1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
59 #include <net/tcp_memcontrol.h>
61 #include <asm/uaccess.h>
63 #include <trace/events/vmscan.h>
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
79 static int really_do_swap_account __initdata = 0;
83 #define do_swap_account 0
88 * Statistics for memory cgroup.
90 enum mem_cgroup_stat_index {
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 MEM_CGROUP_STAT_NSTATS,
101 static const char * const mem_cgroup_stat_names[] = {
108 enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
113 MEM_CGROUP_EVENTS_NSTATS,
116 static const char * const mem_cgroup_events_names[] = {
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
146 struct mem_cgroup_reclaim_iter {
147 /* css_id of the last scanned hierarchy member */
149 /* scan generation, increased every round-trip */
150 unsigned int generation;
154 * per-zone information in memory controller.
156 struct mem_cgroup_per_zone {
157 struct lruvec lruvec;
158 unsigned long lru_size[NR_LRU_LISTS];
160 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
162 struct rb_node tree_node; /* RB tree node */
163 unsigned long long usage_in_excess;/* Set to the value by which */
164 /* the soft limit is exceeded*/
166 struct mem_cgroup *memcg; /* Back pointer, we cannot */
167 /* use container_of */
170 struct mem_cgroup_per_node {
171 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
174 struct mem_cgroup_lru_info {
175 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
179 * Cgroups above their limits are maintained in a RB-Tree, independent of
180 * their hierarchy representation
183 struct mem_cgroup_tree_per_zone {
184 struct rb_root rb_root;
188 struct mem_cgroup_tree_per_node {
189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
192 struct mem_cgroup_tree {
193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
196 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 struct mem_cgroup_threshold {
199 struct eventfd_ctx *eventfd;
204 struct mem_cgroup_threshold_ary {
205 /* An array index points to threshold just below or equal to usage. */
206 int current_threshold;
207 /* Size of entries[] */
209 /* Array of thresholds */
210 struct mem_cgroup_threshold entries[0];
213 struct mem_cgroup_thresholds {
214 /* Primary thresholds array */
215 struct mem_cgroup_threshold_ary *primary;
217 * Spare threshold array.
218 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 * It must be able to store at least primary->size - 1 entries.
221 struct mem_cgroup_threshold_ary *spare;
225 struct mem_cgroup_eventfd_list {
226 struct list_head list;
227 struct eventfd_ctx *eventfd;
230 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
239 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 * we hit the water mark. May be even add a low water mark, such that
241 * no reclaim occurs from a cgroup at it's low water mark, this is
242 * a feature that will be implemented much later in the future.
245 struct cgroup_subsys_state css;
247 * the counter to account for memory usage
249 struct res_counter res;
253 * the counter to account for mem+swap usage.
255 struct res_counter memsw;
258 * rcu_freeing is used only when freeing struct mem_cgroup,
259 * so put it into a union to avoid wasting more memory.
260 * It must be disjoint from the css field. It could be
261 * in a union with the res field, but res plays a much
262 * larger part in mem_cgroup life than memsw, and might
263 * be of interest, even at time of free, when debugging.
264 * So share rcu_head with the less interesting memsw.
266 struct rcu_head rcu_freeing;
268 * We also need some space for a worker in deferred freeing.
269 * By the time we call it, rcu_freeing is no longer in use.
271 struct work_struct work_freeing;
275 * the counter to account for kernel memory usage.
277 struct res_counter kmem;
279 * Per cgroup active and inactive list, similar to the
280 * per zone LRU lists.
282 struct mem_cgroup_lru_info info;
283 int last_scanned_node;
285 nodemask_t scan_nodes;
286 atomic_t numainfo_events;
287 atomic_t numainfo_updating;
290 * Should the accounting and control be hierarchical, per subtree?
293 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
301 /* OOM-Killer disable */
302 int oom_kill_disable;
304 /* set when res.limit == memsw.limit */
305 bool memsw_is_minimum;
307 /* protect arrays of thresholds */
308 struct mutex thresholds_lock;
310 /* thresholds for memory usage. RCU-protected */
311 struct mem_cgroup_thresholds thresholds;
313 /* thresholds for mem+swap usage. RCU-protected */
314 struct mem_cgroup_thresholds memsw_thresholds;
316 /* For oom notifier event fd */
317 struct list_head oom_notify;
320 * Should we move charges of a task when a task is moved into this
321 * mem_cgroup ? And what type of charges should we move ?
323 unsigned long move_charge_at_immigrate;
325 * set > 0 if pages under this cgroup are moving to other cgroup.
327 atomic_t moving_account;
328 /* taken only while moving_account > 0 */
329 spinlock_t move_lock;
333 struct mem_cgroup_stat_cpu __percpu *stat;
335 * used when a cpu is offlined or other synchronizations
336 * See mem_cgroup_read_stat().
338 struct mem_cgroup_stat_cpu nocpu_base;
339 spinlock_t pcp_counter_lock;
341 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
342 struct tcp_memcontrol tcp_mem;
344 #if defined(CONFIG_MEMCG_KMEM)
345 /* analogous to slab_common's slab_caches list. per-memcg */
346 struct list_head memcg_slab_caches;
347 /* Not a spinlock, we can take a lot of time walking the list */
348 struct mutex slab_caches_mutex;
349 /* Index in the kmem_cache->memcg_params->memcg_caches array */
354 /* internal only representation about the status of kmem accounting. */
356 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
357 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
358 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
361 /* We account when limit is on, but only after call sites are patched */
362 #define KMEM_ACCOUNTED_MASK \
363 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 #ifdef CONFIG_MEMCG_KMEM
366 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
371 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
376 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
381 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
386 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
389 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
392 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
394 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
395 &memcg->kmem_account_flags);
399 /* Stuffs for move charges at task migration. */
401 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
402 * left-shifted bitmap of these types.
405 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
406 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
410 /* "mc" and its members are protected by cgroup_mutex */
411 static struct move_charge_struct {
412 spinlock_t lock; /* for from, to */
413 struct mem_cgroup *from;
414 struct mem_cgroup *to;
415 unsigned long precharge;
416 unsigned long moved_charge;
417 unsigned long moved_swap;
418 struct task_struct *moving_task; /* a task moving charges */
419 wait_queue_head_t waitq; /* a waitq for other context */
421 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
422 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
425 static bool move_anon(void)
427 return test_bit(MOVE_CHARGE_TYPE_ANON,
428 &mc.to->move_charge_at_immigrate);
431 static bool move_file(void)
433 return test_bit(MOVE_CHARGE_TYPE_FILE,
434 &mc.to->move_charge_at_immigrate);
438 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
439 * limit reclaim to prevent infinite loops, if they ever occur.
441 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
442 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
445 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
446 MEM_CGROUP_CHARGE_TYPE_ANON,
447 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
448 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
452 /* for encoding cft->private value on file */
460 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
461 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
462 #define MEMFILE_ATTR(val) ((val) & 0xffff)
463 /* Used for OOM nofiier */
464 #define OOM_CONTROL (0)
467 * Reclaim flags for mem_cgroup_hierarchical_reclaim
469 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
470 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
471 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
472 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
474 static void mem_cgroup_get(struct mem_cgroup *memcg);
475 static void mem_cgroup_put(struct mem_cgroup *memcg);
478 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
480 return container_of(s, struct mem_cgroup, css);
483 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
485 return (memcg == root_mem_cgroup);
488 /* Writing them here to avoid exposing memcg's inner layout */
489 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
491 void sock_update_memcg(struct sock *sk)
493 if (mem_cgroup_sockets_enabled) {
494 struct mem_cgroup *memcg;
495 struct cg_proto *cg_proto;
497 BUG_ON(!sk->sk_prot->proto_cgroup);
499 /* Socket cloning can throw us here with sk_cgrp already
500 * filled. It won't however, necessarily happen from
501 * process context. So the test for root memcg given
502 * the current task's memcg won't help us in this case.
504 * Respecting the original socket's memcg is a better
505 * decision in this case.
508 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
509 mem_cgroup_get(sk->sk_cgrp->memcg);
514 memcg = mem_cgroup_from_task(current);
515 cg_proto = sk->sk_prot->proto_cgroup(memcg);
516 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
517 mem_cgroup_get(memcg);
518 sk->sk_cgrp = cg_proto;
523 EXPORT_SYMBOL(sock_update_memcg);
525 void sock_release_memcg(struct sock *sk)
527 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
528 struct mem_cgroup *memcg;
529 WARN_ON(!sk->sk_cgrp->memcg);
530 memcg = sk->sk_cgrp->memcg;
531 mem_cgroup_put(memcg);
535 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
537 if (!memcg || mem_cgroup_is_root(memcg))
540 return &memcg->tcp_mem.cg_proto;
542 EXPORT_SYMBOL(tcp_proto_cgroup);
544 static void disarm_sock_keys(struct mem_cgroup *memcg)
546 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
548 static_key_slow_dec(&memcg_socket_limit_enabled);
551 static void disarm_sock_keys(struct mem_cgroup *memcg)
556 #ifdef CONFIG_MEMCG_KMEM
558 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
559 * There are two main reasons for not using the css_id for this:
560 * 1) this works better in sparse environments, where we have a lot of memcgs,
561 * but only a few kmem-limited. Or also, if we have, for instance, 200
562 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
563 * 200 entry array for that.
565 * 2) In order not to violate the cgroup API, we would like to do all memory
566 * allocation in ->create(). At that point, we haven't yet allocated the
567 * css_id. Having a separate index prevents us from messing with the cgroup
570 * The current size of the caches array is stored in
571 * memcg_limited_groups_array_size. It will double each time we have to
574 static DEFINE_IDA(kmem_limited_groups);
575 int memcg_limited_groups_array_size;
578 * MIN_SIZE is different than 1, because we would like to avoid going through
579 * the alloc/free process all the time. In a small machine, 4 kmem-limited
580 * cgroups is a reasonable guess. In the future, it could be a parameter or
581 * tunable, but that is strictly not necessary.
583 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
584 * this constant directly from cgroup, but it is understandable that this is
585 * better kept as an internal representation in cgroup.c. In any case, the
586 * css_id space is not getting any smaller, and we don't have to necessarily
587 * increase ours as well if it increases.
589 #define MEMCG_CACHES_MIN_SIZE 4
590 #define MEMCG_CACHES_MAX_SIZE 65535
593 * A lot of the calls to the cache allocation functions are expected to be
594 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
595 * conditional to this static branch, we'll have to allow modules that does
596 * kmem_cache_alloc and the such to see this symbol as well
598 struct static_key memcg_kmem_enabled_key;
599 EXPORT_SYMBOL(memcg_kmem_enabled_key);
601 static void disarm_kmem_keys(struct mem_cgroup *memcg)
603 if (memcg_kmem_is_active(memcg)) {
604 static_key_slow_dec(&memcg_kmem_enabled_key);
605 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
608 * This check can't live in kmem destruction function,
609 * since the charges will outlive the cgroup
611 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
614 static void disarm_kmem_keys(struct mem_cgroup *memcg)
617 #endif /* CONFIG_MEMCG_KMEM */
619 static void disarm_static_keys(struct mem_cgroup *memcg)
621 disarm_sock_keys(memcg);
622 disarm_kmem_keys(memcg);
625 static void drain_all_stock_async(struct mem_cgroup *memcg);
627 static struct mem_cgroup_per_zone *
628 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
630 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
633 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
638 static struct mem_cgroup_per_zone *
639 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
641 int nid = page_to_nid(page);
642 int zid = page_zonenum(page);
644 return mem_cgroup_zoneinfo(memcg, nid, zid);
647 static struct mem_cgroup_tree_per_zone *
648 soft_limit_tree_node_zone(int nid, int zid)
650 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
653 static struct mem_cgroup_tree_per_zone *
654 soft_limit_tree_from_page(struct page *page)
656 int nid = page_to_nid(page);
657 int zid = page_zonenum(page);
659 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
663 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
664 struct mem_cgroup_per_zone *mz,
665 struct mem_cgroup_tree_per_zone *mctz,
666 unsigned long long new_usage_in_excess)
668 struct rb_node **p = &mctz->rb_root.rb_node;
669 struct rb_node *parent = NULL;
670 struct mem_cgroup_per_zone *mz_node;
675 mz->usage_in_excess = new_usage_in_excess;
676 if (!mz->usage_in_excess)
680 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
682 if (mz->usage_in_excess < mz_node->usage_in_excess)
685 * We can't avoid mem cgroups that are over their soft
686 * limit by the same amount
688 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
691 rb_link_node(&mz->tree_node, parent, p);
692 rb_insert_color(&mz->tree_node, &mctz->rb_root);
697 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
698 struct mem_cgroup_per_zone *mz,
699 struct mem_cgroup_tree_per_zone *mctz)
703 rb_erase(&mz->tree_node, &mctz->rb_root);
708 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
709 struct mem_cgroup_per_zone *mz,
710 struct mem_cgroup_tree_per_zone *mctz)
712 spin_lock(&mctz->lock);
713 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
714 spin_unlock(&mctz->lock);
718 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
720 unsigned long long excess;
721 struct mem_cgroup_per_zone *mz;
722 struct mem_cgroup_tree_per_zone *mctz;
723 int nid = page_to_nid(page);
724 int zid = page_zonenum(page);
725 mctz = soft_limit_tree_from_page(page);
728 * Necessary to update all ancestors when hierarchy is used.
729 * because their event counter is not touched.
731 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
732 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
733 excess = res_counter_soft_limit_excess(&memcg->res);
735 * We have to update the tree if mz is on RB-tree or
736 * mem is over its softlimit.
738 if (excess || mz->on_tree) {
739 spin_lock(&mctz->lock);
740 /* if on-tree, remove it */
742 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
744 * Insert again. mz->usage_in_excess will be updated.
745 * If excess is 0, no tree ops.
747 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
748 spin_unlock(&mctz->lock);
753 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
756 struct mem_cgroup_per_zone *mz;
757 struct mem_cgroup_tree_per_zone *mctz;
759 for_each_node(node) {
760 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
761 mz = mem_cgroup_zoneinfo(memcg, node, zone);
762 mctz = soft_limit_tree_node_zone(node, zone);
763 mem_cgroup_remove_exceeded(memcg, mz, mctz);
768 static struct mem_cgroup_per_zone *
769 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
771 struct rb_node *rightmost = NULL;
772 struct mem_cgroup_per_zone *mz;
776 rightmost = rb_last(&mctz->rb_root);
778 goto done; /* Nothing to reclaim from */
780 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
782 * Remove the node now but someone else can add it back,
783 * we will to add it back at the end of reclaim to its correct
784 * position in the tree.
786 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
787 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
788 !css_tryget(&mz->memcg->css))
794 static struct mem_cgroup_per_zone *
795 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
797 struct mem_cgroup_per_zone *mz;
799 spin_lock(&mctz->lock);
800 mz = __mem_cgroup_largest_soft_limit_node(mctz);
801 spin_unlock(&mctz->lock);
806 * Implementation Note: reading percpu statistics for memcg.
808 * Both of vmstat[] and percpu_counter has threshold and do periodic
809 * synchronization to implement "quick" read. There are trade-off between
810 * reading cost and precision of value. Then, we may have a chance to implement
811 * a periodic synchronizion of counter in memcg's counter.
813 * But this _read() function is used for user interface now. The user accounts
814 * memory usage by memory cgroup and he _always_ requires exact value because
815 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
816 * have to visit all online cpus and make sum. So, for now, unnecessary
817 * synchronization is not implemented. (just implemented for cpu hotplug)
819 * If there are kernel internal actions which can make use of some not-exact
820 * value, and reading all cpu value can be performance bottleneck in some
821 * common workload, threashold and synchonization as vmstat[] should be
824 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
825 enum mem_cgroup_stat_index idx)
831 for_each_online_cpu(cpu)
832 val += per_cpu(memcg->stat->count[idx], cpu);
833 #ifdef CONFIG_HOTPLUG_CPU
834 spin_lock(&memcg->pcp_counter_lock);
835 val += memcg->nocpu_base.count[idx];
836 spin_unlock(&memcg->pcp_counter_lock);
842 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
845 int val = (charge) ? 1 : -1;
846 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
849 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
850 enum mem_cgroup_events_index idx)
852 unsigned long val = 0;
855 for_each_online_cpu(cpu)
856 val += per_cpu(memcg->stat->events[idx], cpu);
857 #ifdef CONFIG_HOTPLUG_CPU
858 spin_lock(&memcg->pcp_counter_lock);
859 val += memcg->nocpu_base.events[idx];
860 spin_unlock(&memcg->pcp_counter_lock);
865 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
866 bool anon, int nr_pages)
871 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
872 * counted as CACHE even if it's on ANON LRU.
875 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
878 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
881 /* pagein of a big page is an event. So, ignore page size */
883 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
885 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
886 nr_pages = -nr_pages; /* for event */
889 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
895 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
897 struct mem_cgroup_per_zone *mz;
899 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
900 return mz->lru_size[lru];
904 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
905 unsigned int lru_mask)
907 struct mem_cgroup_per_zone *mz;
909 unsigned long ret = 0;
911 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
914 if (BIT(lru) & lru_mask)
915 ret += mz->lru_size[lru];
921 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
922 int nid, unsigned int lru_mask)
927 for (zid = 0; zid < MAX_NR_ZONES; zid++)
928 total += mem_cgroup_zone_nr_lru_pages(memcg,
934 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
935 unsigned int lru_mask)
940 for_each_node_state(nid, N_MEMORY)
941 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
945 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
946 enum mem_cgroup_events_target target)
948 unsigned long val, next;
950 val = __this_cpu_read(memcg->stat->nr_page_events);
951 next = __this_cpu_read(memcg->stat->targets[target]);
952 /* from time_after() in jiffies.h */
953 if ((long)next - (long)val < 0) {
955 case MEM_CGROUP_TARGET_THRESH:
956 next = val + THRESHOLDS_EVENTS_TARGET;
958 case MEM_CGROUP_TARGET_SOFTLIMIT:
959 next = val + SOFTLIMIT_EVENTS_TARGET;
961 case MEM_CGROUP_TARGET_NUMAINFO:
962 next = val + NUMAINFO_EVENTS_TARGET;
967 __this_cpu_write(memcg->stat->targets[target], next);
974 * Check events in order.
977 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
980 /* threshold event is triggered in finer grain than soft limit */
981 if (unlikely(mem_cgroup_event_ratelimit(memcg,
982 MEM_CGROUP_TARGET_THRESH))) {
984 bool do_numainfo __maybe_unused;
986 do_softlimit = mem_cgroup_event_ratelimit(memcg,
987 MEM_CGROUP_TARGET_SOFTLIMIT);
989 do_numainfo = mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_NUMAINFO);
994 mem_cgroup_threshold(memcg);
995 if (unlikely(do_softlimit))
996 mem_cgroup_update_tree(memcg, page);
998 if (unlikely(do_numainfo))
999 atomic_inc(&memcg->numainfo_events);
1005 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1007 return mem_cgroup_from_css(
1008 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1011 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1014 * mm_update_next_owner() may clear mm->owner to NULL
1015 * if it races with swapoff, page migration, etc.
1016 * So this can be called with p == NULL.
1021 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1024 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1026 struct mem_cgroup *memcg = NULL;
1031 * Because we have no locks, mm->owner's may be being moved to other
1032 * cgroup. We use css_tryget() here even if this looks
1033 * pessimistic (rather than adding locks here).
1037 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1038 if (unlikely(!memcg))
1040 } while (!css_tryget(&memcg->css));
1046 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1047 * @root: hierarchy root
1048 * @prev: previously returned memcg, NULL on first invocation
1049 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1051 * Returns references to children of the hierarchy below @root, or
1052 * @root itself, or %NULL after a full round-trip.
1054 * Caller must pass the return value in @prev on subsequent
1055 * invocations for reference counting, or use mem_cgroup_iter_break()
1056 * to cancel a hierarchy walk before the round-trip is complete.
1058 * Reclaimers can specify a zone and a priority level in @reclaim to
1059 * divide up the memcgs in the hierarchy among all concurrent
1060 * reclaimers operating on the same zone and priority.
1062 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1063 struct mem_cgroup *prev,
1064 struct mem_cgroup_reclaim_cookie *reclaim)
1066 struct mem_cgroup *memcg = NULL;
1069 if (mem_cgroup_disabled())
1073 root = root_mem_cgroup;
1075 if (prev && !reclaim)
1076 id = css_id(&prev->css);
1078 if (prev && prev != root)
1079 css_put(&prev->css);
1081 if (!root->use_hierarchy && root != root_mem_cgroup) {
1088 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1089 struct cgroup_subsys_state *css;
1092 int nid = zone_to_nid(reclaim->zone);
1093 int zid = zone_idx(reclaim->zone);
1094 struct mem_cgroup_per_zone *mz;
1096 mz = mem_cgroup_zoneinfo(root, nid, zid);
1097 iter = &mz->reclaim_iter[reclaim->priority];
1098 if (prev && reclaim->generation != iter->generation)
1100 id = iter->position;
1104 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
1106 if (css == &root->css || css_tryget(css))
1107 memcg = mem_cgroup_from_css(css);
1113 iter->position = id;
1116 else if (!prev && memcg)
1117 reclaim->generation = iter->generation;
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1131 void mem_cgroup_iter_break(struct mem_cgroup *root,
1132 struct mem_cgroup *prev)
1135 root = root_mem_cgroup;
1136 if (prev && prev != root)
1137 css_put(&prev->css);
1141 * Iteration constructs for visiting all cgroups (under a tree). If
1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1143 * be used for reference counting.
1145 #define for_each_mem_cgroup_tree(iter, root) \
1146 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1148 iter = mem_cgroup_iter(root, iter, NULL))
1150 #define for_each_mem_cgroup(iter) \
1151 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1153 iter = mem_cgroup_iter(NULL, iter, NULL))
1155 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1157 struct mem_cgroup *memcg;
1160 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1161 if (unlikely(!memcg))
1166 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1169 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1177 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1181 * @zone: zone of the wanted lruvec
1182 * @memcg: memcg of the wanted lruvec
1184 * Returns the lru list vector holding pages for the given @zone and
1185 * @mem. This can be the global zone lruvec, if the memory controller
1188 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1189 struct mem_cgroup *memcg)
1191 struct mem_cgroup_per_zone *mz;
1192 struct lruvec *lruvec;
1194 if (mem_cgroup_disabled()) {
1195 lruvec = &zone->lruvec;
1199 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1200 lruvec = &mz->lruvec;
1203 * Since a node can be onlined after the mem_cgroup was created,
1204 * we have to be prepared to initialize lruvec->zone here;
1205 * and if offlined then reonlined, we need to reinitialize it.
1207 if (unlikely(lruvec->zone != zone))
1208 lruvec->zone = zone;
1213 * Following LRU functions are allowed to be used without PCG_LOCK.
1214 * Operations are called by routine of global LRU independently from memcg.
1215 * What we have to take care of here is validness of pc->mem_cgroup.
1217 * Changes to pc->mem_cgroup happens when
1220 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1221 * It is added to LRU before charge.
1222 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1223 * When moving account, the page is not on LRU. It's isolated.
1227 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1229 * @zone: zone of the page
1231 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1233 struct mem_cgroup_per_zone *mz;
1234 struct mem_cgroup *memcg;
1235 struct page_cgroup *pc;
1236 struct lruvec *lruvec;
1238 if (mem_cgroup_disabled()) {
1239 lruvec = &zone->lruvec;
1243 pc = lookup_page_cgroup(page);
1244 memcg = pc->mem_cgroup;
1247 * Surreptitiously switch any uncharged offlist page to root:
1248 * an uncharged page off lru does nothing to secure
1249 * its former mem_cgroup from sudden removal.
1251 * Our caller holds lru_lock, and PageCgroupUsed is updated
1252 * under page_cgroup lock: between them, they make all uses
1253 * of pc->mem_cgroup safe.
1255 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1256 pc->mem_cgroup = memcg = root_mem_cgroup;
1258 mz = page_cgroup_zoneinfo(memcg, page);
1259 lruvec = &mz->lruvec;
1262 * Since a node can be onlined after the mem_cgroup was created,
1263 * we have to be prepared to initialize lruvec->zone here;
1264 * and if offlined then reonlined, we need to reinitialize it.
1266 if (unlikely(lruvec->zone != zone))
1267 lruvec->zone = zone;
1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273 * @lruvec: mem_cgroup per zone lru vector
1274 * @lru: index of lru list the page is sitting on
1275 * @nr_pages: positive when adding or negative when removing
1277 * This function must be called when a page is added to or removed from an
1280 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1283 struct mem_cgroup_per_zone *mz;
1284 unsigned long *lru_size;
1286 if (mem_cgroup_disabled())
1289 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1290 lru_size = mz->lru_size + lru;
1291 *lru_size += nr_pages;
1292 VM_BUG_ON((long)(*lru_size) < 0);
1296 * Checks whether given mem is same or in the root_mem_cgroup's
1299 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1300 struct mem_cgroup *memcg)
1302 if (root_memcg == memcg)
1304 if (!root_memcg->use_hierarchy || !memcg)
1306 return css_is_ancestor(&memcg->css, &root_memcg->css);
1309 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1310 struct mem_cgroup *memcg)
1315 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1320 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1323 struct mem_cgroup *curr = NULL;
1324 struct task_struct *p;
1326 p = find_lock_task_mm(task);
1328 curr = try_get_mem_cgroup_from_mm(p->mm);
1332 * All threads may have already detached their mm's, but the oom
1333 * killer still needs to detect if they have already been oom
1334 * killed to prevent needlessly killing additional tasks.
1337 curr = mem_cgroup_from_task(task);
1339 css_get(&curr->css);
1345 * We should check use_hierarchy of "memcg" not "curr". Because checking
1346 * use_hierarchy of "curr" here make this function true if hierarchy is
1347 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1348 * hierarchy(even if use_hierarchy is disabled in "memcg").
1350 ret = mem_cgroup_same_or_subtree(memcg, curr);
1351 css_put(&curr->css);
1355 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1357 unsigned long inactive_ratio;
1358 unsigned long inactive;
1359 unsigned long active;
1362 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1363 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1365 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1367 inactive_ratio = int_sqrt(10 * gb);
1371 return inactive * inactive_ratio < active;
1374 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1376 unsigned long active;
1377 unsigned long inactive;
1379 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1380 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1382 return (active > inactive);
1385 #define mem_cgroup_from_res_counter(counter, member) \
1386 container_of(counter, struct mem_cgroup, member)
1389 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1390 * @memcg: the memory cgroup
1392 * Returns the maximum amount of memory @mem can be charged with, in
1395 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1397 unsigned long long margin;
1399 margin = res_counter_margin(&memcg->res);
1400 if (do_swap_account)
1401 margin = min(margin, res_counter_margin(&memcg->memsw));
1402 return margin >> PAGE_SHIFT;
1405 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1407 struct cgroup *cgrp = memcg->css.cgroup;
1410 if (cgrp->parent == NULL)
1411 return vm_swappiness;
1413 return memcg->swappiness;
1417 * memcg->moving_account is used for checking possibility that some thread is
1418 * calling move_account(). When a thread on CPU-A starts moving pages under
1419 * a memcg, other threads should check memcg->moving_account under
1420 * rcu_read_lock(), like this:
1424 * memcg->moving_account+1 if (memcg->mocing_account)
1426 * synchronize_rcu() update something.
1431 /* for quick checking without looking up memcg */
1432 atomic_t memcg_moving __read_mostly;
1434 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1436 atomic_inc(&memcg_moving);
1437 atomic_inc(&memcg->moving_account);
1441 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1444 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1445 * We check NULL in callee rather than caller.
1448 atomic_dec(&memcg_moving);
1449 atomic_dec(&memcg->moving_account);
1454 * 2 routines for checking "mem" is under move_account() or not.
1456 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1457 * is used for avoiding races in accounting. If true,
1458 * pc->mem_cgroup may be overwritten.
1460 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1461 * under hierarchy of moving cgroups. This is for
1462 * waiting at hith-memory prressure caused by "move".
1465 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1467 VM_BUG_ON(!rcu_read_lock_held());
1468 return atomic_read(&memcg->moving_account) > 0;
1471 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1473 struct mem_cgroup *from;
1474 struct mem_cgroup *to;
1477 * Unlike task_move routines, we access mc.to, mc.from not under
1478 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1480 spin_lock(&mc.lock);
1486 ret = mem_cgroup_same_or_subtree(memcg, from)
1487 || mem_cgroup_same_or_subtree(memcg, to);
1489 spin_unlock(&mc.lock);
1493 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1495 if (mc.moving_task && current != mc.moving_task) {
1496 if (mem_cgroup_under_move(memcg)) {
1498 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1499 /* moving charge context might have finished. */
1502 finish_wait(&mc.waitq, &wait);
1510 * Take this lock when
1511 * - a code tries to modify page's memcg while it's USED.
1512 * - a code tries to modify page state accounting in a memcg.
1513 * see mem_cgroup_stolen(), too.
1515 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1516 unsigned long *flags)
1518 spin_lock_irqsave(&memcg->move_lock, *flags);
1521 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1522 unsigned long *flags)
1524 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1528 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1529 * @memcg: The memory cgroup that went over limit
1530 * @p: Task that is going to be killed
1532 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1535 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1537 struct cgroup *task_cgrp;
1538 struct cgroup *mem_cgrp;
1540 * Need a buffer in BSS, can't rely on allocations. The code relies
1541 * on the assumption that OOM is serialized for memory controller.
1542 * If this assumption is broken, revisit this code.
1544 static char memcg_name[PATH_MAX];
1552 mem_cgrp = memcg->css.cgroup;
1553 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1555 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1558 * Unfortunately, we are unable to convert to a useful name
1559 * But we'll still print out the usage information
1566 printk(KERN_INFO "Task in %s killed", memcg_name);
1569 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1577 * Continues from above, so we don't need an KERN_ level
1579 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1582 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1583 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1584 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1585 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1586 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1588 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1589 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1590 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1591 printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1592 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1593 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1594 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1598 * This function returns the number of memcg under hierarchy tree. Returns
1599 * 1(self count) if no children.
1601 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1604 struct mem_cgroup *iter;
1606 for_each_mem_cgroup_tree(iter, memcg)
1612 * Return the memory (and swap, if configured) limit for a memcg.
1614 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1618 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1621 * Do not consider swap space if we cannot swap due to swappiness
1623 if (mem_cgroup_swappiness(memcg)) {
1626 limit += total_swap_pages << PAGE_SHIFT;
1627 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1630 * If memsw is finite and limits the amount of swap space
1631 * available to this memcg, return that limit.
1633 limit = min(limit, memsw);
1639 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1642 struct mem_cgroup *iter;
1643 unsigned long chosen_points = 0;
1644 unsigned long totalpages;
1645 unsigned int points = 0;
1646 struct task_struct *chosen = NULL;
1649 * If current has a pending SIGKILL, then automatically select it. The
1650 * goal is to allow it to allocate so that it may quickly exit and free
1653 if (fatal_signal_pending(current)) {
1654 set_thread_flag(TIF_MEMDIE);
1658 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1659 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1660 for_each_mem_cgroup_tree(iter, memcg) {
1661 struct cgroup *cgroup = iter->css.cgroup;
1662 struct cgroup_iter it;
1663 struct task_struct *task;
1665 cgroup_iter_start(cgroup, &it);
1666 while ((task = cgroup_iter_next(cgroup, &it))) {
1667 switch (oom_scan_process_thread(task, totalpages, NULL,
1669 case OOM_SCAN_SELECT:
1671 put_task_struct(chosen);
1673 chosen_points = ULONG_MAX;
1674 get_task_struct(chosen);
1676 case OOM_SCAN_CONTINUE:
1678 case OOM_SCAN_ABORT:
1679 cgroup_iter_end(cgroup, &it);
1680 mem_cgroup_iter_break(memcg, iter);
1682 put_task_struct(chosen);
1687 points = oom_badness(task, memcg, NULL, totalpages);
1688 if (points > chosen_points) {
1690 put_task_struct(chosen);
1692 chosen_points = points;
1693 get_task_struct(chosen);
1696 cgroup_iter_end(cgroup, &it);
1701 points = chosen_points * 1000 / totalpages;
1702 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1703 NULL, "Memory cgroup out of memory");
1706 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1708 unsigned long flags)
1710 unsigned long total = 0;
1711 bool noswap = false;
1714 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1716 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1719 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1721 drain_all_stock_async(memcg);
1722 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1724 * Allow limit shrinkers, which are triggered directly
1725 * by userspace, to catch signals and stop reclaim
1726 * after minimal progress, regardless of the margin.
1728 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1730 if (mem_cgroup_margin(memcg))
1733 * If nothing was reclaimed after two attempts, there
1734 * may be no reclaimable pages in this hierarchy.
1743 * test_mem_cgroup_node_reclaimable
1744 * @memcg: the target memcg
1745 * @nid: the node ID to be checked.
1746 * @noswap : specify true here if the user wants flle only information.
1748 * This function returns whether the specified memcg contains any
1749 * reclaimable pages on a node. Returns true if there are any reclaimable
1750 * pages in the node.
1752 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1753 int nid, bool noswap)
1755 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1757 if (noswap || !total_swap_pages)
1759 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1764 #if MAX_NUMNODES > 1
1767 * Always updating the nodemask is not very good - even if we have an empty
1768 * list or the wrong list here, we can start from some node and traverse all
1769 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1772 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1776 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1777 * pagein/pageout changes since the last update.
1779 if (!atomic_read(&memcg->numainfo_events))
1781 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1784 /* make a nodemask where this memcg uses memory from */
1785 memcg->scan_nodes = node_states[N_MEMORY];
1787 for_each_node_mask(nid, node_states[N_MEMORY]) {
1789 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1790 node_clear(nid, memcg->scan_nodes);
1793 atomic_set(&memcg->numainfo_events, 0);
1794 atomic_set(&memcg->numainfo_updating, 0);
1798 * Selecting a node where we start reclaim from. Because what we need is just
1799 * reducing usage counter, start from anywhere is O,K. Considering
1800 * memory reclaim from current node, there are pros. and cons.
1802 * Freeing memory from current node means freeing memory from a node which
1803 * we'll use or we've used. So, it may make LRU bad. And if several threads
1804 * hit limits, it will see a contention on a node. But freeing from remote
1805 * node means more costs for memory reclaim because of memory latency.
1807 * Now, we use round-robin. Better algorithm is welcomed.
1809 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1813 mem_cgroup_may_update_nodemask(memcg);
1814 node = memcg->last_scanned_node;
1816 node = next_node(node, memcg->scan_nodes);
1817 if (node == MAX_NUMNODES)
1818 node = first_node(memcg->scan_nodes);
1820 * We call this when we hit limit, not when pages are added to LRU.
1821 * No LRU may hold pages because all pages are UNEVICTABLE or
1822 * memcg is too small and all pages are not on LRU. In that case,
1823 * we use curret node.
1825 if (unlikely(node == MAX_NUMNODES))
1826 node = numa_node_id();
1828 memcg->last_scanned_node = node;
1833 * Check all nodes whether it contains reclaimable pages or not.
1834 * For quick scan, we make use of scan_nodes. This will allow us to skip
1835 * unused nodes. But scan_nodes is lazily updated and may not cotain
1836 * enough new information. We need to do double check.
1838 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1843 * quick check...making use of scan_node.
1844 * We can skip unused nodes.
1846 if (!nodes_empty(memcg->scan_nodes)) {
1847 for (nid = first_node(memcg->scan_nodes);
1849 nid = next_node(nid, memcg->scan_nodes)) {
1851 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1856 * Check rest of nodes.
1858 for_each_node_state(nid, N_MEMORY) {
1859 if (node_isset(nid, memcg->scan_nodes))
1861 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1868 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1873 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1875 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1879 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1882 unsigned long *total_scanned)
1884 struct mem_cgroup *victim = NULL;
1887 unsigned long excess;
1888 unsigned long nr_scanned;
1889 struct mem_cgroup_reclaim_cookie reclaim = {
1894 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1897 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1902 * If we have not been able to reclaim
1903 * anything, it might because there are
1904 * no reclaimable pages under this hierarchy
1909 * We want to do more targeted reclaim.
1910 * excess >> 2 is not to excessive so as to
1911 * reclaim too much, nor too less that we keep
1912 * coming back to reclaim from this cgroup
1914 if (total >= (excess >> 2) ||
1915 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1920 if (!mem_cgroup_reclaimable(victim, false))
1922 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1924 *total_scanned += nr_scanned;
1925 if (!res_counter_soft_limit_excess(&root_memcg->res))
1928 mem_cgroup_iter_break(root_memcg, victim);
1933 * Check OOM-Killer is already running under our hierarchy.
1934 * If someone is running, return false.
1935 * Has to be called with memcg_oom_lock
1937 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1939 struct mem_cgroup *iter, *failed = NULL;
1941 for_each_mem_cgroup_tree(iter, memcg) {
1942 if (iter->oom_lock) {
1944 * this subtree of our hierarchy is already locked
1945 * so we cannot give a lock.
1948 mem_cgroup_iter_break(memcg, iter);
1951 iter->oom_lock = true;
1958 * OK, we failed to lock the whole subtree so we have to clean up
1959 * what we set up to the failing subtree
1961 for_each_mem_cgroup_tree(iter, memcg) {
1962 if (iter == failed) {
1963 mem_cgroup_iter_break(memcg, iter);
1966 iter->oom_lock = false;
1972 * Has to be called with memcg_oom_lock
1974 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1976 struct mem_cgroup *iter;
1978 for_each_mem_cgroup_tree(iter, memcg)
1979 iter->oom_lock = false;
1983 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1985 struct mem_cgroup *iter;
1987 for_each_mem_cgroup_tree(iter, memcg)
1988 atomic_inc(&iter->under_oom);
1991 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1993 struct mem_cgroup *iter;
1996 * When a new child is created while the hierarchy is under oom,
1997 * mem_cgroup_oom_lock() may not be called. We have to use
1998 * atomic_add_unless() here.
2000 for_each_mem_cgroup_tree(iter, memcg)
2001 atomic_add_unless(&iter->under_oom, -1, 0);
2004 static DEFINE_SPINLOCK(memcg_oom_lock);
2005 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2007 struct oom_wait_info {
2008 struct mem_cgroup *memcg;
2012 static int memcg_oom_wake_function(wait_queue_t *wait,
2013 unsigned mode, int sync, void *arg)
2015 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2016 struct mem_cgroup *oom_wait_memcg;
2017 struct oom_wait_info *oom_wait_info;
2019 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2020 oom_wait_memcg = oom_wait_info->memcg;
2023 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2024 * Then we can use css_is_ancestor without taking care of RCU.
2026 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2027 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2029 return autoremove_wake_function(wait, mode, sync, arg);
2032 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2034 /* for filtering, pass "memcg" as argument. */
2035 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2038 static void memcg_oom_recover(struct mem_cgroup *memcg)
2040 if (memcg && atomic_read(&memcg->under_oom))
2041 memcg_wakeup_oom(memcg);
2045 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2047 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2050 struct oom_wait_info owait;
2051 bool locked, need_to_kill;
2053 owait.memcg = memcg;
2054 owait.wait.flags = 0;
2055 owait.wait.func = memcg_oom_wake_function;
2056 owait.wait.private = current;
2057 INIT_LIST_HEAD(&owait.wait.task_list);
2058 need_to_kill = true;
2059 mem_cgroup_mark_under_oom(memcg);
2061 /* At first, try to OOM lock hierarchy under memcg.*/
2062 spin_lock(&memcg_oom_lock);
2063 locked = mem_cgroup_oom_lock(memcg);
2065 * Even if signal_pending(), we can't quit charge() loop without
2066 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2067 * under OOM is always welcomed, use TASK_KILLABLE here.
2069 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2070 if (!locked || memcg->oom_kill_disable)
2071 need_to_kill = false;
2073 mem_cgroup_oom_notify(memcg);
2074 spin_unlock(&memcg_oom_lock);
2077 finish_wait(&memcg_oom_waitq, &owait.wait);
2078 mem_cgroup_out_of_memory(memcg, mask, order);
2081 finish_wait(&memcg_oom_waitq, &owait.wait);
2083 spin_lock(&memcg_oom_lock);
2085 mem_cgroup_oom_unlock(memcg);
2086 memcg_wakeup_oom(memcg);
2087 spin_unlock(&memcg_oom_lock);
2089 mem_cgroup_unmark_under_oom(memcg);
2091 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2093 /* Give chance to dying process */
2094 schedule_timeout_uninterruptible(1);
2099 * Currently used to update mapped file statistics, but the routine can be
2100 * generalized to update other statistics as well.
2102 * Notes: Race condition
2104 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2105 * it tends to be costly. But considering some conditions, we doesn't need
2106 * to do so _always_.
2108 * Considering "charge", lock_page_cgroup() is not required because all
2109 * file-stat operations happen after a page is attached to radix-tree. There
2110 * are no race with "charge".
2112 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2113 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2114 * if there are race with "uncharge". Statistics itself is properly handled
2117 * Considering "move", this is an only case we see a race. To make the race
2118 * small, we check mm->moving_account and detect there are possibility of race
2119 * If there is, we take a lock.
2122 void __mem_cgroup_begin_update_page_stat(struct page *page,
2123 bool *locked, unsigned long *flags)
2125 struct mem_cgroup *memcg;
2126 struct page_cgroup *pc;
2128 pc = lookup_page_cgroup(page);
2130 memcg = pc->mem_cgroup;
2131 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2134 * If this memory cgroup is not under account moving, we don't
2135 * need to take move_lock_mem_cgroup(). Because we already hold
2136 * rcu_read_lock(), any calls to move_account will be delayed until
2137 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2139 if (!mem_cgroup_stolen(memcg))
2142 move_lock_mem_cgroup(memcg, flags);
2143 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2144 move_unlock_mem_cgroup(memcg, flags);
2150 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2152 struct page_cgroup *pc = lookup_page_cgroup(page);
2155 * It's guaranteed that pc->mem_cgroup never changes while
2156 * lock is held because a routine modifies pc->mem_cgroup
2157 * should take move_lock_mem_cgroup().
2159 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2162 void mem_cgroup_update_page_stat(struct page *page,
2163 enum mem_cgroup_page_stat_item idx, int val)
2165 struct mem_cgroup *memcg;
2166 struct page_cgroup *pc = lookup_page_cgroup(page);
2167 unsigned long uninitialized_var(flags);
2169 if (mem_cgroup_disabled())
2172 memcg = pc->mem_cgroup;
2173 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2177 case MEMCG_NR_FILE_MAPPED:
2178 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2184 this_cpu_add(memcg->stat->count[idx], val);
2188 * size of first charge trial. "32" comes from vmscan.c's magic value.
2189 * TODO: maybe necessary to use big numbers in big irons.
2191 #define CHARGE_BATCH 32U
2192 struct memcg_stock_pcp {
2193 struct mem_cgroup *cached; /* this never be root cgroup */
2194 unsigned int nr_pages;
2195 struct work_struct work;
2196 unsigned long flags;
2197 #define FLUSHING_CACHED_CHARGE 0
2199 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2200 static DEFINE_MUTEX(percpu_charge_mutex);
2203 * consume_stock: Try to consume stocked charge on this cpu.
2204 * @memcg: memcg to consume from.
2205 * @nr_pages: how many pages to charge.
2207 * The charges will only happen if @memcg matches the current cpu's memcg
2208 * stock, and at least @nr_pages are available in that stock. Failure to
2209 * service an allocation will refill the stock.
2211 * returns true if successful, false otherwise.
2213 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2215 struct memcg_stock_pcp *stock;
2218 if (nr_pages > CHARGE_BATCH)
2221 stock = &get_cpu_var(memcg_stock);
2222 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2223 stock->nr_pages -= nr_pages;
2224 else /* need to call res_counter_charge */
2226 put_cpu_var(memcg_stock);
2231 * Returns stocks cached in percpu to res_counter and reset cached information.
2233 static void drain_stock(struct memcg_stock_pcp *stock)
2235 struct mem_cgroup *old = stock->cached;
2237 if (stock->nr_pages) {
2238 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2240 res_counter_uncharge(&old->res, bytes);
2241 if (do_swap_account)
2242 res_counter_uncharge(&old->memsw, bytes);
2243 stock->nr_pages = 0;
2245 stock->cached = NULL;
2249 * This must be called under preempt disabled or must be called by
2250 * a thread which is pinned to local cpu.
2252 static void drain_local_stock(struct work_struct *dummy)
2254 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2256 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2260 * Cache charges(val) which is from res_counter, to local per_cpu area.
2261 * This will be consumed by consume_stock() function, later.
2263 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2265 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2267 if (stock->cached != memcg) { /* reset if necessary */
2269 stock->cached = memcg;
2271 stock->nr_pages += nr_pages;
2272 put_cpu_var(memcg_stock);
2276 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2277 * of the hierarchy under it. sync flag says whether we should block
2278 * until the work is done.
2280 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2284 /* Notify other cpus that system-wide "drain" is running */
2287 for_each_online_cpu(cpu) {
2288 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2289 struct mem_cgroup *memcg;
2291 memcg = stock->cached;
2292 if (!memcg || !stock->nr_pages)
2294 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2296 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2298 drain_local_stock(&stock->work);
2300 schedule_work_on(cpu, &stock->work);
2308 for_each_online_cpu(cpu) {
2309 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2310 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2311 flush_work(&stock->work);
2318 * Tries to drain stocked charges in other cpus. This function is asynchronous
2319 * and just put a work per cpu for draining localy on each cpu. Caller can
2320 * expects some charges will be back to res_counter later but cannot wait for
2323 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2326 * If someone calls draining, avoid adding more kworker runs.
2328 if (!mutex_trylock(&percpu_charge_mutex))
2330 drain_all_stock(root_memcg, false);
2331 mutex_unlock(&percpu_charge_mutex);
2334 /* This is a synchronous drain interface. */
2335 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2337 /* called when force_empty is called */
2338 mutex_lock(&percpu_charge_mutex);
2339 drain_all_stock(root_memcg, true);
2340 mutex_unlock(&percpu_charge_mutex);
2344 * This function drains percpu counter value from DEAD cpu and
2345 * move it to local cpu. Note that this function can be preempted.
2347 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2351 spin_lock(&memcg->pcp_counter_lock);
2352 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2353 long x = per_cpu(memcg->stat->count[i], cpu);
2355 per_cpu(memcg->stat->count[i], cpu) = 0;
2356 memcg->nocpu_base.count[i] += x;
2358 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2359 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2361 per_cpu(memcg->stat->events[i], cpu) = 0;
2362 memcg->nocpu_base.events[i] += x;
2364 spin_unlock(&memcg->pcp_counter_lock);
2367 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2368 unsigned long action,
2371 int cpu = (unsigned long)hcpu;
2372 struct memcg_stock_pcp *stock;
2373 struct mem_cgroup *iter;
2375 if (action == CPU_ONLINE)
2378 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2381 for_each_mem_cgroup(iter)
2382 mem_cgroup_drain_pcp_counter(iter, cpu);
2384 stock = &per_cpu(memcg_stock, cpu);
2390 /* See __mem_cgroup_try_charge() for details */
2392 CHARGE_OK, /* success */
2393 CHARGE_RETRY, /* need to retry but retry is not bad */
2394 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2395 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2396 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2399 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2400 unsigned int nr_pages, unsigned int min_pages,
2403 unsigned long csize = nr_pages * PAGE_SIZE;
2404 struct mem_cgroup *mem_over_limit;
2405 struct res_counter *fail_res;
2406 unsigned long flags = 0;
2409 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2412 if (!do_swap_account)
2414 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2418 res_counter_uncharge(&memcg->res, csize);
2419 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2420 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2422 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2424 * Never reclaim on behalf of optional batching, retry with a
2425 * single page instead.
2427 if (nr_pages > min_pages)
2428 return CHARGE_RETRY;
2430 if (!(gfp_mask & __GFP_WAIT))
2431 return CHARGE_WOULDBLOCK;
2433 if (gfp_mask & __GFP_NORETRY)
2434 return CHARGE_NOMEM;
2436 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2437 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2438 return CHARGE_RETRY;
2440 * Even though the limit is exceeded at this point, reclaim
2441 * may have been able to free some pages. Retry the charge
2442 * before killing the task.
2444 * Only for regular pages, though: huge pages are rather
2445 * unlikely to succeed so close to the limit, and we fall back
2446 * to regular pages anyway in case of failure.
2448 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2449 return CHARGE_RETRY;
2452 * At task move, charge accounts can be doubly counted. So, it's
2453 * better to wait until the end of task_move if something is going on.
2455 if (mem_cgroup_wait_acct_move(mem_over_limit))
2456 return CHARGE_RETRY;
2458 /* If we don't need to call oom-killer at el, return immediately */
2460 return CHARGE_NOMEM;
2462 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2463 return CHARGE_OOM_DIE;
2465 return CHARGE_RETRY;
2469 * __mem_cgroup_try_charge() does
2470 * 1. detect memcg to be charged against from passed *mm and *ptr,
2471 * 2. update res_counter
2472 * 3. call memory reclaim if necessary.
2474 * In some special case, if the task is fatal, fatal_signal_pending() or
2475 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2476 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2477 * as possible without any hazards. 2: all pages should have a valid
2478 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2479 * pointer, that is treated as a charge to root_mem_cgroup.
2481 * So __mem_cgroup_try_charge() will return
2482 * 0 ... on success, filling *ptr with a valid memcg pointer.
2483 * -ENOMEM ... charge failure because of resource limits.
2484 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2486 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2487 * the oom-killer can be invoked.
2489 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2491 unsigned int nr_pages,
2492 struct mem_cgroup **ptr,
2495 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2496 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2497 struct mem_cgroup *memcg = NULL;
2501 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2502 * in system level. So, allow to go ahead dying process in addition to
2505 if (unlikely(test_thread_flag(TIF_MEMDIE)
2506 || fatal_signal_pending(current)))
2510 * We always charge the cgroup the mm_struct belongs to.
2511 * The mm_struct's mem_cgroup changes on task migration if the
2512 * thread group leader migrates. It's possible that mm is not
2513 * set, if so charge the root memcg (happens for pagecache usage).
2516 *ptr = root_mem_cgroup;
2518 if (*ptr) { /* css should be a valid one */
2520 if (mem_cgroup_is_root(memcg))
2522 if (consume_stock(memcg, nr_pages))
2524 css_get(&memcg->css);
2526 struct task_struct *p;
2529 p = rcu_dereference(mm->owner);
2531 * Because we don't have task_lock(), "p" can exit.
2532 * In that case, "memcg" can point to root or p can be NULL with
2533 * race with swapoff. Then, we have small risk of mis-accouning.
2534 * But such kind of mis-account by race always happens because
2535 * we don't have cgroup_mutex(). It's overkill and we allo that
2537 * (*) swapoff at el will charge against mm-struct not against
2538 * task-struct. So, mm->owner can be NULL.
2540 memcg = mem_cgroup_from_task(p);
2542 memcg = root_mem_cgroup;
2543 if (mem_cgroup_is_root(memcg)) {
2547 if (consume_stock(memcg, nr_pages)) {
2549 * It seems dagerous to access memcg without css_get().
2550 * But considering how consume_stok works, it's not
2551 * necessary. If consume_stock success, some charges
2552 * from this memcg are cached on this cpu. So, we
2553 * don't need to call css_get()/css_tryget() before
2554 * calling consume_stock().
2559 /* after here, we may be blocked. we need to get refcnt */
2560 if (!css_tryget(&memcg->css)) {
2570 /* If killed, bypass charge */
2571 if (fatal_signal_pending(current)) {
2572 css_put(&memcg->css);
2577 if (oom && !nr_oom_retries) {
2579 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2582 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2587 case CHARGE_RETRY: /* not in OOM situation but retry */
2589 css_put(&memcg->css);
2592 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2593 css_put(&memcg->css);
2595 case CHARGE_NOMEM: /* OOM routine works */
2597 css_put(&memcg->css);
2600 /* If oom, we never return -ENOMEM */
2603 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2604 css_put(&memcg->css);
2607 } while (ret != CHARGE_OK);
2609 if (batch > nr_pages)
2610 refill_stock(memcg, batch - nr_pages);
2611 css_put(&memcg->css);
2619 *ptr = root_mem_cgroup;
2624 * Somemtimes we have to undo a charge we got by try_charge().
2625 * This function is for that and do uncharge, put css's refcnt.
2626 * gotten by try_charge().
2628 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2629 unsigned int nr_pages)
2631 if (!mem_cgroup_is_root(memcg)) {
2632 unsigned long bytes = nr_pages * PAGE_SIZE;
2634 res_counter_uncharge(&memcg->res, bytes);
2635 if (do_swap_account)
2636 res_counter_uncharge(&memcg->memsw, bytes);
2641 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2642 * This is useful when moving usage to parent cgroup.
2644 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2645 unsigned int nr_pages)
2647 unsigned long bytes = nr_pages * PAGE_SIZE;
2649 if (mem_cgroup_is_root(memcg))
2652 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2653 if (do_swap_account)
2654 res_counter_uncharge_until(&memcg->memsw,
2655 memcg->memsw.parent, bytes);
2659 * A helper function to get mem_cgroup from ID. must be called under
2660 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2661 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2662 * called against removed memcg.)
2664 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2666 struct cgroup_subsys_state *css;
2668 /* ID 0 is unused ID */
2671 css = css_lookup(&mem_cgroup_subsys, id);
2674 return mem_cgroup_from_css(css);
2677 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2679 struct mem_cgroup *memcg = NULL;
2680 struct page_cgroup *pc;
2684 VM_BUG_ON(!PageLocked(page));
2686 pc = lookup_page_cgroup(page);
2687 lock_page_cgroup(pc);
2688 if (PageCgroupUsed(pc)) {
2689 memcg = pc->mem_cgroup;
2690 if (memcg && !css_tryget(&memcg->css))
2692 } else if (PageSwapCache(page)) {
2693 ent.val = page_private(page);
2694 id = lookup_swap_cgroup_id(ent);
2696 memcg = mem_cgroup_lookup(id);
2697 if (memcg && !css_tryget(&memcg->css))
2701 unlock_page_cgroup(pc);
2705 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2707 unsigned int nr_pages,
2708 enum charge_type ctype,
2711 struct page_cgroup *pc = lookup_page_cgroup(page);
2712 struct zone *uninitialized_var(zone);
2713 struct lruvec *lruvec;
2714 bool was_on_lru = false;
2717 lock_page_cgroup(pc);
2718 VM_BUG_ON(PageCgroupUsed(pc));
2720 * we don't need page_cgroup_lock about tail pages, becase they are not
2721 * accessed by any other context at this point.
2725 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2726 * may already be on some other mem_cgroup's LRU. Take care of it.
2729 zone = page_zone(page);
2730 spin_lock_irq(&zone->lru_lock);
2731 if (PageLRU(page)) {
2732 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2734 del_page_from_lru_list(page, lruvec, page_lru(page));
2739 pc->mem_cgroup = memcg;
2741 * We access a page_cgroup asynchronously without lock_page_cgroup().
2742 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2743 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2744 * before USED bit, we need memory barrier here.
2745 * See mem_cgroup_add_lru_list(), etc.
2748 SetPageCgroupUsed(pc);
2752 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2753 VM_BUG_ON(PageLRU(page));
2755 add_page_to_lru_list(page, lruvec, page_lru(page));
2757 spin_unlock_irq(&zone->lru_lock);
2760 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2765 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2766 unlock_page_cgroup(pc);
2769 * "charge_statistics" updated event counter. Then, check it.
2770 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2771 * if they exceeds softlimit.
2773 memcg_check_events(memcg, page);
2776 static DEFINE_MUTEX(set_limit_mutex);
2778 #ifdef CONFIG_MEMCG_KMEM
2779 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2781 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2782 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2786 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2787 * in the memcg_cache_params struct.
2789 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2791 struct kmem_cache *cachep;
2793 VM_BUG_ON(p->is_root_cache);
2794 cachep = p->root_cache;
2795 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2798 #ifdef CONFIG_SLABINFO
2799 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2802 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2803 struct memcg_cache_params *params;
2805 if (!memcg_can_account_kmem(memcg))
2808 print_slabinfo_header(m);
2810 mutex_lock(&memcg->slab_caches_mutex);
2811 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2812 cache_show(memcg_params_to_cache(params), m);
2813 mutex_unlock(&memcg->slab_caches_mutex);
2819 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2821 struct res_counter *fail_res;
2822 struct mem_cgroup *_memcg;
2826 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2831 * Conditions under which we can wait for the oom_killer. Those are
2832 * the same conditions tested by the core page allocator
2834 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2837 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2840 if (ret == -EINTR) {
2842 * __mem_cgroup_try_charge() chosed to bypass to root due to
2843 * OOM kill or fatal signal. Since our only options are to
2844 * either fail the allocation or charge it to this cgroup, do
2845 * it as a temporary condition. But we can't fail. From a
2846 * kmem/slab perspective, the cache has already been selected,
2847 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2850 * This condition will only trigger if the task entered
2851 * memcg_charge_kmem in a sane state, but was OOM-killed during
2852 * __mem_cgroup_try_charge() above. Tasks that were already
2853 * dying when the allocation triggers should have been already
2854 * directed to the root cgroup in memcontrol.h
2856 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2857 if (do_swap_account)
2858 res_counter_charge_nofail(&memcg->memsw, size,
2862 res_counter_uncharge(&memcg->kmem, size);
2867 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2869 res_counter_uncharge(&memcg->res, size);
2870 if (do_swap_account)
2871 res_counter_uncharge(&memcg->memsw, size);
2874 if (res_counter_uncharge(&memcg->kmem, size))
2877 if (memcg_kmem_test_and_clear_dead(memcg))
2878 mem_cgroup_put(memcg);
2881 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2886 mutex_lock(&memcg->slab_caches_mutex);
2887 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2888 mutex_unlock(&memcg->slab_caches_mutex);
2892 * helper for acessing a memcg's index. It will be used as an index in the
2893 * child cache array in kmem_cache, and also to derive its name. This function
2894 * will return -1 when this is not a kmem-limited memcg.
2896 int memcg_cache_id(struct mem_cgroup *memcg)
2898 return memcg ? memcg->kmemcg_id : -1;
2902 * This ends up being protected by the set_limit mutex, during normal
2903 * operation, because that is its main call site.
2905 * But when we create a new cache, we can call this as well if its parent
2906 * is kmem-limited. That will have to hold set_limit_mutex as well.
2908 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2912 num = ida_simple_get(&kmem_limited_groups,
2913 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2917 * After this point, kmem_accounted (that we test atomically in
2918 * the beginning of this conditional), is no longer 0. This
2919 * guarantees only one process will set the following boolean
2920 * to true. We don't need test_and_set because we're protected
2921 * by the set_limit_mutex anyway.
2923 memcg_kmem_set_activated(memcg);
2925 ret = memcg_update_all_caches(num+1);
2927 ida_simple_remove(&kmem_limited_groups, num);
2928 memcg_kmem_clear_activated(memcg);
2932 memcg->kmemcg_id = num;
2933 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2934 mutex_init(&memcg->slab_caches_mutex);
2938 static size_t memcg_caches_array_size(int num_groups)
2941 if (num_groups <= 0)
2944 size = 2 * num_groups;
2945 if (size < MEMCG_CACHES_MIN_SIZE)
2946 size = MEMCG_CACHES_MIN_SIZE;
2947 else if (size > MEMCG_CACHES_MAX_SIZE)
2948 size = MEMCG_CACHES_MAX_SIZE;
2954 * We should update the current array size iff all caches updates succeed. This
2955 * can only be done from the slab side. The slab mutex needs to be held when
2958 void memcg_update_array_size(int num)
2960 if (num > memcg_limited_groups_array_size)
2961 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2964 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2966 struct memcg_cache_params *cur_params = s->memcg_params;
2968 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
2970 if (num_groups > memcg_limited_groups_array_size) {
2972 ssize_t size = memcg_caches_array_size(num_groups);
2974 size *= sizeof(void *);
2975 size += sizeof(struct memcg_cache_params);
2977 s->memcg_params = kzalloc(size, GFP_KERNEL);
2978 if (!s->memcg_params) {
2979 s->memcg_params = cur_params;
2983 s->memcg_params->is_root_cache = true;
2986 * There is the chance it will be bigger than
2987 * memcg_limited_groups_array_size, if we failed an allocation
2988 * in a cache, in which case all caches updated before it, will
2989 * have a bigger array.
2991 * But if that is the case, the data after
2992 * memcg_limited_groups_array_size is certainly unused
2994 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2995 if (!cur_params->memcg_caches[i])
2997 s->memcg_params->memcg_caches[i] =
2998 cur_params->memcg_caches[i];
3002 * Ideally, we would wait until all caches succeed, and only
3003 * then free the old one. But this is not worth the extra
3004 * pointer per-cache we'd have to have for this.
3006 * It is not a big deal if some caches are left with a size
3007 * bigger than the others. And all updates will reset this
3015 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s)
3017 size_t size = sizeof(struct memcg_cache_params);
3019 if (!memcg_kmem_enabled())
3023 size += memcg_limited_groups_array_size * sizeof(void *);
3025 s->memcg_params = kzalloc(size, GFP_KERNEL);
3026 if (!s->memcg_params)
3030 s->memcg_params->memcg = memcg;
3034 void memcg_release_cache(struct kmem_cache *s)
3036 struct kmem_cache *root;
3037 struct mem_cgroup *memcg;
3041 * This happens, for instance, when a root cache goes away before we
3044 if (!s->memcg_params)
3047 if (s->memcg_params->is_root_cache)
3050 memcg = s->memcg_params->memcg;
3051 id = memcg_cache_id(memcg);
3053 root = s->memcg_params->root_cache;
3054 root->memcg_params->memcg_caches[id] = NULL;
3055 mem_cgroup_put(memcg);
3057 mutex_lock(&memcg->slab_caches_mutex);
3058 list_del(&s->memcg_params->list);
3059 mutex_unlock(&memcg->slab_caches_mutex);
3062 kfree(s->memcg_params);
3066 * During the creation a new cache, we need to disable our accounting mechanism
3067 * altogether. This is true even if we are not creating, but rather just
3068 * enqueing new caches to be created.
3070 * This is because that process will trigger allocations; some visible, like
3071 * explicit kmallocs to auxiliary data structures, name strings and internal
3072 * cache structures; some well concealed, like INIT_WORK() that can allocate
3073 * objects during debug.
3075 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3076 * to it. This may not be a bounded recursion: since the first cache creation
3077 * failed to complete (waiting on the allocation), we'll just try to create the
3078 * cache again, failing at the same point.
3080 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3081 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3082 * inside the following two functions.
3084 static inline void memcg_stop_kmem_account(void)
3086 VM_BUG_ON(!current->mm);
3087 current->memcg_kmem_skip_account++;
3090 static inline void memcg_resume_kmem_account(void)
3092 VM_BUG_ON(!current->mm);
3093 current->memcg_kmem_skip_account--;
3096 static void kmem_cache_destroy_work_func(struct work_struct *w)
3098 struct kmem_cache *cachep;
3099 struct memcg_cache_params *p;
3101 p = container_of(w, struct memcg_cache_params, destroy);
3103 cachep = memcg_params_to_cache(p);
3106 * If we get down to 0 after shrink, we could delete right away.
3107 * However, memcg_release_pages() already puts us back in the workqueue
3108 * in that case. If we proceed deleting, we'll get a dangling
3109 * reference, and removing the object from the workqueue in that case
3110 * is unnecessary complication. We are not a fast path.
3112 * Note that this case is fundamentally different from racing with
3113 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3114 * kmem_cache_shrink, not only we would be reinserting a dead cache
3115 * into the queue, but doing so from inside the worker racing to
3118 * So if we aren't down to zero, we'll just schedule a worker and try
3121 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3122 kmem_cache_shrink(cachep);
3123 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3126 kmem_cache_destroy(cachep);
3129 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3131 if (!cachep->memcg_params->dead)
3135 * There are many ways in which we can get here.
3137 * We can get to a memory-pressure situation while the delayed work is
3138 * still pending to run. The vmscan shrinkers can then release all
3139 * cache memory and get us to destruction. If this is the case, we'll
3140 * be executed twice, which is a bug (the second time will execute over
3141 * bogus data). In this case, cancelling the work should be fine.
3143 * But we can also get here from the worker itself, if
3144 * kmem_cache_shrink is enough to shake all the remaining objects and
3145 * get the page count to 0. In this case, we'll deadlock if we try to
3146 * cancel the work (the worker runs with an internal lock held, which
3147 * is the same lock we would hold for cancel_work_sync().)
3149 * Since we can't possibly know who got us here, just refrain from
3150 * running if there is already work pending
3152 if (work_pending(&cachep->memcg_params->destroy))
3155 * We have to defer the actual destroying to a workqueue, because
3156 * we might currently be in a context that cannot sleep.
3158 schedule_work(&cachep->memcg_params->destroy);
3161 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3164 struct dentry *dentry;
3167 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3170 BUG_ON(dentry == NULL);
3172 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3173 memcg_cache_id(memcg), dentry->d_name.name);
3178 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3179 struct kmem_cache *s)
3182 struct kmem_cache *new;
3184 name = memcg_cache_name(memcg, s);
3188 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
3189 (s->flags & ~SLAB_PANIC), s->ctor);
3192 new->allocflags |= __GFP_KMEMCG;
3199 * This lock protects updaters, not readers. We want readers to be as fast as
3200 * they can, and they will either see NULL or a valid cache value. Our model
3201 * allow them to see NULL, in which case the root memcg will be selected.
3203 * We need this lock because multiple allocations to the same cache from a non
3204 * will span more than one worker. Only one of them can create the cache.
3206 static DEFINE_MUTEX(memcg_cache_mutex);
3207 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3208 struct kmem_cache *cachep)
3210 struct kmem_cache *new_cachep;
3213 BUG_ON(!memcg_can_account_kmem(memcg));
3215 idx = memcg_cache_id(memcg);
3217 mutex_lock(&memcg_cache_mutex);
3218 new_cachep = cachep->memcg_params->memcg_caches[idx];
3222 new_cachep = kmem_cache_dup(memcg, cachep);
3223 if (new_cachep == NULL) {
3224 new_cachep = cachep;
3228 mem_cgroup_get(memcg);
3229 new_cachep->memcg_params->root_cache = cachep;
3230 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3232 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3234 * the readers won't lock, make sure everybody sees the updated value,
3235 * so they won't put stuff in the queue again for no reason
3239 mutex_unlock(&memcg_cache_mutex);
3243 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3245 struct kmem_cache *c;
3248 if (!s->memcg_params)
3250 if (!s->memcg_params->is_root_cache)
3254 * If the cache is being destroyed, we trust that there is no one else
3255 * requesting objects from it. Even if there are, the sanity checks in
3256 * kmem_cache_destroy should caught this ill-case.
3258 * Still, we don't want anyone else freeing memcg_caches under our
3259 * noses, which can happen if a new memcg comes to life. As usual,
3260 * we'll take the set_limit_mutex to protect ourselves against this.
3262 mutex_lock(&set_limit_mutex);
3263 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3264 c = s->memcg_params->memcg_caches[i];
3269 * We will now manually delete the caches, so to avoid races
3270 * we need to cancel all pending destruction workers and
3271 * proceed with destruction ourselves.
3273 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3274 * and that could spawn the workers again: it is likely that
3275 * the cache still have active pages until this very moment.
3276 * This would lead us back to mem_cgroup_destroy_cache.
3278 * But that will not execute at all if the "dead" flag is not
3279 * set, so flip it down to guarantee we are in control.
3281 c->memcg_params->dead = false;
3282 cancel_work_sync(&c->memcg_params->destroy);
3283 kmem_cache_destroy(c);
3285 mutex_unlock(&set_limit_mutex);
3288 struct create_work {
3289 struct mem_cgroup *memcg;
3290 struct kmem_cache *cachep;
3291 struct work_struct work;
3294 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3296 struct kmem_cache *cachep;
3297 struct memcg_cache_params *params;
3299 if (!memcg_kmem_is_active(memcg))
3302 mutex_lock(&memcg->slab_caches_mutex);
3303 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3304 cachep = memcg_params_to_cache(params);
3305 cachep->memcg_params->dead = true;
3306 INIT_WORK(&cachep->memcg_params->destroy,
3307 kmem_cache_destroy_work_func);
3308 schedule_work(&cachep->memcg_params->destroy);
3310 mutex_unlock(&memcg->slab_caches_mutex);
3313 static void memcg_create_cache_work_func(struct work_struct *w)
3315 struct create_work *cw;
3317 cw = container_of(w, struct create_work, work);
3318 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3319 /* Drop the reference gotten when we enqueued. */
3320 css_put(&cw->memcg->css);
3325 * Enqueue the creation of a per-memcg kmem_cache.
3326 * Called with rcu_read_lock.
3328 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3329 struct kmem_cache *cachep)
3331 struct create_work *cw;
3333 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3337 /* The corresponding put will be done in the workqueue. */
3338 if (!css_tryget(&memcg->css)) {
3344 cw->cachep = cachep;
3346 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3347 schedule_work(&cw->work);
3350 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3351 struct kmem_cache *cachep)
3354 * We need to stop accounting when we kmalloc, because if the
3355 * corresponding kmalloc cache is not yet created, the first allocation
3356 * in __memcg_create_cache_enqueue will recurse.
3358 * However, it is better to enclose the whole function. Depending on
3359 * the debugging options enabled, INIT_WORK(), for instance, can
3360 * trigger an allocation. This too, will make us recurse. Because at
3361 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3362 * the safest choice is to do it like this, wrapping the whole function.
3364 memcg_stop_kmem_account();
3365 __memcg_create_cache_enqueue(memcg, cachep);
3366 memcg_resume_kmem_account();
3369 * Return the kmem_cache we're supposed to use for a slab allocation.
3370 * We try to use the current memcg's version of the cache.
3372 * If the cache does not exist yet, if we are the first user of it,
3373 * we either create it immediately, if possible, or create it asynchronously
3375 * In the latter case, we will let the current allocation go through with
3376 * the original cache.
3378 * Can't be called in interrupt context or from kernel threads.
3379 * This function needs to be called with rcu_read_lock() held.
3381 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3384 struct mem_cgroup *memcg;
3387 VM_BUG_ON(!cachep->memcg_params);
3388 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3390 if (!current->mm || current->memcg_kmem_skip_account)
3394 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3397 if (!memcg_can_account_kmem(memcg))
3400 idx = memcg_cache_id(memcg);
3403 * barrier to mare sure we're always seeing the up to date value. The
3404 * code updating memcg_caches will issue a write barrier to match this.
3406 read_barrier_depends();
3407 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3409 * If we are in a safe context (can wait, and not in interrupt
3410 * context), we could be be predictable and return right away.
3411 * This would guarantee that the allocation being performed
3412 * already belongs in the new cache.
3414 * However, there are some clashes that can arrive from locking.
3415 * For instance, because we acquire the slab_mutex while doing
3416 * kmem_cache_dup, this means no further allocation could happen
3417 * with the slab_mutex held.
3419 * Also, because cache creation issue get_online_cpus(), this
3420 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3421 * that ends up reversed during cpu hotplug. (cpuset allocates
3422 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3423 * better to defer everything.
3425 memcg_create_cache_enqueue(memcg, cachep);
3429 return cachep->memcg_params->memcg_caches[idx];
3431 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3434 * We need to verify if the allocation against current->mm->owner's memcg is
3435 * possible for the given order. But the page is not allocated yet, so we'll
3436 * need a further commit step to do the final arrangements.
3438 * It is possible for the task to switch cgroups in this mean time, so at
3439 * commit time, we can't rely on task conversion any longer. We'll then use
3440 * the handle argument to return to the caller which cgroup we should commit
3441 * against. We could also return the memcg directly and avoid the pointer
3442 * passing, but a boolean return value gives better semantics considering
3443 * the compiled-out case as well.
3445 * Returning true means the allocation is possible.
3448 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3450 struct mem_cgroup *memcg;
3454 memcg = try_get_mem_cgroup_from_mm(current->mm);
3457 * very rare case described in mem_cgroup_from_task. Unfortunately there
3458 * isn't much we can do without complicating this too much, and it would
3459 * be gfp-dependent anyway. Just let it go
3461 if (unlikely(!memcg))
3464 if (!memcg_can_account_kmem(memcg)) {
3465 css_put(&memcg->css);
3469 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3473 css_put(&memcg->css);
3477 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3480 struct page_cgroup *pc;
3482 VM_BUG_ON(mem_cgroup_is_root(memcg));
3484 /* The page allocation failed. Revert */
3486 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3490 pc = lookup_page_cgroup(page);
3491 lock_page_cgroup(pc);
3492 pc->mem_cgroup = memcg;
3493 SetPageCgroupUsed(pc);
3494 unlock_page_cgroup(pc);
3497 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3499 struct mem_cgroup *memcg = NULL;
3500 struct page_cgroup *pc;
3503 pc = lookup_page_cgroup(page);
3505 * Fast unlocked return. Theoretically might have changed, have to
3506 * check again after locking.
3508 if (!PageCgroupUsed(pc))
3511 lock_page_cgroup(pc);
3512 if (PageCgroupUsed(pc)) {
3513 memcg = pc->mem_cgroup;
3514 ClearPageCgroupUsed(pc);
3516 unlock_page_cgroup(pc);
3519 * We trust that only if there is a memcg associated with the page, it
3520 * is a valid allocation
3525 VM_BUG_ON(mem_cgroup_is_root(memcg));
3526 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3529 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3532 #endif /* CONFIG_MEMCG_KMEM */
3534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3536 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3538 * Because tail pages are not marked as "used", set it. We're under
3539 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3540 * charge/uncharge will be never happen and move_account() is done under
3541 * compound_lock(), so we don't have to take care of races.
3543 void mem_cgroup_split_huge_fixup(struct page *head)
3545 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3546 struct page_cgroup *pc;
3549 if (mem_cgroup_disabled())
3551 for (i = 1; i < HPAGE_PMD_NR; i++) {
3553 pc->mem_cgroup = head_pc->mem_cgroup;
3554 smp_wmb();/* see __commit_charge() */
3555 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3558 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3561 * mem_cgroup_move_account - move account of the page
3563 * @nr_pages: number of regular pages (>1 for huge pages)
3564 * @pc: page_cgroup of the page.
3565 * @from: mem_cgroup which the page is moved from.
3566 * @to: mem_cgroup which the page is moved to. @from != @to.
3568 * The caller must confirm following.
3569 * - page is not on LRU (isolate_page() is useful.)
3570 * - compound_lock is held when nr_pages > 1
3572 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3575 static int mem_cgroup_move_account(struct page *page,
3576 unsigned int nr_pages,
3577 struct page_cgroup *pc,
3578 struct mem_cgroup *from,
3579 struct mem_cgroup *to)
3581 unsigned long flags;
3583 bool anon = PageAnon(page);
3585 VM_BUG_ON(from == to);
3586 VM_BUG_ON(PageLRU(page));
3588 * The page is isolated from LRU. So, collapse function
3589 * will not handle this page. But page splitting can happen.
3590 * Do this check under compound_page_lock(). The caller should
3594 if (nr_pages > 1 && !PageTransHuge(page))
3597 lock_page_cgroup(pc);
3600 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3603 move_lock_mem_cgroup(from, &flags);
3605 if (!anon && page_mapped(page)) {
3606 /* Update mapped_file data for mem_cgroup */
3608 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3609 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3612 mem_cgroup_charge_statistics(from, anon, -nr_pages);
3614 /* caller should have done css_get */
3615 pc->mem_cgroup = to;
3616 mem_cgroup_charge_statistics(to, anon, nr_pages);
3617 move_unlock_mem_cgroup(from, &flags);
3620 unlock_page_cgroup(pc);
3624 memcg_check_events(to, page);
3625 memcg_check_events(from, page);
3631 * mem_cgroup_move_parent - moves page to the parent group
3632 * @page: the page to move
3633 * @pc: page_cgroup of the page
3634 * @child: page's cgroup
3636 * move charges to its parent or the root cgroup if the group has no
3637 * parent (aka use_hierarchy==0).
3638 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3639 * mem_cgroup_move_account fails) the failure is always temporary and
3640 * it signals a race with a page removal/uncharge or migration. In the
3641 * first case the page is on the way out and it will vanish from the LRU
3642 * on the next attempt and the call should be retried later.
3643 * Isolation from the LRU fails only if page has been isolated from
3644 * the LRU since we looked at it and that usually means either global
3645 * reclaim or migration going on. The page will either get back to the
3647 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3648 * (!PageCgroupUsed) or moved to a different group. The page will
3649 * disappear in the next attempt.
3651 static int mem_cgroup_move_parent(struct page *page,
3652 struct page_cgroup *pc,
3653 struct mem_cgroup *child)
3655 struct mem_cgroup *parent;
3656 unsigned int nr_pages;
3657 unsigned long uninitialized_var(flags);
3660 VM_BUG_ON(mem_cgroup_is_root(child));
3663 if (!get_page_unless_zero(page))
3665 if (isolate_lru_page(page))
3668 nr_pages = hpage_nr_pages(page);
3670 parent = parent_mem_cgroup(child);
3672 * If no parent, move charges to root cgroup.
3675 parent = root_mem_cgroup;
3678 VM_BUG_ON(!PageTransHuge(page));
3679 flags = compound_lock_irqsave(page);
3682 ret = mem_cgroup_move_account(page, nr_pages,
3685 __mem_cgroup_cancel_local_charge(child, nr_pages);
3688 compound_unlock_irqrestore(page, flags);
3689 putback_lru_page(page);
3697 * Charge the memory controller for page usage.
3699 * 0 if the charge was successful
3700 * < 0 if the cgroup is over its limit
3702 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3703 gfp_t gfp_mask, enum charge_type ctype)
3705 struct mem_cgroup *memcg = NULL;
3706 unsigned int nr_pages = 1;
3710 if (PageTransHuge(page)) {
3711 nr_pages <<= compound_order(page);
3712 VM_BUG_ON(!PageTransHuge(page));
3714 * Never OOM-kill a process for a huge page. The
3715 * fault handler will fall back to regular pages.
3720 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3723 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3727 int mem_cgroup_newpage_charge(struct page *page,
3728 struct mm_struct *mm, gfp_t gfp_mask)
3730 if (mem_cgroup_disabled())
3732 VM_BUG_ON(page_mapped(page));
3733 VM_BUG_ON(page->mapping && !PageAnon(page));
3735 return mem_cgroup_charge_common(page, mm, gfp_mask,
3736 MEM_CGROUP_CHARGE_TYPE_ANON);
3740 * While swap-in, try_charge -> commit or cancel, the page is locked.
3741 * And when try_charge() successfully returns, one refcnt to memcg without
3742 * struct page_cgroup is acquired. This refcnt will be consumed by
3743 * "commit()" or removed by "cancel()"
3745 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3748 struct mem_cgroup **memcgp)
3750 struct mem_cgroup *memcg;
3751 struct page_cgroup *pc;
3754 pc = lookup_page_cgroup(page);
3756 * Every swap fault against a single page tries to charge the
3757 * page, bail as early as possible. shmem_unuse() encounters
3758 * already charged pages, too. The USED bit is protected by
3759 * the page lock, which serializes swap cache removal, which
3760 * in turn serializes uncharging.
3762 if (PageCgroupUsed(pc))
3764 if (!do_swap_account)
3766 memcg = try_get_mem_cgroup_from_page(page);
3770 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3771 css_put(&memcg->css);
3776 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3782 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3783 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3786 if (mem_cgroup_disabled())
3789 * A racing thread's fault, or swapoff, may have already
3790 * updated the pte, and even removed page from swap cache: in
3791 * those cases unuse_pte()'s pte_same() test will fail; but
3792 * there's also a KSM case which does need to charge the page.
3794 if (!PageSwapCache(page)) {
3797 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3802 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3805 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3807 if (mem_cgroup_disabled())
3811 __mem_cgroup_cancel_charge(memcg, 1);
3815 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3816 enum charge_type ctype)
3818 if (mem_cgroup_disabled())
3823 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3825 * Now swap is on-memory. This means this page may be
3826 * counted both as mem and swap....double count.
3827 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3828 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3829 * may call delete_from_swap_cache() before reach here.
3831 if (do_swap_account && PageSwapCache(page)) {
3832 swp_entry_t ent = {.val = page_private(page)};
3833 mem_cgroup_uncharge_swap(ent);
3837 void mem_cgroup_commit_charge_swapin(struct page *page,
3838 struct mem_cgroup *memcg)
3840 __mem_cgroup_commit_charge_swapin(page, memcg,
3841 MEM_CGROUP_CHARGE_TYPE_ANON);
3844 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3847 struct mem_cgroup *memcg = NULL;
3848 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3851 if (mem_cgroup_disabled())
3853 if (PageCompound(page))
3856 if (!PageSwapCache(page))
3857 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3858 else { /* page is swapcache/shmem */
3859 ret = __mem_cgroup_try_charge_swapin(mm, page,
3862 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3867 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3868 unsigned int nr_pages,
3869 const enum charge_type ctype)
3871 struct memcg_batch_info *batch = NULL;
3872 bool uncharge_memsw = true;
3874 /* If swapout, usage of swap doesn't decrease */
3875 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3876 uncharge_memsw = false;
3878 batch = ¤t->memcg_batch;
3880 * In usual, we do css_get() when we remember memcg pointer.
3881 * But in this case, we keep res->usage until end of a series of
3882 * uncharges. Then, it's ok to ignore memcg's refcnt.
3885 batch->memcg = memcg;
3887 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3888 * In those cases, all pages freed continuously can be expected to be in
3889 * the same cgroup and we have chance to coalesce uncharges.
3890 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3891 * because we want to do uncharge as soon as possible.
3894 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3895 goto direct_uncharge;
3898 goto direct_uncharge;
3901 * In typical case, batch->memcg == mem. This means we can
3902 * merge a series of uncharges to an uncharge of res_counter.
3903 * If not, we uncharge res_counter ony by one.
3905 if (batch->memcg != memcg)
3906 goto direct_uncharge;
3907 /* remember freed charge and uncharge it later */
3910 batch->memsw_nr_pages++;
3913 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3915 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3916 if (unlikely(batch->memcg != memcg))
3917 memcg_oom_recover(memcg);
3921 * uncharge if !page_mapped(page)
3923 static struct mem_cgroup *
3924 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3927 struct mem_cgroup *memcg = NULL;
3928 unsigned int nr_pages = 1;
3929 struct page_cgroup *pc;
3932 if (mem_cgroup_disabled())
3935 VM_BUG_ON(PageSwapCache(page));
3937 if (PageTransHuge(page)) {
3938 nr_pages <<= compound_order(page);
3939 VM_BUG_ON(!PageTransHuge(page));
3942 * Check if our page_cgroup is valid
3944 pc = lookup_page_cgroup(page);
3945 if (unlikely(!PageCgroupUsed(pc)))
3948 lock_page_cgroup(pc);
3950 memcg = pc->mem_cgroup;
3952 if (!PageCgroupUsed(pc))
3955 anon = PageAnon(page);
3958 case MEM_CGROUP_CHARGE_TYPE_ANON:
3960 * Generally PageAnon tells if it's the anon statistics to be
3961 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3962 * used before page reached the stage of being marked PageAnon.
3966 case MEM_CGROUP_CHARGE_TYPE_DROP:
3967 /* See mem_cgroup_prepare_migration() */
3968 if (page_mapped(page))
3971 * Pages under migration may not be uncharged. But
3972 * end_migration() /must/ be the one uncharging the
3973 * unused post-migration page and so it has to call
3974 * here with the migration bit still set. See the
3975 * res_counter handling below.
3977 if (!end_migration && PageCgroupMigration(pc))
3980 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3981 if (!PageAnon(page)) { /* Shared memory */
3982 if (page->mapping && !page_is_file_cache(page))
3984 } else if (page_mapped(page)) /* Anon */
3991 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3993 ClearPageCgroupUsed(pc);
3995 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3996 * freed from LRU. This is safe because uncharged page is expected not
3997 * to be reused (freed soon). Exception is SwapCache, it's handled by
3998 * special functions.
4001 unlock_page_cgroup(pc);
4003 * even after unlock, we have memcg->res.usage here and this memcg
4004 * will never be freed.
4006 memcg_check_events(memcg, page);
4007 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4008 mem_cgroup_swap_statistics(memcg, true);
4009 mem_cgroup_get(memcg);
4012 * Migration does not charge the res_counter for the
4013 * replacement page, so leave it alone when phasing out the
4014 * page that is unused after the migration.
4016 if (!end_migration && !mem_cgroup_is_root(memcg))
4017 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4022 unlock_page_cgroup(pc);
4026 void mem_cgroup_uncharge_page(struct page *page)
4029 if (page_mapped(page))
4031 VM_BUG_ON(page->mapping && !PageAnon(page));
4032 if (PageSwapCache(page))
4034 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4037 void mem_cgroup_uncharge_cache_page(struct page *page)
4039 VM_BUG_ON(page_mapped(page));
4040 VM_BUG_ON(page->mapping);
4041 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4045 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4046 * In that cases, pages are freed continuously and we can expect pages
4047 * are in the same memcg. All these calls itself limits the number of
4048 * pages freed at once, then uncharge_start/end() is called properly.
4049 * This may be called prural(2) times in a context,
4052 void mem_cgroup_uncharge_start(void)
4054 current->memcg_batch.do_batch++;
4055 /* We can do nest. */
4056 if (current->memcg_batch.do_batch == 1) {
4057 current->memcg_batch.memcg = NULL;
4058 current->memcg_batch.nr_pages = 0;
4059 current->memcg_batch.memsw_nr_pages = 0;
4063 void mem_cgroup_uncharge_end(void)
4065 struct memcg_batch_info *batch = ¤t->memcg_batch;
4067 if (!batch->do_batch)
4071 if (batch->do_batch) /* If stacked, do nothing. */
4077 * This "batch->memcg" is valid without any css_get/put etc...
4078 * bacause we hide charges behind us.
4080 if (batch->nr_pages)
4081 res_counter_uncharge(&batch->memcg->res,
4082 batch->nr_pages * PAGE_SIZE);
4083 if (batch->memsw_nr_pages)
4084 res_counter_uncharge(&batch->memcg->memsw,
4085 batch->memsw_nr_pages * PAGE_SIZE);
4086 memcg_oom_recover(batch->memcg);
4087 /* forget this pointer (for sanity check) */
4088 batch->memcg = NULL;
4093 * called after __delete_from_swap_cache() and drop "page" account.
4094 * memcg information is recorded to swap_cgroup of "ent"
4097 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4099 struct mem_cgroup *memcg;
4100 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4102 if (!swapout) /* this was a swap cache but the swap is unused ! */
4103 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4105 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4108 * record memcg information, if swapout && memcg != NULL,
4109 * mem_cgroup_get() was called in uncharge().
4111 if (do_swap_account && swapout && memcg)
4112 swap_cgroup_record(ent, css_id(&memcg->css));
4116 #ifdef CONFIG_MEMCG_SWAP
4118 * called from swap_entry_free(). remove record in swap_cgroup and
4119 * uncharge "memsw" account.
4121 void mem_cgroup_uncharge_swap(swp_entry_t ent)