ptrace: ensure arch_ptrace/ptrace_request can never race with SIGKILL
[~shefty/rdma-dev.git] / kernel / signal.c
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *              Changes to use preallocated sigqueue structures
10  *              to allow signals to be sent reliably.
11  */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
37
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h"      /* audit_signal_info() */
44
45 /*
46  * SLAB caches for signal bits.
47  */
48
49 static struct kmem_cache *sigqueue_cachep;
50
51 int print_fatal_signals __read_mostly;
52
53 static void __user *sig_handler(struct task_struct *t, int sig)
54 {
55         return t->sighand->action[sig - 1].sa.sa_handler;
56 }
57
58 static int sig_handler_ignored(void __user *handler, int sig)
59 {
60         /* Is it explicitly or implicitly ignored? */
61         return handler == SIG_IGN ||
62                 (handler == SIG_DFL && sig_kernel_ignore(sig));
63 }
64
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
66 {
67         void __user *handler;
68
69         handler = sig_handler(t, sig);
70
71         if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72                         handler == SIG_DFL && !force)
73                 return 1;
74
75         return sig_handler_ignored(handler, sig);
76 }
77
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 {
80         /*
81          * Blocked signals are never ignored, since the
82          * signal handler may change by the time it is
83          * unblocked.
84          */
85         if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86                 return 0;
87
88         if (!sig_task_ignored(t, sig, force))
89                 return 0;
90
91         /*
92          * Tracers may want to know about even ignored signals.
93          */
94         return !t->ptrace;
95 }
96
97 /*
98  * Re-calculate pending state from the set of locally pending
99  * signals, globally pending signals, and blocked signals.
100  */
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
102 {
103         unsigned long ready;
104         long i;
105
106         switch (_NSIG_WORDS) {
107         default:
108                 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109                         ready |= signal->sig[i] &~ blocked->sig[i];
110                 break;
111
112         case 4: ready  = signal->sig[3] &~ blocked->sig[3];
113                 ready |= signal->sig[2] &~ blocked->sig[2];
114                 ready |= signal->sig[1] &~ blocked->sig[1];
115                 ready |= signal->sig[0] &~ blocked->sig[0];
116                 break;
117
118         case 2: ready  = signal->sig[1] &~ blocked->sig[1];
119                 ready |= signal->sig[0] &~ blocked->sig[0];
120                 break;
121
122         case 1: ready  = signal->sig[0] &~ blocked->sig[0];
123         }
124         return ready != 0;
125 }
126
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
128
129 static int recalc_sigpending_tsk(struct task_struct *t)
130 {
131         if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132             PENDING(&t->pending, &t->blocked) ||
133             PENDING(&t->signal->shared_pending, &t->blocked)) {
134                 set_tsk_thread_flag(t, TIF_SIGPENDING);
135                 return 1;
136         }
137         /*
138          * We must never clear the flag in another thread, or in current
139          * when it's possible the current syscall is returning -ERESTART*.
140          * So we don't clear it here, and only callers who know they should do.
141          */
142         return 0;
143 }
144
145 /*
146  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147  * This is superfluous when called on current, the wakeup is a harmless no-op.
148  */
149 void recalc_sigpending_and_wake(struct task_struct *t)
150 {
151         if (recalc_sigpending_tsk(t))
152                 signal_wake_up(t, 0);
153 }
154
155 void recalc_sigpending(void)
156 {
157         if (!recalc_sigpending_tsk(current) && !freezing(current))
158                 clear_thread_flag(TIF_SIGPENDING);
159
160 }
161
162 /* Given the mask, find the first available signal that should be serviced. */
163
164 #define SYNCHRONOUS_MASK \
165         (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166          sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
167
168 int next_signal(struct sigpending *pending, sigset_t *mask)
169 {
170         unsigned long i, *s, *m, x;
171         int sig = 0;
172
173         s = pending->signal.sig;
174         m = mask->sig;
175
176         /*
177          * Handle the first word specially: it contains the
178          * synchronous signals that need to be dequeued first.
179          */
180         x = *s &~ *m;
181         if (x) {
182                 if (x & SYNCHRONOUS_MASK)
183                         x &= SYNCHRONOUS_MASK;
184                 sig = ffz(~x) + 1;
185                 return sig;
186         }
187
188         switch (_NSIG_WORDS) {
189         default:
190                 for (i = 1; i < _NSIG_WORDS; ++i) {
191                         x = *++s &~ *++m;
192                         if (!x)
193                                 continue;
194                         sig = ffz(~x) + i*_NSIG_BPW + 1;
195                         break;
196                 }
197                 break;
198
199         case 2:
200                 x = s[1] &~ m[1];
201                 if (!x)
202                         break;
203                 sig = ffz(~x) + _NSIG_BPW + 1;
204                 break;
205
206         case 1:
207                 /* Nothing to do */
208                 break;
209         }
210
211         return sig;
212 }
213
214 static inline void print_dropped_signal(int sig)
215 {
216         static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
217
218         if (!print_fatal_signals)
219                 return;
220
221         if (!__ratelimit(&ratelimit_state))
222                 return;
223
224         printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225                                 current->comm, current->pid, sig);
226 }
227
228 /**
229  * task_set_jobctl_pending - set jobctl pending bits
230  * @task: target task
231  * @mask: pending bits to set
232  *
233  * Clear @mask from @task->jobctl.  @mask must be subset of
234  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
236  * cleared.  If @task is already being killed or exiting, this function
237  * becomes noop.
238  *
239  * CONTEXT:
240  * Must be called with @task->sighand->siglock held.
241  *
242  * RETURNS:
243  * %true if @mask is set, %false if made noop because @task was dying.
244  */
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
246 {
247         BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248                         JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249         BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
250
251         if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252                 return false;
253
254         if (mask & JOBCTL_STOP_SIGMASK)
255                 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
256
257         task->jobctl |= mask;
258         return true;
259 }
260
261 /**
262  * task_clear_jobctl_trapping - clear jobctl trapping bit
263  * @task: target task
264  *
265  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266  * Clear it and wake up the ptracer.  Note that we don't need any further
267  * locking.  @task->siglock guarantees that @task->parent points to the
268  * ptracer.
269  *
270  * CONTEXT:
271  * Must be called with @task->sighand->siglock held.
272  */
273 void task_clear_jobctl_trapping(struct task_struct *task)
274 {
275         if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276                 task->jobctl &= ~JOBCTL_TRAPPING;
277                 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
278         }
279 }
280
281 /**
282  * task_clear_jobctl_pending - clear jobctl pending bits
283  * @task: target task
284  * @mask: pending bits to clear
285  *
286  * Clear @mask from @task->jobctl.  @mask must be subset of
287  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
288  * STOP bits are cleared together.
289  *
290  * If clearing of @mask leaves no stop or trap pending, this function calls
291  * task_clear_jobctl_trapping().
292  *
293  * CONTEXT:
294  * Must be called with @task->sighand->siglock held.
295  */
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
297 {
298         BUG_ON(mask & ~JOBCTL_PENDING_MASK);
299
300         if (mask & JOBCTL_STOP_PENDING)
301                 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
302
303         task->jobctl &= ~mask;
304
305         if (!(task->jobctl & JOBCTL_PENDING_MASK))
306                 task_clear_jobctl_trapping(task);
307 }
308
309 /**
310  * task_participate_group_stop - participate in a group stop
311  * @task: task participating in a group stop
312  *
313  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314  * Group stop states are cleared and the group stop count is consumed if
315  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
316  * stop, the appropriate %SIGNAL_* flags are set.
317  *
318  * CONTEXT:
319  * Must be called with @task->sighand->siglock held.
320  *
321  * RETURNS:
322  * %true if group stop completion should be notified to the parent, %false
323  * otherwise.
324  */
325 static bool task_participate_group_stop(struct task_struct *task)
326 {
327         struct signal_struct *sig = task->signal;
328         bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
329
330         WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
331
332         task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
333
334         if (!consume)
335                 return false;
336
337         if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338                 sig->group_stop_count--;
339
340         /*
341          * Tell the caller to notify completion iff we are entering into a
342          * fresh group stop.  Read comment in do_signal_stop() for details.
343          */
344         if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345                 sig->flags = SIGNAL_STOP_STOPPED;
346                 return true;
347         }
348         return false;
349 }
350
351 /*
352  * allocate a new signal queue record
353  * - this may be called without locks if and only if t == current, otherwise an
354  *   appropriate lock must be held to stop the target task from exiting
355  */
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
358 {
359         struct sigqueue *q = NULL;
360         struct user_struct *user;
361
362         /*
363          * Protect access to @t credentials. This can go away when all
364          * callers hold rcu read lock.
365          */
366         rcu_read_lock();
367         user = get_uid(__task_cred(t)->user);
368         atomic_inc(&user->sigpending);
369         rcu_read_unlock();
370
371         if (override_rlimit ||
372             atomic_read(&user->sigpending) <=
373                         task_rlimit(t, RLIMIT_SIGPENDING)) {
374                 q = kmem_cache_alloc(sigqueue_cachep, flags);
375         } else {
376                 print_dropped_signal(sig);
377         }
378
379         if (unlikely(q == NULL)) {
380                 atomic_dec(&user->sigpending);
381                 free_uid(user);
382         } else {
383                 INIT_LIST_HEAD(&q->list);
384                 q->flags = 0;
385                 q->user = user;
386         }
387
388         return q;
389 }
390
391 static void __sigqueue_free(struct sigqueue *q)
392 {
393         if (q->flags & SIGQUEUE_PREALLOC)
394                 return;
395         atomic_dec(&q->user->sigpending);
396         free_uid(q->user);
397         kmem_cache_free(sigqueue_cachep, q);
398 }
399
400 void flush_sigqueue(struct sigpending *queue)
401 {
402         struct sigqueue *q;
403
404         sigemptyset(&queue->signal);
405         while (!list_empty(&queue->list)) {
406                 q = list_entry(queue->list.next, struct sigqueue , list);
407                 list_del_init(&q->list);
408                 __sigqueue_free(q);
409         }
410 }
411
412 /*
413  * Flush all pending signals for a task.
414  */
415 void __flush_signals(struct task_struct *t)
416 {
417         clear_tsk_thread_flag(t, TIF_SIGPENDING);
418         flush_sigqueue(&t->pending);
419         flush_sigqueue(&t->signal->shared_pending);
420 }
421
422 void flush_signals(struct task_struct *t)
423 {
424         unsigned long flags;
425
426         spin_lock_irqsave(&t->sighand->siglock, flags);
427         __flush_signals(t);
428         spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 }
430
431 static void __flush_itimer_signals(struct sigpending *pending)
432 {
433         sigset_t signal, retain;
434         struct sigqueue *q, *n;
435
436         signal = pending->signal;
437         sigemptyset(&retain);
438
439         list_for_each_entry_safe(q, n, &pending->list, list) {
440                 int sig = q->info.si_signo;
441
442                 if (likely(q->info.si_code != SI_TIMER)) {
443                         sigaddset(&retain, sig);
444                 } else {
445                         sigdelset(&signal, sig);
446                         list_del_init(&q->list);
447                         __sigqueue_free(q);
448                 }
449         }
450
451         sigorsets(&pending->signal, &signal, &retain);
452 }
453
454 void flush_itimer_signals(void)
455 {
456         struct task_struct *tsk = current;
457         unsigned long flags;
458
459         spin_lock_irqsave(&tsk->sighand->siglock, flags);
460         __flush_itimer_signals(&tsk->pending);
461         __flush_itimer_signals(&tsk->signal->shared_pending);
462         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 }
464
465 void ignore_signals(struct task_struct *t)
466 {
467         int i;
468
469         for (i = 0; i < _NSIG; ++i)
470                 t->sighand->action[i].sa.sa_handler = SIG_IGN;
471
472         flush_signals(t);
473 }
474
475 /*
476  * Flush all handlers for a task.
477  */
478
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
481 {
482         int i;
483         struct k_sigaction *ka = &t->sighand->action[0];
484         for (i = _NSIG ; i != 0 ; i--) {
485                 if (force_default || ka->sa.sa_handler != SIG_IGN)
486                         ka->sa.sa_handler = SIG_DFL;
487                 ka->sa.sa_flags = 0;
488                 sigemptyset(&ka->sa.sa_mask);
489                 ka++;
490         }
491 }
492
493 int unhandled_signal(struct task_struct *tsk, int sig)
494 {
495         void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
496         if (is_global_init(tsk))
497                 return 1;
498         if (handler != SIG_IGN && handler != SIG_DFL)
499                 return 0;
500         /* if ptraced, let the tracer determine */
501         return !tsk->ptrace;
502 }
503
504 /*
505  * Notify the system that a driver wants to block all signals for this
506  * process, and wants to be notified if any signals at all were to be
507  * sent/acted upon.  If the notifier routine returns non-zero, then the
508  * signal will be acted upon after all.  If the notifier routine returns 0,
509  * then then signal will be blocked.  Only one block per process is
510  * allowed.  priv is a pointer to private data that the notifier routine
511  * can use to determine if the signal should be blocked or not.
512  */
513 void
514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
515 {
516         unsigned long flags;
517
518         spin_lock_irqsave(&current->sighand->siglock, flags);
519         current->notifier_mask = mask;
520         current->notifier_data = priv;
521         current->notifier = notifier;
522         spin_unlock_irqrestore(&current->sighand->siglock, flags);
523 }
524
525 /* Notify the system that blocking has ended. */
526
527 void
528 unblock_all_signals(void)
529 {
530         unsigned long flags;
531
532         spin_lock_irqsave(&current->sighand->siglock, flags);
533         current->notifier = NULL;
534         current->notifier_data = NULL;
535         recalc_sigpending();
536         spin_unlock_irqrestore(&current->sighand->siglock, flags);
537 }
538
539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
540 {
541         struct sigqueue *q, *first = NULL;
542
543         /*
544          * Collect the siginfo appropriate to this signal.  Check if
545          * there is another siginfo for the same signal.
546         */
547         list_for_each_entry(q, &list->list, list) {
548                 if (q->info.si_signo == sig) {
549                         if (first)
550                                 goto still_pending;
551                         first = q;
552                 }
553         }
554
555         sigdelset(&list->signal, sig);
556
557         if (first) {
558 still_pending:
559                 list_del_init(&first->list);
560                 copy_siginfo(info, &first->info);
561                 __sigqueue_free(first);
562         } else {
563                 /*
564                  * Ok, it wasn't in the queue.  This must be
565                  * a fast-pathed signal or we must have been
566                  * out of queue space.  So zero out the info.
567                  */
568                 info->si_signo = sig;
569                 info->si_errno = 0;
570                 info->si_code = SI_USER;
571                 info->si_pid = 0;
572                 info->si_uid = 0;
573         }
574 }
575
576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
577                         siginfo_t *info)
578 {
579         int sig = next_signal(pending, mask);
580
581         if (sig) {
582                 if (current->notifier) {
583                         if (sigismember(current->notifier_mask, sig)) {
584                                 if (!(current->notifier)(current->notifier_data)) {
585                                         clear_thread_flag(TIF_SIGPENDING);
586                                         return 0;
587                                 }
588                         }
589                 }
590
591                 collect_signal(sig, pending, info);
592         }
593
594         return sig;
595 }
596
597 /*
598  * Dequeue a signal and return the element to the caller, which is
599  * expected to free it.
600  *
601  * All callers have to hold the siglock.
602  */
603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
604 {
605         int signr;
606
607         /* We only dequeue private signals from ourselves, we don't let
608          * signalfd steal them
609          */
610         signr = __dequeue_signal(&tsk->pending, mask, info);
611         if (!signr) {
612                 signr = __dequeue_signal(&tsk->signal->shared_pending,
613                                          mask, info);
614                 /*
615                  * itimer signal ?
616                  *
617                  * itimers are process shared and we restart periodic
618                  * itimers in the signal delivery path to prevent DoS
619                  * attacks in the high resolution timer case. This is
620                  * compliant with the old way of self-restarting
621                  * itimers, as the SIGALRM is a legacy signal and only
622                  * queued once. Changing the restart behaviour to
623                  * restart the timer in the signal dequeue path is
624                  * reducing the timer noise on heavy loaded !highres
625                  * systems too.
626                  */
627                 if (unlikely(signr == SIGALRM)) {
628                         struct hrtimer *tmr = &tsk->signal->real_timer;
629
630                         if (!hrtimer_is_queued(tmr) &&
631                             tsk->signal->it_real_incr.tv64 != 0) {
632                                 hrtimer_forward(tmr, tmr->base->get_time(),
633                                                 tsk->signal->it_real_incr);
634                                 hrtimer_restart(tmr);
635                         }
636                 }
637         }
638
639         recalc_sigpending();
640         if (!signr)
641                 return 0;
642
643         if (unlikely(sig_kernel_stop(signr))) {
644                 /*
645                  * Set a marker that we have dequeued a stop signal.  Our
646                  * caller might release the siglock and then the pending
647                  * stop signal it is about to process is no longer in the
648                  * pending bitmasks, but must still be cleared by a SIGCONT
649                  * (and overruled by a SIGKILL).  So those cases clear this
650                  * shared flag after we've set it.  Note that this flag may
651                  * remain set after the signal we return is ignored or
652                  * handled.  That doesn't matter because its only purpose
653                  * is to alert stop-signal processing code when another
654                  * processor has come along and cleared the flag.
655                  */
656                 current->jobctl |= JOBCTL_STOP_DEQUEUED;
657         }
658         if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
659                 /*
660                  * Release the siglock to ensure proper locking order
661                  * of timer locks outside of siglocks.  Note, we leave
662                  * irqs disabled here, since the posix-timers code is
663                  * about to disable them again anyway.
664                  */
665                 spin_unlock(&tsk->sighand->siglock);
666                 do_schedule_next_timer(info);
667                 spin_lock(&tsk->sighand->siglock);
668         }
669         return signr;
670 }
671
672 /*
673  * Tell a process that it has a new active signal..
674  *
675  * NOTE! we rely on the previous spin_lock to
676  * lock interrupts for us! We can only be called with
677  * "siglock" held, and the local interrupt must
678  * have been disabled when that got acquired!
679  *
680  * No need to set need_resched since signal event passing
681  * goes through ->blocked
682  */
683 void signal_wake_up_state(struct task_struct *t, unsigned int state)
684 {
685         set_tsk_thread_flag(t, TIF_SIGPENDING);
686         /*
687          * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
688          * case. We don't check t->state here because there is a race with it
689          * executing another processor and just now entering stopped state.
690          * By using wake_up_state, we ensure the process will wake up and
691          * handle its death signal.
692          */
693         if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
694                 kick_process(t);
695 }
696
697 /*
698  * Remove signals in mask from the pending set and queue.
699  * Returns 1 if any signals were found.
700  *
701  * All callers must be holding the siglock.
702  *
703  * This version takes a sigset mask and looks at all signals,
704  * not just those in the first mask word.
705  */
706 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
707 {
708         struct sigqueue *q, *n;
709         sigset_t m;
710
711         sigandsets(&m, mask, &s->signal);
712         if (sigisemptyset(&m))
713                 return 0;
714
715         sigandnsets(&s->signal, &s->signal, mask);
716         list_for_each_entry_safe(q, n, &s->list, list) {
717                 if (sigismember(mask, q->info.si_signo)) {
718                         list_del_init(&q->list);
719                         __sigqueue_free(q);
720                 }
721         }
722         return 1;
723 }
724 /*
725  * Remove signals in mask from the pending set and queue.
726  * Returns 1 if any signals were found.
727  *
728  * All callers must be holding the siglock.
729  */
730 static int rm_from_queue(unsigned long mask, struct sigpending *s)
731 {
732         struct sigqueue *q, *n;
733
734         if (!sigtestsetmask(&s->signal, mask))
735                 return 0;
736
737         sigdelsetmask(&s->signal, mask);
738         list_for_each_entry_safe(q, n, &s->list, list) {
739                 if (q->info.si_signo < SIGRTMIN &&
740                     (mask & sigmask(q->info.si_signo))) {
741                         list_del_init(&q->list);
742                         __sigqueue_free(q);
743                 }
744         }
745         return 1;
746 }
747
748 static inline int is_si_special(const struct siginfo *info)
749 {
750         return info <= SEND_SIG_FORCED;
751 }
752
753 static inline bool si_fromuser(const struct siginfo *info)
754 {
755         return info == SEND_SIG_NOINFO ||
756                 (!is_si_special(info) && SI_FROMUSER(info));
757 }
758
759 /*
760  * called with RCU read lock from check_kill_permission()
761  */
762 static int kill_ok_by_cred(struct task_struct *t)
763 {
764         const struct cred *cred = current_cred();
765         const struct cred *tcred = __task_cred(t);
766
767         if (uid_eq(cred->euid, tcred->suid) ||
768             uid_eq(cred->euid, tcred->uid)  ||
769             uid_eq(cred->uid,  tcred->suid) ||
770             uid_eq(cred->uid,  tcred->uid))
771                 return 1;
772
773         if (ns_capable(tcred->user_ns, CAP_KILL))
774                 return 1;
775
776         return 0;
777 }
778
779 /*
780  * Bad permissions for sending the signal
781  * - the caller must hold the RCU read lock
782  */
783 static int check_kill_permission(int sig, struct siginfo *info,
784                                  struct task_struct *t)
785 {
786         struct pid *sid;
787         int error;
788
789         if (!valid_signal(sig))
790                 return -EINVAL;
791
792         if (!si_fromuser(info))
793                 return 0;
794
795         error = audit_signal_info(sig, t); /* Let audit system see the signal */
796         if (error)
797                 return error;
798
799         if (!same_thread_group(current, t) &&
800             !kill_ok_by_cred(t)) {
801                 switch (sig) {
802                 case SIGCONT:
803                         sid = task_session(t);
804                         /*
805                          * We don't return the error if sid == NULL. The
806                          * task was unhashed, the caller must notice this.
807                          */
808                         if (!sid || sid == task_session(current))
809                                 break;
810                 default:
811                         return -EPERM;
812                 }
813         }
814
815         return security_task_kill(t, info, sig, 0);
816 }
817
818 /**
819  * ptrace_trap_notify - schedule trap to notify ptracer
820  * @t: tracee wanting to notify tracer
821  *
822  * This function schedules sticky ptrace trap which is cleared on the next
823  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
824  * ptracer.
825  *
826  * If @t is running, STOP trap will be taken.  If trapped for STOP and
827  * ptracer is listening for events, tracee is woken up so that it can
828  * re-trap for the new event.  If trapped otherwise, STOP trap will be
829  * eventually taken without returning to userland after the existing traps
830  * are finished by PTRACE_CONT.
831  *
832  * CONTEXT:
833  * Must be called with @task->sighand->siglock held.
834  */
835 static void ptrace_trap_notify(struct task_struct *t)
836 {
837         WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
838         assert_spin_locked(&t->sighand->siglock);
839
840         task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
841         ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
842 }
843
844 /*
845  * Handle magic process-wide effects of stop/continue signals. Unlike
846  * the signal actions, these happen immediately at signal-generation
847  * time regardless of blocking, ignoring, or handling.  This does the
848  * actual continuing for SIGCONT, but not the actual stopping for stop
849  * signals. The process stop is done as a signal action for SIG_DFL.
850  *
851  * Returns true if the signal should be actually delivered, otherwise
852  * it should be dropped.
853  */
854 static int prepare_signal(int sig, struct task_struct *p, bool force)
855 {
856         struct signal_struct *signal = p->signal;
857         struct task_struct *t;
858
859         if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
860                 /*
861                  * The process is in the middle of dying, nothing to do.
862                  */
863         } else if (sig_kernel_stop(sig)) {
864                 /*
865                  * This is a stop signal.  Remove SIGCONT from all queues.
866                  */
867                 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
868                 t = p;
869                 do {
870                         rm_from_queue(sigmask(SIGCONT), &t->pending);
871                 } while_each_thread(p, t);
872         } else if (sig == SIGCONT) {
873                 unsigned int why;
874                 /*
875                  * Remove all stop signals from all queues, wake all threads.
876                  */
877                 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
878                 t = p;
879                 do {
880                         task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
881                         rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
882                         if (likely(!(t->ptrace & PT_SEIZED)))
883                                 wake_up_state(t, __TASK_STOPPED);
884                         else
885                                 ptrace_trap_notify(t);
886                 } while_each_thread(p, t);
887
888                 /*
889                  * Notify the parent with CLD_CONTINUED if we were stopped.
890                  *
891                  * If we were in the middle of a group stop, we pretend it
892                  * was already finished, and then continued. Since SIGCHLD
893                  * doesn't queue we report only CLD_STOPPED, as if the next
894                  * CLD_CONTINUED was dropped.
895                  */
896                 why = 0;
897                 if (signal->flags & SIGNAL_STOP_STOPPED)
898                         why |= SIGNAL_CLD_CONTINUED;
899                 else if (signal->group_stop_count)
900                         why |= SIGNAL_CLD_STOPPED;
901
902                 if (why) {
903                         /*
904                          * The first thread which returns from do_signal_stop()
905                          * will take ->siglock, notice SIGNAL_CLD_MASK, and
906                          * notify its parent. See get_signal_to_deliver().
907                          */
908                         signal->flags = why | SIGNAL_STOP_CONTINUED;
909                         signal->group_stop_count = 0;
910                         signal->group_exit_code = 0;
911                 }
912         }
913
914         return !sig_ignored(p, sig, force);
915 }
916
917 /*
918  * Test if P wants to take SIG.  After we've checked all threads with this,
919  * it's equivalent to finding no threads not blocking SIG.  Any threads not
920  * blocking SIG were ruled out because they are not running and already
921  * have pending signals.  Such threads will dequeue from the shared queue
922  * as soon as they're available, so putting the signal on the shared queue
923  * will be equivalent to sending it to one such thread.
924  */
925 static inline int wants_signal(int sig, struct task_struct *p)
926 {
927         if (sigismember(&p->blocked, sig))
928                 return 0;
929         if (p->flags & PF_EXITING)
930                 return 0;
931         if (sig == SIGKILL)
932                 return 1;
933         if (task_is_stopped_or_traced(p))
934                 return 0;
935         return task_curr(p) || !signal_pending(p);
936 }
937
938 static void complete_signal(int sig, struct task_struct *p, int group)
939 {
940         struct signal_struct *signal = p->signal;
941         struct task_struct *t;
942
943         /*
944          * Now find a thread we can wake up to take the signal off the queue.
945          *
946          * If the main thread wants the signal, it gets first crack.
947          * Probably the least surprising to the average bear.
948          */
949         if (wants_signal(sig, p))
950                 t = p;
951         else if (!group || thread_group_empty(p))
952                 /*
953                  * There is just one thread and it does not need to be woken.
954                  * It will dequeue unblocked signals before it runs again.
955                  */
956                 return;
957         else {
958                 /*
959                  * Otherwise try to find a suitable thread.
960                  */
961                 t = signal->curr_target;
962                 while (!wants_signal(sig, t)) {
963                         t = next_thread(t);
964                         if (t == signal->curr_target)
965                                 /*
966                                  * No thread needs to be woken.
967                                  * Any eligible threads will see
968                                  * the signal in the queue soon.
969                                  */
970                                 return;
971                 }
972                 signal->curr_target = t;
973         }
974
975         /*
976          * Found a killable thread.  If the signal will be fatal,
977          * then start taking the whole group down immediately.
978          */
979         if (sig_fatal(p, sig) &&
980             !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
981             !sigismember(&t->real_blocked, sig) &&
982             (sig == SIGKILL || !t->ptrace)) {
983                 /*
984                  * This signal will be fatal to the whole group.
985                  */
986                 if (!sig_kernel_coredump(sig)) {
987                         /*
988                          * Start a group exit and wake everybody up.
989                          * This way we don't have other threads
990                          * running and doing things after a slower
991                          * thread has the fatal signal pending.
992                          */
993                         signal->flags = SIGNAL_GROUP_EXIT;
994                         signal->group_exit_code = sig;
995                         signal->group_stop_count = 0;
996                         t = p;
997                         do {
998                                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
999                                 sigaddset(&t->pending.signal, SIGKILL);
1000                                 signal_wake_up(t, 1);
1001                         } while_each_thread(p, t);
1002                         return;
1003                 }
1004         }
1005
1006         /*
1007          * The signal is already in the shared-pending queue.
1008          * Tell the chosen thread to wake up and dequeue it.
1009          */
1010         signal_wake_up(t, sig == SIGKILL);
1011         return;
1012 }
1013
1014 static inline int legacy_queue(struct sigpending *signals, int sig)
1015 {
1016         return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1017 }
1018
1019 #ifdef CONFIG_USER_NS
1020 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1021 {
1022         if (current_user_ns() == task_cred_xxx(t, user_ns))
1023                 return;
1024
1025         if (SI_FROMKERNEL(info))
1026                 return;
1027
1028         rcu_read_lock();
1029         info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1030                                         make_kuid(current_user_ns(), info->si_uid));
1031         rcu_read_unlock();
1032 }
1033 #else
1034 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1035 {
1036         return;
1037 }
1038 #endif
1039
1040 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1041                         int group, int from_ancestor_ns)
1042 {
1043         struct sigpending *pending;
1044         struct sigqueue *q;
1045         int override_rlimit;
1046         int ret = 0, result;
1047
1048         assert_spin_locked(&t->sighand->siglock);
1049
1050         result = TRACE_SIGNAL_IGNORED;
1051         if (!prepare_signal(sig, t,
1052                         from_ancestor_ns || (info == SEND_SIG_FORCED)))
1053                 goto ret;
1054
1055         pending = group ? &t->signal->shared_pending : &t->pending;
1056         /*
1057          * Short-circuit ignored signals and support queuing
1058          * exactly one non-rt signal, so that we can get more
1059          * detailed information about the cause of the signal.
1060          */
1061         result = TRACE_SIGNAL_ALREADY_PENDING;
1062         if (legacy_queue(pending, sig))
1063                 goto ret;
1064
1065         result = TRACE_SIGNAL_DELIVERED;
1066         /*
1067          * fast-pathed signals for kernel-internal things like SIGSTOP
1068          * or SIGKILL.
1069          */
1070         if (info == SEND_SIG_FORCED)
1071                 goto out_set;
1072
1073         /*
1074          * Real-time signals must be queued if sent by sigqueue, or
1075          * some other real-time mechanism.  It is implementation
1076          * defined whether kill() does so.  We attempt to do so, on
1077          * the principle of least surprise, but since kill is not
1078          * allowed to fail with EAGAIN when low on memory we just
1079          * make sure at least one signal gets delivered and don't
1080          * pass on the info struct.
1081          */
1082         if (sig < SIGRTMIN)
1083                 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1084         else
1085                 override_rlimit = 0;
1086
1087         q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1088                 override_rlimit);
1089         if (q) {
1090                 list_add_tail(&q->list, &pending->list);
1091                 switch ((unsigned long) info) {
1092                 case (unsigned long) SEND_SIG_NOINFO:
1093                         q->info.si_signo = sig;
1094                         q->info.si_errno = 0;
1095                         q->info.si_code = SI_USER;
1096                         q->info.si_pid = task_tgid_nr_ns(current,
1097                                                         task_active_pid_ns(t));
1098                         q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1099                         break;
1100                 case (unsigned long) SEND_SIG_PRIV:
1101                         q->info.si_signo = sig;
1102                         q->info.si_errno = 0;
1103                         q->info.si_code = SI_KERNEL;
1104                         q->info.si_pid = 0;
1105                         q->info.si_uid = 0;
1106                         break;
1107                 default:
1108                         copy_siginfo(&q->info, info);
1109                         if (from_ancestor_ns)
1110                                 q->info.si_pid = 0;
1111                         break;
1112                 }
1113
1114                 userns_fixup_signal_uid(&q->info, t);
1115
1116         } else if (!is_si_special(info)) {
1117                 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1118                         /*
1119                          * Queue overflow, abort.  We may abort if the
1120                          * signal was rt and sent by user using something
1121                          * other than kill().
1122                          */
1123                         result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124                         ret = -EAGAIN;
1125                         goto ret;
1126                 } else {
1127                         /*
1128                          * This is a silent loss of information.  We still
1129                          * send the signal, but the *info bits are lost.
1130                          */
1131                         result = TRACE_SIGNAL_LOSE_INFO;
1132                 }
1133         }
1134
1135 out_set:
1136         signalfd_notify(t, sig);
1137         sigaddset(&pending->signal, sig);
1138         complete_signal(sig, t, group);
1139 ret:
1140         trace_signal_generate(sig, info, t, group, result);
1141         return ret;
1142 }
1143
1144 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1145                         int group)
1146 {
1147         int from_ancestor_ns = 0;
1148
1149 #ifdef CONFIG_PID_NS
1150         from_ancestor_ns = si_fromuser(info) &&
1151                            !task_pid_nr_ns(current, task_active_pid_ns(t));
1152 #endif
1153
1154         return __send_signal(sig, info, t, group, from_ancestor_ns);
1155 }
1156
1157 static void print_fatal_signal(int signr)
1158 {
1159         struct pt_regs *regs = signal_pt_regs();
1160         printk("%s/%d: potentially unexpected fatal signal %d.\n",
1161                 current->comm, task_pid_nr(current), signr);
1162
1163 #if defined(__i386__) && !defined(__arch_um__)
1164         printk("code at %08lx: ", regs->ip);
1165         {
1166                 int i;
1167                 for (i = 0; i < 16; i++) {
1168                         unsigned char insn;
1169
1170                         if (get_user(insn, (unsigned char *)(regs->ip + i)))
1171                                 break;
1172                         printk("%02x ", insn);
1173                 }
1174         }
1175 #endif
1176         printk("\n");
1177         preempt_disable();
1178         show_regs(regs);
1179         preempt_enable();
1180 }
1181
1182 static int __init setup_print_fatal_signals(char *str)
1183 {
1184         get_option (&str, &print_fatal_signals);
1185
1186         return 1;
1187 }
1188
1189 __setup("print-fatal-signals=", setup_print_fatal_signals);
1190
1191 int
1192 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1193 {
1194         return send_signal(sig, info, p, 1);
1195 }
1196
1197 static int
1198 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1199 {
1200         return send_signal(sig, info, t, 0);
1201 }
1202
1203 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1204                         bool group)
1205 {
1206         unsigned long flags;
1207         int ret = -ESRCH;
1208
1209         if (lock_task_sighand(p, &flags)) {
1210                 ret = send_signal(sig, info, p, group);
1211                 unlock_task_sighand(p, &flags);
1212         }
1213
1214         return ret;
1215 }
1216
1217 /*
1218  * Force a signal that the process can't ignore: if necessary
1219  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1220  *
1221  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1222  * since we do not want to have a signal handler that was blocked
1223  * be invoked when user space had explicitly blocked it.
1224  *
1225  * We don't want to have recursive SIGSEGV's etc, for example,
1226  * that is why we also clear SIGNAL_UNKILLABLE.
1227  */
1228 int
1229 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1230 {
1231         unsigned long int flags;
1232         int ret, blocked, ignored;
1233         struct k_sigaction *action;
1234
1235         spin_lock_irqsave(&t->sighand->siglock, flags);
1236         action = &t->sighand->action[sig-1];
1237         ignored = action->sa.sa_handler == SIG_IGN;
1238         blocked = sigismember(&t->blocked, sig);
1239         if (blocked || ignored) {
1240                 action->sa.sa_handler = SIG_DFL;
1241                 if (blocked) {
1242                         sigdelset(&t->blocked, sig);
1243                         recalc_sigpending_and_wake(t);
1244                 }
1245         }
1246         if (action->sa.sa_handler == SIG_DFL)
1247                 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1248         ret = specific_send_sig_info(sig, info, t);
1249         spin_unlock_irqrestore(&t->sighand->siglock, flags);
1250
1251         return ret;
1252 }
1253
1254 /*
1255  * Nuke all other threads in the group.
1256  */
1257 int zap_other_threads(struct task_struct *p)
1258 {
1259         struct task_struct *t = p;
1260         int count = 0;
1261
1262         p->signal->group_stop_count = 0;
1263
1264         while_each_thread(p, t) {
1265                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1266                 count++;
1267
1268                 /* Don't bother with already dead threads */
1269                 if (t->exit_state)
1270                         continue;
1271                 sigaddset(&t->pending.signal, SIGKILL);
1272                 signal_wake_up(t, 1);
1273         }
1274
1275         return count;
1276 }
1277
1278 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1279                                            unsigned long *flags)
1280 {
1281         struct sighand_struct *sighand;
1282
1283         for (;;) {
1284                 local_irq_save(*flags);
1285                 rcu_read_lock();
1286                 sighand = rcu_dereference(tsk->sighand);
1287                 if (unlikely(sighand == NULL)) {
1288                         rcu_read_unlock();
1289                         local_irq_restore(*flags);
1290                         break;
1291                 }
1292
1293                 spin_lock(&sighand->siglock);
1294                 if (likely(sighand == tsk->sighand)) {
1295                         rcu_read_unlock();
1296                         break;
1297                 }
1298                 spin_unlock(&sighand->siglock);
1299                 rcu_read_unlock();
1300                 local_irq_restore(*flags);
1301         }
1302
1303         return sighand;
1304 }
1305
1306 /*
1307  * send signal info to all the members of a group
1308  */
1309 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1310 {
1311         int ret;
1312
1313         rcu_read_lock();
1314         ret = check_kill_permission(sig, info, p);
1315         rcu_read_unlock();
1316
1317         if (!ret && sig)
1318                 ret = do_send_sig_info(sig, info, p, true);
1319
1320         return ret;
1321 }
1322
1323 /*
1324  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1325  * control characters do (^C, ^Z etc)
1326  * - the caller must hold at least a readlock on tasklist_lock
1327  */
1328 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1329 {
1330         struct task_struct *p = NULL;
1331         int retval, success;
1332
1333         success = 0;
1334         retval = -ESRCH;
1335         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1336                 int err = group_send_sig_info(sig, info, p);
1337                 success |= !err;
1338                 retval = err;
1339         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1340         return success ? 0 : retval;
1341 }
1342
1343 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1344 {
1345         int error = -ESRCH;
1346         struct task_struct *p;
1347
1348         rcu_read_lock();
1349 retry:
1350         p = pid_task(pid, PIDTYPE_PID);
1351         if (p) {
1352                 error = group_send_sig_info(sig, info, p);
1353                 if (unlikely(error == -ESRCH))
1354                         /*
1355                          * The task was unhashed in between, try again.
1356                          * If it is dead, pid_task() will return NULL,
1357                          * if we race with de_thread() it will find the
1358                          * new leader.
1359                          */
1360                         goto retry;
1361         }
1362         rcu_read_unlock();
1363
1364         return error;
1365 }
1366
1367 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1368 {
1369         int error;
1370         rcu_read_lock();
1371         error = kill_pid_info(sig, info, find_vpid(pid));
1372         rcu_read_unlock();
1373         return error;
1374 }
1375
1376 static int kill_as_cred_perm(const struct cred *cred,
1377                              struct task_struct *target)
1378 {
1379         const struct cred *pcred = __task_cred(target);
1380         if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1381             !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1382                 return 0;
1383         return 1;
1384 }
1385
1386 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1387 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1388                          const struct cred *cred, u32 secid)
1389 {
1390         int ret = -EINVAL;
1391         struct task_struct *p;
1392         unsigned long flags;
1393
1394         if (!valid_signal(sig))
1395                 return ret;
1396
1397         rcu_read_lock();
1398         p = pid_task(pid, PIDTYPE_PID);
1399         if (!p) {
1400                 ret = -ESRCH;
1401                 goto out_unlock;
1402         }
1403         if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1404                 ret = -EPERM;
1405                 goto out_unlock;
1406         }
1407         ret = security_task_kill(p, info, sig, secid);
1408         if (ret)
1409                 goto out_unlock;
1410
1411         if (sig) {
1412                 if (lock_task_sighand(p, &flags)) {
1413                         ret = __send_signal(sig, info, p, 1, 0);
1414                         unlock_task_sighand(p, &flags);
1415                 } else
1416                         ret = -ESRCH;
1417         }
1418 out_unlock:
1419         rcu_read_unlock();
1420         return ret;
1421 }
1422 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1423
1424 /*
1425  * kill_something_info() interprets pid in interesting ways just like kill(2).
1426  *
1427  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1428  * is probably wrong.  Should make it like BSD or SYSV.
1429  */
1430
1431 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1432 {
1433         int ret;
1434
1435         if (pid > 0) {
1436                 rcu_read_lock();
1437                 ret = kill_pid_info(sig, info, find_vpid(pid));
1438                 rcu_read_unlock();
1439                 return ret;
1440         }
1441
1442         read_lock(&tasklist_lock);
1443         if (pid != -1) {
1444                 ret = __kill_pgrp_info(sig, info,
1445                                 pid ? find_vpid(-pid) : task_pgrp(current));
1446         } else {
1447                 int retval = 0, count = 0;
1448                 struct task_struct * p;
1449
1450                 for_each_process(p) {
1451                         if (task_pid_vnr(p) > 1 &&
1452                                         !same_thread_group(p, current)) {
1453                                 int err = group_send_sig_info(sig, info, p);
1454                                 ++count;
1455                                 if (err != -EPERM)
1456                                         retval = err;
1457                         }
1458                 }
1459                 ret = count ? retval : -ESRCH;
1460         }
1461         read_unlock(&tasklist_lock);
1462
1463         return ret;
1464 }
1465
1466 /*
1467  * These are for backward compatibility with the rest of the kernel source.
1468  */
1469
1470 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1471 {
1472         /*
1473          * Make sure legacy kernel users don't send in bad values
1474          * (normal paths check this in check_kill_permission).
1475          */
1476         if (!valid_signal(sig))
1477                 return -EINVAL;
1478
1479         return do_send_sig_info(sig, info, p, false);
1480 }
1481
1482 #define __si_special(priv) \
1483         ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1484
1485 int
1486 send_sig(int sig, struct task_struct *p, int priv)
1487 {
1488         return send_sig_info(sig, __si_special(priv), p);
1489 }
1490
1491 void
1492 force_sig(int sig, struct task_struct *p)
1493 {
1494         force_sig_info(sig, SEND_SIG_PRIV, p);
1495 }
1496
1497 /*
1498  * When things go south during signal handling, we
1499  * will force a SIGSEGV. And if the signal that caused
1500  * the problem was already a SIGSEGV, we'll want to
1501  * make sure we don't even try to deliver the signal..
1502  */
1503 int
1504 force_sigsegv(int sig, struct task_struct *p)
1505 {
1506         if (sig == SIGSEGV) {
1507                 unsigned long flags;
1508                 spin_lock_irqsave(&p->sighand->siglock, flags);
1509                 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1510                 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1511         }
1512         force_sig(SIGSEGV, p);
1513         return 0;
1514 }
1515
1516 int kill_pgrp(struct pid *pid, int sig, int priv)
1517 {
1518         int ret;
1519
1520         read_lock(&tasklist_lock);
1521         ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1522         read_unlock(&tasklist_lock);
1523
1524         return ret;
1525 }
1526 EXPORT_SYMBOL(kill_pgrp);
1527
1528 int kill_pid(struct pid *pid, int sig, int priv)
1529 {
1530         return kill_pid_info(sig, __si_special(priv), pid);
1531 }
1532 EXPORT_SYMBOL(kill_pid);
1533
1534 /*
1535  * These functions support sending signals using preallocated sigqueue
1536  * structures.  This is needed "because realtime applications cannot
1537  * afford to lose notifications of asynchronous events, like timer
1538  * expirations or I/O completions".  In the case of POSIX Timers
1539  * we allocate the sigqueue structure from the timer_create.  If this
1540  * allocation fails we are able to report the failure to the application
1541  * with an EAGAIN error.
1542  */
1543 struct sigqueue *sigqueue_alloc(void)
1544 {
1545         struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1546
1547         if (q)
1548                 q->flags |= SIGQUEUE_PREALLOC;
1549
1550         return q;
1551 }
1552
1553 void sigqueue_free(struct sigqueue *q)
1554 {
1555         unsigned long flags;
1556         spinlock_t *lock = &current->sighand->siglock;
1557
1558         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1559         /*
1560          * We must hold ->siglock while testing q->list
1561          * to serialize with collect_signal() or with
1562          * __exit_signal()->flush_sigqueue().
1563          */
1564         spin_lock_irqsave(lock, flags);
1565         q->flags &= ~SIGQUEUE_PREALLOC;
1566         /*
1567          * If it is queued it will be freed when dequeued,
1568          * like the "regular" sigqueue.
1569          */
1570         if (!list_empty(&q->list))
1571                 q = NULL;
1572         spin_unlock_irqrestore(lock, flags);
1573
1574         if (q)
1575                 __sigqueue_free(q);
1576 }
1577
1578 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1579 {
1580         int sig = q->info.si_signo;
1581         struct sigpending *pending;
1582         unsigned long flags;
1583         int ret, result;
1584
1585         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1586
1587         ret = -1;
1588         if (!likely(lock_task_sighand(t, &flags)))
1589                 goto ret;
1590
1591         ret = 1; /* the signal is ignored */
1592         result = TRACE_SIGNAL_IGNORED;
1593         if (!prepare_signal(sig, t, false))
1594                 goto out;
1595
1596         ret = 0;
1597         if (unlikely(!list_empty(&q->list))) {
1598                 /*
1599                  * If an SI_TIMER entry is already queue just increment
1600                  * the overrun count.
1601                  */
1602                 BUG_ON(q->info.si_code != SI_TIMER);
1603                 q->info.si_overrun++;
1604                 result = TRACE_SIGNAL_ALREADY_PENDING;
1605                 goto out;
1606         }
1607         q->info.si_overrun = 0;
1608
1609         signalfd_notify(t, sig);
1610         pending = group ? &t->signal->shared_pending : &t->pending;
1611         list_add_tail(&q->list, &pending->list);
1612         sigaddset(&pending->signal, sig);
1613         complete_signal(sig, t, group);
1614         result = TRACE_SIGNAL_DELIVERED;
1615 out:
1616         trace_signal_generate(sig, &q->info, t, group, result);
1617         unlock_task_sighand(t, &flags);
1618 ret:
1619         return ret;
1620 }
1621
1622 /*
1623  * Let a parent know about the death of a child.
1624  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1625  *
1626  * Returns true if our parent ignored us and so we've switched to
1627  * self-reaping.
1628  */
1629 bool do_notify_parent(struct task_struct *tsk, int sig)
1630 {
1631         struct siginfo info;
1632         unsigned long flags;
1633         struct sighand_struct *psig;
1634         bool autoreap = false;
1635
1636         BUG_ON(sig == -1);
1637
1638         /* do_notify_parent_cldstop should have been called instead.  */
1639         BUG_ON(task_is_stopped_or_traced(tsk));
1640
1641         BUG_ON(!tsk->ptrace &&
1642                (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1643
1644         if (sig != SIGCHLD) {
1645                 /*
1646                  * This is only possible if parent == real_parent.
1647                  * Check if it has changed security domain.
1648                  */
1649                 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1650                         sig = SIGCHLD;
1651         }
1652
1653         info.si_signo = sig;
1654         info.si_errno = 0;
1655         /*
1656          * We are under tasklist_lock here so our parent is tied to
1657          * us and cannot change.
1658          *
1659          * task_active_pid_ns will always return the same pid namespace
1660          * until a task passes through release_task.
1661          *
1662          * write_lock() currently calls preempt_disable() which is the
1663          * same as rcu_read_lock(), but according to Oleg, this is not
1664          * correct to rely on this
1665          */
1666         rcu_read_lock();
1667         info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1668         info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1669                                        task_uid(tsk));
1670         rcu_read_unlock();
1671
1672         info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1673         info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1674
1675         info.si_status = tsk->exit_code & 0x7f;
1676         if (tsk->exit_code & 0x80)
1677                 info.si_code = CLD_DUMPED;
1678         else if (tsk->exit_code & 0x7f)
1679                 info.si_code = CLD_KILLED;
1680         else {
1681                 info.si_code = CLD_EXITED;
1682                 info.si_status = tsk->exit_code >> 8;
1683         }
1684
1685         psig = tsk->parent->sighand;
1686         spin_lock_irqsave(&psig->siglock, flags);
1687         if (!tsk->ptrace && sig == SIGCHLD &&
1688             (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1689              (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1690                 /*
1691                  * We are exiting and our parent doesn't care.  POSIX.1
1692                  * defines special semantics for setting SIGCHLD to SIG_IGN
1693                  * or setting the SA_NOCLDWAIT flag: we should be reaped
1694                  * automatically and not left for our parent's wait4 call.
1695                  * Rather than having the parent do it as a magic kind of
1696                  * signal handler, we just set this to tell do_exit that we
1697                  * can be cleaned up without becoming a zombie.  Note that
1698                  * we still call __wake_up_parent in this case, because a
1699                  * blocked sys_wait4 might now return -ECHILD.
1700                  *
1701                  * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1702                  * is implementation-defined: we do (if you don't want
1703                  * it, just use SIG_IGN instead).
1704                  */
1705                 autoreap = true;
1706                 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1707                         sig = 0;
1708         }
1709         if (valid_signal(sig) && sig)
1710                 __group_send_sig_info(sig, &info, tsk->parent);
1711         __wake_up_parent(tsk, tsk->parent);
1712         spin_unlock_irqrestore(&psig->siglock, flags);
1713
1714         return autoreap;
1715 }
1716
1717 /**
1718  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1719  * @tsk: task reporting the state change
1720  * @for_ptracer: the notification is for ptracer
1721  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1722  *
1723  * Notify @tsk's parent that the stopped/continued state has changed.  If
1724  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1725  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1726  *
1727  * CONTEXT:
1728  * Must be called with tasklist_lock at least read locked.
1729  */
1730 static void do_notify_parent_cldstop(struct task_struct *tsk,
1731                                      bool for_ptracer, int why)
1732 {
1733         struct siginfo info;
1734         unsigned long flags;
1735         struct task_struct *parent;
1736         struct sighand_struct *sighand;
1737
1738         if (for_ptracer) {
1739                 parent = tsk->parent;
1740         } else {
1741                 tsk = tsk->group_leader;
1742                 parent = tsk->real_parent;
1743         }
1744
1745         info.si_signo = SIGCHLD;
1746         info.si_errno = 0;
1747         /*
1748          * see comment in do_notify_parent() about the following 4 lines
1749          */
1750         rcu_read_lock();
1751         info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1752         info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1753         rcu_read_unlock();
1754
1755         info.si_utime = cputime_to_clock_t(tsk->utime);
1756         info.si_stime = cputime_to_clock_t(tsk->stime);
1757
1758         info.si_code = why;
1759         switch (why) {
1760         case CLD_CONTINUED:
1761                 info.si_status = SIGCONT;
1762                 break;
1763         case CLD_STOPPED:
1764                 info.si_status = tsk->signal->group_exit_code & 0x7f;
1765                 break;
1766         case CLD_TRAPPED:
1767                 info.si_status = tsk->exit_code & 0x7f;
1768                 break;
1769         default:
1770                 BUG();
1771         }
1772
1773         sighand = parent->sighand;
1774         spin_lock_irqsave(&sighand->siglock, flags);
1775         if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1776             !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1777                 __group_send_sig_info(SIGCHLD, &info, parent);
1778         /*
1779          * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1780          */
1781         __wake_up_parent(tsk, parent);
1782         spin_unlock_irqrestore(&sighand->siglock, flags);
1783 }
1784
1785 static inline int may_ptrace_stop(void)
1786 {
1787         if (!likely(current->ptrace))
1788                 return 0;
1789         /*
1790          * Are we in the middle of do_coredump?
1791          * If so and our tracer is also part of the coredump stopping
1792          * is a deadlock situation, and pointless because our tracer
1793          * is dead so don't allow us to stop.
1794          * If SIGKILL was already sent before the caller unlocked
1795          * ->siglock we must see ->core_state != NULL. Otherwise it
1796          * is safe to enter schedule().
1797          *
1798          * This is almost outdated, a task with the pending SIGKILL can't
1799          * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1800          * after SIGKILL was already dequeued.
1801          */
1802         if (unlikely(current->mm->core_state) &&
1803             unlikely(current->mm == current->parent->mm))
1804                 return 0;
1805
1806         return 1;
1807 }
1808
1809 /*
1810  * Return non-zero if there is a SIGKILL that should be waking us up.
1811  * Called with the siglock held.
1812  */
1813 static int sigkill_pending(struct task_struct *tsk)
1814 {
1815         return  sigismember(&tsk->pending.signal, SIGKILL) ||
1816                 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1817 }
1818
1819 /*
1820  * This must be called with current->sighand->siglock held.
1821  *
1822  * This should be the path for all ptrace stops.
1823  * We always set current->last_siginfo while stopped here.
1824  * That makes it a way to test a stopped process for
1825  * being ptrace-stopped vs being job-control-stopped.
1826  *
1827  * If we actually decide not to stop at all because the tracer
1828  * is gone, we keep current->exit_code unless clear_code.
1829  */
1830 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1831         __releases(&current->sighand->siglock)
1832         __acquires(&current->sighand->siglock)
1833 {
1834         bool gstop_done = false;
1835
1836         if (arch_ptrace_stop_needed(exit_code, info)) {
1837                 /*
1838                  * The arch code has something special to do before a
1839                  * ptrace stop.  This is allowed to block, e.g. for faults
1840                  * on user stack pages.  We can't keep the siglock while
1841                  * calling arch_ptrace_stop, so we must release it now.
1842                  * To preserve proper semantics, we must do this before
1843                  * any signal bookkeeping like checking group_stop_count.
1844                  * Meanwhile, a SIGKILL could come in before we retake the
1845                  * siglock.  That must prevent us from sleeping in TASK_TRACED.
1846                  * So after regaining the lock, we must check for SIGKILL.
1847                  */
1848                 spin_unlock_irq(&current->sighand->siglock);
1849                 arch_ptrace_stop(exit_code, info);
1850                 spin_lock_irq(&current->sighand->siglock);
1851                 if (sigkill_pending(current))
1852                         return;
1853         }
1854
1855         /*
1856          * We're committing to trapping.  TRACED should be visible before
1857          * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1858          * Also, transition to TRACED and updates to ->jobctl should be
1859          * atomic with respect to siglock and should be done after the arch
1860          * hook as siglock is released and regrabbed across it.
1861          */
1862         set_current_state(TASK_TRACED);
1863
1864         current->last_siginfo = info;
1865         current->exit_code = exit_code;
1866
1867         /*
1868          * If @why is CLD_STOPPED, we're trapping to participate in a group
1869          * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1870          * across siglock relocks since INTERRUPT was scheduled, PENDING
1871          * could be clear now.  We act as if SIGCONT is received after
1872          * TASK_TRACED is entered - ignore it.
1873          */
1874         if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1875                 gstop_done = task_participate_group_stop(current);
1876
1877         /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1878         task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1879         if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1880                 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1881
1882         /* entering a trap, clear TRAPPING */
1883         task_clear_jobctl_trapping(current);
1884
1885         spin_unlock_irq(&current->sighand->siglock);
1886         read_lock(&tasklist_lock);
1887         if (may_ptrace_stop()) {
1888                 /*
1889                  * Notify parents of the stop.
1890                  *
1891                  * While ptraced, there are two parents - the ptracer and
1892                  * the real_parent of the group_leader.  The ptracer should
1893                  * know about every stop while the real parent is only
1894                  * interested in the completion of group stop.  The states
1895                  * for the two don't interact with each other.  Notify
1896                  * separately unless they're gonna be duplicates.
1897                  */
1898                 do_notify_parent_cldstop(current, true, why);
1899                 if (gstop_done && ptrace_reparented(current))
1900                         do_notify_parent_cldstop(current, false, why);
1901
1902                 /*
1903                  * Don't want to allow preemption here, because
1904                  * sys_ptrace() needs this task to be inactive.
1905                  *
1906                  * XXX: implement read_unlock_no_resched().
1907                  */
1908                 preempt_disable();
1909                 read_unlock(&tasklist_lock);
1910                 preempt_enable_no_resched();
1911                 freezable_schedule();
1912         } else {
1913                 /*
1914                  * By the time we got the lock, our tracer went away.
1915                  * Don't drop the lock yet, another tracer may come.
1916                  *
1917                  * If @gstop_done, the ptracer went away between group stop
1918                  * completion and here.  During detach, it would have set
1919                  * JOBCTL_STOP_PENDING on us and we'll re-enter
1920                  * TASK_STOPPED in do_signal_stop() on return, so notifying
1921                  * the real parent of the group stop completion is enough.
1922                  */
1923                 if (gstop_done)
1924                         do_notify_parent_cldstop(current, false, why);
1925
1926                 /* tasklist protects us from ptrace_freeze_traced() */
1927                 __set_current_state(TASK_RUNNING);
1928                 if (clear_code)
1929                         current->exit_code = 0;
1930                 read_unlock(&tasklist_lock);
1931         }
1932
1933         /*
1934          * We are back.  Now reacquire the siglock before touching
1935          * last_siginfo, so that we are sure to have synchronized with
1936          * any signal-sending on another CPU that wants to examine it.
1937          */
1938         spin_lock_irq(&current->sighand->siglock);
1939         current->last_siginfo = NULL;
1940
1941         /* LISTENING can be set only during STOP traps, clear it */
1942         current->jobctl &= ~JOBCTL_LISTENING;
1943
1944         /*
1945          * Queued signals ignored us while we were stopped for tracing.
1946          * So check for any that we should take before resuming user mode.
1947          * This sets TIF_SIGPENDING, but never clears it.
1948          */
1949         recalc_sigpending_tsk(current);
1950 }
1951
1952 static void ptrace_do_notify(int signr, int exit_code, int why)
1953 {
1954         siginfo_t info;
1955
1956         memset(&info, 0, sizeof info);
1957         info.si_signo = signr;
1958         info.si_code = exit_code;
1959         info.si_pid = task_pid_vnr(current);
1960         info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1961
1962         /* Let the debugger run.  */
1963         ptrace_stop(exit_code, why, 1, &info);
1964 }
1965
1966 void ptrace_notify(int exit_code)
1967 {
1968         BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1969         if (unlikely(current->task_works))
1970                 task_work_run();
1971
1972         spin_lock_irq(&current->sighand->siglock);
1973         ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1974         spin_unlock_irq(&current->sighand->siglock);
1975 }
1976
1977 /**
1978  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1979  * @signr: signr causing group stop if initiating
1980  *
1981  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1982  * and participate in it.  If already set, participate in the existing
1983  * group stop.  If participated in a group stop (and thus slept), %true is
1984  * returned with siglock released.
1985  *
1986  * If ptraced, this function doesn't handle stop itself.  Instead,
1987  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1988  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1989  * places afterwards.
1990  *
1991  * CONTEXT:
1992  * Must be called with @current->sighand->siglock held, which is released
1993  * on %true return.
1994  *
1995  * RETURNS:
1996  * %false if group stop is already cancelled or ptrace trap is scheduled.
1997  * %true if participated in group stop.
1998  */
1999 static bool do_signal_stop(int signr)
2000         __releases(&current->sighand->siglock)
2001 {
2002         struct signal_struct *sig = current->signal;
2003
2004         if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2005                 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2006                 struct task_struct *t;
2007
2008                 /* signr will be recorded in task->jobctl for retries */
2009                 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2010
2011                 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2012                     unlikely(signal_group_exit(sig)))
2013                         return false;
2014                 /*
2015                  * There is no group stop already in progress.  We must
2016                  * initiate one now.
2017                  *
2018                  * While ptraced, a task may be resumed while group stop is
2019                  * still in effect and then receive a stop signal and
2020                  * initiate another group stop.  This deviates from the
2021                  * usual behavior as two consecutive stop signals can't
2022                  * cause two group stops when !ptraced.  That is why we
2023                  * also check !task_is_stopped(t) below.
2024                  *
2025                  * The condition can be distinguished by testing whether
2026                  * SIGNAL_STOP_STOPPED is already set.  Don't generate
2027                  * group_exit_code in such case.
2028                  *
2029                  * This is not necessary for SIGNAL_STOP_CONTINUED because
2030                  * an intervening stop signal is required to cause two
2031                  * continued events regardless of ptrace.
2032                  */
2033                 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2034                         sig->group_exit_code = signr;
2035
2036                 sig->group_stop_count = 0;
2037
2038                 if (task_set_jobctl_pending(current, signr | gstop))
2039                         sig->group_stop_count++;
2040
2041                 for (t = next_thread(current); t != current;
2042                      t = next_thread(t)) {
2043                         /*
2044                          * Setting state to TASK_STOPPED for a group
2045                          * stop is always done with the siglock held,
2046                          * so this check has no races.
2047                          */
2048                         if (!task_is_stopped(t) &&
2049                             task_set_jobctl_pending(t, signr | gstop)) {
2050                                 sig->group_stop_count++;
2051                                 if (likely(!(t->ptrace & PT_SEIZED)))
2052                                         signal_wake_up(t, 0);
2053                                 else
2054                                         ptrace_trap_notify(t);
2055                         }
2056                 }
2057         }
2058
2059         if (likely(!current->ptrace)) {
2060                 int notify = 0;
2061
2062                 /*
2063                  * If there are no other threads in the group, or if there
2064                  * is a group stop in progress and we are the last to stop,
2065                  * report to the parent.
2066                  */
2067                 if (task_participate_group_stop(current))
2068                         notify = CLD_STOPPED;
2069
2070                 __set_current_state(TASK_STOPPED);
2071                 spin_unlock_irq(&current->sighand->siglock);
2072
2073                 /*
2074                  * Notify the parent of the group stop completion.  Because
2075                  * we're not holding either the siglock or tasklist_lock
2076                  * here, ptracer may attach inbetween; however, this is for
2077                  * group stop and should always be delivered to the real
2078                  * parent of the group leader.  The new ptracer will get
2079                  * its notification when this task transitions into
2080                  * TASK_TRACED.
2081                  */
2082                 if (notify) {
2083                         read_lock(&tasklist_lock);
2084                         do_notify_parent_cldstop(current, false, notify);
2085                         read_unlock(&tasklist_lock);
2086                 }
2087
2088                 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2089                 freezable_schedule();
2090                 return true;
2091         } else {
2092                 /*
2093                  * While ptraced, group stop is handled by STOP trap.
2094                  * Schedule it and let the caller deal with it.
2095                  */
2096                 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2097                 return false;
2098         }
2099 }
2100
2101 /**
2102  * do_jobctl_trap - take care of ptrace jobctl traps
2103  *
2104  * When PT_SEIZED, it's used for both group stop and explicit
2105  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2106  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2107  * the stop signal; otherwise, %SIGTRAP.
2108  *
2109  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2110  * number as exit_code and no siginfo.
2111  *
2112  * CONTEXT:
2113  * Must be called with @current->sighand->siglock held, which may be
2114  * released and re-acquired before returning with intervening sleep.
2115  */
2116 static void do_jobctl_trap(void)
2117 {
2118         struct signal_struct *signal = current->signal;
2119         int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2120
2121         if (current->ptrace & PT_SEIZED) {
2122                 if (!signal->group_stop_count &&
2123                     !(signal->flags & SIGNAL_STOP_STOPPED))
2124                         signr = SIGTRAP;
2125                 WARN_ON_ONCE(!signr);
2126                 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2127                                  CLD_STOPPED);
2128         } else {
2129                 WARN_ON_ONCE(!signr);
2130                 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2131                 current->exit_code = 0;
2132         }
2133 }
2134
2135 static int ptrace_signal(int signr, siginfo_t *info)
2136 {
2137         ptrace_signal_deliver();
2138         /*
2139          * We do not check sig_kernel_stop(signr) but set this marker
2140          * unconditionally because we do not know whether debugger will
2141          * change signr. This flag has no meaning unless we are going
2142          * to stop after return from ptrace_stop(). In this case it will
2143          * be checked in do_signal_stop(), we should only stop if it was
2144          * not cleared by SIGCONT while we were sleeping. See also the
2145          * comment in dequeue_signal().
2146          */
2147         current->jobctl |= JOBCTL_STOP_DEQUEUED;
2148         ptrace_stop(signr, CLD_TRAPPED, 0, info);
2149
2150         /* We're back.  Did the debugger cancel the sig?  */
2151         signr = current->exit_code;
2152         if (signr == 0)
2153                 return signr;
2154
2155         current->exit_code = 0;
2156
2157         /*
2158          * Update the siginfo structure if the signal has
2159          * changed.  If the debugger wanted something
2160          * specific in the siginfo structure then it should
2161          * have updated *info via PTRACE_SETSIGINFO.
2162          */
2163         if (signr != info->si_signo) {
2164                 info->si_signo = signr;
2165                 info->si_errno = 0;
2166                 info->si_code = SI_USER;
2167                 rcu_read_lock();
2168                 info->si_pid = task_pid_vnr(current->parent);
2169                 info->si_uid = from_kuid_munged(current_user_ns(),
2170                                                 task_uid(current->parent));
2171                 rcu_read_unlock();
2172         }
2173
2174         /* If the (new) signal is now blocked, requeue it.  */
2175         if (sigismember(&current->blocked, signr)) {
2176                 specific_send_sig_info(signr, info, current);
2177                 signr = 0;
2178         }
2179
2180         return signr;
2181 }
2182
2183 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2184                           struct pt_regs *regs, void *cookie)
2185 {
2186         struct sighand_struct *sighand = current->sighand;
2187         struct signal_struct *signal = current->signal;
2188         int signr;
2189
2190         if (unlikely(current->task_works))
2191                 task_work_run();
2192
2193         if (unlikely(uprobe_deny_signal()))
2194                 return 0;
2195
2196         /*
2197          * Do this once, we can't return to user-mode if freezing() == T.
2198          * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2199          * thus do not need another check after return.
2200          */
2201         try_to_freeze();
2202
2203 relock:
2204         spin_lock_irq(&sighand->siglock);
2205         /*
2206          * Every stopped thread goes here after wakeup. Check to see if
2207          * we should notify the parent, prepare_signal(SIGCONT) encodes
2208          * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2209          */
2210         if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2211                 int why;
2212
2213                 if (signal->flags & SIGNAL_CLD_CONTINUED)
2214                         why = CLD_CONTINUED;
2215                 else
2216                         why = CLD_STOPPED;
2217
2218                 signal->flags &= ~SIGNAL_CLD_MASK;
2219
2220                 spin_unlock_irq(&sighand->siglock);
2221
2222                 /*
2223                  * Notify the parent that we're continuing.  This event is
2224                  * always per-process and doesn't make whole lot of sense
2225                  * for ptracers, who shouldn't consume the state via
2226                  * wait(2) either, but, for backward compatibility, notify
2227                  * the ptracer of the group leader too unless it's gonna be
2228                  * a duplicate.
2229                  */
2230                 read_lock(&tasklist_lock);
2231                 do_notify_parent_cldstop(current, false, why);
2232
2233                 if (ptrace_reparented(current->group_leader))
2234                         do_notify_parent_cldstop(current->group_leader,
2235                                                 true, why);
2236                 read_unlock(&tasklist_lock);
2237
2238                 goto relock;
2239         }
2240
2241         for (;;) {
2242                 struct k_sigaction *ka;
2243
2244                 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2245                     do_signal_stop(0))
2246                         goto relock;
2247
2248                 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2249                         do_jobctl_trap();
2250                         spin_unlock_irq(&sighand->siglock);
2251                         goto relock;
2252                 }
2253
2254                 signr = dequeue_signal(current, &current->blocked, info);
2255
2256                 if (!signr)
2257                         break; /* will return 0 */
2258
2259                 if (unlikely(current->ptrace) && signr != SIGKILL) {
2260                         signr = ptrace_signal(signr, info);
2261                         if (!signr)
2262                                 continue;
2263                 }
2264
2265                 ka = &sighand->action[signr-1];
2266
2267                 /* Trace actually delivered signals. */
2268                 trace_signal_deliver(signr, info, ka);
2269
2270                 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2271                         continue;
2272                 if (ka->sa.sa_handler != SIG_DFL) {
2273                         /* Run the handler.  */
2274                         *return_ka = *ka;
2275
2276                         if (ka->sa.sa_flags & SA_ONESHOT)
2277                                 ka->sa.sa_handler = SIG_DFL;
2278
2279                         break; /* will return non-zero "signr" value */
2280                 }
2281
2282                 /*
2283                  * Now we are doing the default action for this signal.
2284                  */
2285                 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2286                         continue;
2287
2288                 /*
2289                  * Global init gets no signals it doesn't want.
2290                  * Container-init gets no signals it doesn't want from same
2291                  * container.
2292                  *
2293                  * Note that if global/container-init sees a sig_kernel_only()
2294                  * signal here, the signal must have been generated internally
2295                  * or must have come from an ancestor namespace. In either
2296                  * case, the signal cannot be dropped.
2297                  */
2298                 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2299                                 !sig_kernel_only(signr))
2300                         continue;
2301
2302                 if (sig_kernel_stop(signr)) {
2303                         /*
2304                          * The default action is to stop all threads in
2305                          * the thread group.  The job control signals
2306                          * do nothing in an orphaned pgrp, but SIGSTOP
2307                          * always works.  Note that siglock needs to be
2308                          * dropped during the call to is_orphaned_pgrp()
2309                          * because of lock ordering with tasklist_lock.
2310                          * This allows an intervening SIGCONT to be posted.
2311                          * We need to check for that and bail out if necessary.
2312                          */
2313                         if (signr != SIGSTOP) {
2314                                 spin_unlock_irq(&sighand->siglock);
2315
2316                                 /* signals can be posted during this window */
2317
2318                                 if (is_current_pgrp_orphaned())
2319                                         goto relock;
2320
2321                                 spin_lock_irq(&sighand->siglock);
2322                         }
2323
2324                         if (likely(do_signal_stop(info->si_signo))) {
2325                                 /* It released the siglock.  */
2326                                 goto relock;
2327                         }
2328
2329                         /*
2330                          * We didn't actually stop, due to a race
2331                          * with SIGCONT or something like that.
2332                          */
2333                         continue;
2334                 }
2335
2336                 spin_unlock_irq(&sighand->siglock);
2337
2338                 /*
2339                  * Anything else is fatal, maybe with a core dump.
2340                  */
2341                 current->flags |= PF_SIGNALED;
2342
2343                 if (sig_kernel_coredump(signr)) {
2344                         if (print_fatal_signals)
2345                                 print_fatal_signal(info->si_signo);
2346                         /*
2347                          * If it was able to dump core, this kills all
2348                          * other threads in the group and synchronizes with
2349                          * their demise.  If we lost the race with another
2350                          * thread getting here, it set group_exit_code
2351                          * first and our do_group_exit call below will use
2352                          * that value and ignore the one we pass it.
2353                          */
2354                         do_coredump(info);
2355                 }
2356
2357                 /*
2358                  * Death signals, no core dump.
2359                  */
2360                 do_group_exit(info->si_signo);
2361                 /* NOTREACHED */
2362         }
2363         spin_unlock_irq(&sighand->siglock);
2364         return signr;
2365 }
2366
2367 /**
2368  * signal_delivered - 
2369  * @sig:                number of signal being delivered
2370  * @info:               siginfo_t of signal being delivered
2371  * @ka:                 sigaction setting that chose the handler
2372  * @regs:               user register state
2373  * @stepping:           nonzero if debugger single-step or block-step in use
2374  *
2375  * This function should be called when a signal has succesfully been
2376  * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2377  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2378  * is set in @ka->sa.sa_flags.  Tracing is notified.
2379  */
2380 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2381                         struct pt_regs *regs, int stepping)
2382 {
2383         sigset_t blocked;
2384
2385         /* A signal was successfully delivered, and the
2386            saved sigmask was stored on the signal frame,
2387            and will be restored by sigreturn.  So we can
2388            simply clear the restore sigmask flag.  */
2389         clear_restore_sigmask();
2390
2391         sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2392         if (!(ka->sa.sa_flags & SA_NODEFER))
2393                 sigaddset(&blocked, sig);
2394         set_current_blocked(&blocked);
2395         tracehook_signal_handler(sig, info, ka, regs, stepping);
2396 }
2397
2398 /*
2399  * It could be that complete_signal() picked us to notify about the
2400  * group-wide signal. Other threads should be notified now to take
2401  * the shared signals in @which since we will not.
2402  */
2403 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2404 {
2405         sigset_t retarget;
2406         struct task_struct *t;
2407
2408         sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2409         if (sigisemptyset(&retarget))
2410                 return;
2411
2412         t = tsk;
2413         while_each_thread(tsk, t) {
2414                 if (t->flags & PF_EXITING)
2415                         continue;
2416
2417                 if (!has_pending_signals(&retarget, &t->blocked))
2418                         continue;
2419                 /* Remove the signals this thread can handle. */
2420                 sigandsets(&retarget, &retarget, &t->blocked);
2421
2422                 if (!signal_pending(t))
2423                         signal_wake_up(t, 0);
2424
2425                 if (sigisemptyset(&retarget))
2426                         break;
2427         }
2428 }
2429
2430 void exit_signals(struct task_struct *tsk)
2431 {
2432         int group_stop = 0;
2433         sigset_t unblocked;
2434
2435         /*
2436          * @tsk is about to have PF_EXITING set - lock out users which
2437          * expect stable threadgroup.
2438          */
2439         threadgroup_change_begin(tsk);
2440
2441         if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2442                 tsk->flags |= PF_EXITING;
2443                 threadgroup_change_end(tsk);
2444                 return;
2445         }
2446
2447         spin_lock_irq(&tsk->sighand->siglock);
2448         /*
2449          * From now this task is not visible for group-wide signals,
2450          * see wants_signal(), do_signal_stop().
2451          */
2452         tsk->flags |= PF_EXITING;
2453
2454         threadgroup_change_end(tsk);
2455
2456         if (!signal_pending(tsk))
2457                 goto out;
2458
2459         unblocked = tsk->blocked;
2460         signotset(&unblocked);
2461         retarget_shared_pending(tsk, &unblocked);
2462
2463         if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2464             task_participate_group_stop(tsk))
2465                 group_stop = CLD_STOPPED;
2466 out:
2467         spin_unlock_irq(&tsk->sighand->siglock);
2468
2469         /*
2470          * If group stop has completed, deliver the notification.  This
2471          * should always go to the real parent of the group leader.
2472          */
2473         if (unlikely(group_stop)) {
2474                 read_lock(&tasklist_lock);
2475                 do_notify_parent_cldstop(tsk, false, group_stop);
2476                 read_unlock(&tasklist_lock);
2477         }
2478 }
2479
2480 EXPORT_SYMBOL(recalc_sigpending);
2481 EXPORT_SYMBOL_GPL(dequeue_signal);
2482 EXPORT_SYMBOL(flush_signals);
2483 EXPORT_SYMBOL(force_sig);
2484 EXPORT_SYMBOL(send_sig);
2485 EXPORT_SYMBOL(send_sig_info);
2486 EXPORT_SYMBOL(sigprocmask);
2487 EXPORT_SYMBOL(block_all_signals);
2488 EXPORT_SYMBOL(unblock_all_signals);
2489
2490
2491 /*
2492  * System call entry points.
2493  */
2494
2495 /**
2496  *  sys_restart_syscall - restart a system call
2497  */
2498 SYSCALL_DEFINE0(restart_syscall)
2499 {
2500         struct restart_block *restart = &current_thread_info()->restart_block;
2501         return restart->fn(restart);
2502 }
2503
2504 long do_no_restart_syscall(struct restart_block *param)
2505 {
2506         return -EINTR;
2507 }
2508
2509 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2510 {
2511         if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2512                 sigset_t newblocked;
2513                 /* A set of now blocked but previously unblocked signals. */
2514                 sigandnsets(&newblocked, newset, &current->blocked);
2515                 retarget_shared_pending(tsk, &newblocked);
2516         }
2517         tsk->blocked = *newset;
2518         recalc_sigpending();
2519 }
2520
2521 /**
2522  * set_current_blocked - change current->blocked mask
2523  * @newset: new mask
2524  *
2525  * It is wrong to change ->blocked directly, this helper should be used
2526  * to ensure the process can't miss a shared signal we are going to block.
2527  */
2528 void set_current_blocked(sigset_t *newset)
2529 {
2530         sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2531         __set_current_blocked(newset);
2532 }
2533
2534 void __set_current_blocked(const sigset_t *newset)
2535 {
2536         struct task_struct *tsk = current;
2537
2538         spin_lock_irq(&tsk->sighand->siglock);
2539         __set_task_blocked(tsk, newset);
2540         spin_unlock_irq(&tsk->sighand->siglock);
2541 }
2542
2543 /*
2544  * This is also useful for kernel threads that want to temporarily
2545  * (or permanently) block certain signals.
2546  *
2547  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2548  * interface happily blocks "unblockable" signals like SIGKILL
2549  * and friends.
2550  */
2551 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2552 {
2553         struct task_struct *tsk = current;
2554         sigset_t newset;
2555
2556         /* Lockless, only current can change ->blocked, never from irq */
2557         if (oldset)
2558                 *oldset = tsk->blocked;
2559
2560         switch (how) {
2561         case SIG_BLOCK:
2562                 sigorsets(&newset, &tsk->blocked, set);
2563                 break;
2564         case SIG_UNBLOCK:
2565                 sigandnsets(&newset, &tsk->blocked, set);
2566                 break;
2567         case SIG_SETMASK:
2568                 newset = *set;
2569                 break;
2570         default:
2571                 return -EINVAL;
2572         }
2573
2574         __set_current_blocked(&newset);
2575         return 0;
2576 }
2577
2578 /**
2579  *  sys_rt_sigprocmask - change the list of currently blocked signals
2580  *  @how: whether to add, remove, or set signals
2581  *  @nset: stores pending signals
2582  *  @oset: previous value of signal mask if non-null
2583  *  @sigsetsize: size of sigset_t type
2584  */
2585 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2586                 sigset_t __user *, oset, size_t, sigsetsize)
2587 {
2588         sigset_t old_set, new_set;
2589         int error;
2590
2591         /* XXX: Don't preclude handling different sized sigset_t's.  */
2592         if (sigsetsize != sizeof(sigset_t))
2593                 return -EINVAL;
2594
2595         old_set = current->blocked;
2596
2597         if (nset) {
2598                 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2599                         return -EFAULT;
2600                 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2601
2602                 error = sigprocmask(how, &new_set, NULL);
2603                 if (error)
2604                         return error;
2605         }
2606
2607         if (oset) {
2608                 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2609                         return -EFAULT;
2610         }
2611
2612         return 0;
2613 }
2614
2615 long do_sigpending(void __user *set, unsigned long sigsetsize)
2616 {
2617         long error = -EINVAL;
2618         sigset_t pending;
2619
2620         if (sigsetsize > sizeof(sigset_t))
2621                 goto out;
2622
2623         spin_lock_irq(&current->sighand->siglock);
2624         sigorsets(&pending, &current->pending.signal,
2625                   &current->signal->shared_pending.signal);
2626         spin_unlock_irq(&current->sighand->siglock);
2627
2628         /* Outside the lock because only this thread touches it.  */
2629         sigandsets(&pending, &current->blocked, &pending);
2630
2631         error = -EFAULT;
2632         if (!copy_to_user(set, &pending, sigsetsize))
2633                 error = 0;
2634
2635 out:
2636         return error;
2637 }
2638
2639 /**
2640  *  sys_rt_sigpending - examine a pending signal that has been raised
2641  *                      while blocked
2642  *  @set: stores pending signals
2643  *  @sigsetsize: size of sigset_t type or larger
2644  */
2645 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2646 {
2647         return do_sigpending(set, sigsetsize);
2648 }
2649
2650 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2651
2652 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2653 {
2654         int err;
2655
2656         if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2657                 return -EFAULT;
2658         if (from->si_code < 0)
2659                 return __copy_to_user(to, from, sizeof(siginfo_t))
2660                         ? -EFAULT : 0;
2661         /*
2662          * If you change siginfo_t structure, please be sure
2663          * this code is fixed accordingly.
2664          * Please remember to update the signalfd_copyinfo() function
2665          * inside fs/signalfd.c too, in case siginfo_t changes.
2666          * It should never copy any pad contained in the structure
2667          * to avoid security leaks, but must copy the generic
2668          * 3 ints plus the relevant union member.
2669          */
2670         err = __put_user(from->si_signo, &to->si_signo);
2671         err |= __put_user(from->si_errno, &to->si_errno);
2672         err |= __put_user((short)from->si_code, &to->si_code);
2673         switch (from->si_code & __SI_MASK) {
2674         case __SI_KILL:
2675                 err |= __put_user(from->si_pid, &to->si_pid);
2676                 err |= __put_user(from->si_uid, &to->si_uid);
2677                 break;
2678         case __SI_TIMER:
2679                  err |= __put_user(from->si_tid, &to->si_tid);
2680                  err |= __put_user(from->si_overrun, &to->si_overrun);
2681                  err |= __put_user(from->si_ptr, &to->si_ptr);
2682                 break;
2683         case __SI_POLL:
2684                 err |= __put_user(from->si_band, &to->si_band);
2685                 err |= __put_user(from->si_fd, &to->si_fd);
2686                 break;
2687         case __SI_FAULT:
2688                 err |= __put_user(from->si_addr, &to->si_addr);
2689 #ifdef __ARCH_SI_TRAPNO
2690                 err |= __put_user(from->si_trapno, &to->si_trapno);
2691 #endif
2692 #ifdef BUS_MCEERR_AO
2693                 /*
2694                  * Other callers might not initialize the si_lsb field,
2695                  * so check explicitly for the right codes here.
2696                  */
2697                 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2698                         err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2699 #endif
2700                 break;
2701         case __SI_CHLD:
2702                 err |= __put_user(from->si_pid, &to->si_pid);
2703                 err |= __put_user(from->si_uid, &to->si_uid);
2704                 err |= __put_user(from->si_status, &to->si_status);
2705                 err |= __put_user(from->si_utime, &to->si_utime);
2706                 err |= __put_user(from->si_stime, &to->si_stime);
2707                 break;
2708         case __SI_RT: /* This is not generated by the kernel as of now. */
2709         case __SI_MESGQ: /* But this is */
2710                 err |= __put_user(from->si_pid, &to->si_pid);
2711                 err |= __put_user(from->si_uid, &to->si_uid);
2712                 err |= __put_user(from->si_ptr, &to->si_ptr);
2713                 break;
2714 #ifdef __ARCH_SIGSYS
2715         case __SI_SYS:
2716                 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2717                 err |= __put_user(from->si_syscall, &to->si_syscall);
2718                 err |= __put_user(from->si_arch, &to->si_arch);
2719                 break;
2720 #endif
2721         default: /* this is just in case for now ... */
2722                 err |= __put_user(from->si_pid, &to->si_pid);
2723                 err |= __put_user(from->si_uid, &to->si_uid);
2724                 break;
2725         }
2726         return err;
2727 }
2728
2729 #endif
2730
2731 /**
2732  *  do_sigtimedwait - wait for queued signals specified in @which
2733  *  @which: queued signals to wait for
2734  *  @info: if non-null, the signal's siginfo is returned here
2735  *  @ts: upper bound on process time suspension
2736  */
2737 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2738                         const struct timespec *ts)
2739 {
2740         struct task_struct *tsk = current;
2741         long timeout = MAX_SCHEDULE_TIMEOUT;
2742         sigset_t mask = *which;
2743         int sig;
2744
2745         if (ts) {
2746                 if (!timespec_valid(ts))
2747                         return -EINVAL;
2748                 timeout = timespec_to_jiffies(ts);
2749                 /*
2750                  * We can be close to the next tick, add another one
2751                  * to ensure we will wait at least the time asked for.
2752                  */
2753                 if (ts->tv_sec || ts->tv_nsec)
2754                         timeout++;
2755         }
2756
2757         /*
2758          * Invert the set of allowed signals to get those we want to block.
2759          */
2760         sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2761         signotset(&mask);
2762
2763         spin_lock_irq(&tsk->sighand->siglock);
2764         sig = dequeue_signal(tsk, &mask, info);
2765         if (!sig && timeout) {
2766                 /*
2767                  * None ready, temporarily unblock those we're interested
2768                  * while we are sleeping in so that we'll be awakened when
2769                  * they arrive. Unblocking is always fine, we can avoid
2770                  * set_current_blocked().
2771                  */
2772                 tsk->real_blocked = tsk->blocked;
2773                 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2774                 recalc_sigpending();
2775                 spin_unlock_irq(&tsk->sighand->siglock);
2776
2777                 timeout = schedule_timeout_interruptible(timeout);
2778
2779                 spin_lock_irq(&tsk->sighand->siglock);
2780                 __set_task_blocked(tsk, &tsk->real_blocked);
2781                 siginitset(&tsk->real_blocked, 0);
2782                 sig = dequeue_signal(tsk, &mask, info);
2783         }
2784         spin_unlock_irq(&tsk->sighand->siglock);
2785
2786         if (sig)
2787                 return sig;
2788         return timeout ? -EINTR : -EAGAIN;
2789 }
2790
2791 /**
2792  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2793  *                      in @uthese
2794  *  @uthese: queued signals to wait for
2795  *  @uinfo: if non-null, the signal's siginfo is returned here
2796  *  @uts: upper bound on process time suspension
2797  *  @sigsetsize: size of sigset_t type
2798  */
2799 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2800                 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2801                 size_t, sigsetsize)
2802 {
2803         sigset_t these;
2804         struct timespec ts;
2805         siginfo_t info;
2806         int ret;
2807
2808         /* XXX: Don't preclude handling different sized sigset_t's.  */
2809         if (sigsetsize != sizeof(sigset_t))
2810                 return -EINVAL;
2811
2812         if (copy_from_user(&these, uthese, sizeof(these)))
2813                 return -EFAULT;
2814
2815         if (uts) {
2816                 if (copy_from_user(&ts, uts, sizeof(ts)))
2817                         return -EFAULT;
2818         }
2819
2820         ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2821
2822         if (ret > 0 && uinfo) {
2823                 if (copy_siginfo_to_user(uinfo, &info))
2824                         ret = -EFAULT;
2825         }
2826
2827         return ret;
2828 }
2829
2830 /**
2831  *  sys_kill - send a signal to a process
2832  *  @pid: the PID of the process
2833  *  @sig: signal to be sent
2834  */
2835 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2836 {
2837         struct siginfo info;
2838
2839         info.si_signo = sig;
2840         info.si_errno = 0;
2841         info.si_code = SI_USER;
2842         info.si_pid = task_tgid_vnr(current);
2843         info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2844
2845         return kill_something_info(sig, &info, pid);
2846 }
2847
2848 static int
2849 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2850 {
2851         struct task_struct *p;
2852         int error = -ESRCH;
2853
2854         rcu_read_lock();
2855         p = find_task_by_vpid(pid);
2856         if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2857                 error = check_kill_permission(sig, info, p);
2858                 /*
2859                  * The null signal is a permissions and process existence
2860                  * probe.  No signal is actually delivered.
2861                  */
2862                 if (!error && sig) {
2863                         error = do_send_sig_info(sig, info, p, false);
2864                         /*
2865                          * If lock_task_sighand() failed we pretend the task
2866                          * dies after receiving the signal. The window is tiny,
2867                          * and the signal is private anyway.
2868                          */
2869                         if (unlikely(error == -ESRCH))
2870                                 error = 0;
2871                 }
2872         }
2873         rcu_read_unlock();
2874
2875         return error;
2876 }
2877
2878 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2879 {
2880         struct siginfo info;
2881
2882         info.si_signo = sig;
2883         info.si_errno = 0;
2884         info.si_code = SI_TKILL;
2885         info.si_pid = task_tgid_vnr(current);
2886         info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2887
2888         return do_send_specific(tgid, pid, sig, &info);
2889 }
2890
2891 /**
2892  *  sys_tgkill - send signal to one specific thread
2893  *  @tgid: the thread group ID of the thread
2894  *  @pid: the PID of the thread
2895  *  @sig: signal to be sent
2896  *
2897  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2898  *  exists but it's not belonging to the target process anymore. This
2899  *  method solves the problem of threads exiting and PIDs getting reused.
2900  */
2901 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2902 {
2903         /* This is only valid for single tasks */
2904         if (pid <= 0 || tgid <= 0)
2905                 return -EINVAL;
2906
2907         return do_tkill(tgid, pid, sig);
2908 }
2909
2910 /**
2911  *  sys_tkill - send signal to one specific task
2912  *  @pid: the PID of the task
2913  *  @sig: signal to be sent
2914  *
2915  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2916  */
2917 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2918 {
2919         /* This is only valid for single tasks */
2920         if (pid <= 0)
2921                 return -EINVAL;
2922
2923         return do_tkill(0, pid, sig);
2924 }
2925
2926 /**
2927  *  sys_rt_sigqueueinfo - send signal information to a signal
2928  *  @pid: the PID of the thread
2929  *  @sig: signal to be sent
2930  *  @uinfo: signal info to be sent
2931  */
2932 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2933                 siginfo_t __user *, uinfo)
2934 {
2935         siginfo_t info;
2936
2937         if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2938                 return -EFAULT;
2939
2940         /* Not even root can pretend to send signals from the kernel.
2941          * Nor can they impersonate a kill()/tgkill(), which adds source info.
2942          */
2943         if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2944                 /* We used to allow any < 0 si_code */
2945                 WARN_ON_ONCE(info.si_code < 0);
2946                 return -EPERM;
2947         }
2948         info.si_signo = sig;
2949
2950         /* POSIX.1b doesn't mention process groups.  */
2951         return kill_proc_info(sig, &info, pid);
2952 }
2953
2954 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2955 {
2956         /* This is only valid for single tasks */
2957         if (pid <= 0 || tgid <= 0)
2958                 return -EINVAL;
2959
2960         /* Not even root can pretend to send signals from the kernel.
2961          * Nor can they impersonate a kill()/tgkill(), which adds source info.
2962          */
2963         if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2964                 /* We used to allow any < 0 si_code */
2965                 WARN_ON_ONCE(info->si_code < 0);
2966                 return -EPERM;
2967         }
2968         info->si_signo = sig;
2969
2970         return do_send_specific(tgid, pid, sig, info);
2971 }
2972
2973 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2974                 siginfo_t __user *, uinfo)
2975 {
2976         siginfo_t info;
2977
2978         if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2979                 return -EFAULT;
2980
2981         return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2982 }
2983
2984 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2985 {
2986         struct task_struct *t = current;
2987         struct k_sigaction *k;
2988         sigset_t mask;
2989
2990         if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2991                 return -EINVAL;
2992
2993         k = &t->sighand->action[sig-1];
2994
2995         spin_lock_irq(&current->sighand->siglock);
2996         if (oact)
2997                 *oact = *k;
2998
2999         if (act) {
3000                 sigdelsetmask(&act->sa.sa_mask,
3001                               sigmask(SIGKILL) | sigmask(SIGSTOP));
3002                 *k = *act;
3003                 /*
3004                  * POSIX 3.3.1.3:
3005                  *  "Setting a signal action to SIG_IGN for a signal that is
3006                  *   pending shall cause the pending signal to be discarded,
3007                  *   whether or not it is blocked."
3008                  *
3009                  *  "Setting a signal action to SIG_DFL for a signal that is
3010                  *   pending and whose default action is to ignore the signal
3011                  *   (for example, SIGCHLD), shall cause the pending signal to
3012                  *   be discarded, whether or not it is blocked"
3013                  */
3014                 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3015                         sigemptyset(&mask);
3016                         sigaddset(&mask, sig);
3017                         rm_from_queue_full(&mask, &t->signal->shared_pending);
3018                         do {
3019                                 rm_from_queue_full(&mask, &t->pending);
3020                                 t = next_thread(t);
3021                         } while (t != current);
3022                 }
3023         }
3024
3025         spin_unlock_irq(&current->sighand->siglock);
3026         return 0;
3027 }
3028
3029 int 
3030 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3031 {
3032         stack_t oss;
3033         int error;
3034
3035         oss.ss_sp = (void __user *) current->sas_ss_sp;
3036         oss.ss_size = current->sas_ss_size;
3037         oss.ss_flags = sas_ss_flags(sp);
3038
3039         if (uss) {
3040                 void __user *ss_sp;
3041                 size_t ss_size;
3042                 int ss_flags;
3043
3044                 error = -EFAULT;
3045                 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3046                         goto out;
3047                 error = __get_user(ss_sp, &uss->ss_sp) |
3048                         __get_user(ss_flags, &uss->ss_flags) |
3049                         __get_user(ss_size, &uss->ss_size);
3050                 if (error)
3051                         goto out;
3052
3053                 error = -EPERM;
3054                 if (on_sig_stack(sp))
3055                         goto out;
3056
3057                 error = -EINVAL;
3058                 /*
3059                  * Note - this code used to test ss_flags incorrectly:
3060                  *        old code may have been written using ss_flags==0
3061                  *        to mean ss_flags==SS_ONSTACK (as this was the only
3062                  *        way that worked) - this fix preserves that older
3063                  *        mechanism.
3064                  */
3065                 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3066                         goto out;
3067
3068                 if (ss_flags == SS_DISABLE) {
3069                         ss_size = 0;
3070                         ss_sp = NULL;
3071                 } else {
3072                         error = -ENOMEM;
3073                         if (ss_size < MINSIGSTKSZ)
3074                                 goto out;
3075                 }
3076
3077                 current->sas_ss_sp = (unsigned long) ss_sp;
3078                 current->sas_ss_size = ss_size;
3079         }
3080
3081         error = 0;
3082         if (uoss) {
3083                 error = -EFAULT;
3084                 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3085                         goto out;
3086                 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3087                         __put_user(oss.ss_size, &uoss->ss_size) |
3088                         __put_user(oss.ss_flags, &uoss->ss_flags);
3089         }
3090
3091 out:
3092         return error;
3093 }
3094 #ifdef CONFIG_GENERIC_SIGALTSTACK
3095 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3096 {
3097         return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3098 }
3099 #endif
3100
3101 int restore_altstack(const stack_t __user *uss)
3102 {
3103         int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3104         /* squash all but EFAULT for now */
3105         return err == -EFAULT ? err : 0;
3106 }
3107
3108 int __save_altstack(stack_t __user *uss, unsigned long sp)
3109 {
3110         struct task_struct *t = current;
3111         return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3112                 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3113                 __put_user(t->sas_ss_size, &uss->ss_size);
3114 }
3115
3116 #ifdef CONFIG_COMPAT
3117 #ifdef CONFIG_GENERIC_SIGALTSTACK
3118 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3119                         const compat_stack_t __user *, uss_ptr,
3120                         compat_stack_t __user *, uoss_ptr)
3121 {
3122         stack_t uss, uoss;
3123         int ret;
3124         mm_segment_t seg;
3125
3126         if (uss_ptr) {
3127                 compat_stack_t uss32;
3128
3129                 memset(&uss, 0, sizeof(stack_t));
3130                 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3131                         return -EFAULT;
3132                 uss.ss_sp = compat_ptr(uss32.ss_sp);
3133                 uss.ss_flags = uss32.ss_flags;
3134                 uss.ss_size = uss32.ss_size;
3135         }
3136         seg = get_fs();
3137         set_fs(KERNEL_DS);
3138         ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3139                              (stack_t __force __user *) &uoss,
3140                              compat_user_stack_pointer());
3141         set_fs(seg);
3142         if (ret >= 0 && uoss_ptr)  {
3143                 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3144                     __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3145                     __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3146                     __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3147                         ret = -EFAULT;
3148         }
3149         return ret;
3150 }
3151
3152 int compat_restore_altstack(const compat_stack_t __user *uss)
3153 {
3154         int err = compat_sys_sigaltstack(uss, NULL);
3155         /* squash all but -EFAULT for now */
3156         return err == -EFAULT ? err : 0;
3157 }
3158
3159 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3160 {
3161         struct task_struct *t = current;
3162         return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3163                 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3164                 __put_user(t->sas_ss_size, &uss->ss_size);
3165 }
3166 #endif
3167 #endif
3168
3169 #ifdef __ARCH_WANT_SYS_SIGPENDING
3170
3171 /**
3172  *  sys_sigpending - examine pending signals
3173  *  @set: where mask of pending signal is returned
3174  */
3175 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3176 {
3177         return do_sigpending(set, sizeof(*set));
3178 }
3179
3180 #endif
3181
3182 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3183 /**
3184  *  sys_sigprocmask - examine and change blocked signals
3185  *  @how: whether to add, remove, or set signals
3186  *  @nset: signals to add or remove (if non-null)
3187  *  @oset: previous value of signal mask if non-null
3188  *
3189  * Some platforms have their own version with special arguments;
3190  * others support only sys_rt_sigprocmask.
3191  */
3192
3193 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3194                 old_sigset_t __user *, oset)
3195 {
3196         old_sigset_t old_set, new_set;
3197         sigset_t new_blocked;
3198
3199         old_set = current->blocked.sig[0];
3200
3201         if (nset) {
3202                 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3203                         return -EFAULT;
3204
3205                 new_blocked = current->blocked;
3206
3207                 switch (how) {
3208                 case SIG_BLOCK:
3209                         sigaddsetmask(&new_blocked, new_set);
3210                         break;
3211                 case SIG_UNBLOCK:
3212                         sigdelsetmask(&new_blocked, new_set);
3213                         break;
3214                 case SIG_SETMASK:
3215                         new_blocked.sig[0] = new_set;
3216                         break;
3217                 default:
3218                         return -EINVAL;
3219                 }
3220
3221                 set_current_blocked(&new_blocked);
3222         }
3223
3224         if (oset) {
3225                 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3226                         return -EFAULT;
3227         }
3228
3229         return 0;
3230 }
3231 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3232
3233 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3234 /**
3235  *  sys_rt_sigaction - alter an action taken by a process
3236  *  @sig: signal to be sent
3237  *  @act: new sigaction
3238  *  @oact: used to save the previous sigaction
3239  *  @sigsetsize: size of sigset_t type
3240  */
3241 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3242                 const struct sigaction __user *, act,
3243                 struct sigaction __user *, oact,
3244                 size_t, sigsetsize)
3245 {
3246         struct k_sigaction new_sa, old_sa;
3247         int ret = -EINVAL;
3248
3249         /* XXX: Don't preclude handling different sized sigset_t's.  */
3250         if (sigsetsize != sizeof(sigset_t))
3251                 goto out;
3252
3253         if (act) {
3254                 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3255                         return -EFAULT;
3256         }
3257
3258         ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3259
3260         if (!ret && oact) {
3261                 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3262                         return -EFAULT;
3263         }
3264 out:
3265         return ret;
3266 }
3267 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3268
3269 #ifdef __ARCH_WANT_SYS_SGETMASK
3270
3271 /*
3272  * For backwards compatibility.  Functionality superseded by sigprocmask.
3273  */
3274 SYSCALL_DEFINE0(sgetmask)
3275 {
3276         /* SMP safe */
3277         return current->blocked.sig[0];
3278 }
3279
3280 SYSCALL_DEFINE1(ssetmask, int, newmask)
3281 {
3282         int old = current->blocked.sig[0];
3283         sigset_t newset;
3284
3285         siginitset(&newset, newmask);
3286         set_current_blocked(&newset);
3287
3288         return old;
3289 }
3290 #endif /* __ARCH_WANT_SGETMASK */
3291
3292 #ifdef __ARCH_WANT_SYS_SIGNAL
3293 /*
3294  * For backwards compatibility.  Functionality superseded by sigaction.
3295  */
3296 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3297 {
3298         struct k_sigaction new_sa, old_sa;
3299         int ret;
3300
3301         new_sa.sa.sa_handler = handler;
3302         new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3303         sigemptyset(&new_sa.sa.sa_mask);
3304
3305         ret = do_sigaction(sig, &new_sa, &old_sa);
3306
3307         return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3308 }
3309 #endif /* __ARCH_WANT_SYS_SIGNAL */
3310
3311 #ifdef __ARCH_WANT_SYS_PAUSE
3312
3313 SYSCALL_DEFINE0(pause)
3314 {
3315         while (!signal_pending(current)) {
3316                 current->state = TASK_INTERRUPTIBLE;
3317                 schedule();
3318         }
3319         return -ERESTARTNOHAND;
3320 }
3321
3322 #endif
3323
3324 int sigsuspend(sigset_t *set)
3325 {
3326         current->saved_sigmask = current->blocked;
3327         set_current_blocked(set);
3328
3329         current->state = TASK_INTERRUPTIBLE;
3330         schedule();
3331         set_restore_sigmask();
3332         return -ERESTARTNOHAND;
3333 }
3334
3335 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3336 /**
3337  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3338  *      @unewset value until a signal is received
3339  *  @unewset: new signal mask value
3340  *  @sigsetsize: size of sigset_t type
3341  */
3342 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3343 {
3344         sigset_t newset;
3345
3346         /* XXX: Don't preclude handling different sized sigset_t's.  */
3347         if (sigsetsize != sizeof(sigset_t))
3348                 return -EINVAL;
3349
3350         if (copy_from_user(&newset, unewset, sizeof(newset)))
3351                 return -EFAULT;
3352         return sigsuspend(&newset);
3353 }
3354 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3355
3356 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3357 {
3358         return NULL;
3359 }
3360
3361 void __init signals_init(void)
3362 {
3363         sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3364 }
3365
3366 #ifdef CONFIG_KGDB_KDB
3367 #include <linux/kdb.h>
3368 /*
3369  * kdb_send_sig_info - Allows kdb to send signals without exposing
3370  * signal internals.  This function checks if the required locks are
3371  * available before calling the main signal code, to avoid kdb
3372  * deadlocks.
3373  */
3374 void
3375 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3376 {
3377         static struct task_struct *kdb_prev_t;
3378         int sig, new_t;
3379         if (!spin_trylock(&t->sighand->siglock)) {
3380                 kdb_printf("Can't do kill command now.\n"
3381                            "The sigmask lock is held somewhere else in "
3382                            "kernel, try again later\n");
3383                 return;
3384         }
3385         spin_unlock(&t->sighand->siglock);
3386         new_t = kdb_prev_t != t;
3387         kdb_prev_t = t;
3388         if (t->state != TASK_RUNNING && new_t) {
3389                 kdb_printf("Process is not RUNNING, sending a signal from "
3390                            "kdb risks deadlock\n"
3391                            "on the run queue locks. "
3392                            "The signal has _not_ been sent.\n"
3393                            "Reissue the kill command if you want to risk "
3394                            "the deadlock.\n");
3395                 return;
3396         }
3397         sig = info->si_signo;
3398         if (send_sig_info(sig, info, t))
3399                 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3400                            sig, t->pid);
3401         else
3402                 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3403 }
3404 #endif  /* CONFIG_KGDB_KDB */