vruntime;
1248 if (delta > ideal_runtime)
1249 resched_task(rq_of(cfs_rq)->curr);
1253 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1255 /* 'current' is not kept within the tree. */
1258 * Any task has to be enqueued before it get to execute on
1259 * a CPU. So account for the time it spent waiting on the
1262 update_stats_wait_end(cfs_rq, se);
1263 __dequeue_entity(cfs_rq, se);
1266 update_stats_curr_start(cfs_rq, se);
1268 #ifdef CONFIG_SCHEDSTATS
1270 * Track our maximum slice length, if the CPU's load is at
1271 * least twice that of our own weight (i.e. dont track it
1272 * when there are only lesser-weight tasks around):
1274 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1275 se->statistics.slice_max = max(se->statistics.slice_max,
1276 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1279 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1283 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1286 * Pick the next process, keeping these things in mind, in this order:
1287 * 1) keep things fair between processes/task groups
1288 * 2) pick the "next" process, since someone really wants that to run
1289 * 3) pick the "last" process, for cache locality
1290 * 4) do not run the "skip" process, if something else is available
1292 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1294 struct sched_entity *se = __pick_first_entity(cfs_rq);
1295 struct sched_entity *left = se;
1298 * Avoid running the skip buddy, if running something else can
1299 * be done without getting too unfair.
1301 if (cfs_rq->skip == se) {
1302 struct sched_entity *second = __pick_next_entity(se);
1303 if (second && wakeup_preempt_entity(second, left) < 1)
1308 * Prefer last buddy, try to return the CPU to a preempted task.
1310 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1314 * Someone really wants this to run. If it's not unfair, run it.
1316 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1319 clear_buddies(cfs_rq, se);
1324 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1326 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1329 * If still on the runqueue then deactivate_task()
1330 * was not called and update_curr() has to be done:
1333 update_curr(cfs_rq);
1335 /* throttle cfs_rqs exceeding runtime */
1336 check_cfs_rq_runtime(cfs_rq);
1338 check_spread(cfs_rq, prev);
1340 update_stats_wait_start(cfs_rq, prev);
1341 /* Put 'current' back into the tree. */
1342 __enqueue_entity(cfs_rq, prev);
1344 cfs_rq->curr = NULL;
1348 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1351 * Update run-time statistics of the 'current'.
1353 update_curr(cfs_rq);
1356 * Update share accounting for long-running entities.
1358 update_entity_shares_tick(cfs_rq);
1360 #ifdef CONFIG_SCHED_HRTICK
1362 * queued ticks are scheduled to match the slice, so don't bother
1363 * validating it and just reschedule.
1366 resched_task(rq_of(cfs_rq)->curr);
1370 * don't let the period tick interfere with the hrtick preemption
1372 if (!sched_feat(DOUBLE_TICK) &&
1373 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1377 if (cfs_rq->nr_running > 1)
1378 check_preempt_tick(cfs_rq, curr);
1382 /**************************************************
1383 * CFS bandwidth control machinery
1386 #ifdef CONFIG_CFS_BANDWIDTH
1388 #ifdef HAVE_JUMP_LABEL
1389 static struct static_key __cfs_bandwidth_used;
1391 static inline bool cfs_bandwidth_used(void)
1393 return static_key_false(&__cfs_bandwidth_used);
1396 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1398 /* only need to count groups transitioning between enabled/!enabled */
1399 if (enabled && !was_enabled)
1400 static_key_slow_inc(&__cfs_bandwidth_used);
1401 else if (!enabled && was_enabled)
1402 static_key_slow_dec(&__cfs_bandwidth_used);
1404 #else /* HAVE_JUMP_LABEL */
1405 static bool cfs_bandwidth_used(void)
1410 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411 #endif /* HAVE_JUMP_LABEL */
1414 * default period for cfs group bandwidth.
1415 * default: 0.1s, units: nanoseconds
1417 static inline u64 default_cfs_period(void)
1419 return 100000000ULL;
1422 static inline u64 sched_cfs_bandwidth_slice(void)
1424 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1428 * Replenish runtime according to assigned quota and update expiration time.
1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430 * additional synchronization around rq->lock.
1432 * requires cfs_b->lock
1434 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1438 if (cfs_b->quota == RUNTIME_INF)
1441 now = sched_clock_cpu(smp_processor_id());
1442 cfs_b->runtime = cfs_b->quota;
1443 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1446 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1448 return &tg->cfs_bandwidth;
1451 /* returns 0 on failure to allocate runtime */
1452 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1454 struct task_group *tg = cfs_rq->tg;
1455 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1456 u64 amount = 0, min_amount, expires;
1458 /* note: this is a positive sum as runtime_remaining <= 0 */
1459 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1461 raw_spin_lock(&cfs_b->lock);
1462 if (cfs_b->quota == RUNTIME_INF)
1463 amount = min_amount;
1466 * If the bandwidth pool has become inactive, then at least one
1467 * period must have elapsed since the last consumption.
1468 * Refresh the global state and ensure bandwidth timer becomes
1471 if (!cfs_b->timer_active) {
1472 __refill_cfs_bandwidth_runtime(cfs_b);
1473 __start_cfs_bandwidth(cfs_b);
1476 if (cfs_b->runtime > 0) {
1477 amount = min(cfs_b->runtime, min_amount);
1478 cfs_b->runtime -= amount;
1482 expires = cfs_b->runtime_expires;
1483 raw_spin_unlock(&cfs_b->lock);
1485 cfs_rq->runtime_remaining += amount;
1487 * we may have advanced our local expiration to account for allowed
1488 * spread between our sched_clock and the one on which runtime was
1491 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 cfs_rq->runtime_expires = expires;
1494 return cfs_rq->runtime_remaining > 0;
1498 * Note: This depends on the synchronization provided by sched_clock and the
1499 * fact that rq->clock snapshots this value.
1501 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1503 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 struct rq *rq = rq_of(cfs_rq);
1506 /* if the deadline is ahead of our clock, nothing to do */
1507 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1510 if (cfs_rq->runtime_remaining < 0)
1514 * If the local deadline has passed we have to consider the
1515 * possibility that our sched_clock is 'fast' and the global deadline
1516 * has not truly expired.
1518 * Fortunately we can check determine whether this the case by checking
1519 * whether the global deadline has advanced.
1522 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 /* extend local deadline, drift is bounded above by 2 ticks */
1524 cfs_rq->runtime_expires += TICK_NSEC;
1526 /* global deadline is ahead, expiration has passed */
1527 cfs_rq->runtime_remaining = 0;
1531 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 unsigned long delta_exec)
1534 /* dock delta_exec before expiring quota (as it could span periods) */
1535 cfs_rq->runtime_remaining -= delta_exec;
1536 expire_cfs_rq_runtime(cfs_rq);
1538 if (likely(cfs_rq->runtime_remaining > 0))
1542 * if we're unable to extend our runtime we resched so that the active
1543 * hierarchy can be throttled
1545 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 resched_task(rq_of(cfs_rq)->curr);
1549 static __always_inline
1550 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1552 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1555 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1560 return cfs_bandwidth_used() && cfs_rq->throttled;
1563 /* check whether cfs_rq, or any parent, is throttled */
1564 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1566 return cfs_bandwidth_used() && cfs_rq->throttle_count;
1570 * Ensure that neither of the group entities corresponding to src_cpu or
1571 * dest_cpu are members of a throttled hierarchy when performing group
1572 * load-balance operations.
1574 static inline int throttled_lb_pair(struct task_group *tg,
1575 int src_cpu, int dest_cpu)
1577 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1579 src_cfs_rq = tg->cfs_rq[src_cpu];
1580 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1582 return throttled_hierarchy(src_cfs_rq) ||
1583 throttled_hierarchy(dest_cfs_rq);
1586 /* updated child weight may affect parent so we have to do this bottom up */
1587 static int tg_unthrottle_up(struct task_group *tg, void *data)
1589 struct rq *rq = data;
1590 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1592 cfs_rq->throttle_count--;
1594 if (!cfs_rq->throttle_count) {
1595 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1597 /* leaving throttled state, advance shares averaging windows */
1598 cfs_rq->load_stamp += delta;
1599 cfs_rq->load_last += delta;
1601 /* update entity weight now that we are on_rq again */
1602 update_cfs_shares(cfs_rq);
1609 static int tg_throttle_down(struct task_group *tg, void *data)
1611 struct rq *rq = data;
1612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1614 /* group is entering throttled state, record last load */
1615 if (!cfs_rq->throttle_count)
1616 update_cfs_load(cfs_rq, 0);
1617 cfs_rq->throttle_count++;
1622 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1624 struct rq *rq = rq_of(cfs_rq);
1625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 struct sched_entity *se;
1627 long task_delta, dequeue = 1;
1629 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1631 /* account load preceding throttle */
1633 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1636 task_delta = cfs_rq->h_nr_running;
1637 for_each_sched_entity(se) {
1638 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 /* throttled entity or throttle-on-deactivate */
1644 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 qcfs_rq->h_nr_running -= task_delta;
1647 if (qcfs_rq->load.weight)
1652 rq->nr_running -= task_delta;
1654 cfs_rq->throttled = 1;
1655 cfs_rq->throttled_timestamp = rq->clock;
1656 raw_spin_lock(&cfs_b->lock);
1657 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 raw_spin_unlock(&cfs_b->lock);
1661 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1663 struct rq *rq = rq_of(cfs_rq);
1664 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 struct sched_entity *se;
1669 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1671 cfs_rq->throttled = 0;
1672 raw_spin_lock(&cfs_b->lock);
1673 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1674 list_del_rcu(&cfs_rq->throttled_list);
1675 raw_spin_unlock(&cfs_b->lock);
1676 cfs_rq->throttled_timestamp = 0;
1678 update_rq_clock(rq);
1679 /* update hierarchical throttle state */
1680 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1682 if (!cfs_rq->load.weight)
1685 task_delta = cfs_rq->h_nr_running;
1686 for_each_sched_entity(se) {
1690 cfs_rq = cfs_rq_of(se);
1692 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 cfs_rq->h_nr_running += task_delta;
1695 if (cfs_rq_throttled(cfs_rq))
1700 rq->nr_running += task_delta;
1702 /* determine whether we need to wake up potentially idle cpu */
1703 if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 resched_task(rq->curr);
1707 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 u64 remaining, u64 expires)
1710 struct cfs_rq *cfs_rq;
1711 u64 runtime = remaining;
1714 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1716 struct rq *rq = rq_of(cfs_rq);
1718 raw_spin_lock(&rq->lock);
1719 if (!cfs_rq_throttled(cfs_rq))
1722 runtime = -cfs_rq->runtime_remaining + 1;
1723 if (runtime > remaining)
1724 runtime = remaining;
1725 remaining -= runtime;
1727 cfs_rq->runtime_remaining += runtime;
1728 cfs_rq->runtime_expires = expires;
1730 /* we check whether we're throttled above */
1731 if (cfs_rq->runtime_remaining > 0)
1732 unthrottle_cfs_rq(cfs_rq);
1735 raw_spin_unlock(&rq->lock);
1746 * Responsible for refilling a task_group's bandwidth and unthrottling its
1747 * cfs_rqs as appropriate. If there has been no activity within the last
1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749 * used to track this state.
1751 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1753 u64 runtime, runtime_expires;
1754 int idle = 1, throttled;
1756 raw_spin_lock(&cfs_b->lock);
1757 /* no need to continue the timer with no bandwidth constraint */
1758 if (cfs_b->quota == RUNTIME_INF)
1761 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 /* idle depends on !throttled (for the case of a large deficit) */
1763 idle = cfs_b->idle && !throttled;
1764 cfs_b->nr_periods += overrun;
1766 /* if we're going inactive then everything else can be deferred */
1770 __refill_cfs_bandwidth_runtime(cfs_b);
1773 /* mark as potentially idle for the upcoming period */
1778 /* account preceding periods in which throttling occurred */
1779 cfs_b->nr_throttled += overrun;
1782 * There are throttled entities so we must first use the new bandwidth
1783 * to unthrottle them before making it generally available. This
1784 * ensures that all existing debts will be paid before a new cfs_rq is
1787 runtime = cfs_b->runtime;
1788 runtime_expires = cfs_b->runtime_expires;
1792 * This check is repeated as we are holding onto the new bandwidth
1793 * while we unthrottle. This can potentially race with an unthrottled
1794 * group trying to acquire new bandwidth from the global pool.
1796 while (throttled && runtime > 0) {
1797 raw_spin_unlock(&cfs_b->lock);
1798 /* we can't nest cfs_b->lock while distributing bandwidth */
1799 runtime = distribute_cfs_runtime(cfs_b, runtime,
1801 raw_spin_lock(&cfs_b->lock);
1803 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1806 /* return (any) remaining runtime */
1807 cfs_b->runtime = runtime;
1809 * While we are ensured activity in the period following an
1810 * unthrottle, this also covers the case in which the new bandwidth is
1811 * insufficient to cover the existing bandwidth deficit. (Forcing the
1812 * timer to remain active while there are any throttled entities.)
1817 cfs_b->timer_active = 0;
1818 raw_spin_unlock(&cfs_b->lock);
1823 /* a cfs_rq won't donate quota below this amount */
1824 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825 /* minimum remaining period time to redistribute slack quota */
1826 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827 /* how long we wait to gather additional slack before distributing */
1828 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1830 /* are we near the end of the current quota period? */
1831 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1833 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1836 /* if the call-back is running a quota refresh is already occurring */
1837 if (hrtimer_callback_running(refresh_timer))
1840 /* is a quota refresh about to occur? */
1841 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 if (remaining < min_expire)
1848 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1850 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1852 /* if there's a quota refresh soon don't bother with slack */
1853 if (runtime_refresh_within(cfs_b, min_left))
1856 start_bandwidth_timer(&cfs_b->slack_timer,
1857 ns_to_ktime(cfs_bandwidth_slack_period));
1860 /* we know any runtime found here is valid as update_curr() precedes return */
1861 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1863 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1866 if (slack_runtime <= 0)
1869 raw_spin_lock(&cfs_b->lock);
1870 if (cfs_b->quota != RUNTIME_INF &&
1871 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 cfs_b->runtime += slack_runtime;
1874 /* we are under rq->lock, defer unthrottling using a timer */
1875 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 !list_empty(&cfs_b->throttled_cfs_rq))
1877 start_cfs_slack_bandwidth(cfs_b);
1879 raw_spin_unlock(&cfs_b->lock);
1881 /* even if it's not valid for return we don't want to try again */
1882 cfs_rq->runtime_remaining -= slack_runtime;
1885 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1887 if (!cfs_bandwidth_used())
1890 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1893 __return_cfs_rq_runtime(cfs_rq);
1897 * This is done with a timer (instead of inline with bandwidth return) since
1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1900 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1902 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1905 /* confirm we're still not at a refresh boundary */
1906 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1909 raw_spin_lock(&cfs_b->lock);
1910 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 runtime = cfs_b->runtime;
1914 expires = cfs_b->runtime_expires;
1915 raw_spin_unlock(&cfs_b->lock);
1920 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1922 raw_spin_lock(&cfs_b->lock);
1923 if (expires == cfs_b->runtime_expires)
1924 cfs_b->runtime = runtime;
1925 raw_spin_unlock(&cfs_b->lock);
1929 * When a group wakes up we want to make sure that its quota is not already
1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1933 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1935 if (!cfs_bandwidth_used())
1938 /* an active group must be handled by the update_curr()->put() path */
1939 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1942 /* ensure the group is not already throttled */
1943 if (cfs_rq_throttled(cfs_rq))
1946 /* update runtime allocation */
1947 account_cfs_rq_runtime(cfs_rq, 0);
1948 if (cfs_rq->runtime_remaining <= 0)
1949 throttle_cfs_rq(cfs_rq);
1952 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1953 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1955 if (!cfs_bandwidth_used())
1958 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1962 * it's possible for a throttled entity to be forced into a running
1963 * state (e.g. set_curr_task), in this case we're finished.
1965 if (cfs_rq_throttled(cfs_rq))
1968 throttle_cfs_rq(cfs_rq);
1971 static inline u64 default_cfs_period(void);
1972 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1975 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1977 struct cfs_bandwidth *cfs_b =
1978 container_of(timer, struct cfs_bandwidth, slack_timer);
1979 do_sched_cfs_slack_timer(cfs_b);
1981 return HRTIMER_NORESTART;
1984 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1986 struct cfs_bandwidth *cfs_b =
1987 container_of(timer, struct cfs_bandwidth, period_timer);
1993 now = hrtimer_cb_get_time(timer);
1994 overrun = hrtimer_forward(timer, now, cfs_b->period);
1999 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2002 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2007 raw_spin_lock_init(&cfs_b->lock);
2009 cfs_b->quota = RUNTIME_INF;
2010 cfs_b->period = ns_to_ktime(default_cfs_period());
2012 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 cfs_b->period_timer.function = sched_cfs_period_timer;
2015 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2019 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2021 cfs_rq->runtime_enabled = 0;
2022 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2025 /* requires cfs_b->lock, may release to reprogram timer */
2026 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2029 * The timer may be active because we're trying to set a new bandwidth
2030 * period or because we're racing with the tear-down path
2031 * (timer_active==0 becomes visible before the hrtimer call-back
2032 * terminates). In either case we ensure that it's re-programmed
2034 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 raw_spin_unlock(&cfs_b->lock);
2036 /* ensure cfs_b->lock is available while we wait */
2037 hrtimer_cancel(&cfs_b->period_timer);
2039 raw_spin_lock(&cfs_b->lock);
2040 /* if someone else restarted the timer then we're done */
2041 if (cfs_b->timer_active)
2045 cfs_b->timer_active = 1;
2046 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2049 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2051 hrtimer_cancel(&cfs_b->period_timer);
2052 hrtimer_cancel(&cfs_b->slack_timer);
2055 void unthrottle_offline_cfs_rqs(struct rq *rq)
2057 struct cfs_rq *cfs_rq;
2059 for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2062 if (!cfs_rq->runtime_enabled)
2066 * clock_task is not advancing so we just need to make sure
2067 * there's some valid quota amount
2069 cfs_rq->runtime_remaining = cfs_b->quota;
2070 if (cfs_rq_throttled(cfs_rq))
2071 unthrottle_cfs_rq(cfs_rq);
2075 #else /* CONFIG_CFS_BANDWIDTH */
2076 static __always_inline
2077 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2078 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2082 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2092 static inline int throttled_lb_pair(struct task_group *tg,
2093 int src_cpu, int dest_cpu)
2098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2100 #ifdef CONFIG_FAIR_GROUP_SCHED
2101 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2104 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2108 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109 void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2111 #endif /* CONFIG_CFS_BANDWIDTH */
2113 /**************************************************
2114 * CFS operations on tasks:
2117 #ifdef CONFIG_SCHED_HRTICK
2118 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2120 struct sched_entity *se = &p->se;
2121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2123 WARN_ON(task_rq(p) != rq);
2125 if (cfs_rq->nr_running > 1) {
2126 u64 slice = sched_slice(cfs_rq, se);
2127 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 s64 delta = slice - ran;
2137 * Don't schedule slices shorter than 10000ns, that just
2138 * doesn't make sense. Rely on vruntime for fairness.
2141 delta = max_t(s64, 10000LL, delta);
2143 hrtick_start(rq, delta);
2148 * called from enqueue/dequeue and updates the hrtick when the
2149 * current task is from our class and nr_running is low enough
2152 static void hrtick_update(struct rq *rq)
2154 struct task_struct *curr = rq->curr;
2156 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2159 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 hrtick_start_fair(rq, curr);
2162 #else /* !CONFIG_SCHED_HRTICK */
2164 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2168 static inline void hrtick_update(struct rq *rq)
2174 * The enqueue_task method is called before nr_running is
2175 * increased. Here we update the fair scheduling stats and
2176 * then put the task into the rbtree:
2179 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2181 struct cfs_rq *cfs_rq;
2182 struct sched_entity *se = &p->se;
2184 for_each_sched_entity(se) {
2187 cfs_rq = cfs_rq_of(se);
2188 enqueue_entity(cfs_rq, se, flags);
2191 * end evaluation on encountering a throttled cfs_rq
2193 * note: in the case of encountering a throttled cfs_rq we will
2194 * post the final h_nr_running increment below.
2196 if (cfs_rq_throttled(cfs_rq))
2198 cfs_rq->h_nr_running++;
2200 flags = ENQUEUE_WAKEUP;
2203 for_each_sched_entity(se) {
2204 cfs_rq = cfs_rq_of(se);
2205 cfs_rq->h_nr_running++;
2207 if (cfs_rq_throttled(cfs_rq))
2210 update_cfs_load(cfs_rq, 0);
2211 update_cfs_shares(cfs_rq);
2219 static void set_next_buddy(struct sched_entity *se);
2222 * The dequeue_task method is called before nr_running is
2223 * decreased. We remove the task from the rbtree and
2224 * update the fair scheduling stats:
2226 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2228 struct cfs_rq *cfs_rq;
2229 struct sched_entity *se = &p->se;
2230 int task_sleep = flags & DEQUEUE_SLEEP;
2232 for_each_sched_entity(se) {
2233 cfs_rq = cfs_rq_of(se);
2234 dequeue_entity(cfs_rq, se, flags);
2237 * end evaluation on encountering a throttled cfs_rq
2239 * note: in the case of encountering a throttled cfs_rq we will
2240 * post the final h_nr_running decrement below.
2242 if (cfs_rq_throttled(cfs_rq))
2244 cfs_rq->h_nr_running--;
2246 /* Don't dequeue parent if it has other entities besides us */
2247 if (cfs_rq->load.weight) {
2249 * Bias pick_next to pick a task from this cfs_rq, as
2250 * p is sleeping when it is within its sched_slice.
2252 if (task_sleep && parent_entity(se))
2253 set_next_buddy(parent_entity(se));
2255 /* avoid re-evaluating load for this entity */
2256 se = parent_entity(se);
2259 flags |= DEQUEUE_SLEEP;
2262 for_each_sched_entity(se) {
2263 cfs_rq = cfs_rq_of(se);
2264 cfs_rq->h_nr_running--;
2266 if (cfs_rq_throttled(cfs_rq))
2269 update_cfs_load(cfs_rq, 0);
2270 update_cfs_shares(cfs_rq);
2279 /* Used instead of source_load when we know the type == 0 */
2280 static unsigned long weighted_cpuload(const int cpu)
2282 return cpu_rq(cpu)->load.weight;
2286 * Return a low guess at the load of a migration-source cpu weighted
2287 * according to the scheduling class and "nice" value.
2289 * We want to under-estimate the load of migration sources, to
2290 * balance conservatively.
2292 static unsigned long source_load(int cpu, int type)
2294 struct rq *rq = cpu_rq(cpu);
2295 unsigned long total = weighted_cpuload(cpu);
2297 if (type == 0 || !sched_feat(LB_BIAS))
2300 return min(rq->cpu_load[type-1], total);
2304 * Return a high guess at the load of a migration-target cpu weighted
2305 * according to the scheduling class and "nice" value.
2307 static unsigned long target_load(int cpu, int type)
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2312 if (type == 0 || !sched_feat(LB_BIAS))
2315 return max(rq->cpu_load[type-1], total);
2318 static unsigned long power_of(int cpu)
2320 return cpu_rq(cpu)->cpu_power;
2323 static unsigned long cpu_avg_load_per_task(int cpu)
2325 struct rq *rq = cpu_rq(cpu);
2326 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2329 return rq->load.weight / nr_running;
2335 static void task_waking_fair(struct task_struct *p)
2337 struct sched_entity *se = &p->se;
2338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2341 #ifndef CONFIG_64BIT
2342 u64 min_vruntime_copy;
2345 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2347 min_vruntime = cfs_rq->min_vruntime;
2348 } while (min_vruntime != min_vruntime_copy);
2350 min_vruntime = cfs_rq->min_vruntime;
2353 se->vruntime -= min_vruntime;
2356 #ifdef CONFIG_FAIR_GROUP_SCHED
2358 * effective_load() calculates the load change as seen from the root_task_group
2360 * Adding load to a group doesn't make a group heavier, but can cause movement
2361 * of group shares between cpus. Assuming the shares were perfectly aligned one
2362 * can calculate the shift in shares.
2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365 * on this @cpu and results in a total addition (subtraction) of @wg to the
2366 * total group weight.
2368 * Given a runqueue weight distribution (rw_i) we can compute a shares
2369 * distribution (s_i) using:
2371 * s_i = rw_i / \Sum rw_j (1)
2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375 * shares distribution (s_i):
2377 * rw_i = { 2, 4, 1, 0 }
2378 * s_i = { 2/7, 4/7, 1/7, 0 }
2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381 * task used to run on and the CPU the waker is running on), we need to
2382 * compute the effect of waking a task on either CPU and, in case of a sync
2383 * wakeup, compute the effect of the current task going to sleep.
2385 * So for a change of @wl to the local @cpu with an overall group weight change
2386 * of @wl we can compute the new shares distribution (s'_i) using:
2388 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391 * differences in waking a task to CPU 0. The additional task changes the
2392 * weight and shares distributions like:
2394 * rw'_i = { 3, 4, 1, 0 }
2395 * s'_i = { 3/8, 4/8, 1/8, 0 }
2397 * We can then compute the difference in effective weight by using:
2399 * dw_i = S * (s'_i - s_i) (3)
2401 * Where 'S' is the group weight as seen by its parent.
2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405 * 4/7) times the weight of the group.
2407 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2409 struct sched_entity *se = tg->se[cpu];
2411 if (!tg->parent) /* the trivial, non-cgroup case */
2414 for_each_sched_entity(se) {
2420 * W = @wg + \Sum rw_j
2422 W = wg + calc_tg_weight(tg, se->my_q);
2427 w = se->my_q->load.weight + wl;
2430 * wl = S * s'_i; see (2)
2433 wl = (w * tg->shares) / W;
2438 * Per the above, wl is the new se->load.weight value; since
2439 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 * calc_cfs_shares().
2442 if (wl < MIN_SHARES)
2446 * wl = dw_i = S * (s'_i - s_i); see (3)
2448 wl -= se->load.weight;
2451 * Recursively apply this logic to all parent groups to compute
2452 * the final effective load change on the root group. Since
2453 * only the @tg group gets extra weight, all parent groups can
2454 * only redistribute existing shares. @wl is the shift in shares
2455 * resulting from this level per the above.
2464 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 unsigned long wl, unsigned long wg)
2472 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2474 s64 this_load, load;
2475 int idx, this_cpu, prev_cpu;
2476 unsigned long tl_per_task;
2477 struct task_group *tg;
2478 unsigned long weight;
2482 this_cpu = smp_processor_id();
2483 prev_cpu = task_cpu(p);
2484 load = source_load(prev_cpu, idx);
2485 this_load = target_load(this_cpu, idx);
2488 * If sync wakeup then subtract the (maximum possible)
2489 * effect of the currently running task from the load
2490 * of the current CPU:
2493 tg = task_group(current);
2494 weight = current->se.load.weight;
2496 this_load += effective_load(tg, this_cpu, -weight, -weight);
2497 load += effective_load(tg, prev_cpu, 0, -weight);
2501 weight = p->se.load.weight;
2504 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2505 * due to the sync cause above having dropped this_load to 0, we'll
2506 * always have an imbalance, but there's really nothing you can do
2507 * about that, so that's good too.
2509 * Otherwise check if either cpus are near enough in load to allow this
2510 * task to be woken on this_cpu.
2512 if (this_load > 0) {
2513 s64 this_eff_load, prev_eff_load;
2515 this_eff_load = 100;
2516 this_eff_load *= power_of(prev_cpu);
2517 this_eff_load *= this_load +
2518 effective_load(tg, this_cpu, weight, weight);
2520 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 prev_eff_load *= power_of(this_cpu);
2522 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2524 balanced = this_eff_load <= prev_eff_load;
2529 * If the currently running task will sleep within
2530 * a reasonable amount of time then attract this newly
2533 if (sync && balanced)
2536 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2537 tl_per_task = cpu_avg_load_per_task(this_cpu);
2540 (this_load <= load &&
2541 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2543 * This domain has SD_WAKE_AFFINE and
2544 * p is cache cold in this domain, and
2545 * there is no bad imbalance.
2547 schedstat_inc(sd, ttwu_move_affine);
2548 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2556 * find_idlest_group finds and returns the least busy CPU group within the
2559 static struct sched_group *
2560 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2561 int this_cpu, int load_idx)
2563 struct sched_group *idlest = NULL, *group = sd->groups;
2564 unsigned long min_load = ULONG_MAX, this_load = 0;
2565 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2568 unsigned long load, avg_load;
2572 /* Skip over this group if it has no CPUs allowed */
2573 if (!cpumask_intersects(sched_group_cpus(group),
2574 tsk_cpus_allowed(p)))
2577 local_group = cpumask_test_cpu(this_cpu,
2578 sched_group_cpus(group));
2580 /* Tally up the load of all CPUs in the group */
2583 for_each_cpu(i, sched_group_cpus(group)) {
2584 /* Bias balancing toward cpus of our domain */
2586 load = source_load(i, load_idx);
2588 load = target_load(i, load_idx);
2593 /* Adjust by relative CPU power of the group */
2594 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2597 this_load = avg_load;
2598 } else if (avg_load < min_load) {
2599 min_load = avg_load;
2602 } while (group = group->next, group != sd->groups);
2604 if (!idlest || 100*this_load < imbalance*min_load)
2610 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2613 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2615 unsigned long load, min_load = ULONG_MAX;
2619 /* Traverse only the allowed CPUs */
2620 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2621 load = weighted_cpuload(i);
2623 if (load < min_load || (load == min_load && i == this_cpu)) {
2633 * Try and locate an idle CPU in the sched_domain.
2635 static int select_idle_sibling(struct task_struct *p, int target)
2637 int cpu = smp_processor_id();
2638 int prev_cpu = task_cpu(p);
2639 struct sched_domain *sd;
2640 struct sched_group *sg;
2644 * If the task is going to be woken-up on this cpu and if it is
2645 * already idle, then it is the right target.
2647 if (target == cpu && idle_cpu(cpu))
2651 * If the task is going to be woken-up on the cpu where it previously
2652 * ran and if it is currently idle, then it the right target.
2654 if (target == prev_cpu && idle_cpu(prev_cpu))
2658 * Otherwise, iterate the domains and find an elegible idle cpu.
2660 sd = rcu_dereference(per_cpu(sd_llc, target));
2661 for_each_lower_domain(sd) {
2664 if (!cpumask_intersects(sched_group_cpus(sg),
2665 tsk_cpus_allowed(p)))
2668 for_each_cpu(i, sched_group_cpus(sg)) {
2673 target = cpumask_first_and(sched_group_cpus(sg),
2674 tsk_cpus_allowed(p));
2678 } while (sg != sd->groups);
2685 * sched_balance_self: balance the current task (running on cpu) in domains
2686 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2689 * Balance, ie. select the least loaded group.
2691 * Returns the target CPU number, or the same CPU if no balancing is needed.
2693 * preempt must be disabled.
2696 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2698 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2699 int cpu = smp_processor_id();
2700 int prev_cpu = task_cpu(p);
2702 int want_affine = 0;
2704 int sync = wake_flags & WF_SYNC;
2706 if (p->rt.nr_cpus_allowed == 1)
2709 if (sd_flag & SD_BALANCE_WAKE) {
2710 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2716 for_each_domain(cpu, tmp) {
2717 if (!(tmp->flags & SD_LOAD_BALANCE))
2721 * If power savings logic is enabled for a domain, see if we
2722 * are not overloaded, if so, don't balance wider.
2724 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2725 unsigned long power = 0;
2726 unsigned long nr_running = 0;
2727 unsigned long capacity;
2730 for_each_cpu(i, sched_domain_span(tmp)) {
2731 power += power_of(i);
2732 nr_running += cpu_rq(i)->cfs.nr_running;
2735 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2737 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2740 if (nr_running < capacity)
2745 * If both cpu and prev_cpu are part of this domain,
2746 * cpu is a valid SD_WAKE_AFFINE target.
2748 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2749 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2754 if (!want_sd && !want_affine)
2757 if (!(tmp->flags & sd_flag))
2765 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2768 new_cpu = select_idle_sibling(p, prev_cpu);
2773 int load_idx = sd->forkexec_idx;
2774 struct sched_group *group;
2777 if (!(sd->flags & sd_flag)) {
2782 if (sd_flag & SD_BALANCE_WAKE)
2783 load_idx = sd->wake_idx;
2785 group = find_idlest_group(sd, p, cpu, load_idx);
2791 new_cpu = find_idlest_cpu(group, p, cpu);
2792 if (new_cpu == -1 || new_cpu == cpu) {
2793 /* Now try balancing at a lower domain level of cpu */
2798 /* Now try balancing at a lower domain level of new_cpu */
2800 weight = sd->span_weight;
2802 for_each_domain(cpu, tmp) {
2803 if (weight <= tmp->span_weight)
2805 if (tmp->flags & sd_flag)
2808 /* while loop will break here if sd == NULL */
2815 #endif /* CONFIG_SMP */
2817 static unsigned long
2818 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2820 unsigned long gran = sysctl_sched_wakeup_granularity;
2823 * Since its curr running now, convert the gran from real-time
2824 * to virtual-time in his units.
2826 * By using 'se' instead of 'curr' we penalize light tasks, so
2827 * they get preempted easier. That is, if 'se' < 'curr' then
2828 * the resulting gran will be larger, therefore penalizing the
2829 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2830 * be smaller, again penalizing the lighter task.
2832 * This is especially important for buddies when the leftmost
2833 * task is higher priority than the buddy.
2835 return calc_delta_fair(gran, se);
2839 * Should 'se' preempt 'curr'.
2853 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2855 s64 gran, vdiff = curr->vruntime - se->vruntime;
2860 gran = wakeup_gran(curr, se);
2867 static void set_last_buddy(struct sched_entity *se)
2869 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2872 for_each_sched_entity(se)
2873 cfs_rq_of(se)->last = se;
2876 static void set_next_buddy(struct sched_entity *se)
2878 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2881 for_each_sched_entity(se)
2882 cfs_rq_of(se)->next = se;
2885 static void set_skip_buddy(struct sched_entity *se)
2887 for_each_sched_entity(se)
2888 cfs_rq_of(se)->skip = se;
2892 * Preempt the current task with a newly woken task if needed:
2894 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2896 struct task_struct *curr = rq->curr;
2897 struct sched_entity *se = &curr->se, *pse = &p->se;
2898 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2899 int scale = cfs_rq->nr_running >= sched_nr_latency;
2900 int next_buddy_marked = 0;
2902 if (unlikely(se == pse))
2906 * This is possible from callers such as move_task(), in which we
2907 * unconditionally check_prempt_curr() after an enqueue (which may have
2908 * lead to a throttle). This both saves work and prevents false
2909 * next-buddy nomination below.
2911 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2914 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2915 set_next_buddy(pse);
2916 next_buddy_marked = 1;
2920 * We can come here with TIF_NEED_RESCHED already set from new task
2923 * Note: this also catches the edge-case of curr being in a throttled
2924 * group (e.g. via set_curr_task), since update_curr() (in the
2925 * enqueue of curr) will have resulted in resched being set. This
2926 * prevents us from potentially nominating it as a false LAST_BUDDY
2929 if (test_tsk_need_resched(curr))
2932 /* Idle tasks are by definition preempted by non-idle tasks. */
2933 if (unlikely(curr->policy == SCHED_IDLE) &&
2934 likely(p->policy != SCHED_IDLE))
2938 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2939 * is driven by the tick):
2941 if (unlikely(p->policy != SCHED_NORMAL))
2944 find_matching_se(&se, &pse);
2945 update_curr(cfs_rq_of(se));
2947 if (wakeup_preempt_entity(se, pse) == 1) {
2949 * Bias pick_next to pick the sched entity that is
2950 * triggering this preemption.
2952 if (!next_buddy_marked)
2953 set_next_buddy(pse);
2962 * Only set the backward buddy when the current task is still
2963 * on the rq. This can happen when a wakeup gets interleaved
2964 * with schedule on the ->pre_schedule() or idle_balance()
2965 * point, either of which can * drop the rq lock.
2967 * Also, during early boot the idle thread is in the fair class,
2968 * for obvious reasons its a bad idea to schedule back to it.
2970 if (unlikely(!se->on_rq || curr == rq->idle))
2973 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2977 static struct task_struct *pick_next_task_fair(struct rq *rq)
2979 struct task_struct *p;
2980 struct cfs_rq *cfs_rq = &rq->cfs;
2981 struct sched_entity *se;
2983 if (!cfs_rq->nr_running)
2987 se = pick_next_entity(cfs_rq);
2988 set_next_entity(cfs_rq, se);
2989 cfs_rq = group_cfs_rq(se);
2993 if (hrtick_enabled(rq))
2994 hrtick_start_fair(rq, p);
3000 * Account for a descheduled task:
3002 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3004 struct sched_entity *se = &prev->se;
3005 struct cfs_rq *cfs_rq;
3007 for_each_sched_entity(se) {
3008 cfs_rq = cfs_rq_of(se);
3009 put_prev_entity(cfs_rq, se);
3014 * sched_yield() is very simple
3016 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3018 static void yield_task_fair(struct rq *rq)
3020 struct task_struct *curr = rq->curr;
3021 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3022 struct sched_entity *se = &curr->se;
3025 * Are we the only task in the tree?
3027 if (unlikely(rq->nr_running == 1))
3030 clear_buddies(cfs_rq, se);
3032 if (curr->policy != SCHED_BATCH) {
3033 update_rq_clock(rq);
3035 * Update run-time statistics of the 'current'.
3037 update_curr(cfs_rq);
3039 * Tell update_rq_clock() that we've just updated,
3040 * so we don't do microscopic update in schedule()
3041 * and double the fastpath cost.
3043 rq->skip_clock_update = 1;
3049 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3051 struct sched_entity *se = &p->se;
3053 /* throttled hierarchies are not runnable */
3054 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3057 /* Tell the scheduler that we'd really like pse to run next. */
3060 yield_task_fair(rq);
3066 /**************************************************
3067 * Fair scheduling class load-balancing methods:
3070 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3072 #define LBF_ALL_PINNED 0x01
3073 #define LBF_NEED_BREAK 0x02
3076 struct sched_domain *sd;
3084 enum cpu_idle_type idle;
3089 unsigned int loop_break;
3090 unsigned int loop_max;
3094 * move_task - move a task from one runqueue to another runqueue.
3095 * Both runqueues must be locked.
3097 static void move_task(struct task_struct *p, struct lb_env *env)
3099 deactivate_task(env->src_rq, p, 0);
3100 set_task_cpu(p, env->dst_cpu);
3101 activate_task(env->dst_rq, p, 0);
3102 check_preempt_curr(env->dst_rq, p, 0);
3106 * Is this task likely cache-hot:
3109 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3113 if (p->sched_class != &fair_sched_class)
3116 if (unlikely(p->policy == SCHED_IDLE))
3120 * Buddy candidates are cache hot:
3122 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3123 (&p->se == cfs_rq_of(&p->se)->next ||
3124 &p->se == cfs_rq_of(&p->se)->last))
3127 if (sysctl_sched_migration_cost == -1)
3129 if (sysctl_sched_migration_cost == 0)
3132 delta = now - p->se.exec_start;
3134 return delta < (s64)sysctl_sched_migration_cost;
3138 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3141 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3143 int tsk_cache_hot = 0;
3145 * We do not migrate tasks that are:
3146 * 1) running (obviously), or
3147 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 * 3) are cache-hot on their current CPU.
3150 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3151 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3154 env->flags &= ~LBF_ALL_PINNED;
3156 if (task_running(env->src_rq, p)) {
3157 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3162 * Aggressive migration if:
3163 * 1) task is cache cold, or
3164 * 2) too many balance attempts have failed.
3167 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3168 if (!tsk_cache_hot ||
3169 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3170 #ifdef CONFIG_SCHEDSTATS
3171 if (tsk_cache_hot) {
3172 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3173 schedstat_inc(p, se.statistics.nr_forced_migrations);
3179 if (tsk_cache_hot) {
3180 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3187 * move_one_task tries to move exactly one task from busiest to this_rq, as
3188 * part of active balancing operations within "domain".
3189 * Returns 1 if successful and 0 otherwise.
3191 * Called with both runqueues locked.
3193 static int move_one_task(struct lb_env *env)
3195 struct task_struct *p, *n;
3197 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3198 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3201 if (!can_migrate_task(p, env))
3206 * Right now, this is only the second place move_task()
3207 * is called, so we can safely collect move_task()
3208 * stats here rather than inside move_task().
3210 schedstat_inc(env->sd, lb_gained[env->idle]);
3216 static unsigned long task_h_load(struct task_struct *p);
3219 * move_tasks tries to move up to load_move weighted load from busiest to
3220 * this_rq, as part of a balancing operation within domain "sd".
3221 * Returns 1 if successful and 0 otherwise.
3223 * Called with both runqueues locked.
3225 static int move_tasks(struct lb_env *env)
3227 struct list_head *tasks = &env->src_rq->cfs_tasks;
3228 struct task_struct *p;
3232 if (env->load_move <= 0)
3235 while (!list_empty(tasks)) {
3236 p = list_first_entry(tasks, struct task_struct, se.group_node);
3239 /* We've more or less seen every task there is, call it quits */
3240 if (env->loop > env->loop_max)
3243 /* take a breather every nr_migrate tasks */
3244 if (env->loop > env->loop_break) {
3245 env->loop_break += sysctl_sched_nr_migrate;
3246 env->flags |= LBF_NEED_BREAK;
3250 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3253 load = task_h_load(p);
3255 if (load < 16 && !env->sd->nr_balance_failed)
3258 if ((load / 2) > env->load_move)
3261 if (!can_migrate_task(p, env))
3266 env->load_move -= load;
3268 #ifdef CONFIG_PREEMPT
3270 * NEWIDLE balancing is a source of latency, so preemptible
3271 * kernels will stop after the first task is pulled to minimize
3272 * the critical section.
3274 if (env->idle == CPU_NEWLY_IDLE)
3279 * We only want to steal up to the prescribed amount of
3282 if (env->load_move <= 0)
3287 list_move_tail(&p->se.group_node, tasks);
3291 * Right now, this is one of only two places move_task() is called,
3292 * so we can safely collect move_task() stats here rather than
3293 * inside move_task().
3295 schedstat_add(env->sd, lb_gained[env->idle], pulled);
3300 #ifdef CONFIG_FAIR_GROUP_SCHED
3302 * update tg->load_weight by folding this cpu's load_avg
3304 static int update_shares_cpu(struct task_group *tg, int cpu)
3306 struct cfs_rq *cfs_rq;
3307 unsigned long flags;
3314 cfs_rq = tg->cfs_rq[cpu];
3316 raw_spin_lock_irqsave(&rq->lock, flags);
3318 update_rq_clock(rq);
3319 update_cfs_load(cfs_rq, 1);
3322 * We need to update shares after updating tg->load_weight in
3323 * order to adjust the weight of groups with long running tasks.
3325 update_cfs_shares(cfs_rq);
3327 raw_spin_unlock_irqrestore(&rq->lock, flags);
3332 static void update_shares(int cpu)
3334 struct cfs_rq *cfs_rq;
3335 struct rq *rq = cpu_rq(cpu);
3339 * Iterates the task_group tree in a bottom up fashion, see
3340 * list_add_leaf_cfs_rq() for details.
3342 for_each_leaf_cfs_rq(rq, cfs_rq) {
3343 /* throttled entities do not contribute to load */
3344 if (throttled_hierarchy(cfs_rq))
3347 update_shares_cpu(cfs_rq->tg, cpu);
3353 * Compute the cpu's hierarchical load factor for each task group.
3354 * This needs to be done in a top-down fashion because the load of a child
3355 * group is a fraction of its parents load.
3357 static int tg_load_down(struct task_group *tg, void *data)
3360 long cpu = (long)data;
3363 load = cpu_rq(cpu)->load.weight;
3365 load = tg->parent->cfs_rq[cpu]->h_load;
3366 load *= tg->se[cpu]->load.weight;
3367 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3370 tg->cfs_rq[cpu]->h_load = load;
3375 static void update_h_load(long cpu)
3378 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3382 static unsigned long task_h_load(struct task_struct *p)
3384 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3387 load = p->se.load.weight;
3388 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3393 static inline void update_shares(int cpu)
3397 static inline void update_h_load(long cpu)
3401 static unsigned long task_h_load(struct task_struct *p)
3403 return p->se.load.weight;
3407 /********** Helpers for find_busiest_group ************************/
3409 * sd_lb_stats - Structure to store the statistics of a sched_domain
3410 * during load balancing.
3412 struct sd_lb_stats {
3413 struct sched_group *busiest; /* Busiest group in this sd */
3414 struct sched_group *this; /* Local group in this sd */
3415 unsigned long total_load; /* Total load of all groups in sd */
3416 unsigned long total_pwr; /* Total power of all groups in sd */
3417 unsigned long avg_load; /* Average load across all groups in sd */
3419 /** Statistics of this group */
3420 unsigned long this_load;
3421 unsigned long this_load_per_task;
3422 unsigned long this_nr_running;
3423 unsigned long this_has_capacity;
3424 unsigned int this_idle_cpus;
3426 /* Statistics of the busiest group */
3427 unsigned int busiest_idle_cpus;
3428 unsigned long max_load;
3429 unsigned long busiest_load_per_task;
3430 unsigned long busiest_nr_running;
3431 unsigned long busiest_group_capacity;
3432 unsigned long busiest_has_capacity;
3433 unsigned int busiest_group_weight;
3435 int group_imb; /* Is there imbalance in this sd */
3436 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3437 int power_savings_balance; /* Is powersave balance needed for this sd */
3438 struct sched_group *group_min; /* Least loaded group in sd */
3439 struct sched_group *group_leader; /* Group which relieves group_min */
3440 unsigned long min_load_per_task; /* load_per_task in group_min */
3441 unsigned long leader_nr_running; /* Nr running of group_leader */
3442 unsigned long min_nr_running; /* Nr running of group_min */
3447 * sg_lb_stats - stats of a sched_group required for load_balancing
3449 struct sg_lb_stats {
3450 unsigned long avg_load; /*Avg load across the CPUs of the group */
3451 unsigned long group_load; /* Total load over the CPUs of the group */
3452 unsigned long sum_nr_running; /* Nr tasks running in the group */
3453 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3454 unsigned long group_capacity;
3455 unsigned long idle_cpus;
3456 unsigned long group_weight;
3457 int group_imb; /* Is there an imbalance in the group ? */
3458 int group_has_capacity; /* Is there extra capacity in the group? */
3462 * get_sd_load_idx - Obtain the load index for a given sched domain.
3463 * @sd: The sched_domain whose load_idx is to be obtained.
3464 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3466 static inline int get_sd_load_idx(struct sched_domain *sd,
3467 enum cpu_idle_type idle)
3473 load_idx = sd->busy_idx;
3476 case CPU_NEWLY_IDLE:
3477 load_idx = sd->newidle_idx;
3480 load_idx = sd->idle_idx;
3488 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3490 * init_sd_power_savings_stats - Initialize power savings statistics for
3491 * the given sched_domain, during load balancing.
3493 * @sd: Sched domain whose power-savings statistics are to be initialized.
3494 * @sds: Variable containing the statistics for sd.
3495 * @idle: Idle status of the CPU at which we're performing load-balancing.
3497 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3498 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3501 * Busy processors will not participate in power savings
3504 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3505 sds->power_savings_balance = 0;
3507 sds->power_savings_balance = 1;
3508 sds->min_nr_running = ULONG_MAX;
3509 sds->leader_nr_running = 0;
3514 * update_sd_power_savings_stats - Update the power saving stats for a
3515 * sched_domain while performing load balancing.
3517 * @group: sched_group belonging to the sched_domain under consideration.
3518 * @sds: Variable containing the statistics of the sched_domain
3519 * @local_group: Does group contain the CPU for which we're performing
3521 * @sgs: Variable containing the statistics of the group.
3523 static inline void update_sd_power_savings_stats(struct sched_group *group,
3524 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3527 if (!sds->power_savings_balance)
3531 * If the local group is idle or completely loaded
3532 * no need to do power savings balance at this domain
3534 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3535 !sds->this_nr_running))
3536 sds->power_savings_balance = 0;
3539 * If a group is already running at full capacity or idle,
3540 * don't include that group in power savings calculations
3542 if (!sds->power_savings_balance ||
3543 sgs->sum_nr_running >= sgs->group_capacity ||
3544 !sgs->sum_nr_running)
3548 * Calculate the group which has the least non-idle load.
3549 * This is the group from where we need to pick up the load
3552 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3553 (sgs->sum_nr_running == sds->min_nr_running &&
3554 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3555 sds->group_min = group;
3556 sds->min_nr_running = sgs->sum_nr_running;
3557 sds->min_load_per_task = sgs->sum_weighted_load /
3558 sgs->sum_nr_running;
3562 * Calculate the group which is almost near its
3563 * capacity but still has some space to pick up some load
3564 * from other group and save more power
3566 if (sgs->sum_nr_running + 1 > sgs->group_capacity)