1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
64 #ifdef CONFIG_MEMCG_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
68 /* for remember boot option*/
69 #ifdef CONFIG_MEMCG_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
72 static int really_do_swap_account __initdata = 0;
76 #define do_swap_account 0
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index {
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS,
94 static const char * const mem_cgroup_stat_names[] = {
101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
109 static const char * const mem_cgroup_events_names[] = {
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
122 enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO,
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024
132 struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS];
139 struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
147 * per-zone information in memory controller.
149 struct mem_cgroup_per_zone {
150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS];
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */
163 struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
167 struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
176 struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
181 struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185 struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191 struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
197 struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold;
200 /* Size of entries[] */
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
206 struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
214 struct mem_cgroup_threshold_ary *spare;
218 struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
238 struct cgroup_subsys_state css;
240 * the counter to account for memory usage
242 struct res_counter res;
246 * the counter to account for mem+swap usage.
248 struct res_counter memsw;
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
259 struct rcu_head rcu_freeing;
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
264 struct work_struct work_freeing;
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
271 struct mem_cgroup_lru_info info;
272 int last_scanned_node;
274 nodemask_t scan_nodes;
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
279 * Should the accounting and control be hierarchical, per subtree?
289 /* OOM-Killer disable */
290 int oom_kill_disable;
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds;
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds;
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
311 unsigned long move_charge_at_immigrate;
313 * set > 0 if pages under this cgroup are moving to other cgroup.
315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
321 struct mem_cgroup_stat_cpu __percpu *stat;
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
330 struct tcp_memcontrol tcp_mem;
334 /* Stuffs for move charges at task migration. */
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
351 unsigned long moved_charge;
352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
360 static bool move_anon(void)
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
366 static bool move_file(void)
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_ANON,
382 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
383 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
387 /* for encoding cft->private value on file */
390 #define _OOM_TYPE (2)
391 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
392 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
393 #define MEMFILE_ATTR(val) ((val) & 0xffff)
394 /* Used for OOM nofiier */
395 #define OOM_CONTROL (0)
398 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
401 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
402 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
403 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405 static void mem_cgroup_get(struct mem_cgroup *memcg);
406 static void mem_cgroup_put(struct mem_cgroup *memcg);
409 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411 return container_of(s, struct mem_cgroup, css);
414 /* Writing them here to avoid exposing memcg's inner layout */
415 #ifdef CONFIG_MEMCG_KMEM
416 #include <net/sock.h>
419 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
420 void sock_update_memcg(struct sock *sk)
422 if (mem_cgroup_sockets_enabled) {
423 struct mem_cgroup *memcg;
424 struct cg_proto *cg_proto;
426 BUG_ON(!sk->sk_prot->proto_cgroup);
428 /* Socket cloning can throw us here with sk_cgrp already
429 * filled. It won't however, necessarily happen from
430 * process context. So the test for root memcg given
431 * the current task's memcg won't help us in this case.
433 * Respecting the original socket's memcg is a better
434 * decision in this case.
437 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
438 mem_cgroup_get(sk->sk_cgrp->memcg);
443 memcg = mem_cgroup_from_task(current);
444 cg_proto = sk->sk_prot->proto_cgroup(memcg);
445 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
446 mem_cgroup_get(memcg);
447 sk->sk_cgrp = cg_proto;
452 EXPORT_SYMBOL(sock_update_memcg);
454 void sock_release_memcg(struct sock *sk)
456 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
457 struct mem_cgroup *memcg;
458 WARN_ON(!sk->sk_cgrp->memcg);
459 memcg = sk->sk_cgrp->memcg;
460 mem_cgroup_put(memcg);
465 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
467 if (!memcg || mem_cgroup_is_root(memcg))
470 return &memcg->tcp_mem.cg_proto;
472 EXPORT_SYMBOL(tcp_proto_cgroup);
473 #endif /* CONFIG_INET */
474 #endif /* CONFIG_MEMCG_KMEM */
476 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
477 static void disarm_sock_keys(struct mem_cgroup *memcg)
479 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
481 static_key_slow_dec(&memcg_socket_limit_enabled);
484 static void disarm_sock_keys(struct mem_cgroup *memcg)
489 static void drain_all_stock_async(struct mem_cgroup *memcg);
491 static struct mem_cgroup_per_zone *
492 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
494 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
497 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
502 static struct mem_cgroup_per_zone *
503 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
505 int nid = page_to_nid(page);
506 int zid = page_zonenum(page);
508 return mem_cgroup_zoneinfo(memcg, nid, zid);
511 static struct mem_cgroup_tree_per_zone *
512 soft_limit_tree_node_zone(int nid, int zid)
514 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
517 static struct mem_cgroup_tree_per_zone *
518 soft_limit_tree_from_page(struct page *page)
520 int nid = page_to_nid(page);
521 int zid = page_zonenum(page);
523 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
527 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
528 struct mem_cgroup_per_zone *mz,
529 struct mem_cgroup_tree_per_zone *mctz,
530 unsigned long long new_usage_in_excess)
532 struct rb_node **p = &mctz->rb_root.rb_node;
533 struct rb_node *parent = NULL;
534 struct mem_cgroup_per_zone *mz_node;
539 mz->usage_in_excess = new_usage_in_excess;
540 if (!mz->usage_in_excess)
544 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
546 if (mz->usage_in_excess < mz_node->usage_in_excess)
549 * We can't avoid mem cgroups that are over their soft
550 * limit by the same amount
552 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
555 rb_link_node(&mz->tree_node, parent, p);
556 rb_insert_color(&mz->tree_node, &mctz->rb_root);
561 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
562 struct mem_cgroup_per_zone *mz,
563 struct mem_cgroup_tree_per_zone *mctz)
567 rb_erase(&mz->tree_node, &mctz->rb_root);
572 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
573 struct mem_cgroup_per_zone *mz,
574 struct mem_cgroup_tree_per_zone *mctz)
576 spin_lock(&mctz->lock);
577 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
578 spin_unlock(&mctz->lock);
582 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
584 unsigned long long excess;
585 struct mem_cgroup_per_zone *mz;
586 struct mem_cgroup_tree_per_zone *mctz;
587 int nid = page_to_nid(page);
588 int zid = page_zonenum(page);
589 mctz = soft_limit_tree_from_page(page);
592 * Necessary to update all ancestors when hierarchy is used.
593 * because their event counter is not touched.
595 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
596 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
597 excess = res_counter_soft_limit_excess(&memcg->res);
599 * We have to update the tree if mz is on RB-tree or
600 * mem is over its softlimit.
602 if (excess || mz->on_tree) {
603 spin_lock(&mctz->lock);
604 /* if on-tree, remove it */
606 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
608 * Insert again. mz->usage_in_excess will be updated.
609 * If excess is 0, no tree ops.
611 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
612 spin_unlock(&mctz->lock);
617 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
620 struct mem_cgroup_per_zone *mz;
621 struct mem_cgroup_tree_per_zone *mctz;
623 for_each_node(node) {
624 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
625 mz = mem_cgroup_zoneinfo(memcg, node, zone);
626 mctz = soft_limit_tree_node_zone(node, zone);
627 mem_cgroup_remove_exceeded(memcg, mz, mctz);
632 static struct mem_cgroup_per_zone *
633 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
635 struct rb_node *rightmost = NULL;
636 struct mem_cgroup_per_zone *mz;
640 rightmost = rb_last(&mctz->rb_root);
642 goto done; /* Nothing to reclaim from */
644 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
646 * Remove the node now but someone else can add it back,
647 * we will to add it back at the end of reclaim to its correct
648 * position in the tree.
650 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
651 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
652 !css_tryget(&mz->memcg->css))
658 static struct mem_cgroup_per_zone *
659 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
661 struct mem_cgroup_per_zone *mz;
663 spin_lock(&mctz->lock);
664 mz = __mem_cgroup_largest_soft_limit_node(mctz);
665 spin_unlock(&mctz->lock);
670 * Implementation Note: reading percpu statistics for memcg.
672 * Both of vmstat[] and percpu_counter has threshold and do periodic
673 * synchronization to implement "quick" read. There are trade-off between
674 * reading cost and precision of value. Then, we may have a chance to implement
675 * a periodic synchronizion of counter in memcg's counter.
677 * But this _read() function is used for user interface now. The user accounts
678 * memory usage by memory cgroup and he _always_ requires exact value because
679 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
680 * have to visit all online cpus and make sum. So, for now, unnecessary
681 * synchronization is not implemented. (just implemented for cpu hotplug)
683 * If there are kernel internal actions which can make use of some not-exact
684 * value, and reading all cpu value can be performance bottleneck in some
685 * common workload, threashold and synchonization as vmstat[] should be
688 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
689 enum mem_cgroup_stat_index idx)
695 for_each_online_cpu(cpu)
696 val += per_cpu(memcg->stat->count[idx], cpu);
697 #ifdef CONFIG_HOTPLUG_CPU
698 spin_lock(&memcg->pcp_counter_lock);
699 val += memcg->nocpu_base.count[idx];
700 spin_unlock(&memcg->pcp_counter_lock);
706 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
709 int val = (charge) ? 1 : -1;
710 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
713 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
714 enum mem_cgroup_events_index idx)
716 unsigned long val = 0;
719 for_each_online_cpu(cpu)
720 val += per_cpu(memcg->stat->events[idx], cpu);
721 #ifdef CONFIG_HOTPLUG_CPU
722 spin_lock(&memcg->pcp_counter_lock);
723 val += memcg->nocpu_base.events[idx];
724 spin_unlock(&memcg->pcp_counter_lock);
729 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
730 bool anon, int nr_pages)
735 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
736 * counted as CACHE even if it's on ANON LRU.
739 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
742 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
745 /* pagein of a big page is an event. So, ignore page size */
747 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
749 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
750 nr_pages = -nr_pages; /* for event */
753 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
759 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
761 struct mem_cgroup_per_zone *mz;
763 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
764 return mz->lru_size[lru];
768 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
769 unsigned int lru_mask)
771 struct mem_cgroup_per_zone *mz;
773 unsigned long ret = 0;
775 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
778 if (BIT(lru) & lru_mask)
779 ret += mz->lru_size[lru];
785 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
786 int nid, unsigned int lru_mask)
791 for (zid = 0; zid < MAX_NR_ZONES; zid++)
792 total += mem_cgroup_zone_nr_lru_pages(memcg,
798 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
799 unsigned int lru_mask)
804 for_each_node_state(nid, N_HIGH_MEMORY)
805 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
809 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
810 enum mem_cgroup_events_target target)
812 unsigned long val, next;
814 val = __this_cpu_read(memcg->stat->nr_page_events);
815 next = __this_cpu_read(memcg->stat->targets[target]);
816 /* from time_after() in jiffies.h */
817 if ((long)next - (long)val < 0) {
819 case MEM_CGROUP_TARGET_THRESH:
820 next = val + THRESHOLDS_EVENTS_TARGET;
822 case MEM_CGROUP_TARGET_SOFTLIMIT:
823 next = val + SOFTLIMIT_EVENTS_TARGET;
825 case MEM_CGROUP_TARGET_NUMAINFO:
826 next = val + NUMAINFO_EVENTS_TARGET;
831 __this_cpu_write(memcg->stat->targets[target], next);
838 * Check events in order.
841 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
844 /* threshold event is triggered in finer grain than soft limit */
845 if (unlikely(mem_cgroup_event_ratelimit(memcg,
846 MEM_CGROUP_TARGET_THRESH))) {
848 bool do_numainfo __maybe_unused;
850 do_softlimit = mem_cgroup_event_ratelimit(memcg,
851 MEM_CGROUP_TARGET_SOFTLIMIT);
853 do_numainfo = mem_cgroup_event_ratelimit(memcg,
854 MEM_CGROUP_TARGET_NUMAINFO);
858 mem_cgroup_threshold(memcg);
859 if (unlikely(do_softlimit))
860 mem_cgroup_update_tree(memcg, page);
862 if (unlikely(do_numainfo))
863 atomic_inc(&memcg->numainfo_events);
869 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
871 return mem_cgroup_from_css(
872 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
875 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
878 * mm_update_next_owner() may clear mm->owner to NULL
879 * if it races with swapoff, page migration, etc.
880 * So this can be called with p == NULL.
885 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
888 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
890 struct mem_cgroup *memcg = NULL;
895 * Because we have no locks, mm->owner's may be being moved to other
896 * cgroup. We use css_tryget() here even if this looks
897 * pessimistic (rather than adding locks here).
901 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
902 if (unlikely(!memcg))
904 } while (!css_tryget(&memcg->css));
910 * mem_cgroup_iter - iterate over memory cgroup hierarchy
911 * @root: hierarchy root
912 * @prev: previously returned memcg, NULL on first invocation
913 * @reclaim: cookie for shared reclaim walks, NULL for full walks
915 * Returns references to children of the hierarchy below @root, or
916 * @root itself, or %NULL after a full round-trip.
918 * Caller must pass the return value in @prev on subsequent
919 * invocations for reference counting, or use mem_cgroup_iter_break()
920 * to cancel a hierarchy walk before the round-trip is complete.
922 * Reclaimers can specify a zone and a priority level in @reclaim to
923 * divide up the memcgs in the hierarchy among all concurrent
924 * reclaimers operating on the same zone and priority.
926 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
927 struct mem_cgroup *prev,
928 struct mem_cgroup_reclaim_cookie *reclaim)
930 struct mem_cgroup *memcg = NULL;
933 if (mem_cgroup_disabled())
937 root = root_mem_cgroup;
939 if (prev && !reclaim)
940 id = css_id(&prev->css);
942 if (prev && prev != root)
945 if (!root->use_hierarchy && root != root_mem_cgroup) {
952 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
953 struct cgroup_subsys_state *css;
956 int nid = zone_to_nid(reclaim->zone);
957 int zid = zone_idx(reclaim->zone);
958 struct mem_cgroup_per_zone *mz;
960 mz = mem_cgroup_zoneinfo(root, nid, zid);
961 iter = &mz->reclaim_iter[reclaim->priority];
962 if (prev && reclaim->generation != iter->generation)
968 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
970 if (css == &root->css || css_tryget(css))
971 memcg = mem_cgroup_from_css(css);
980 else if (!prev && memcg)
981 reclaim->generation = iter->generation;
991 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
992 * @root: hierarchy root
993 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
995 void mem_cgroup_iter_break(struct mem_cgroup *root,
996 struct mem_cgroup *prev)
999 root = root_mem_cgroup;
1000 if (prev && prev != root)
1001 css_put(&prev->css);
1005 * Iteration constructs for visiting all cgroups (under a tree). If
1006 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1007 * be used for reference counting.
1009 #define for_each_mem_cgroup_tree(iter, root) \
1010 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1012 iter = mem_cgroup_iter(root, iter, NULL))
1014 #define for_each_mem_cgroup(iter) \
1015 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1017 iter = mem_cgroup_iter(NULL, iter, NULL))
1019 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1021 return (memcg == root_mem_cgroup);
1024 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1026 struct mem_cgroup *memcg;
1032 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1033 if (unlikely(!memcg))
1038 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1041 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1049 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1052 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1053 * @zone: zone of the wanted lruvec
1054 * @memcg: memcg of the wanted lruvec
1056 * Returns the lru list vector holding pages for the given @zone and
1057 * @mem. This can be the global zone lruvec, if the memory controller
1060 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1061 struct mem_cgroup *memcg)
1063 struct mem_cgroup_per_zone *mz;
1065 if (mem_cgroup_disabled())
1066 return &zone->lruvec;
1068 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1073 * Following LRU functions are allowed to be used without PCG_LOCK.
1074 * Operations are called by routine of global LRU independently from memcg.
1075 * What we have to take care of here is validness of pc->mem_cgroup.
1077 * Changes to pc->mem_cgroup happens when
1080 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1081 * It is added to LRU before charge.
1082 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1083 * When moving account, the page is not on LRU. It's isolated.
1087 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1089 * @zone: zone of the page
1091 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1093 struct mem_cgroup_per_zone *mz;
1094 struct mem_cgroup *memcg;
1095 struct page_cgroup *pc;
1097 if (mem_cgroup_disabled())
1098 return &zone->lruvec;
1100 pc = lookup_page_cgroup(page);
1101 memcg = pc->mem_cgroup;
1104 * Surreptitiously switch any uncharged offlist page to root:
1105 * an uncharged page off lru does nothing to secure
1106 * its former mem_cgroup from sudden removal.
1108 * Our caller holds lru_lock, and PageCgroupUsed is updated
1109 * under page_cgroup lock: between them, they make all uses
1110 * of pc->mem_cgroup safe.
1112 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1113 pc->mem_cgroup = memcg = root_mem_cgroup;
1115 mz = page_cgroup_zoneinfo(memcg, page);
1120 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1121 * @lruvec: mem_cgroup per zone lru vector
1122 * @lru: index of lru list the page is sitting on
1123 * @nr_pages: positive when adding or negative when removing
1125 * This function must be called when a page is added to or removed from an
1128 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1131 struct mem_cgroup_per_zone *mz;
1132 unsigned long *lru_size;
1134 if (mem_cgroup_disabled())
1137 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1138 lru_size = mz->lru_size + lru;
1139 *lru_size += nr_pages;
1140 VM_BUG_ON((long)(*lru_size) < 0);
1144 * Checks whether given mem is same or in the root_mem_cgroup's
1147 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1148 struct mem_cgroup *memcg)
1150 if (root_memcg == memcg)
1152 if (!root_memcg->use_hierarchy || !memcg)
1154 return css_is_ancestor(&memcg->css, &root_memcg->css);
1157 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1158 struct mem_cgroup *memcg)
1163 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1168 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1171 struct mem_cgroup *curr = NULL;
1172 struct task_struct *p;
1174 p = find_lock_task_mm(task);
1176 curr = try_get_mem_cgroup_from_mm(p->mm);
1180 * All threads may have already detached their mm's, but the oom
1181 * killer still needs to detect if they have already been oom
1182 * killed to prevent needlessly killing additional tasks.
1185 curr = mem_cgroup_from_task(task);
1187 css_get(&curr->css);
1193 * We should check use_hierarchy of "memcg" not "curr". Because checking
1194 * use_hierarchy of "curr" here make this function true if hierarchy is
1195 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1196 * hierarchy(even if use_hierarchy is disabled in "memcg").
1198 ret = mem_cgroup_same_or_subtree(memcg, curr);
1199 css_put(&curr->css);
1203 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1205 unsigned long inactive_ratio;
1206 unsigned long inactive;
1207 unsigned long active;
1210 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1211 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1213 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1215 inactive_ratio = int_sqrt(10 * gb);
1219 return inactive * inactive_ratio < active;
1222 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1224 unsigned long active;
1225 unsigned long inactive;
1227 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1228 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1230 return (active > inactive);
1233 #define mem_cgroup_from_res_counter(counter, member) \
1234 container_of(counter, struct mem_cgroup, member)
1237 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1238 * @memcg: the memory cgroup
1240 * Returns the maximum amount of memory @mem can be charged with, in
1243 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1245 unsigned long long margin;
1247 margin = res_counter_margin(&memcg->res);
1248 if (do_swap_account)
1249 margin = min(margin, res_counter_margin(&memcg->memsw));
1250 return margin >> PAGE_SHIFT;
1253 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1255 struct cgroup *cgrp = memcg->css.cgroup;
1258 if (cgrp->parent == NULL)
1259 return vm_swappiness;
1261 return memcg->swappiness;
1265 * memcg->moving_account is used for checking possibility that some thread is
1266 * calling move_account(). When a thread on CPU-A starts moving pages under
1267 * a memcg, other threads should check memcg->moving_account under
1268 * rcu_read_lock(), like this:
1272 * memcg->moving_account+1 if (memcg->mocing_account)
1274 * synchronize_rcu() update something.
1279 /* for quick checking without looking up memcg */
1280 atomic_t memcg_moving __read_mostly;
1282 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1284 atomic_inc(&memcg_moving);
1285 atomic_inc(&memcg->moving_account);
1289 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1292 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1293 * We check NULL in callee rather than caller.
1296 atomic_dec(&memcg_moving);
1297 atomic_dec(&memcg->moving_account);
1302 * 2 routines for checking "mem" is under move_account() or not.
1304 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1305 * is used for avoiding races in accounting. If true,
1306 * pc->mem_cgroup may be overwritten.
1308 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1309 * under hierarchy of moving cgroups. This is for
1310 * waiting at hith-memory prressure caused by "move".
1313 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1315 VM_BUG_ON(!rcu_read_lock_held());
1316 return atomic_read(&memcg->moving_account) > 0;
1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1321 struct mem_cgroup *from;
1322 struct mem_cgroup *to;
1325 * Unlike task_move routines, we access mc.to, mc.from not under
1326 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1328 spin_lock(&mc.lock);
1334 ret = mem_cgroup_same_or_subtree(memcg, from)
1335 || mem_cgroup_same_or_subtree(memcg, to);
1337 spin_unlock(&mc.lock);
1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1343 if (mc.moving_task && current != mc.moving_task) {
1344 if (mem_cgroup_under_move(memcg)) {
1346 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1347 /* moving charge context might have finished. */
1350 finish_wait(&mc.waitq, &wait);
1358 * Take this lock when
1359 * - a code tries to modify page's memcg while it's USED.
1360 * - a code tries to modify page state accounting in a memcg.
1361 * see mem_cgroup_stolen(), too.
1363 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1364 unsigned long *flags)
1366 spin_lock_irqsave(&memcg->move_lock, *flags);
1369 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1370 unsigned long *flags)
1372 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1376 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1377 * @memcg: The memory cgroup that went over limit
1378 * @p: Task that is going to be killed
1380 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1383 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1385 struct cgroup *task_cgrp;
1386 struct cgroup *mem_cgrp;
1388 * Need a buffer in BSS, can't rely on allocations. The code relies
1389 * on the assumption that OOM is serialized for memory controller.
1390 * If this assumption is broken, revisit this code.
1392 static char memcg_name[PATH_MAX];
1400 mem_cgrp = memcg->css.cgroup;
1401 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1403 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1406 * Unfortunately, we are unable to convert to a useful name
1407 * But we'll still print out the usage information
1414 printk(KERN_INFO "Task in %s killed", memcg_name);
1417 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1425 * Continues from above, so we don't need an KERN_ level
1427 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1430 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1431 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1432 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1433 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1434 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1436 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1437 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1438 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1442 * This function returns the number of memcg under hierarchy tree. Returns
1443 * 1(self count) if no children.
1445 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1448 struct mem_cgroup *iter;
1450 for_each_mem_cgroup_tree(iter, memcg)
1456 * Return the memory (and swap, if configured) limit for a memcg.
1458 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1463 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1464 limit += total_swap_pages << PAGE_SHIFT;
1466 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1468 * If memsw is finite and limits the amount of swap space available
1469 * to this memcg, return that limit.
1471 return min(limit, memsw);
1474 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1477 struct mem_cgroup *iter;
1478 unsigned long chosen_points = 0;
1479 unsigned long totalpages;
1480 unsigned int points = 0;
1481 struct task_struct *chosen = NULL;
1484 * If current has a pending SIGKILL, then automatically select it. The
1485 * goal is to allow it to allocate so that it may quickly exit and free
1488 if (fatal_signal_pending(current)) {
1489 set_thread_flag(TIF_MEMDIE);
1493 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1494 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1495 for_each_mem_cgroup_tree(iter, memcg) {
1496 struct cgroup *cgroup = iter->css.cgroup;
1497 struct cgroup_iter it;
1498 struct task_struct *task;
1500 cgroup_iter_start(cgroup, &it);
1501 while ((task = cgroup_iter_next(cgroup, &it))) {
1502 switch (oom_scan_process_thread(task, totalpages, NULL,
1504 case OOM_SCAN_SELECT:
1506 put_task_struct(chosen);
1508 chosen_points = ULONG_MAX;
1509 get_task_struct(chosen);
1511 case OOM_SCAN_CONTINUE:
1513 case OOM_SCAN_ABORT:
1514 cgroup_iter_end(cgroup, &it);
1515 mem_cgroup_iter_break(memcg, iter);
1517 put_task_struct(chosen);
1522 points = oom_badness(task, memcg, NULL, totalpages);
1523 if (points > chosen_points) {
1525 put_task_struct(chosen);
1527 chosen_points = points;
1528 get_task_struct(chosen);
1531 cgroup_iter_end(cgroup, &it);
1536 points = chosen_points * 1000 / totalpages;
1537 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1538 NULL, "Memory cgroup out of memory");
1541 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1543 unsigned long flags)
1545 unsigned long total = 0;
1546 bool noswap = false;
1549 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1551 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1554 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1556 drain_all_stock_async(memcg);
1557 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1559 * Allow limit shrinkers, which are triggered directly
1560 * by userspace, to catch signals and stop reclaim
1561 * after minimal progress, regardless of the margin.
1563 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1565 if (mem_cgroup_margin(memcg))
1568 * If nothing was reclaimed after two attempts, there
1569 * may be no reclaimable pages in this hierarchy.
1578 * test_mem_cgroup_node_reclaimable
1579 * @memcg: the target memcg
1580 * @nid: the node ID to be checked.
1581 * @noswap : specify true here if the user wants flle only information.
1583 * This function returns whether the specified memcg contains any
1584 * reclaimable pages on a node. Returns true if there are any reclaimable
1585 * pages in the node.
1587 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1588 int nid, bool noswap)
1590 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1592 if (noswap || !total_swap_pages)
1594 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1599 #if MAX_NUMNODES > 1
1602 * Always updating the nodemask is not very good - even if we have an empty
1603 * list or the wrong list here, we can start from some node and traverse all
1604 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1607 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1611 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1612 * pagein/pageout changes since the last update.
1614 if (!atomic_read(&memcg->numainfo_events))
1616 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1619 /* make a nodemask where this memcg uses memory from */
1620 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1622 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1624 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1625 node_clear(nid, memcg->scan_nodes);
1628 atomic_set(&memcg->numainfo_events, 0);
1629 atomic_set(&memcg->numainfo_updating, 0);
1633 * Selecting a node where we start reclaim from. Because what we need is just
1634 * reducing usage counter, start from anywhere is O,K. Considering
1635 * memory reclaim from current node, there are pros. and cons.
1637 * Freeing memory from current node means freeing memory from a node which
1638 * we'll use or we've used. So, it may make LRU bad. And if several threads
1639 * hit limits, it will see a contention on a node. But freeing from remote
1640 * node means more costs for memory reclaim because of memory latency.
1642 * Now, we use round-robin. Better algorithm is welcomed.
1644 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1648 mem_cgroup_may_update_nodemask(memcg);
1649 node = memcg->last_scanned_node;
1651 node = next_node(node, memcg->scan_nodes);
1652 if (node == MAX_NUMNODES)
1653 node = first_node(memcg->scan_nodes);
1655 * We call this when we hit limit, not when pages are added to LRU.
1656 * No LRU may hold pages because all pages are UNEVICTABLE or
1657 * memcg is too small and all pages are not on LRU. In that case,
1658 * we use curret node.
1660 if (unlikely(node == MAX_NUMNODES))
1661 node = numa_node_id();
1663 memcg->last_scanned_node = node;
1668 * Check all nodes whether it contains reclaimable pages or not.
1669 * For quick scan, we make use of scan_nodes. This will allow us to skip
1670 * unused nodes. But scan_nodes is lazily updated and may not cotain
1671 * enough new information. We need to do double check.
1673 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1678 * quick check...making use of scan_node.
1679 * We can skip unused nodes.
1681 if (!nodes_empty(memcg->scan_nodes)) {
1682 for (nid = first_node(memcg->scan_nodes);
1684 nid = next_node(nid, memcg->scan_nodes)) {
1686 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1691 * Check rest of nodes.
1693 for_each_node_state(nid, N_HIGH_MEMORY) {
1694 if (node_isset(nid, memcg->scan_nodes))
1696 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1703 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1708 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1710 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1714 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1717 unsigned long *total_scanned)
1719 struct mem_cgroup *victim = NULL;
1722 unsigned long excess;
1723 unsigned long nr_scanned;
1724 struct mem_cgroup_reclaim_cookie reclaim = {
1729 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1732 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1737 * If we have not been able to reclaim
1738 * anything, it might because there are
1739 * no reclaimable pages under this hierarchy
1744 * We want to do more targeted reclaim.
1745 * excess >> 2 is not to excessive so as to
1746 * reclaim too much, nor too less that we keep
1747 * coming back to reclaim from this cgroup
1749 if (total >= (excess >> 2) ||
1750 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1755 if (!mem_cgroup_reclaimable(victim, false))
1757 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1759 *total_scanned += nr_scanned;
1760 if (!res_counter_soft_limit_excess(&root_memcg->res))
1763 mem_cgroup_iter_break(root_memcg, victim);
1768 * Check OOM-Killer is already running under our hierarchy.
1769 * If someone is running, return false.
1770 * Has to be called with memcg_oom_lock
1772 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1774 struct mem_cgroup *iter, *failed = NULL;
1776 for_each_mem_cgroup_tree(iter, memcg) {
1777 if (iter->oom_lock) {
1779 * this subtree of our hierarchy is already locked
1780 * so we cannot give a lock.
1783 mem_cgroup_iter_break(memcg, iter);
1786 iter->oom_lock = true;
1793 * OK, we failed to lock the whole subtree so we have to clean up
1794 * what we set up to the failing subtree
1796 for_each_mem_cgroup_tree(iter, memcg) {
1797 if (iter == failed) {
1798 mem_cgroup_iter_break(memcg, iter);
1801 iter->oom_lock = false;
1807 * Has to be called with memcg_oom_lock
1809 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1811 struct mem_cgroup *iter;
1813 for_each_mem_cgroup_tree(iter, memcg)
1814 iter->oom_lock = false;
1818 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1820 struct mem_cgroup *iter;
1822 for_each_mem_cgroup_tree(iter, memcg)
1823 atomic_inc(&iter->under_oom);
1826 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1828 struct mem_cgroup *iter;
1831 * When a new child is created while the hierarchy is under oom,
1832 * mem_cgroup_oom_lock() may not be called. We have to use
1833 * atomic_add_unless() here.
1835 for_each_mem_cgroup_tree(iter, memcg)
1836 atomic_add_unless(&iter->under_oom, -1, 0);
1839 static DEFINE_SPINLOCK(memcg_oom_lock);
1840 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1842 struct oom_wait_info {
1843 struct mem_cgroup *memcg;
1847 static int memcg_oom_wake_function(wait_queue_t *wait,
1848 unsigned mode, int sync, void *arg)
1850 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1851 struct mem_cgroup *oom_wait_memcg;
1852 struct oom_wait_info *oom_wait_info;
1854 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1855 oom_wait_memcg = oom_wait_info->memcg;
1858 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1859 * Then we can use css_is_ancestor without taking care of RCU.
1861 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1862 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1864 return autoremove_wake_function(wait, mode, sync, arg);
1867 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1869 /* for filtering, pass "memcg" as argument. */
1870 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1873 static void memcg_oom_recover(struct mem_cgroup *memcg)
1875 if (memcg && atomic_read(&memcg->under_oom))
1876 memcg_wakeup_oom(memcg);
1880 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1882 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1885 struct oom_wait_info owait;
1886 bool locked, need_to_kill;
1888 owait.memcg = memcg;
1889 owait.wait.flags = 0;
1890 owait.wait.func = memcg_oom_wake_function;
1891 owait.wait.private = current;
1892 INIT_LIST_HEAD(&owait.wait.task_list);
1893 need_to_kill = true;
1894 mem_cgroup_mark_under_oom(memcg);
1896 /* At first, try to OOM lock hierarchy under memcg.*/
1897 spin_lock(&memcg_oom_lock);
1898 locked = mem_cgroup_oom_lock(memcg);
1900 * Even if signal_pending(), we can't quit charge() loop without
1901 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1902 * under OOM is always welcomed, use TASK_KILLABLE here.
1904 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1905 if (!locked || memcg->oom_kill_disable)
1906 need_to_kill = false;
1908 mem_cgroup_oom_notify(memcg);
1909 spin_unlock(&memcg_oom_lock);
1912 finish_wait(&memcg_oom_waitq, &owait.wait);
1913 mem_cgroup_out_of_memory(memcg, mask, order);
1916 finish_wait(&memcg_oom_waitq, &owait.wait);
1918 spin_lock(&memcg_oom_lock);
1920 mem_cgroup_oom_unlock(memcg);
1921 memcg_wakeup_oom(memcg);
1922 spin_unlock(&memcg_oom_lock);
1924 mem_cgroup_unmark_under_oom(memcg);
1926 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1928 /* Give chance to dying process */
1929 schedule_timeout_uninterruptible(1);
1934 * Currently used to update mapped file statistics, but the routine can be
1935 * generalized to update other statistics as well.
1937 * Notes: Race condition
1939 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1940 * it tends to be costly. But considering some conditions, we doesn't need
1941 * to do so _always_.
1943 * Considering "charge", lock_page_cgroup() is not required because all
1944 * file-stat operations happen after a page is attached to radix-tree. There
1945 * are no race with "charge".
1947 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1948 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1949 * if there are race with "uncharge". Statistics itself is properly handled
1952 * Considering "move", this is an only case we see a race. To make the race
1953 * small, we check mm->moving_account and detect there are possibility of race
1954 * If there is, we take a lock.
1957 void __mem_cgroup_begin_update_page_stat(struct page *page,
1958 bool *locked, unsigned long *flags)
1960 struct mem_cgroup *memcg;
1961 struct page_cgroup *pc;
1963 pc = lookup_page_cgroup(page);
1965 memcg = pc->mem_cgroup;
1966 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1969 * If this memory cgroup is not under account moving, we don't
1970 * need to take move_lock_mem_cgroup(). Because we already hold
1971 * rcu_read_lock(), any calls to move_account will be delayed until
1972 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1974 if (!mem_cgroup_stolen(memcg))
1977 move_lock_mem_cgroup(memcg, flags);
1978 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1979 move_unlock_mem_cgroup(memcg, flags);
1985 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1987 struct page_cgroup *pc = lookup_page_cgroup(page);
1990 * It's guaranteed that pc->mem_cgroup never changes while
1991 * lock is held because a routine modifies pc->mem_cgroup
1992 * should take move_lock_mem_cgroup().
1994 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1997 void mem_cgroup_update_page_stat(struct page *page,
1998 enum mem_cgroup_page_stat_item idx, int val)
2000 struct mem_cgroup *memcg;
2001 struct page_cgroup *pc = lookup_page_cgroup(page);
2002 unsigned long uninitialized_var(flags);
2004 if (mem_cgroup_disabled())
2007 memcg = pc->mem_cgroup;
2008 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2012 case MEMCG_NR_FILE_MAPPED:
2013 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2019 this_cpu_add(memcg->stat->count[idx], val);
2023 * size of first charge trial. "32" comes from vmscan.c's magic value.
2024 * TODO: maybe necessary to use big numbers in big irons.
2026 #define CHARGE_BATCH 32U
2027 struct memcg_stock_pcp {
2028 struct mem_cgroup *cached; /* this never be root cgroup */
2029 unsigned int nr_pages;
2030 struct work_struct work;
2031 unsigned long flags;
2032 #define FLUSHING_CACHED_CHARGE 0
2034 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2035 static DEFINE_MUTEX(percpu_charge_mutex);
2038 * Try to consume stocked charge on this cpu. If success, one page is consumed
2039 * from local stock and true is returned. If the stock is 0 or charges from a
2040 * cgroup which is not current target, returns false. This stock will be
2043 static bool consume_stock(struct mem_cgroup *memcg)
2045 struct memcg_stock_pcp *stock;
2048 stock = &get_cpu_var(memcg_stock);
2049 if (memcg == stock->cached && stock->nr_pages)
2051 else /* need to call res_counter_charge */
2053 put_cpu_var(memcg_stock);
2058 * Returns stocks cached in percpu to res_counter and reset cached information.
2060 static void drain_stock(struct memcg_stock_pcp *stock)
2062 struct mem_cgroup *old = stock->cached;
2064 if (stock->nr_pages) {
2065 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2067 res_counter_uncharge(&old->res, bytes);
2068 if (do_swap_account)
2069 res_counter_uncharge(&old->memsw, bytes);
2070 stock->nr_pages = 0;
2072 stock->cached = NULL;
2076 * This must be called under preempt disabled or must be called by
2077 * a thread which is pinned to local cpu.
2079 static void drain_local_stock(struct work_struct *dummy)
2081 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2083 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2087 * Cache charges(val) which is from res_counter, to local per_cpu area.
2088 * This will be consumed by consume_stock() function, later.
2090 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2092 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2094 if (stock->cached != memcg) { /* reset if necessary */
2096 stock->cached = memcg;
2098 stock->nr_pages += nr_pages;
2099 put_cpu_var(memcg_stock);
2103 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2104 * of the hierarchy under it. sync flag says whether we should block
2105 * until the work is done.
2107 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2111 /* Notify other cpus that system-wide "drain" is running */
2114 for_each_online_cpu(cpu) {
2115 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2116 struct mem_cgroup *memcg;
2118 memcg = stock->cached;
2119 if (!memcg || !stock->nr_pages)
2121 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2123 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2125 drain_local_stock(&stock->work);
2127 schedule_work_on(cpu, &stock->work);
2135 for_each_online_cpu(cpu) {
2136 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2137 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2138 flush_work(&stock->work);
2145 * Tries to drain stocked charges in other cpus. This function is asynchronous
2146 * and just put a work per cpu for draining localy on each cpu. Caller can
2147 * expects some charges will be back to res_counter later but cannot wait for
2150 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2153 * If someone calls draining, avoid adding more kworker runs.
2155 if (!mutex_trylock(&percpu_charge_mutex))
2157 drain_all_stock(root_memcg, false);
2158 mutex_unlock(&percpu_charge_mutex);
2161 /* This is a synchronous drain interface. */
2162 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2164 /* called when force_empty is called */
2165 mutex_lock(&percpu_charge_mutex);
2166 drain_all_stock(root_memcg, true);
2167 mutex_unlock(&percpu_charge_mutex);
2171 * This function drains percpu counter value from DEAD cpu and
2172 * move it to local cpu. Note that this function can be preempted.
2174 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2178 spin_lock(&memcg->pcp_counter_lock);
2179 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2180 long x = per_cpu(memcg->stat->count[i], cpu);
2182 per_cpu(memcg->stat->count[i], cpu) = 0;
2183 memcg->nocpu_base.count[i] += x;
2185 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2186 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2188 per_cpu(memcg->stat->events[i], cpu) = 0;
2189 memcg->nocpu_base.events[i] += x;
2191 spin_unlock(&memcg->pcp_counter_lock);
2194 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2195 unsigned long action,
2198 int cpu = (unsigned long)hcpu;
2199 struct memcg_stock_pcp *stock;
2200 struct mem_cgroup *iter;
2202 if (action == CPU_ONLINE)
2205 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2208 for_each_mem_cgroup(iter)
2209 mem_cgroup_drain_pcp_counter(iter, cpu);
2211 stock = &per_cpu(memcg_stock, cpu);
2217 /* See __mem_cgroup_try_charge() for details */
2219 CHARGE_OK, /* success */
2220 CHARGE_RETRY, /* need to retry but retry is not bad */
2221 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2222 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2223 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2226 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2227 unsigned int nr_pages, bool oom_check)
2229 unsigned long csize = nr_pages * PAGE_SIZE;
2230 struct mem_cgroup *mem_over_limit;
2231 struct res_counter *fail_res;
2232 unsigned long flags = 0;
2235 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2238 if (!do_swap_account)
2240 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2244 res_counter_uncharge(&memcg->res, csize);
2245 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2246 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2248 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2250 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2251 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2253 * Never reclaim on behalf of optional batching, retry with a
2254 * single page instead.
2256 if (nr_pages == CHARGE_BATCH)
2257 return CHARGE_RETRY;
2259 if (!(gfp_mask & __GFP_WAIT))
2260 return CHARGE_WOULDBLOCK;
2262 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2263 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2264 return CHARGE_RETRY;
2266 * Even though the limit is exceeded at this point, reclaim
2267 * may have been able to free some pages. Retry the charge
2268 * before killing the task.
2270 * Only for regular pages, though: huge pages are rather
2271 * unlikely to succeed so close to the limit, and we fall back
2272 * to regular pages anyway in case of failure.
2274 if (nr_pages == 1 && ret)
2275 return CHARGE_RETRY;
2278 * At task move, charge accounts can be doubly counted. So, it's
2279 * better to wait until the end of task_move if something is going on.
2281 if (mem_cgroup_wait_acct_move(mem_over_limit))
2282 return CHARGE_RETRY;
2284 /* If we don't need to call oom-killer at el, return immediately */
2286 return CHARGE_NOMEM;
2288 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2289 return CHARGE_OOM_DIE;
2291 return CHARGE_RETRY;
2295 * __mem_cgroup_try_charge() does
2296 * 1. detect memcg to be charged against from passed *mm and *ptr,
2297 * 2. update res_counter
2298 * 3. call memory reclaim if necessary.
2300 * In some special case, if the task is fatal, fatal_signal_pending() or
2301 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2302 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2303 * as possible without any hazards. 2: all pages should have a valid
2304 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2305 * pointer, that is treated as a charge to root_mem_cgroup.
2307 * So __mem_cgroup_try_charge() will return
2308 * 0 ... on success, filling *ptr with a valid memcg pointer.
2309 * -ENOMEM ... charge failure because of resource limits.
2310 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2312 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2313 * the oom-killer can be invoked.
2315 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2317 unsigned int nr_pages,
2318 struct mem_cgroup **ptr,
2321 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2322 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2323 struct mem_cgroup *memcg = NULL;
2327 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2328 * in system level. So, allow to go ahead dying process in addition to
2331 if (unlikely(test_thread_flag(TIF_MEMDIE)
2332 || fatal_signal_pending(current)))
2336 * We always charge the cgroup the mm_struct belongs to.
2337 * The mm_struct's mem_cgroup changes on task migration if the
2338 * thread group leader migrates. It's possible that mm is not
2339 * set, if so charge the root memcg (happens for pagecache usage).
2342 *ptr = root_mem_cgroup;
2344 if (*ptr) { /* css should be a valid one */
2346 if (mem_cgroup_is_root(memcg))
2348 if (nr_pages == 1 && consume_stock(memcg))
2350 css_get(&memcg->css);
2352 struct task_struct *p;
2355 p = rcu_dereference(mm->owner);
2357 * Because we don't have task_lock(), "p" can exit.
2358 * In that case, "memcg" can point to root or p can be NULL with
2359 * race with swapoff. Then, we have small risk of mis-accouning.
2360 * But such kind of mis-account by race always happens because
2361 * we don't have cgroup_mutex(). It's overkill and we allo that
2363 * (*) swapoff at el will charge against mm-struct not against
2364 * task-struct. So, mm->owner can be NULL.
2366 memcg = mem_cgroup_from_task(p);
2368 memcg = root_mem_cgroup;
2369 if (mem_cgroup_is_root(memcg)) {
2373 if (nr_pages == 1 && consume_stock(memcg)) {
2375 * It seems dagerous to access memcg without css_get().
2376 * But considering how consume_stok works, it's not
2377 * necessary. If consume_stock success, some charges
2378 * from this memcg are cached on this cpu. So, we
2379 * don't need to call css_get()/css_tryget() before
2380 * calling consume_stock().
2385 /* after here, we may be blocked. we need to get refcnt */
2386 if (!css_tryget(&memcg->css)) {
2396 /* If killed, bypass charge */
2397 if (fatal_signal_pending(current)) {
2398 css_put(&memcg->css);
2403 if (oom && !nr_oom_retries) {
2405 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2408 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2412 case CHARGE_RETRY: /* not in OOM situation but retry */
2414 css_put(&memcg->css);
2417 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2418 css_put(&memcg->css);
2420 case CHARGE_NOMEM: /* OOM routine works */
2422 css_put(&memcg->css);
2425 /* If oom, we never return -ENOMEM */
2428 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2429 css_put(&memcg->css);
2432 } while (ret != CHARGE_OK);
2434 if (batch > nr_pages)
2435 refill_stock(memcg, batch - nr_pages);
2436 css_put(&memcg->css);
2444 *ptr = root_mem_cgroup;
2449 * Somemtimes we have to undo a charge we got by try_charge().
2450 * This function is for that and do uncharge, put css's refcnt.
2451 * gotten by try_charge().
2453 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2454 unsigned int nr_pages)
2456 if (!mem_cgroup_is_root(memcg)) {
2457 unsigned long bytes = nr_pages * PAGE_SIZE;
2459 res_counter_uncharge(&memcg->res, bytes);
2460 if (do_swap_account)
2461 res_counter_uncharge(&memcg->memsw, bytes);
2466 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2467 * This is useful when moving usage to parent cgroup.
2469 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2470 unsigned int nr_pages)
2472 unsigned long bytes = nr_pages * PAGE_SIZE;
2474 if (mem_cgroup_is_root(memcg))
2477 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2478 if (do_swap_account)
2479 res_counter_uncharge_until(&memcg->memsw,
2480 memcg->memsw.parent, bytes);
2484 * A helper function to get mem_cgroup from ID. must be called under
2485 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2486 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2487 * called against removed memcg.)
2489 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2491 struct cgroup_subsys_state *css;
2493 /* ID 0 is unused ID */
2496 css = css_lookup(&mem_cgroup_subsys, id);
2499 return mem_cgroup_from_css(css);
2502 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2504 struct mem_cgroup *memcg = NULL;
2505 struct page_cgroup *pc;
2509 VM_BUG_ON(!PageLocked(page));
2511 pc = lookup_page_cgroup(page);
2512 lock_page_cgroup(pc);
2513 if (PageCgroupUsed(pc)) {
2514 memcg = pc->mem_cgroup;
2515 if (memcg && !css_tryget(&memcg->css))
2517 } else if (PageSwapCache(page)) {
2518 ent.val = page_private(page);
2519 id = lookup_swap_cgroup_id(ent);
2521 memcg = mem_cgroup_lookup(id);
2522 if (memcg && !css_tryget(&memcg->css))
2526 unlock_page_cgroup(pc);
2530 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2532 unsigned int nr_pages,
2533 enum charge_type ctype,
2536 struct page_cgroup *pc = lookup_page_cgroup(page);
2537 struct zone *uninitialized_var(zone);
2538 struct lruvec *lruvec;
2539 bool was_on_lru = false;
2542 lock_page_cgroup(pc);
2543 VM_BUG_ON(PageCgroupUsed(pc));
2545 * we don't need page_cgroup_lock about tail pages, becase they are not
2546 * accessed by any other context at this point.
2550 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2551 * may already be on some other mem_cgroup's LRU. Take care of it.
2554 zone = page_zone(page);
2555 spin_lock_irq(&zone->lru_lock);
2556 if (PageLRU(page)) {
2557 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2559 del_page_from_lru_list(page, lruvec, page_lru(page));
2564 pc->mem_cgroup = memcg;
2566 * We access a page_cgroup asynchronously without lock_page_cgroup().
2567 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2568 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2569 * before USED bit, we need memory barrier here.
2570 * See mem_cgroup_add_lru_list(), etc.
2573 SetPageCgroupUsed(pc);
2577 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2578 VM_BUG_ON(PageLRU(page));
2580 add_page_to_lru_list(page, lruvec, page_lru(page));
2582 spin_unlock_irq(&zone->lru_lock);
2585 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2590 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2591 unlock_page_cgroup(pc);
2594 * "charge_statistics" updated event counter. Then, check it.
2595 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2596 * if they exceeds softlimit.
2598 memcg_check_events(memcg, page);
2601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2603 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2605 * Because tail pages are not marked as "used", set it. We're under
2606 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2607 * charge/uncharge will be never happen and move_account() is done under
2608 * compound_lock(), so we don't have to take care of races.
2610 void mem_cgroup_split_huge_fixup(struct page *head)
2612 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2613 struct page_cgroup *pc;
2616 if (mem_cgroup_disabled())
2618 for (i = 1; i < HPAGE_PMD_NR; i++) {
2620 pc->mem_cgroup = head_pc->mem_cgroup;
2621 smp_wmb();/* see __commit_charge() */
2622 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2625 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2628 * mem_cgroup_move_account - move account of the page
2630 * @nr_pages: number of regular pages (>1 for huge pages)
2631 * @pc: page_cgroup of the page.
2632 * @from: mem_cgroup which the page is moved from.
2633 * @to: mem_cgroup which the page is moved to. @from != @to.
2635 * The caller must confirm following.
2636 * - page is not on LRU (isolate_page() is useful.)
2637 * - compound_lock is held when nr_pages > 1
2639 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2642 static int mem_cgroup_move_account(struct page *page,
2643 unsigned int nr_pages,
2644 struct page_cgroup *pc,
2645 struct mem_cgroup *from,
2646 struct mem_cgroup *to)
2648 unsigned long flags;
2650 bool anon = PageAnon(page);
2652 VM_BUG_ON(from == to);
2653 VM_BUG_ON(PageLRU(page));
2655 * The page is isolated from LRU. So, collapse function
2656 * will not handle this page. But page splitting can happen.
2657 * Do this check under compound_page_lock(). The caller should
2661 if (nr_pages > 1 && !PageTransHuge(page))
2664 lock_page_cgroup(pc);
2667 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2670 move_lock_mem_cgroup(from, &flags);
2672 if (!anon && page_mapped(page)) {
2673 /* Update mapped_file data for mem_cgroup */
2675 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2676 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2679 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2681 /* caller should have done css_get */
2682 pc->mem_cgroup = to;
2683 mem_cgroup_charge_statistics(to, anon, nr_pages);
2684 move_unlock_mem_cgroup(from, &flags);
2687 unlock_page_cgroup(pc);
2691 memcg_check_events(to, page);
2692 memcg_check_events(from, page);
2698 * mem_cgroup_move_parent - moves page to the parent group
2699 * @page: the page to move
2700 * @pc: page_cgroup of the page
2701 * @child: page's cgroup
2703 * move charges to its parent or the root cgroup if the group has no
2704 * parent (aka use_hierarchy==0).
2705 * Although this might fail (get_page_unless_zero, isolate_lru_page or
2706 * mem_cgroup_move_account fails) the failure is always temporary and
2707 * it signals a race with a page removal/uncharge or migration. In the
2708 * first case the page is on the way out and it will vanish from the LRU
2709 * on the next attempt and the call should be retried later.
2710 * Isolation from the LRU fails only if page has been isolated from
2711 * the LRU since we looked at it and that usually means either global
2712 * reclaim or migration going on. The page will either get back to the
2714 * Finaly mem_cgroup_move_account fails only if the page got uncharged
2715 * (!PageCgroupUsed) or moved to a different group. The page will
2716 * disappear in the next attempt.
2718 static int mem_cgroup_move_parent(struct page *page,
2719 struct page_cgroup *pc,
2720 struct mem_cgroup *child)
2722 struct mem_cgroup *parent;
2723 unsigned int nr_pages;
2724 unsigned long uninitialized_var(flags);
2727 VM_BUG_ON(mem_cgroup_is_root(child));
2730 if (!get_page_unless_zero(page))
2732 if (isolate_lru_page(page))
2735 nr_pages = hpage_nr_pages(page);
2737 parent = parent_mem_cgroup(child);
2739 * If no parent, move charges to root cgroup.
2742 parent = root_mem_cgroup;
2745 VM_BUG_ON(!PageTransHuge(page));
2746 flags = compound_lock_irqsave(page);
2749 ret = mem_cgroup_move_account(page, nr_pages,
2752 __mem_cgroup_cancel_local_charge(child, nr_pages);
2755 compound_unlock_irqrestore(page, flags);
2756 putback_lru_page(page);
2764 * Charge the memory controller for page usage.
2766 * 0 if the charge was successful
2767 * < 0 if the cgroup is over its limit
2769 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2770 gfp_t gfp_mask, enum charge_type ctype)
2772 struct mem_cgroup *memcg = NULL;
2773 unsigned int nr_pages = 1;
2777 if (PageTransHuge(page)) {
2778 nr_pages <<= compound_order(page);
2779 VM_BUG_ON(!PageTransHuge(page));
2781 * Never OOM-kill a process for a huge page. The
2782 * fault handler will fall back to regular pages.
2787 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2790 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2794 int mem_cgroup_newpage_charge(struct page *page,
2795 struct mm_struct *mm, gfp_t gfp_mask)
2797 if (mem_cgroup_disabled())
2799 VM_BUG_ON(page_mapped(page));
2800 VM_BUG_ON(page->mapping && !PageAnon(page));
2802 return mem_cgroup_charge_common(page, mm, gfp_mask,
2803 MEM_CGROUP_CHARGE_TYPE_ANON);
2807 * While swap-in, try_charge -> commit or cancel, the page is locked.
2808 * And when try_charge() successfully returns, one refcnt to memcg without
2809 * struct page_cgroup is acquired. This refcnt will be consumed by
2810 * "commit()" or removed by "cancel()"
2812 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2815 struct mem_cgroup **memcgp)
2817 struct mem_cgroup *memcg;
2818 struct page_cgroup *pc;
2821 pc = lookup_page_cgroup(page);
2823 * Every swap fault against a single page tries to charge the
2824 * page, bail as early as possible. shmem_unuse() encounters
2825 * already charged pages, too. The USED bit is protected by
2826 * the page lock, which serializes swap cache removal, which
2827 * in turn serializes uncharging.
2829 if (PageCgroupUsed(pc))
2831 if (!do_swap_account)
2833 memcg = try_get_mem_cgroup_from_page(page);
2837 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2838 css_put(&memcg->css);
2843 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2849 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2850 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2853 if (mem_cgroup_disabled())
2856 * A racing thread's fault, or swapoff, may have already
2857 * updated the pte, and even removed page from swap cache: in
2858 * those cases unuse_pte()'s pte_same() test will fail; but
2859 * there's also a KSM case which does need to charge the page.
2861 if (!PageSwapCache(page)) {
2864 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2869 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2872 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2874 if (mem_cgroup_disabled())
2878 __mem_cgroup_cancel_charge(memcg, 1);
2882 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2883 enum charge_type ctype)
2885 if (mem_cgroup_disabled())
2890 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2892 * Now swap is on-memory. This means this page may be
2893 * counted both as mem and swap....double count.
2894 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2895 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2896 * may call delete_from_swap_cache() before reach here.
2898 if (do_swap_account && PageSwapCache(page)) {
2899 swp_entry_t ent = {.val = page_private(page)};
2900 mem_cgroup_uncharge_swap(ent);
2904 void mem_cgroup_commit_charge_swapin(struct page *page,
2905 struct mem_cgroup *memcg)
2907 __mem_cgroup_commit_charge_swapin(page, memcg,
2908 MEM_CGROUP_CHARGE_TYPE_ANON);
2911 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2914 struct mem_cgroup *memcg = NULL;
2915 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2918 if (mem_cgroup_disabled())
2920 if (PageCompound(page))
2923 if (!PageSwapCache(page))
2924 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2925 else { /* page is swapcache/shmem */
2926 ret = __mem_cgroup_try_charge_swapin(mm, page,
2929 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2934 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2935 unsigned int nr_pages,
2936 const enum charge_type ctype)
2938 struct memcg_batch_info *batch = NULL;
2939 bool uncharge_memsw = true;
2941 /* If swapout, usage of swap doesn't decrease */
2942 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2943 uncharge_memsw = false;
2945 batch = ¤t->memcg_batch;
2947 * In usual, we do css_get() when we remember memcg pointer.
2948 * But in this case, we keep res->usage until end of a series of
2949 * uncharges. Then, it's ok to ignore memcg's refcnt.
2952 batch->memcg = memcg;
2954 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2955 * In those cases, all pages freed continuously can be expected to be in
2956 * the same cgroup and we have chance to coalesce uncharges.
2957 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2958 * because we want to do uncharge as soon as possible.
2961 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2962 goto direct_uncharge;
2965 goto direct_uncharge;
2968 * In typical case, batch->memcg == mem. This means we can
2969 * merge a series of uncharges to an uncharge of res_counter.
2970 * If not, we uncharge res_counter ony by one.
2972 if (batch->memcg != memcg)
2973 goto direct_uncharge;
2974 /* remember freed charge and uncharge it later */
2977 batch->memsw_nr_pages++;
2980 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2982 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2983 if (unlikely(batch->memcg != memcg))
2984 memcg_oom_recover(memcg);
2988 * uncharge if !page_mapped(page)
2990 static struct mem_cgroup *
2991 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2994 struct mem_cgroup *memcg = NULL;
2995 unsigned int nr_pages = 1;
2996 struct page_cgroup *pc;
2999 if (mem_cgroup_disabled())
3002 VM_BUG_ON(PageSwapCache(page));
3004 if (PageTransHuge(page)) {
3005 nr_pages <<= compound_order(page);
3006 VM_BUG_ON(!PageTransHuge(page));
3009 * Check if our page_cgroup is valid
3011 pc = lookup_page_cgroup(page);
3012 if (unlikely(!PageCgroupUsed(pc)))
3015 lock_page_cgroup(pc);
3017 memcg = pc->mem_cgroup;
3019 if (!PageCgroupUsed(pc))
3022 anon = PageAnon(page);
3025 case MEM_CGROUP_CHARGE_TYPE_ANON:
3027 * Generally PageAnon tells if it's the anon statistics to be
3028 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3029 * used before page reached the stage of being marked PageAnon.
3033 case MEM_CGROUP_CHARGE_TYPE_DROP:
3034 /* See mem_cgroup_prepare_migration() */
3035 if (page_mapped(page))
3038 * Pages under migration may not be uncharged. But
3039 * end_migration() /must/ be the one uncharging the
3040 * unused post-migration page and so it has to call
3041 * here with the migration bit still set. See the
3042 * res_counter handling below.
3044 if (!end_migration && PageCgroupMigration(pc))
3047 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3048 if (!PageAnon(page)) { /* Shared memory */
3049 if (page->mapping && !page_is_file_cache(page))
3051 } else if (page_mapped(page)) /* Anon */
3058 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3060 ClearPageCgroupUsed(pc);
3062 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3063 * freed from LRU. This is safe because uncharged page is expected not
3064 * to be reused (freed soon). Exception is SwapCache, it's handled by
3065 * special functions.
3068 unlock_page_cgroup(pc);
3070 * even after unlock, we have memcg->res.usage here and this memcg
3071 * will never be freed.
3073 memcg_check_events(memcg, page);
3074 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3075 mem_cgroup_swap_statistics(memcg, true);
3076 mem_cgroup_get(memcg);
3079 * Migration does not charge the res_counter for the
3080 * replacement page, so leave it alone when phasing out the
3081 * page that is unused after the migration.
3083 if (!end_migration && !mem_cgroup_is_root(memcg))
3084 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3089 unlock_page_cgroup(pc);
3093 void mem_cgroup_uncharge_page(struct page *page)
3096 if (page_mapped(page))
3098 VM_BUG_ON(page->mapping && !PageAnon(page));
3099 if (PageSwapCache(page))
3101 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3104 void mem_cgroup_uncharge_cache_page(struct page *page)
3106 VM_BUG_ON(page_mapped(page));
3107 VM_BUG_ON(page->mapping);
3108 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3112 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3113 * In that cases, pages are freed continuously and we can expect pages
3114 * are in the same memcg. All these calls itself limits the number of
3115 * pages freed at once, then uncharge_start/end() is called properly.
3116 * This may be called prural(2) times in a context,
3119 void mem_cgroup_uncharge_start(void)
3121 current->memcg_batch.do_batch++;
3122 /* We can do nest. */
3123 if (current->memcg_batch.do_batch == 1) {
3124 current->memcg_batch.memcg = NULL;
3125 current->memcg_batch.nr_pages = 0;
3126 current->memcg_batch.memsw_nr_pages = 0;
3130 void mem_cgroup_uncharge_end(void)
3132 struct memcg_batch_info *batch = ¤t->memcg_batch;
3134 if (!batch->do_batch)
3138 if (batch->do_batch) /* If stacked, do nothing. */
3144 * This "batch->memcg" is valid without any css_get/put etc...
3145 * bacause we hide charges behind us.
3147 if (batch->nr_pages)
3148 res_counter_uncharge(&batch->memcg->res,
3149 batch->nr_pages * PAGE_SIZE);
3150 if (batch->memsw_nr_pages)
3151 res_counter_uncharge(&batch->memcg->memsw,
3152 batch->memsw_nr_pages * PAGE_SIZE);
3153 memcg_oom_recover(batch->memcg);
3154 /* forget this pointer (for sanity check) */
3155 batch->memcg = NULL;
3160 * called after __delete_from_swap_cache() and drop "page" account.
3161 * memcg information is recorded to swap_cgroup of "ent"
3164 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3166 struct mem_cgroup *memcg;
3167 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3169 if (!swapout) /* this was a swap cache but the swap is unused ! */
3170 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3172 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3175 * record memcg information, if swapout && memcg != NULL,
3176 * mem_cgroup_get() was called in uncharge().
3178 if (do_swap_account && swapout && memcg)
3179 swap_cgroup_record(ent, css_id(&memcg->css));
3183 #ifdef CONFIG_MEMCG_SWAP
3185 * called from swap_entry_free(). remove record in swap_cgroup and
3186 * uncharge "memsw" account.
3188 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3190 struct mem_cgroup *memcg;
3193 if (!do_swap_account)
3196 id = swap_cgroup_record(ent, 0);
3198 memcg = mem_cgroup_lookup(id);
3201 * We uncharge this because swap is freed.
3202 * This memcg can be obsolete one. We avoid calling css_tryget
3204 if (!mem_cgroup_is_root(memcg))
3205 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3206 mem_cgroup_swap_statistics(memcg, false);
3207 mem_cgroup_put(memcg);
3213 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3214 * @entry: swap entry to be moved
3215 * @from: mem_cgroup which the entry is moved from
3216 * @to: mem_cgroup which the entry is moved to
3218 * It succeeds only when the swap_cgroup's record for this entry is the same
3219 * as the mem_cgroup's id of @from.
3221 * Returns 0 on success, -EINVAL on failure.
3223 * The caller must have charged to @to, IOW, called res_counter_charge() about
3224 * both res and memsw, and called css_get().
3226 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3227 struct mem_cgroup *from, struct mem_cgroup *to)
3229 unsigned short old_id, new_id;
3231 old_id = css_id(&from->css);
3232 new_id = css_id(&to->css);
3234 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3235 mem_cgroup_swap_statistics(from, false);
3236 mem_cgroup_swap_statistics(to, true);
3238 * This function is only called from task migration context now.
3239 * It postpones res_counter and refcount handling till the end
3240 * of task migration(mem_cgroup_clear_mc()) for performance
3241 * improvement. But we cannot postpone mem_cgroup_get(to)
3242 * because if the process that has been moved to @to does
3243 * swap-in, the refcount of @to might be decreased to 0.
3251 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3252 struct mem_cgroup *from, struct mem_cgroup *to)
3259 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3262 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3263 struct mem_cgroup **memcgp)
3265 struct mem_cgroup *memcg = NULL;
3266 struct page_cgroup *pc;
3267 enum charge_type ctype;
3271 VM_BUG_ON(PageTransHuge(page));
3272 if (mem_cgroup_disabled())
3275 pc = lookup_page_cgroup(page);
3276 lock_page_cgroup(pc);
3277 if (PageCgroupUsed(pc)) {
3278 memcg = pc->mem_cgroup;
3279 css_get(&memcg->css);
3281 * At migrating an anonymous page, its mapcount goes down
3282 * to 0 and uncharge() will be called. But, even if it's fully
3283 * unmapped, migration may fail and this page has to be
3284 * charged again. We set MIGRATION flag here and delay uncharge
3285 * until end_migration() is called
3287 * Corner Case Thinking
3289 * When the old page was mapped as Anon and it's unmap-and-freed
3290 * while migration was ongoing.
3291 * If unmap finds the old page, uncharge() of it will be delayed
3292 * until end_migration(). If unmap finds a new page, it's
3293 * uncharged when it make mapcount to be 1->0. If unmap code
3294 * finds swap_migration_entry, the new page will not be mapped
3295 * and end_migration() will find it(mapcount==0).
3298 * When the old page was mapped but migraion fails, the kernel
3299 * remaps it. A charge for it is kept by MIGRATION flag even
3300 * if mapcount goes down to 0. We can do remap successfully
3301 * without charging it again.
3304 * The "old" page is under lock_page() until the end of
3305 * migration, so, the old page itself will not be swapped-out.
3306 * If the new page is swapped out before end_migraton, our
3307 * hook to usual swap-out path will catch the event.
3310 SetPageCgroupMigration(pc);
3312 unlock_page_cgroup(pc);
3314 * If the page is not charged at this point,
3322 * We charge new page before it's used/mapped. So, even if unlock_page()
3323 * is called before end_migration, we can catch all events on this new
3324 * page. In the case new page is migrated but not remapped, new page's
3325 * mapcount will be finally 0 and we call uncharge in end_migration().
3328 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3330 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3332 * The page is committed to the memcg, but it's not actually
3333 * charged to the res_counter since we plan on replacing the
3334 * old one and only one page is going to be left afterwards.
3336 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3339 /* remove redundant charge if migration failed*/
3340 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3341 struct page *oldpage, struct page *newpage, bool migration_ok)
3343 struct page *used, *unused;
3344 struct page_cgroup *pc;
3350 if (!migration_ok) {
3357 anon = PageAnon(used);
3358 __mem_cgroup_uncharge_common(unused,
3359 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3360 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3362 css_put(&memcg->css);
3364 * We disallowed uncharge of pages under migration because mapcount
3365 * of the page goes down to zero, temporarly.
3366 * Clear the flag and check the page should be charged.
3368 pc = lookup_page_cgroup(oldpage);
3369 lock_page_cgroup(pc);
3370 ClearPageCgroupMigration(pc);
3371 unlock_page_cgroup(pc);
3374 * If a page is a file cache, radix-tree replacement is very atomic
3375 * and we can skip this check. When it was an Anon page, its mapcount
3376 * goes down to 0. But because we added MIGRATION flage, it's not
3377 * uncharged yet. There are several case but page->mapcount check
3378 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3379 * check. (see prepare_charge() also)
3382 mem_cgroup_uncharge_page(used);
3386 * At replace page cache, newpage is not under any memcg but it's on
3387 * LRU. So, this function doesn't touch res_counter but handles LRU
3388 * in correct way. Both pages are locked so we cannot race with uncharge.
3390 void mem_cgroup_replace_page_cache(struct page *oldpage,
3391 struct page *newpage)
3393 struct mem_cgroup *memcg = NULL;
3394 struct page_cgroup *pc;
3395 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3397 if (mem_cgroup_disabled())
3400 pc = lookup_page_cgroup(oldpage);
3401 /* fix accounting on old pages */
3402 lock_page_cgroup(pc);
3403 if (PageCgroupUsed(pc)) {
3404 memcg = pc->mem_cgroup;
3405 mem_cgroup_charge_statistics(memcg, false, -1);
3406 ClearPageCgroupUsed(pc);
3408 unlock_page_cgroup(pc);
3411 * When called from shmem_replace_page(), in some cases the
3412 * oldpage has already been charged, and in some cases not.
3417 * Even if newpage->mapping was NULL before starting replacement,
3418 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3419 * LRU while we overwrite pc->mem_cgroup.
3421 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3424 #ifdef CONFIG_DEBUG_VM
3425 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3427 struct page_cgroup *pc;
3429 pc = lookup_page_cgroup(page);
3431 * Can be NULL while feeding pages into the page allocator for
3432 * the first time, i.e. during boot or memory hotplug;
3433 * or when mem_cgroup_disabled().
3435 if (likely(pc) && PageCgroupUsed(pc))
3440 bool mem_cgroup_bad_page_check(struct page *page)
3442 if (mem_cgroup_disabled())
3445 return lookup_page_cgroup_used(page) != NULL;
3448 void mem_cgroup_print_bad_page(struct page *page)
3450 struct page_cgroup *pc;
3452 pc = lookup_page_cgroup_used(page);
3454 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3455 pc, pc->flags, pc->mem_cgroup);
3460 static DEFINE_MUTEX(set_limit_mutex);
3462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3463 unsigned long long val)
3466 u64 memswlimit, memlimit;
3468 int children = mem_cgroup_count_children(memcg);
3469 u64 curusage, oldusage;
3473 * For keeping hierarchical_reclaim simple, how long we should retry
3474 * is depends on callers. We set our retry-count to be function
3475 * of # of children which we should visit in this loop.
3477 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3479 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3482 while (retry_count) {
3483 if (signal_pending(current)) {
3488 * Rather than hide all in some function, I do this in
3489 * open coded manner. You see what this really does.
3490 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3492 mutex_lock(&set_limit_mutex);
3493 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3494 if (memswlimit < val) {