2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node);
67 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
82 * Array of node states.
84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 [N_CPU] = { { [0] = 1UL } },
95 EXPORT_SYMBOL(node_states);
97 unsigned long totalram_pages __read_mostly;
98 unsigned long totalreserve_pages __read_mostly;
99 int percpu_pagelist_fraction;
100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
130 #endif /* CONFIG_PM_SLEEP */
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly;
136 static void __free_pages_ok(struct page *page, unsigned int order);
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150 #ifdef CONFIG_ZONE_DMA
153 #ifdef CONFIG_ZONE_DMA32
156 #ifdef CONFIG_HIGHMEM
162 EXPORT_SYMBOL(totalram_pages);
164 static char * const zone_names[MAX_NR_ZONES] = {
165 #ifdef CONFIG_ZONE_DMA
168 #ifdef CONFIG_ZONE_DMA32
172 #ifdef CONFIG_HIGHMEM
178 int min_free_kbytes = 1024;
180 static unsigned long __meminitdata nr_kernel_pages;
181 static unsigned long __meminitdata nr_all_pages;
182 static unsigned long __meminitdata dma_reserve;
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206 static int __meminitdata nr_nodemap_entries;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
209 static unsigned long __initdata required_kernelcore;
210 static unsigned long __initdata required_movablecore;
211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
215 EXPORT_SYMBOL(movable_zone);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
219 int nr_node_ids __read_mostly = MAX_NUMNODES;
220 int nr_online_nodes __read_mostly = 1;
221 EXPORT_SYMBOL(nr_node_ids);
222 EXPORT_SYMBOL(nr_online_nodes);
225 int page_group_by_mobility_disabled __read_mostly;
227 static void set_pageblock_migratetype(struct page *page, int migratetype)
230 if (unlikely(page_group_by_mobility_disabled))
231 migratetype = MIGRATE_UNMOVABLE;
233 set_pageblock_flags_group(page, (unsigned long)migratetype,
234 PB_migrate, PB_migrate_end);
237 bool oom_killer_disabled __read_mostly;
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
244 unsigned long pfn = page_to_pfn(page);
247 seq = zone_span_seqbegin(zone);
248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
250 else if (pfn < zone->zone_start_pfn)
252 } while (zone_span_seqretry(zone, seq));
257 static int page_is_consistent(struct zone *zone, struct page *page)
259 if (!pfn_valid_within(page_to_pfn(page)))
261 if (zone != page_zone(page))
267 * Temporary debugging check for pages not lying within a given zone.
269 static int bad_range(struct zone *zone, struct page *page)
271 if (page_outside_zone_boundaries(zone, page))
273 if (!page_is_consistent(zone, page))
279 static inline int bad_range(struct zone *zone, struct page *page)
285 static void bad_page(struct page *page)
287 static unsigned long resume;
288 static unsigned long nr_shown;
289 static unsigned long nr_unshown;
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page)) {
293 reset_page_mapcount(page); /* remove PageBuddy */
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
301 if (nr_shown == 60) {
302 if (time_before(jiffies, resume)) {
308 "BUG: Bad page state: %lu messages suppressed\n",
315 resume = jiffies + 60 * HZ;
317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
318 current->comm, page_to_pfn(page));
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
329 * Higher-order pages are called "compound pages". They are structured thusly:
331 * The first PAGE_SIZE page is called the "head page".
333 * The remaining PAGE_SIZE pages are called "tail pages".
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
343 static void free_compound_page(struct page *page)
345 __free_pages_ok(page, compound_order(page));
348 void prep_compound_page(struct page *page, unsigned long order)
351 int nr_pages = 1 << order;
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
360 p->first_page = page;
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
368 int nr_pages = 1 << order;
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
377 __ClearPageHead(page);
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
405 static inline void set_page_order(struct page *page, int order)
407 set_page_private(page, order);
408 __SetPageBuddy(page);
411 static inline void rmv_page_order(struct page *page)
413 __ClearPageBuddy(page);
414 set_page_private(page, 0);
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
424 * For example, if the starting buddy (buddy2) is #8 its order
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434 static inline unsigned long
435 __find_buddy_index(unsigned long page_idx, unsigned int order)
437 return page_idx ^ (1 << order);
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
443 * (a) the buddy is not in a hole &&
444 * (b) the buddy is in the buddy system &&
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
451 * For recording page's order, we use page_private(page).
453 static inline int page_is_buddy(struct page *page, struct page *buddy,
456 if (!pfn_valid_within(page_to_pfn(buddy)))
459 if (page_zone_id(page) != page_zone_id(buddy))
462 if (PageBuddy(buddy) && page_order(buddy) == order) {
463 VM_BUG_ON(page_count(buddy) != 0);
470 * Freeing function for a buddy system allocator.
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
483 * order is recorded in page_private(page) field.
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
493 static inline void __free_one_page(struct page *page,
494 struct zone *zone, unsigned int order,
497 unsigned long page_idx;
498 unsigned long combined_idx;
499 unsigned long uninitialized_var(buddy_idx);
502 if (unlikely(PageCompound(page)))
503 if (unlikely(destroy_compound_page(page, order)))
506 VM_BUG_ON(migratetype == -1);
508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
510 VM_BUG_ON(page_idx & ((1 << order) - 1));
511 VM_BUG_ON(bad_range(zone, page));
513 while (order < MAX_ORDER-1) {
514 buddy_idx = __find_buddy_index(page_idx, order);
515 buddy = page + (buddy_idx - page_idx);
516 if (!page_is_buddy(page, buddy, order))
519 /* Our buddy is free, merge with it and move up one order. */
520 list_del(&buddy->lru);
521 zone->free_area[order].nr_free--;
522 rmv_page_order(buddy);
523 combined_idx = buddy_idx & page_idx;
524 page = page + (combined_idx - page_idx);
525 page_idx = combined_idx;
528 set_page_order(page, order);
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
539 struct page *higher_page, *higher_buddy;
540 combined_idx = buddy_idx & page_idx;
541 higher_page = page + (combined_idx - page_idx);
542 buddy_idx = __find_buddy_index(combined_idx, order + 1);
543 higher_buddy = page + (buddy_idx - combined_idx);
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
553 zone->free_area[order].nr_free++;
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
561 static inline void free_page_mlock(struct page *page)
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
567 static inline int free_pages_check(struct page *page)
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
571 (atomic_read(&page->_count) != 0) |
572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573 (mem_cgroup_bad_page_check(page)))) {
577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
583 * Frees a number of pages from the PCP lists
584 * Assumes all pages on list are in same zone, and of same order.
585 * count is the number of pages to free.
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
593 static void free_pcppages_bulk(struct zone *zone, int count,
594 struct per_cpu_pages *pcp)
600 spin_lock(&zone->lock);
601 zone->all_unreclaimable = 0;
602 zone->pages_scanned = 0;
606 struct list_head *list;
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
617 if (++migratetype == MIGRATE_PCPTYPES)
619 list = &pcp->lists[migratetype];
620 } while (list_empty(list));
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free == MIGRATE_PCPTYPES)
624 batch_free = to_free;
627 page = list_entry(list->prev, struct page, lru);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page->lru);
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page, zone, 0, page_private(page));
632 trace_mm_page_pcpu_drain(page, 0, page_private(page));
633 } while (--to_free && --batch_free && !list_empty(list));
635 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
636 spin_unlock(&zone->lock);
639 static void free_one_page(struct zone *zone, struct page *page, int order,
642 spin_lock(&zone->lock);
643 zone->all_unreclaimable = 0;
644 zone->pages_scanned = 0;
646 __free_one_page(page, zone, order, migratetype);
647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
648 spin_unlock(&zone->lock);
651 static bool free_pages_prepare(struct page *page, unsigned int order)
656 trace_mm_page_free_direct(page, order);
657 kmemcheck_free_shadow(page, order);
660 page->mapping = NULL;
661 for (i = 0; i < (1 << order); i++)
662 bad += free_pages_check(page + i);
666 if (!PageHighMem(page)) {
667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
668 debug_check_no_obj_freed(page_address(page),
671 arch_free_page(page, order);
672 kernel_map_pages(page, 1 << order, 0);
677 static void __free_pages_ok(struct page *page, unsigned int order)
680 int wasMlocked = __TestClearPageMlocked(page);
682 if (!free_pages_prepare(page, order))
685 local_irq_save(flags);
686 if (unlikely(wasMlocked))
687 free_page_mlock(page);
688 __count_vm_events(PGFREE, 1 << order);
689 free_one_page(page_zone(page), page, order,
690 get_pageblock_migratetype(page));
691 local_irq_restore(flags);
695 * permit the bootmem allocator to evade page validation on high-order frees
697 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
700 __ClearPageReserved(page);
701 set_page_count(page, 0);
702 set_page_refcounted(page);
708 for (loop = 0; loop < BITS_PER_LONG; loop++) {
709 struct page *p = &page[loop];
711 if (loop + 1 < BITS_PER_LONG)
713 __ClearPageReserved(p);
714 set_page_count(p, 0);
717 set_page_refcounted(page);
718 __free_pages(page, order);
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
737 static inline void expand(struct zone *zone, struct page *page,
738 int low, int high, struct free_area *area,
741 unsigned long size = 1 << high;
747 VM_BUG_ON(bad_range(zone, &page[size]));
748 list_add(&page[size].lru, &area->free_list[migratetype]);
750 set_page_order(&page[size], high);
755 * This page is about to be returned from the page allocator
757 static inline int check_new_page(struct page *page)
759 if (unlikely(page_mapcount(page) |
760 (page->mapping != NULL) |
761 (atomic_read(&page->_count) != 0) |
762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763 (mem_cgroup_bad_page_check(page)))) {
770 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
774 for (i = 0; i < (1 << order); i++) {
775 struct page *p = page + i;
776 if (unlikely(check_new_page(p)))
780 set_page_private(page, 0);
781 set_page_refcounted(page);
783 arch_alloc_page(page, order);
784 kernel_map_pages(page, 1 << order, 1);
786 if (gfp_flags & __GFP_ZERO)
787 prep_zero_page(page, order, gfp_flags);
789 if (order && (gfp_flags & __GFP_COMP))
790 prep_compound_page(page, order);
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
800 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
803 unsigned int current_order;
804 struct free_area * area;
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809 area = &(zone->free_area[current_order]);
810 if (list_empty(&area->free_list[migratetype]))
813 page = list_entry(area->free_list[migratetype].next,
815 list_del(&page->lru);
816 rmv_page_order(page);
818 expand(zone, page, order, current_order, area, migratetype);
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
830 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
838 * Move the free pages in a range to the free lists of the requested type.
839 * Note that start_page and end_pages are not aligned on a pageblock
840 * boundary. If alignment is required, use move_freepages_block()
842 static int move_freepages(struct zone *zone,
843 struct page *start_page, struct page *end_page,
850 #ifndef CONFIG_HOLES_IN_ZONE
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
856 * grouping pages by mobility
858 BUG_ON(page_zone(start_page) != page_zone(end_page));
861 for (page = start_page; page <= end_page;) {
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
865 if (!pfn_valid_within(page_to_pfn(page))) {
870 if (!PageBuddy(page)) {
875 order = page_order(page);
876 list_move(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
879 pages_moved += 1 << order;
885 static int move_freepages_block(struct zone *zone, struct page *page,
888 unsigned long start_pfn, end_pfn;
889 struct page *start_page, *end_page;
891 start_pfn = page_to_pfn(page);
892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
893 start_page = pfn_to_page(start_pfn);
894 end_page = start_page + pageblock_nr_pages - 1;
895 end_pfn = start_pfn + pageblock_nr_pages - 1;
897 /* Do not cross zone boundaries */
898 if (start_pfn < zone->zone_start_pfn)
900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
903 return move_freepages(zone, start_page, end_page, migratetype);
906 static void change_pageblock_range(struct page *pageblock_page,
907 int start_order, int migratetype)
909 int nr_pageblocks = 1 << (start_order - pageblock_order);
911 while (nr_pageblocks--) {
912 set_pageblock_migratetype(pageblock_page, migratetype);
913 pageblock_page += pageblock_nr_pages;
917 /* Remove an element from the buddy allocator from the fallback list */
918 static inline struct page *
919 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
921 struct free_area * area;
926 /* Find the largest possible block of pages in the other list */
927 for (current_order = MAX_ORDER-1; current_order >= order;
929 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930 migratetype = fallbacks[start_migratetype][i];
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype == MIGRATE_RESERVE)
936 area = &(zone->free_area[current_order]);
937 if (list_empty(&area->free_list[migratetype]))
940 page = list_entry(area->free_list[migratetype].next,
945 * If breaking a large block of pages, move all free
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
948 * aggressive about taking ownership of free pages
950 if (unlikely(current_order >= (pageblock_order >> 1)) ||
951 start_migratetype == MIGRATE_RECLAIMABLE ||
952 page_group_by_mobility_disabled) {
954 pages = move_freepages_block(zone, page,
957 /* Claim the whole block if over half of it is free */
958 if (pages >= (1 << (pageblock_order-1)) ||
959 page_group_by_mobility_disabled)
960 set_pageblock_migratetype(page,
963 migratetype = start_migratetype;
966 /* Remove the page from the freelists */
967 list_del(&page->lru);
968 rmv_page_order(page);
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order >= pageblock_order)
972 change_pageblock_range(page, current_order,
975 expand(zone, page, order, current_order, area, migratetype);
977 trace_mm_page_alloc_extfrag(page, order, current_order,
978 start_migratetype, migratetype);
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
991 static struct page *__rmqueue(struct zone *zone, unsigned int order,
997 page = __rmqueue_smallest(zone, order, migratetype);
999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1000 page = __rmqueue_fallback(zone, order, migratetype);
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1008 migratetype = MIGRATE_RESERVE;
1013 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1022 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1023 unsigned long count, struct list_head *list,
1024 int migratetype, int cold)
1028 spin_lock(&zone->lock);
1029 for (i = 0; i < count; ++i) {
1030 struct page *page = __rmqueue(zone, order, migratetype);
1031 if (unlikely(page == NULL))
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1043 if (likely(cold == 0))
1044 list_add(&page->lru, list);
1046 list_add_tail(&page->lru, list);
1047 set_page_private(page, migratetype);
1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1051 spin_unlock(&zone->lock);
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1066 unsigned long flags;
1069 local_irq_save(flags);
1070 if (pcp->count >= pcp->batch)
1071 to_drain = pcp->batch;
1073 to_drain = pcp->count;
1074 free_pcppages_bulk(zone, to_drain, pcp);
1075 pcp->count -= to_drain;
1076 local_irq_restore(flags);
1081 * Drain pages of the indicated processor.
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1087 static void drain_pages(unsigned int cpu)
1089 unsigned long flags;
1092 for_each_populated_zone(zone) {
1093 struct per_cpu_pageset *pset;
1094 struct per_cpu_pages *pcp;
1096 local_irq_save(flags);
1097 pset = per_cpu_ptr(zone->pageset, cpu);
1101 free_pcppages_bulk(zone, pcp->count, pcp);
1104 local_irq_restore(flags);
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1111 void drain_local_pages(void *arg)
1113 drain_pages(smp_processor_id());
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1119 void drain_all_pages(void)
1121 on_each_cpu(drain_local_pages, NULL, 1);
1124 #ifdef CONFIG_HIBERNATION
1126 void mark_free_pages(struct zone *zone)
1128 unsigned long pfn, max_zone_pfn;
1129 unsigned long flags;
1131 struct list_head *curr;
1133 if (!zone->spanned_pages)
1136 spin_lock_irqsave(&zone->lock, flags);
1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140 if (pfn_valid(pfn)) {
1141 struct page *page = pfn_to_page(pfn);
1143 if (!swsusp_page_is_forbidden(page))
1144 swsusp_unset_page_free(page);
1147 for_each_migratetype_order(order, t) {
1148 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1151 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152 for (i = 0; i < (1UL << order); i++)
1153 swsusp_set_page_free(pfn_to_page(pfn + i));
1156 spin_unlock_irqrestore(&zone->lock, flags);
1158 #endif /* CONFIG_PM */
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1164 void free_hot_cold_page(struct page *page, int cold)
1166 struct zone *zone = page_zone(page);
1167 struct per_cpu_pages *pcp;
1168 unsigned long flags;
1170 int wasMlocked = __TestClearPageMlocked(page);
1172 if (!free_pages_prepare(page, 0))
1175 migratetype = get_pageblock_migratetype(page);
1176 set_page_private(page, migratetype);
1177 local_irq_save(flags);
1178 if (unlikely(wasMlocked))
1179 free_page_mlock(page);
1180 __count_vm_event(PGFREE);
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1189 if (migratetype >= MIGRATE_PCPTYPES) {
1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191 free_one_page(zone, page, 0, migratetype);
1194 migratetype = MIGRATE_MOVABLE;
1197 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1199 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1201 list_add(&page->lru, &pcp->lists[migratetype]);
1203 if (pcp->count >= pcp->high) {
1204 free_pcppages_bulk(zone, pcp->batch, pcp);
1205 pcp->count -= pcp->batch;
1209 local_irq_restore(flags);
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1220 void split_page(struct page *page, unsigned int order)
1224 VM_BUG_ON(PageCompound(page));
1225 VM_BUG_ON(!page_count(page));
1227 #ifdef CONFIG_KMEMCHECK
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1232 if (kmemcheck_page_is_tracked(page))
1233 split_page(virt_to_page(page[0].shadow), order);
1236 for (i = 1; i < (1 << order); i++)
1237 set_page_refcounted(page + i);
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1250 int split_free_page(struct page *page)
1253 unsigned long watermark;
1256 BUG_ON(!PageBuddy(page));
1258 zone = page_zone(page);
1259 order = page_order(page);
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark = low_wmark_pages(zone) + (1 << order);
1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1266 /* Remove page from free list */
1267 list_del(&page->lru);
1268 zone->free_area[order].nr_free--;
1269 rmv_page_order(page);
1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1272 /* Split into individual pages */
1273 set_page_refcounted(page);
1274 split_page(page, order);
1276 if (order >= pageblock_order - 1) {
1277 struct page *endpage = page + (1 << order) - 1;
1278 for (; page < endpage; page += pageblock_nr_pages)
1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1291 struct page *buffered_rmqueue(struct zone *preferred_zone,
1292 struct zone *zone, int order, gfp_t gfp_flags,
1295 unsigned long flags;
1297 int cold = !!(gfp_flags & __GFP_COLD);
1300 if (likely(order == 0)) {
1301 struct per_cpu_pages *pcp;
1302 struct list_head *list;
1304 local_irq_save(flags);
1305 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306 list = &pcp->lists[migratetype];
1307 if (list_empty(list)) {
1308 pcp->count += rmqueue_bulk(zone, 0,
1311 if (unlikely(list_empty(list)))
1316 page = list_entry(list->prev, struct page, lru);
1318 page = list_entry(list->next, struct page, lru);
1320 list_del(&page->lru);
1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1325 * __GFP_NOFAIL is not to be used in new code.
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1330 * We most definitely don't want callers attempting to
1331 * allocate greater than order-1 page units with
1334 WARN_ON_ONCE(order > 1);
1336 spin_lock_irqsave(&zone->lock, flags);
1337 page = __rmqueue(zone, order, migratetype);
1338 spin_unlock(&zone->lock);
1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1344 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1345 zone_statistics(preferred_zone, zone, gfp_flags);
1346 local_irq_restore(flags);
1348 VM_BUG_ON(bad_range(zone, page));
1349 if (prep_new_page(page, order, gfp_flags))
1354 local_irq_restore(flags);
1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359 #define ALLOC_WMARK_MIN WMARK_MIN
1360 #define ALLOC_WMARK_LOW WMARK_LOW
1361 #define ALLOC_WMARK_HIGH WMARK_HIGH
1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1364 /* Mask to get the watermark bits */
1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1371 #ifdef CONFIG_FAIL_PAGE_ALLOC
1374 struct fault_attr attr;
1376 u32 ignore_gfp_highmem;
1377 u32 ignore_gfp_wait;
1379 } fail_page_alloc = {
1380 .attr = FAULT_ATTR_INITIALIZER,
1381 .ignore_gfp_wait = 1,
1382 .ignore_gfp_highmem = 1,
1386 static int __init setup_fail_page_alloc(char *str)
1388 return setup_fault_attr(&fail_page_alloc.attr, str);
1390 __setup("fail_page_alloc=", setup_fail_page_alloc);
1392 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1394 if (order < fail_page_alloc.min_order)
1396 if (gfp_mask & __GFP_NOFAIL)
1398 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1400 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1403 return should_fail(&fail_page_alloc.attr, 1 << order);
1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1408 static int __init fail_page_alloc_debugfs(void)
1410 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1414 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1419 dir = fail_page_alloc.attr.dir;
1421 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1422 &fail_page_alloc.ignore_gfp_wait))
1424 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1425 &fail_page_alloc.ignore_gfp_highmem))
1427 if (!debugfs_create_u32("min-order", mode, dir,
1428 &fail_page_alloc.min_order))
1433 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1438 late_initcall(fail_page_alloc_debugfs);
1440 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1442 #else /* CONFIG_FAIL_PAGE_ALLOC */
1444 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1449 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1452 * Return true if free pages are above 'mark'. This takes into account the order
1453 * of the allocation.
1455 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1456 int classzone_idx, int alloc_flags, long free_pages)
1458 /* free_pages my go negative - that's OK */
1462 free_pages -= (1 << order) + 1;
1463 if (alloc_flags & ALLOC_HIGH)
1465 if (alloc_flags & ALLOC_HARDER)
1468 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1470 for (o = 0; o < order; o++) {
1471 /* At the next order, this order's pages become unavailable */
1472 free_pages -= z->free_area[o].nr_free << o;
1474 /* Require fewer higher order pages to be free */
1477 if (free_pages <= min)
1483 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1484 int classzone_idx, int alloc_flags)
1486 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1487 zone_page_state(z, NR_FREE_PAGES));
1490 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1491 int classzone_idx, int alloc_flags)
1493 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1495 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1496 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1498 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1504 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1505 * skip over zones that are not allowed by the cpuset, or that have
1506 * been recently (in last second) found to be nearly full. See further
1507 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1508 * that have to skip over a lot of full or unallowed zones.
1510 * If the zonelist cache is present in the passed in zonelist, then
1511 * returns a pointer to the allowed node mask (either the current
1512 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1514 * If the zonelist cache is not available for this zonelist, does
1515 * nothing and returns NULL.
1517 * If the fullzones BITMAP in the zonelist cache is stale (more than
1518 * a second since last zap'd) then we zap it out (clear its bits.)
1520 * We hold off even calling zlc_setup, until after we've checked the
1521 * first zone in the zonelist, on the theory that most allocations will
1522 * be satisfied from that first zone, so best to examine that zone as
1523 * quickly as we can.
1525 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1527 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1528 nodemask_t *allowednodes; /* zonelist_cache approximation */
1530 zlc = zonelist->zlcache_ptr;
1534 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1535 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1536 zlc->last_full_zap = jiffies;
1539 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1540 &cpuset_current_mems_allowed :
1541 &node_states[N_HIGH_MEMORY];
1542 return allowednodes;
1546 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1547 * if it is worth looking at further for free memory:
1548 * 1) Check that the zone isn't thought to be full (doesn't have its
1549 * bit set in the zonelist_cache fullzones BITMAP).
1550 * 2) Check that the zones node (obtained from the zonelist_cache
1551 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1552 * Return true (non-zero) if zone is worth looking at further, or
1553 * else return false (zero) if it is not.
1555 * This check -ignores- the distinction between various watermarks,
1556 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1557 * found to be full for any variation of these watermarks, it will
1558 * be considered full for up to one second by all requests, unless
1559 * we are so low on memory on all allowed nodes that we are forced
1560 * into the second scan of the zonelist.
1562 * In the second scan we ignore this zonelist cache and exactly
1563 * apply the watermarks to all zones, even it is slower to do so.
1564 * We are low on memory in the second scan, and should leave no stone
1565 * unturned looking for a free page.
1567 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1568 nodemask_t *allowednodes)
1570 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1571 int i; /* index of *z in zonelist zones */
1572 int n; /* node that zone *z is on */
1574 zlc = zonelist->zlcache_ptr;
1578 i = z - zonelist->_zonerefs;
1581 /* This zone is worth trying if it is allowed but not full */
1582 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1586 * Given 'z' scanning a zonelist, set the corresponding bit in
1587 * zlc->fullzones, so that subsequent attempts to allocate a page
1588 * from that zone don't waste time re-examining it.
1590 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1592 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1593 int i; /* index of *z in zonelist zones */
1595 zlc = zonelist->zlcache_ptr;
1599 i = z - zonelist->_zonerefs;
1601 set_bit(i, zlc->fullzones);
1605 * clear all zones full, called after direct reclaim makes progress so that
1606 * a zone that was recently full is not skipped over for up to a second
1608 static void zlc_clear_zones_full(struct zonelist *zonelist)
1610 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1612 zlc = zonelist->zlcache_ptr;
1616 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1619 #else /* CONFIG_NUMA */
1621 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1626 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1627 nodemask_t *allowednodes)
1632 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1636 static void zlc_clear_zones_full(struct zonelist *zonelist)
1639 #endif /* CONFIG_NUMA */
1642 * get_page_from_freelist goes through the zonelist trying to allocate
1645 static struct page *
1646 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1647 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1648 struct zone *preferred_zone, int migratetype)
1651 struct page *page = NULL;
1654 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1655 int zlc_active = 0; /* set if using zonelist_cache */
1656 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1658 classzone_idx = zone_idx(preferred_zone);
1661 * Scan zonelist, looking for a zone with enough free.
1662 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1664 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1665 high_zoneidx, nodemask) {
1666 if (NUMA_BUILD && zlc_active &&
1667 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1669 if ((alloc_flags & ALLOC_CPUSET) &&
1670 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1673 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1674 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1678 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1679 if (zone_watermark_ok(zone, order, mark,
1680 classzone_idx, alloc_flags))
1683 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1685 * we do zlc_setup if there are multiple nodes
1686 * and before considering the first zone allowed
1689 allowednodes = zlc_setup(zonelist, alloc_flags);
1694 if (zone_reclaim_mode == 0)
1695 goto this_zone_full;
1698 * As we may have just activated ZLC, check if the first
1699 * eligible zone has failed zone_reclaim recently.
1701 if (NUMA_BUILD && zlc_active &&
1702 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1705 ret = zone_reclaim(zone, gfp_mask, order);
1707 case ZONE_RECLAIM_NOSCAN:
1710 case ZONE_RECLAIM_FULL:
1711 /* scanned but unreclaimable */
1714 /* did we reclaim enough */
1715 if (!zone_watermark_ok(zone, order, mark,
1716 classzone_idx, alloc_flags))
1717 goto this_zone_full;
1722 page = buffered_rmqueue(preferred_zone, zone, order,
1723 gfp_mask, migratetype);
1728 zlc_mark_zone_full(zonelist, z);
1731 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1732 /* Disable zlc cache for second zonelist scan */
1740 * Large machines with many possible nodes should not always dump per-node
1741 * meminfo in irq context.
1743 static inline bool should_suppress_show_mem(void)
1748 ret = in_interrupt();
1753 static DEFINE_RATELIMIT_STATE(nopage_rs,
1754 DEFAULT_RATELIMIT_INTERVAL,
1755 DEFAULT_RATELIMIT_BURST);
1757 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1760 unsigned int filter = SHOW_MEM_FILTER_NODES;
1762 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1766 * This documents exceptions given to allocations in certain
1767 * contexts that are allowed to allocate outside current's set
1770 if (!(gfp_mask & __GFP_NOMEMALLOC))
1771 if (test_thread_flag(TIF_MEMDIE) ||
1772 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1773 filter &= ~SHOW_MEM_FILTER_NODES;
1774 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1775 filter &= ~SHOW_MEM_FILTER_NODES;
1778 printk(KERN_WARNING);
1779 va_start(args, fmt);
1784 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1785 current->comm, order, gfp_mask);
1788 if (!should_suppress_show_mem())
1793 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1794 unsigned long pages_reclaimed)
1796 /* Do not loop if specifically requested */
1797 if (gfp_mask & __GFP_NORETRY)
1801 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1802 * means __GFP_NOFAIL, but that may not be true in other
1805 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1809 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1810 * specified, then we retry until we no longer reclaim any pages
1811 * (above), or we've reclaimed an order of pages at least as
1812 * large as the allocation's order. In both cases, if the
1813 * allocation still fails, we stop retrying.
1815 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1819 * Don't let big-order allocations loop unless the caller
1820 * explicitly requests that.
1822 if (gfp_mask & __GFP_NOFAIL)
1828 static inline struct page *
1829 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1830 struct zonelist *zonelist, enum zone_type high_zoneidx,
1831 nodemask_t *nodemask, struct zone *preferred_zone,
1836 /* Acquire the OOM killer lock for the zones in zonelist */
1837 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1838 schedule_timeout_uninterruptible(1);
1843 * Go through the zonelist yet one more time, keep very high watermark
1844 * here, this is only to catch a parallel oom killing, we must fail if
1845 * we're still under heavy pressure.
1847 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1848 order, zonelist, high_zoneidx,
1849 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1850 preferred_zone, migratetype);
1854 if (!(gfp_mask & __GFP_NOFAIL)) {
1855 /* The OOM killer will not help higher order allocs */
1856 if (order > PAGE_ALLOC_COSTLY_ORDER)
1858 /* The OOM killer does not needlessly kill tasks for lowmem */
1859 if (high_zoneidx < ZONE_NORMAL)
1862 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1863 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1864 * The caller should handle page allocation failure by itself if
1865 * it specifies __GFP_THISNODE.
1866 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1868 if (gfp_mask & __GFP_THISNODE)
1871 /* Exhausted what can be done so it's blamo time */
1872 out_of_memory(zonelist, gfp_mask, order, nodemask);
1875 clear_zonelist_oom(zonelist, gfp_mask);
1879 #ifdef CONFIG_COMPACTION
1880 /* Try memory compaction for high-order allocations before reclaim */
1881 static struct page *
1882 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1883 struct zonelist *zonelist, enum zone_type high_zoneidx,
1884 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1885 int migratetype, unsigned long *did_some_progress,
1886 bool sync_migration)
1890 if (!order || compaction_deferred(preferred_zone))
1893 current->flags |= PF_MEMALLOC;
1894 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1895 nodemask, sync_migration);
1896 current->flags &= ~PF_MEMALLOC;
1897 if (*did_some_progress != COMPACT_SKIPPED) {
1899 /* Page migration frees to the PCP lists but we want merging */
1900 drain_pages(get_cpu());
1903 page = get_page_from_freelist(gfp_mask, nodemask,
1904 order, zonelist, high_zoneidx,
1905 alloc_flags, preferred_zone,
1908 preferred_zone->compact_considered = 0;
1909 preferred_zone->compact_defer_shift = 0;
1910 count_vm_event(COMPACTSUCCESS);
1915 * It's bad if compaction run occurs and fails.
1916 * The most likely reason is that pages exist,
1917 * but not enough to satisfy watermarks.
1919 count_vm_event(COMPACTFAIL);
1920 defer_compaction(preferred_zone);
1928 static inline struct page *
1929 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1930 struct zonelist *zonelist, enum zone_type high_zoneidx,
1931 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1932 int migratetype, unsigned long *did_some_progress,
1933 bool sync_migration)
1937 #endif /* CONFIG_COMPACTION */
1939 /* The really slow allocator path where we enter direct reclaim */
1940 static inline struct page *
1941 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1942 struct zonelist *zonelist, enum zone_type high_zoneidx,
1943 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1944 int migratetype, unsigned long *did_some_progress)
1946 struct page *page = NULL;
1947 struct reclaim_state reclaim_state;
1948 bool drained = false;
1952 /* We now go into synchronous reclaim */
1953 cpuset_memory_pressure_bump();
1954 current->flags |= PF_MEMALLOC;
1955 lockdep_set_current_reclaim_state(gfp_mask);
1956 reclaim_state.reclaimed_slab = 0;
1957 current->reclaim_state = &reclaim_state;
1959 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1961 current->reclaim_state = NULL;
1962 lockdep_clear_current_reclaim_state();
1963 current->flags &= ~PF_MEMALLOC;
1967 if (unlikely(!(*did_some_progress)))
1970 /* After successful reclaim, reconsider all zones for allocation */
1972 zlc_clear_zones_full(zonelist);
1975 page = get_page_from_freelist(gfp_mask, nodemask, order,
1976 zonelist, high_zoneidx,
1977 alloc_flags, preferred_zone,
1981 * If an allocation failed after direct reclaim, it could be because
1982 * pages are pinned on the per-cpu lists. Drain them and try again
1984 if (!page && !drained) {
1994 * This is called in the allocator slow-path if the allocation request is of
1995 * sufficient urgency to ignore watermarks and take other desperate measures
1997 static inline struct page *
1998 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1999 struct zonelist *zonelist, enum zone_type high_zoneidx,
2000 nodemask_t *nodemask, struct zone *preferred_zone,
2006 page = get_page_from_freelist(gfp_mask, nodemask, order,
2007 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2008 preferred_zone, migratetype);
2010 if (!page && gfp_mask & __GFP_NOFAIL)
2011 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2012 } while (!page && (gfp_mask & __GFP_NOFAIL));
2018 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2019 enum zone_type high_zoneidx,
2020 enum zone_type classzone_idx)
2025 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2026 wakeup_kswapd(zone, order, classzone_idx);
2030 gfp_to_alloc_flags(gfp_t gfp_mask)
2032 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2033 const gfp_t wait = gfp_mask & __GFP_WAIT;
2035 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2036 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2039 * The caller may dip into page reserves a bit more if the caller
2040 * cannot run direct reclaim, or if the caller has realtime scheduling
2041 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2042 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2044 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2048 * Not worth trying to allocate harder for
2049 * __GFP_NOMEMALLOC even if it can't schedule.
2051 if (!(gfp_mask & __GFP_NOMEMALLOC))
2052 alloc_flags |= ALLOC_HARDER;
2054 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2055 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2057 alloc_flags &= ~ALLOC_CPUSET;
2058 } else if (unlikely(rt_task(current)) && !in_interrupt())
2059 alloc_flags |= ALLOC_HARDER;
2061 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2062 if (!in_interrupt() &&
2063 ((current->flags & PF_MEMALLOC) ||
2064 unlikely(test_thread_flag(TIF_MEMDIE))))
2065 alloc_flags |= ALLOC_NO_WATERMARKS;
2071 static inline struct page *
2072 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2073 struct zonelist *zonelist, enum zone_type high_zoneidx,
2074 nodemask_t *nodemask, struct zone *preferred_zone,
2077 const gfp_t wait = gfp_mask & __GFP_WAIT;
2078 struct page *page = NULL;
2080 unsigned long pages_reclaimed = 0;
2081 unsigned long did_some_progress;
2082 bool sync_migration = false;
2085 * In the slowpath, we sanity check order to avoid ever trying to
2086 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2087 * be using allocators in order of preference for an area that is
2090 if (order >= MAX_ORDER) {
2091 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2096 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2097 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2098 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2099 * using a larger set of nodes after it has established that the
2100 * allowed per node queues are empty and that nodes are
2103 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2107 if (!(gfp_mask & __GFP_NO_KSWAPD))
2108 wake_all_kswapd(order, zonelist, high_zoneidx,
2109 zone_idx(preferred_zone));
2112 * OK, we're below the kswapd watermark and have kicked background
2113 * reclaim. Now things get more complex, so set up alloc_flags according
2114 * to how we want to proceed.
2116 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2119 * Find the true preferred zone if the allocation is unconstrained by
2122 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2123 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2127 /* This is the last chance, in general, before the goto nopage. */
2128 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2129 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2130 preferred_zone, migratetype);
2134 /* Allocate without watermarks if the context allows */
2135 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2136 page = __alloc_pages_high_priority(gfp_mask, order,
2137 zonelist, high_zoneidx, nodemask,
2138 preferred_zone, migratetype);
2143 /* Atomic allocations - we can't balance anything */
2147 /* Avoid recursion of direct reclaim */
2148 if (current->flags & PF_MEMALLOC)
2151 /* Avoid allocations with no watermarks from looping endlessly */
2152 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2156 * Try direct compaction. The first pass is asynchronous. Subsequent
2157 * attempts after direct reclaim are synchronous
2159 page = __alloc_pages_direct_compact(gfp_mask, order,
2160 zonelist, high_zoneidx,
2162 alloc_flags, preferred_zone,
2163 migratetype, &did_some_progress,
2167 sync_migration = true;
2169 /* Try direct reclaim and then allocating */
2170 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2171 zonelist, high_zoneidx,
2173 alloc_flags, preferred_zone,
2174 migratetype, &did_some_progress);
2179 * If we failed to make any progress reclaiming, then we are
2180 * running out of options and have to consider going OOM
2182 if (!did_some_progress) {
2183 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2184 if (oom_killer_disabled)
2186 page = __alloc_pages_may_oom(gfp_mask, order,
2187 zonelist, high_zoneidx,
2188 nodemask, preferred_zone,
2193 if (!(gfp_mask & __GFP_NOFAIL)) {
2195 * The oom killer is not called for high-order
2196 * allocations that may fail, so if no progress
2197 * is being made, there are no other options and
2198 * retrying is unlikely to help.
2200 if (order > PAGE_ALLOC_COSTLY_ORDER)
2203 * The oom killer is not called for lowmem
2204 * allocations to prevent needlessly killing
2207 if (high_zoneidx < ZONE_NORMAL)
2215 /* Check if we should retry the allocation */
2216 pages_reclaimed += did_some_progress;
2217 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2218 /* Wait for some write requests to complete then retry */
2219 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2223 * High-order allocations do not necessarily loop after
2224 * direct reclaim and reclaim/compaction depends on compaction
2225 * being called after reclaim so call directly if necessary
2227 page = __alloc_pages_direct_compact(gfp_mask, order,
2228 zonelist, high_zoneidx,
2230 alloc_flags, preferred_zone,
2231 migratetype, &did_some_progress,
2238 warn_alloc_failed(gfp_mask, order, NULL);
2241 if (kmemcheck_enabled)
2242 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2248 * This is the 'heart' of the zoned buddy allocator.
2251 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2252 struct zonelist *zonelist, nodemask_t *nodemask)
2254 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2255 struct zone *preferred_zone;
2257 int migratetype = allocflags_to_migratetype(gfp_mask);
2259 gfp_mask &= gfp_allowed_mask;
2261 lockdep_trace_alloc(gfp_mask);
2263 might_sleep_if(gfp_mask & __GFP_WAIT);
2265 if (should_fail_alloc_page(gfp_mask, order))
2269 * Check the zones suitable for the gfp_mask contain at least one
2270 * valid zone. It's possible to have an empty zonelist as a result
2271 * of GFP_THISNODE and a memoryless node
2273 if (unlikely(!zonelist->_zonerefs->zone))
2277 /* The preferred zone is used for statistics later */
2278 first_zones_zonelist(zonelist, high_zoneidx,
2279 nodemask ? : &cpuset_current_mems_allowed,
2281 if (!preferred_zone) {
2286 /* First allocation attempt */
2287 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2288 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2289 preferred_zone, migratetype);
2290 if (unlikely(!page))
2291 page = __alloc_pages_slowpath(gfp_mask, order,
2292 zonelist, high_zoneidx, nodemask,
2293 preferred_zone, migratetype);
2296 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2299 EXPORT_SYMBOL(__alloc_pages_nodemask);
2302 * Common helper functions.
2304 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2309 * __get_free_pages() returns a 32-bit address, which cannot represent
2312 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2314 page = alloc_pages(gfp_mask, order);
2317 return (unsigned long) page_address(page);
2319 EXPORT_SYMBOL(__get_free_pages);
2321 unsigned long get_zeroed_page(gfp_t gfp_mask)
2323 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2325 EXPORT_SYMBOL(get_zeroed_page);
2327 void __pagevec_free(struct pagevec *pvec)
2329 int i = pagevec_count(pvec);
2332 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2333 free_hot_cold_page(pvec->pages[i], pvec->cold);
2337 void __free_pages(struct page *page, unsigned int order)
2339 if (put_page_testzero(page)) {
2341 free_hot_cold_page(page, 0);
2343 __free_pages_ok(page, order);
2347 EXPORT_SYMBOL(__free_pages);
2349 void free_pages(unsigned long addr, unsigned int order)
2352 VM_BUG_ON(!virt_addr_valid((void *)addr));
2353 __free_pages(virt_to_page((void *)addr), order);
2357 EXPORT_SYMBOL(free_pages);
2359 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2362 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2363 unsigned long used = addr + PAGE_ALIGN(size);
2365 split_page(virt_to_page((void *)addr), order);
2366 while (used < alloc_end) {
2371 return (void *)addr;
2375 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2376 * @size: the number of bytes to allocate
2377 * @gfp_mask: GFP flags for the allocation
2379 * This function is similar to alloc_pages(), except that it allocates the
2380 * minimum number of pages to satisfy the request. alloc_pages() can only
2381 * allocate memory in power-of-two pages.
2383 * This function is also limited by MAX_ORDER.
2385 * Memory allocated by this function must be released by free_pages_exact().
2387 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2389 unsigned int order = get_order(size);
2392 addr = __get_free_pages(gfp_mask, order);
2393 return make_alloc_exact(addr, order, size);
2395 EXPORT_SYMBOL(alloc_pages_exact);
2398 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2400 * @nid: the preferred node ID where memory should be allocated
2401 * @size: the number of bytes to allocate
2402 * @gfp_mask: GFP flags for the allocation
2404 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2406 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2409 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2411 unsigned order = get_order(size);
2412 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2415 return make_alloc_exact((unsigned long)page_address(p), order, size);
2417 EXPORT_SYMBOL(alloc_pages_exact_nid);
2420 * free_pages_exact - release memory allocated via alloc_pages_exact()
2421 * @virt: the value returned by alloc_pages_exact.
2422 * @size: size of allocation, same value as passed to alloc_pages_exact().
2424 * Release the memory allocated by a previous call to alloc_pages_exact.
2426 void free_pages_exact(void *virt, size_t size)
2428 unsigned long addr = (unsigned long)virt;
2429 unsigned long end = addr + PAGE_ALIGN(size);
2431 while (addr < end) {
2436 EXPORT_SYMBOL(free_pages_exact);
2438 static unsigned int nr_free_zone_pages(int offset)
2443 /* Just pick one node, since fallback list is circular */
2444 unsigned int sum = 0;
2446 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2448 for_each_zone_zonelist(zone, z, zonelist, offset) {
2449 unsigned long size = zone->present_pages;
2450 unsigned long high = high_wmark_pages(zone);
2459 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2461 unsigned int nr_free_buffer_pages(void)
2463 return nr_free_zone_pages(gfp_zone(GFP_USER));
2465 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2468 * Amount of free RAM allocatable within all zones
2470 unsigned int nr_free_pagecache_pages(void)
2472 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2475 static inline void show_node(struct zone *zone)
2478 printk("Node %d ", zone_to_nid(zone));
2481 void si_meminfo(struct sysinfo *val)
2483 val->totalram = totalram_pages;
2485 val->freeram = global_page_state(NR_FREE_PAGES);
2486 val->bufferram = nr_blockdev_pages();
2487 val->totalhigh = totalhigh_pages;
2488 val->freehigh = nr_free_highpages();
2489 val->mem_unit = PAGE_SIZE;
2492 EXPORT_SYMBOL(si_meminfo);
2495 void si_meminfo_node(struct sysinfo *val, int nid)
2497 pg_data_t *pgdat = NODE_DATA(nid);
2499 val->totalram = pgdat->node_present_pages;
2500 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2501 #ifdef CONFIG_HIGHMEM
2502 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2503 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2509 val->mem_unit = PAGE_SIZE;
2514 * Determine whether the node should be displayed or not, depending on whether
2515 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2517 bool skip_free_areas_node(unsigned int flags, int nid)
2521 if (!(flags & SHOW_MEM_FILTER_NODES))
2525 ret = !node_isset(nid, cpuset_current_mems_allowed);
2531 #define K(x) ((x) << (PAGE_SHIFT-10))
2534 * Show free area list (used inside shift_scroll-lock stuff)
2535 * We also calculate the percentage fragmentation. We do this by counting the
2536 * memory on each free list with the exception of the first item on the list.
2537 * Suppresses nodes that are not allowed by current's cpuset if
2538 * SHOW_MEM_FILTER_NODES is passed.
2540 void show_free_areas(unsigned int filter)
2545 for_each_populated_zone(zone) {
2546 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2549 printk("%s per-cpu:\n", zone->name);
2551 for_each_online_cpu(cpu) {
2552 struct per_cpu_pageset *pageset;
2554 pageset = per_cpu_ptr(zone->pageset, cpu);
2556 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2557 cpu, pageset->pcp.high,
2558 pageset->pcp.batch, pageset->pcp.count);
2562 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2563 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2565 " dirty:%lu writeback:%lu unstable:%lu\n"
2566 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2567 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2568 global_page_state(NR_ACTIVE_ANON),
2569 global_page_state(NR_INACTIVE_ANON),
2570 global_page_state(NR_ISOLATED_ANON),
2571 global_page_state(NR_ACTIVE_FILE),
2572 global_page_state(NR_INACTIVE_FILE),
2573 global_page_state(NR_ISOLATED_FILE),
2574 global_page_state(NR_UNEVICTABLE),
2575 global_page_state(NR_FILE_DIRTY),
2576 global_page_state(NR_WRITEBACK),
2577 global_page_state(NR_UNSTABLE_NFS),
2578 global_page_state(NR_FREE_PAGES),
2579 global_page_state(NR_SLAB_RECLAIMABLE),
2580 global_page_state(NR_SLAB_UNRECLAIMABLE),
2581 global_page_state(NR_FILE_MAPPED),
2582 global_page_state(NR_SHMEM),
2583 global_page_state(NR_PAGETABLE),
2584 global_page_state(NR_BOUNCE));
2586 for_each_populated_zone(zone) {
2589 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2597 " active_anon:%lukB"
2598 " inactive_anon:%lukB"
2599 " active_file:%lukB"
2600 " inactive_file:%lukB"
2601 " unevictable:%lukB"
2602 " isolated(anon):%lukB"
2603 " isolated(file):%lukB"
2610 " slab_reclaimable:%lukB"
2611 " slab_unreclaimable:%lukB"
2612 " kernel_stack:%lukB"
2616 " writeback_tmp:%lukB"
2617 " pages_scanned:%lu"
2618 " all_unreclaimable? %s"
2621 K(zone_page_state(zone, NR_FREE_PAGES)),
2622 K(min_wmark_pages(zone)),
2623 K(low_wmark_pages(zone)),
2624 K(high_wmark_pages(zone)),
2625 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2626 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2627 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2628 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2629 K(zone_page_state(zone, NR_UNEVICTABLE)),
2630 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2631 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2632 K(zone->present_pages),
2633 K(zone_page_state(zone, NR_MLOCK)),
2634 K(zone_page_state(zone, NR_FILE_DIRTY)),
2635 K(zone_page_state(zone, NR_WRITEBACK)),
2636 K(zone_page_state(zone, NR_FILE_MAPPED)),
2637 K(zone_page_state(zone, NR_SHMEM)),
2638 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2639 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2640 zone_page_state(zone, NR_KERNEL_STACK) *
2642 K(zone_page_state(zone, NR_PAGETABLE)),
2643 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2644 K(zone_page_state(zone, NR_BOUNCE)),
2645 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2646 zone->pages_scanned,
2647 (zone->all_unreclaimable ? "yes" : "no")
2649 printk("lowmem_reserve[]:");
2650 for (i = 0; i < MAX_NR_ZONES; i++)
2651 printk(" %lu", zone->lowmem_reserve[i]);
2655 for_each_populated_zone(zone) {
2656 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2658 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2661 printk("%s: ", zone->name);
2663 spin_lock_irqsave(&zone->lock, flags);
2664 for (order = 0; order < MAX_ORDER; order++) {
2665 nr[order] = zone->free_area[order].nr_free;
2666 total += nr[order] << order;
2668 spin_unlock_irqrestore(&zone->lock, flags);
2669 for (order = 0; order < MAX_ORDER; order++)
2670 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2671 printk("= %lukB\n", K(total));
2674 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2676 show_swap_cache_info();
2679 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2681 zoneref->zone = zone;
2682 zoneref->zone_idx = zone_idx(zone);
2686 * Builds allocation fallback zone lists.
2688 * Add all populated zones of a node to the zonelist.
2690 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2691 int nr_zones, enum zone_type zone_type)
2695 BUG_ON(zone_type >= MAX_NR_ZONES);
2700 zone = pgdat->node_zones + zone_type;
2701 if (populated_zone(zone)) {
2702 zoneref_set_zone(zone,
2703 &zonelist->_zonerefs[nr_zones++]);
2704 check_highest_zone(zone_type);
2707 } while (zone_type);
2714 * 0 = automatic detection of better ordering.
2715 * 1 = order by ([node] distance, -zonetype)
2716 * 2 = order by (-zonetype, [node] distance)
2718 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2719 * the same zonelist. So only NUMA can configure this param.
2721 #define ZONELIST_ORDER_DEFAULT 0
2722 #define ZONELIST_ORDER_NODE 1
2723 #define ZONELIST_ORDER_ZONE 2
2725 /* zonelist order in the kernel.
2726 * set_zonelist_order() will set this to NODE or ZONE.
2728 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2729 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2733 /* The value user specified ....changed by config */
2734 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2735 /* string for sysctl */
2736 #define NUMA_ZONELIST_ORDER_LEN 16
2737 char numa_zonelist_order[16] = "default";
2740 * interface for configure zonelist ordering.
2741 * command line option "numa_zonelist_order"
2742 * = "[dD]efault - default, automatic configuration.
2743 * = "[nN]ode - order by node locality, then by zone within node
2744 * = "[zZ]one - order by zone, then by locality within zone
2747 static int __parse_numa_zonelist_order(char *s)
2749 if (*s == 'd' || *s == 'D') {
2750 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2751 } else if (*s == 'n' || *s == 'N') {
2752 user_zonelist_order = ZONELIST_ORDER_NODE;
2753 } else if (*s == 'z' || *s == 'Z') {
2754 user_zonelist_order = ZONELIST_ORDER_ZONE;
2757 "Ignoring invalid numa_zonelist_order value: "
2764 static __init int setup_numa_zonelist_order(char *s)
2771 ret = __parse_numa_zonelist_order(s);
2773 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2777 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2780 * sysctl handler for numa_zonelist_order
2782 int numa_zonelist_order_handler(ctl_table *table, int write,
2783 void __user *buffer, size_t *length,
2786 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2788 static DEFINE_MUTEX(zl_order_mutex);
2790 mutex_lock(&zl_order_mutex);
2792 strcpy(saved_string, (char*)table->data);
2793 ret = proc_dostring(table, write, buffer, length, ppos);
2797 int oldval = user_zonelist_order;
2798 if (__parse_numa_zonelist_order((char*)table->data)) {
2800 * bogus value. restore saved string
2802 strncpy((char*)table->data, saved_string,
2803 NUMA_ZONELIST_ORDER_LEN);
2804 user_zonelist_order = oldval;
2805 } else if (oldval != user_zonelist_order) {
2806 mutex_lock(&zonelists_mutex);
2807 build_all_zonelists(NULL);
2808 mutex_unlock(&zonelists_mutex);
2812 mutex_unlock(&zl_order_mutex);
2817 #define MAX_NODE_LOAD (nr_online_nodes)
2818 static int node_load[MAX_NUMNODES];
2821 * find_next_best_node - find the next node that should appear in a given node's fallback list
2822 * @node: node whose fallback list we're appending
2823 * @used_node_mask: nodemask_t of already used nodes
2825 * We use a number of factors to determine which is the next node that should
2826 * appear on a given node's fallback list. The node should not have appeared
2827 * already in @node's fallback list, and it should be the next closest node
2828 * according to the distance array (which contains arbitrary distance values
2829 * from each node to each node in the system), and should also prefer nodes
2830 * with no CPUs, since presumably they'll have very little allocation pressure
2831 * on them otherwise.
2832 * It returns -1 if no node is found.
2834 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2837 int min_val = INT_MAX;
2839 const struct cpumask *tmp = cpumask_of_node(0);
2841 /* Use the local node if we haven't already */
2842 if (!node_isset(node, *used_node_mask)) {
2843 node_set(node, *used_node_mask);
2847 for_each_node_state(n, N_HIGH_MEMORY) {
2849 /* Don't want a node to appear more than once */
2850 if (node_isset(n, *used_node_mask))
2853 /* Use the distance array to find the distance */
2854 val = node_distance(node, n);
2856 /* Penalize nodes under us ("prefer the next node") */
2859 /* Give preference to headless and unused nodes */
2860 tmp = cpumask_of_node(n);
2861 if (!cpumask_empty(tmp))
2862 val += PENALTY_FOR_NODE_WITH_CPUS;
2864 /* Slight preference for less loaded node */
2865 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2866 val += node_load[n];
2868 if (val < min_val) {
2875 node_set(best_node, *used_node_mask);
2882 * Build zonelists ordered by node and zones within node.
2883 * This results in maximum locality--normal zone overflows into local
2884 * DMA zone, if any--but risks exhausting DMA zone.
2886 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2889 struct zonelist *zonelist;
2891 zonelist = &pgdat->node_zonelists[0];
2892 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2894 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2896 zonelist->_zonerefs[j].zone = NULL;
2897 zonelist->_zonerefs[j].zone_idx = 0;
2901 * Build gfp_thisnode zonelists
2903 static void build_thisnode_zonelists(pg_data_t *pgdat)
2906 struct zonelist *zonelist;
2908 zonelist = &pgdat->node_zonelists[1];
2909 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2910 zonelist->_zonerefs[j].zone = NULL;
2911 zonelist->_zonerefs[j].zone_idx = 0;
2915 * Build zonelists ordered by zone and nodes within zones.
2916 * This results in conserving DMA zone[s] until all Normal memory is
2917 * exhausted, but results in overflowing to remote node while memory
2918 * may still exist in local DMA zone.
2920 static int node_order[MAX_NUMNODES];
2922 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2925 int zone_type; /* needs to be signed */
2927 struct zonelist *zonelist;
2929 zonelist = &pgdat->node_zonelists[0];
2931 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2932 for (j = 0; j < nr_nodes; j++) {
2933 node = node_order[j];
2934 z = &NODE_DATA(node)->node_zones[zone_type];
2935 if (populated_zone(z)) {
2937 &zonelist->_zonerefs[pos++]);
2938 check_highest_zone(zone_type);
2942 zonelist->_zonerefs[pos].zone = NULL;
2943 zonelist->_zonerefs[pos].zone_idx = 0;
2946 static int default_zonelist_order(void)
2949 unsigned long low_kmem_size,total_size;
2953 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2954 * If they are really small and used heavily, the system can fall
2955 * into OOM very easily.
2956 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2958 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2961 for_each_online_node(nid) {
2962 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2963 z = &NODE_DATA(nid)->node_zones[zone_type];
2964 if (populated_zone(z)) {
2965 if (zone_type < ZONE_NORMAL)
2966 low_kmem_size += z->present_pages;
2967 total_size += z->present_pages;
2968 } else if (zone_type == ZONE_NORMAL) {
2970 * If any node has only lowmem, then node order
2971 * is preferred to allow kernel allocations
2972 * locally; otherwise, they can easily infringe
2973 * on other nodes when there is an abundance of
2974 * lowmem available to allocate from.
2976 return ZONELIST_ORDER_NODE;
2980 if (!low_kmem_size || /* there are no DMA area. */
2981 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2982 return ZONELIST_ORDER_NODE;
2984 * look into each node's config.
2985 * If there is a node whose DMA/DMA32 memory is very big area on
2986 * local memory, NODE_ORDER may be suitable.
2988 average_size = total_size /
2989 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2990 for_each_online_node(nid) {
2993 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2994 z = &NODE_DATA(nid)->node_zones[zone_type];
2995 if (populated_zone(z)) {
2996 if (zone_type < ZONE_NORMAL)
2997 low_kmem_size += z->present_pages;
2998 total_size += z->present_pages;
3001 if (low_kmem_size &&
3002 total_size > average_size && /* ignore small node */
3003 low_kmem_size > total_size * 70/100)
3004 return ZONELIST_ORDER_NODE;
3006 return ZONELIST_ORDER_ZONE;
3009 static void set_zonelist_order(void)
3011 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3012 current_zonelist_order = default_zonelist_order();
3014 current_zonelist_order = user_zonelist_order;
3017 static void build_zonelists(pg_data_t *pgdat)
3021 nodemask_t used_mask;
3022 int local_node, prev_node;
3023 struct zonelist *zonelist;
3024 int order = current_zonelist_order;
3026 /* initialize zonelists */
3027 for (i = 0; i < MAX_ZONELISTS; i++) {
3028 zonelist = pgdat->node_zonelists + i;
3029 zonelist->_zonerefs[0].zone = NULL;
3030 zonelist->_zonerefs[0].zone_idx = 0;
3033 /* NUMA-aware ordering of nodes */
3034 local_node = pgdat->node_id;
3035 load = nr_online_nodes;
3036 prev_node = local_node;
3037 nodes_clear(used_mask);
3039 memset(node_order, 0, sizeof(node_order));
3042 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3043 int distance = node_distance(local_node, node);
3046 * If another node is sufficiently far away then it is better
3047 * to reclaim pages in a zone before going off node.
3049 if (distance > RECLAIM_DISTANCE)
3050 zone_reclaim_mode = 1;
3053 * We don't want to pressure a particular node.
3054 * So adding penalty to the first node in same
3055 * distance group to make it round-robin.
3057 if (distance != node_distance(local_node, prev_node))
3058 node_load[node] = load;
3062 if (order == ZONELIST_ORDER_NODE)
3063 build_zonelists_in_node_order(pgdat, node);
3065 node_order[j++] = node; /* remember order */
3068 if (order == ZONELIST_ORDER_ZONE) {
3069 /* calculate node order -- i.e., DMA last! */
3070 build_zonelists_in_zone_order(pgdat, j);
3073 build_thisnode_zonelists(pgdat);
3076 /* Construct the zonelist performance cache - see further mmzone.h */
3077 static void build_zonelist_cache(pg_data_t *pgdat)
3079 struct zonelist *zonelist;
3080 struct zonelist_cache *zlc;
3083 zonelist = &pgdat->node_zonelists[0];
3084 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3085 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3086 for (z = zonelist->_zonerefs; z->zone; z++)
3087 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3090 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3092 * Return node id of node used for "local" allocations.
3093 * I.e., first node id of first zone in arg node's generic zonelist.
3094 * Used for initializing percpu 'numa_mem', which is used primarily
3095 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3097 int local_memory_node(int node)
3101 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3102 gfp_zone(GFP_KERNEL),
3109 #else /* CONFIG_NUMA */
3111 static void set_zonelist_order(void)
3113 current_zonelist_order = ZONELIST_ORDER_ZONE;
3116 static void build_zonelists(pg_data_t *pgdat)
3118 int node, local_node;
3120 struct zonelist *zonelist;
3122 local_node = pgdat->node_id;
3124 zonelist = &pgdat->node_zonelists[0];
3125 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3128 * Now we build the zonelist so that it contains the zones
3129 * of all the other nodes.
3130 * We don't want to pressure a particular node, so when
3131 * building the zones for node N, we make sure that the
3132 * zones coming right after the local ones are those from
3133 * node N+1 (modulo N)
3135 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3136 if (!node_online(node))
3138 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3141 for (node = 0; node < local_node; node++) {
3142 if (!node_online(node))
3144 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3148 zonelist->_zonerefs[j].zone = NULL;
3149 zonelist->_zonerefs[j].zone_idx = 0;
3152 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3153 static void build_zonelist_cache(pg_data_t *pgdat)
3155 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3158 #endif /* CONFIG_NUMA */
3161 * Boot pageset table. One per cpu which is going to be used for all
3162 * zones and all nodes. The parameters will be set in such a way
3163 * that an item put on a list will immediately be handed over to
3164 * the buddy list. This is safe since pageset manipulation is done
3165 * with interrupts disabled.
3167 * The boot_pagesets must be kept even after bootup is complete for
3168 * unused processors and/or zones. They do play a role for bootstrapping
3169 * hotplugged processors.
3171 * zoneinfo_show() and maybe other functions do
3172 * not check if the processor is online before following the pageset pointer.
3173 * Other parts of the kernel may not check if the zone is available.
3175 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3176 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3177 static void setup_zone_pageset(struct zone *zone);
3180 * Global mutex to protect against size modification of zonelists
3181 * as well as to serialize pageset setup for the new populated zone.
3183 DEFINE_MUTEX(zonelists_mutex);
3185 /* return values int ....just for stop_machine() */
3186 static __init_refok int __build_all_zonelists(void *data)
3192 memset(node_load, 0, sizeof(node_load));
3194 for_each_online_node(nid) {
3195 pg_data_t *pgdat = NODE_DATA(nid);
3197 build_zonelists(pgdat);
3198 build_zonelist_cache(pgdat);
3202 * Initialize the boot_pagesets that are going to be used
3203 * for bootstrapping processors. The real pagesets for
3204 * each zone will be allocated later when the per cpu
3205 * allocator is available.
3207 * boot_pagesets are used also for bootstrapping offline
3208 * cpus if the system is already booted because the pagesets
3209 * are needed to initialize allocators on a specific cpu too.
3210 * F.e. the percpu allocator needs the page allocator which
3211 * needs the percpu allocator in order to allocate its pagesets
3212 * (a chicken-egg dilemma).
3214 for_each_possible_cpu(cpu) {
3215 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3217 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3219 * We now know the "local memory node" for each node--
3220 * i.e., the node of the first zone in the generic zonelist.
3221 * Set up numa_mem percpu variable for on-line cpus. During
3222 * boot, only the boot cpu should be on-line; we'll init the
3223 * secondary cpus' numa_mem as they come on-line. During
3224 * node/memory hotplug, we'll fixup all on-line cpus.
3226 if (cpu_online(cpu))
3227 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3235 * Called with zonelists_mutex held always
3236 * unless system_state == SYSTEM_BOOTING.
3238 void __ref build_all_zonelists(void *data)
3240 set_zonelist_order();
3242 if (system_state == SYSTEM_BOOTING) {
3243 __build_all_zonelists(NULL);
3244 mminit_verify_zonelist();
3245 cpuset_init_current_mems_allowed();
3247 /* we have to stop all cpus to guarantee there is no user
3249 #ifdef CONFIG_MEMORY_HOTPLUG
3251 setup_zone_pageset((struct zone *)data);
3253 stop_machine(__build_all_zonelists, NULL, NULL);
3254 /* cpuset refresh routine should be here */
3256 vm_total_pages = nr_free_pagecache_pages();
3258 * Disable grouping by mobility if the number of pages in the
3259 * system is too low to allow the mechanism to work. It would be
3260 * more accurate, but expensive to check per-zone. This check is
3261 * made on memory-hotadd so a system can start with mobility
3262 * disabled and enable it later
3264 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3265 page_group_by_mobility_disabled = 1;
3267 page_group_by_mobility_disabled = 0;
3269 printk("Built %i zonelists in %s order, mobility grouping %s. "
3270 "Total pages: %ld\n",
3272 zonelist_order_name[current_zonelist_order],
3273 page_group_by_mobility_disabled ? "off" : "on",
3276 printk("Policy zone: %s\n", zone_names[policy_zone]);
3281 * Helper functions to size the waitqueue hash table.
3282 * Essentially these want to choose hash table sizes sufficiently
3283 * large so that collisions trying to wait on pages are rare.
3284 * But in fact, the number of active page waitqueues on typical
3285 * systems is ridiculously low, less than 200. So this is even
3286 * conservative, even though it seems large.
3288 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3289 * waitqueues, i.e. the size of the waitq table given the number of pages.
3291 #define PAGES_PER_WAITQUEUE 256
3293 #ifndef CONFIG_MEMORY_HOTPLUG
3294 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3296 unsigned long size = 1;
3298 pages /= PAGES_PER_WAITQUEUE;
3300 while (size < pages)
3304 * Once we have dozens or even hundreds of threads sleeping
3305 * on IO we've got bigger problems than wait queue collision.
3306 * Limit the size of the wait table to a reasonable size.
3308 size = min(size, 4096UL);
3310 return max(size, 4UL);
3314 * A zone's size might be changed by hot-add, so it is not possible to determine
3315 * a suitable size for its wait_table. So we use the maximum size now.
3317 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3319 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3320 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3321 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3323 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3324 * or more by the traditional way. (See above). It equals:
3326 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3327 * ia64(16K page size) : = ( 8G + 4M)byte.
3328 * powerpc (64K page size) : = (32G +16M)byte.
3330 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3337 * This is an integer logarithm so that shifts can be used later
3338 * to extract the more random high bits from the multiplicative
3339 * hash function before the remainder is taken.
3341 static inline unsigned long wait_table_bits(unsigned long size)
3346 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3349 * Check if a pageblock contains reserved pages
3351 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3355 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3356 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3363 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3364 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3365 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3366 * higher will lead to a bigger reserve which will get freed as contiguous
3367 * blocks as reclaim kicks in
3369 static void setup_zone_migrate_reserve(struct zone *zone)
3371 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3373 unsigned long block_migratetype;
3376 /* Get the start pfn, end pfn and the number of blocks to reserve */
3377 start_pfn = zone->zone_start_pfn;
3378 end_pfn = start_pfn + zone->spanned_pages;
3379 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3383 * Reserve blocks are generally in place to help high-order atomic
3384 * allocations that are short-lived. A min_free_kbytes value that
3385 * would result in more than 2 reserve blocks for atomic allocations
3386 * is assumed to be in place to help anti-fragmentation for the
3387 * future allocation of hugepages at runtime.
3389 reserve = min(2, reserve);
3391 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3392 if (!pfn_valid(pfn))
3394 page = pfn_to_page(pfn);
3396 /* Watch out for overlapping nodes */
3397 if (page_to_nid(page) != zone_to_nid(zone))
3400 /* Blocks with reserved pages will never free, skip them. */
3401 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3402 if (pageblock_is_reserved(pfn, block_end_pfn))
3405 block_migratetype = get_pageblock_migratetype(page);
3407 /* If this block is reserved, account for it */
3408 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3413 /* Suitable for reserving if this block is movable */
3414 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3415 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3416 move_freepages_block(zone, page, MIGRATE_RESERVE);
3422 * If the reserve is met and this is a previous reserved block,
3425 if (block_migratetype == MIGRATE_RESERVE) {
3426 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3427 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3433 * Initially all pages are reserved - free ones are freed
3434 * up by free_all_bootmem() once the early boot process is
3435 * done. Non-atomic initialization, single-pass.
3437 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3438 unsigned long start_pfn, enum memmap_context context)
3441 unsigned long end_pfn = start_pfn + size;
3445 if (highest_memmap_pfn < end_pfn - 1)
3446 highest_memmap_pfn = end_pfn - 1;
3448 z = &NODE_DATA(nid)->node_zones[zone];
3449 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3451 * There can be holes in boot-time mem_map[]s
3452 * handed to this function. They do not
3453 * exist on hotplugged memory.
3455 if (context == MEMMAP_EARLY) {
3456 if (!early_pfn_valid(pfn))
3458 if (!early_pfn_in_nid(pfn, nid))
3461 page = pfn_to_page(pfn);
3462 set_page_links(page, zone, nid, pfn);
3463 mminit_verify_page_links(page, zone, nid, pfn);
3464 init_page_count(page);
3465 reset_page_mapcount(page);
3466 SetPageReserved(page);
3468 * Mark the block movable so that blocks are reserved for
3469 * movable at startup. This will force kernel allocations
3470 * to reserve their blocks rather than leaking throughout
3471 * the address space during boot when many long-lived
3472 * kernel allocations are made. Later some blocks near
3473 * the start are marked MIGRATE_RESERVE by
3474 * setup_zone_migrate_reserve()
3476 * bitmap is created for zone's valid pfn range. but memmap
3477 * can be created for invalid pages (for alignment)
3478 * check here not to call set_pageblock_migratetype() against
3481 if ((z->zone_start_pfn <= pfn)
3482 && (pfn < z->zone_start_pfn + z->spanned_pages)
3483 && !(pfn & (pageblock_nr_pages - 1)))
3484 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3486 INIT_LIST_HEAD(&page->lru);
3487 #ifdef WANT_PAGE_VIRTUAL
3488 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3489 if (!is_highmem_idx(zone))
3490 set_page_address(page, __va(pfn << PAGE_SHIFT));
3495 static void __meminit zone_init_free_lists(struct zone *zone)
3498 for_each_migratetype_order(order, t) {
3499 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3500 zone->free_area[order].nr_free = 0;
3504 #ifndef __HAVE_ARCH_MEMMAP_INIT
3505 #define memmap_init(size, nid, zone, start_pfn) \
3506 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3509 static int zone_batchsize(struct zone *zone)
3515 * The per-cpu-pages pools are set to around 1000th of the
3516 * size of the zone. But no more than 1/2 of a meg.
3518 * OK, so we don't know how big the cache is. So guess.
3520 batch = zone->present_pages / 1024;
3521 if (batch * PAGE_SIZE > 512 * 1024)
3522 batch = (512 * 1024) / PAGE_SIZE;
3523 batch /= 4; /* We effectively *= 4 below */
3528 * Clamp the batch to a 2^n - 1 value. Having a power
3529 * of 2 value was found to be more likely to have
3530 * suboptimal cache aliasing properties in some cases.
3532 * For example if 2 tasks are alternately allocating
3533 * batches of pages, one task can end up with a lot
3534 * of pages of one half of the possible page colors
3535 * and the other with pages of the other colors.
3537 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3542 /* The deferral and batching of frees should be suppressed under NOMMU
3545 * The problem is that NOMMU needs to be able to allocate large chunks
3546 * of contiguous memory as there's no hardware page translation to
3547 * assemble apparent contiguous memory from discontiguous pages.
3549 * Queueing large contiguous runs of pages for batching, however,
3550 * causes the pages to actually be freed in smaller chunks. As there
3551 * can be a significant delay between the individual batches being
3552 * recycled, this leads to the once large chunks of space being
3553 * fragmented and becoming unavailable for high-order allocations.
3559 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3561 struct per_cpu_pages *pcp;
3564 memset(p, 0, sizeof(*p));
3568 pcp->high = 6 * batch;
3569 pcp->batch = max(1UL, 1 * batch);
3570 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3571 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3575 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3576 * to the value high for the pageset p.
3579 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3582 struct per_cpu_pages *pcp;
3586 pcp->batch = max(1UL, high/4);
3587 if ((high/4) > (PAGE_SHIFT * 8))
3588 pcp->batch = PAGE_SHIFT * 8;
3591 static void setup_zone_pageset(struct zone *zone)
3595 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3597 for_each_possible_cpu(cpu) {
3598 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3600 setup_pageset(pcp, zone_batchsize(zone));
3602 if (percpu_pagelist_fraction)
3603 setup_pagelist_highmark(pcp,
3604 (zone->present_pages /
3605 percpu_pagelist_fraction));
3610 * Allocate per cpu pagesets and initialize them.
3611 * Before this call only boot pagesets were available.
3613 void __init setup_per_cpu_pageset(void)
3617 for_each_populated_zone(zone)
3618 setup_zone_pageset(zone);
3621 static noinline __init_refok
3622 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3625 struct pglist_data *pgdat = zone->zone_pgdat;
3629 * The per-page waitqueue mechanism uses hashed waitqueues
3632 zone->wait_table_hash_nr_entries =
3633 wait_table_hash_nr_entries(zone_size_pages);
3634 zone->wait_table_bits =
3635 wait_table_bits(zone->wait_table_hash_nr_entries);
3636 alloc_size = zone->wait_table_hash_nr_entries
3637 * sizeof(wait_queue_head_t);
3639 if (!slab_is_available()) {
3640 zone->wait_table = (wait_queue_head_t *)
3641 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3644 * This case means that a zone whose size was 0 gets new memory
3645 * via memory hot-add.
3646 * But it may be the case that a new node was hot-added. In
3647 * this case vmalloc() will not be able to use this new node's
3648 * memory - this wait_table must be initialized to use this new
3649 * node itself as well.
3650 * To use this new node's memory, further consideration will be
3653 zone->wait_table = vmalloc(alloc_size);
3655 if (!zone->wait_table)
3658 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3659 init_waitqueue_head(zone->wait_table + i);
3664 static int __zone_pcp_update(void *data)
3666 struct zone *zone = data;
3668 unsigned long batch = zone_batchsize(zone), flags;
3670 for_each_possible_cpu(cpu) {
3671 struct per_cpu_pageset *pset;
3672 struct per_cpu_pages *pcp;
3674 pset = per_cpu_ptr(zone->pageset, cpu);
3677 local_irq_save(flags);
3678 free_pcppages_bulk(zone, pcp->count, pcp);
3679 setup_pageset(pset, batch);
3680 local_irq_restore(flags);
3685 void zone_pcp_update(struct zone *zone)
3687 stop_machine(__zone_pcp_update, zone, NULL);
3690 static __meminit void zone_pcp_init(struct zone *zone)
3693 * per cpu subsystem is not up at this point. The following code
3694 * relies on the ability of the linker to provide the
3695 * offset of a (static) per cpu variable into the per cpu area.
3697 zone->pageset = &boot_pageset;
3699 if (zone->present_pages)
3700 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3701 zone->name, zone->present_pages,
3702 zone_batchsize(zone));
3705 __meminit int init_currently_empty_zone(struct zone *zone,
3706 unsigned long zone_start_pfn,
3708 enum memmap_context context)
3710 struct pglist_data *pgdat = zone->zone_pgdat;
3712 ret = zone_wait_table_init(zone, size);
3715 pgdat->nr_zones = zone_idx(zone) + 1;
3717 zone->zone_start_pfn = zone_start_pfn;
3719 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3720 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3722 (unsigned long)zone_idx(zone),
3723 zone_start_pfn, (zone_start_pfn + size));
3725 zone_init_free_lists(zone);
3730 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3732 * Basic iterator support. Return the first range of PFNs for a node
3733 * Note: nid == MAX_NUMNODES returns first region regardless of node
3735 static int __meminit first_active_region_index_in_nid(int nid)
3739 for (i = 0; i < nr_nodemap_entries; i++)
3740 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3747 * Basic iterator support. Return the next active range of PFNs for a node
3748 * Note: nid == MAX_NUMNODES returns next region regardless of node
3750 static int __meminit next_active_region_index_in_nid(int index, int nid)
3752 for (index = index + 1; index < nr_nodemap_entries; index++)
3753 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3759 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3761 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3762 * Architectures may implement their own version but if add_active_range()
3763 * was used and there are no special requirements, this is a convenient
3766 int __meminit __early_pfn_to_nid(unsigned long pfn)
3770 for (i = 0; i < nr_nodemap_entries; i++) {
3771 unsigned long start_pfn = early_node_map[i].start_pfn;
3772 unsigned long end_pfn = early_node_map[i].end_pfn;
3774 if (start_pfn <= pfn && pfn < end_pfn)
3775 return early_node_map[i].nid;
3777 /* This is a memory hole */
3780 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3782 int __meminit early_pfn_to_nid(unsigned long pfn)
3786 nid = __early_pfn_to_nid(pfn);
3789 /* just returns 0 */
3793 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3794 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3798 nid = __early_pfn_to_nid(pfn);
3799 if (nid >= 0 && nid != node)
3805 /* Basic iterator support to walk early_node_map[] */
3806 #define for_each_active_range_index_in_nid(i, nid) \
3807 for (i = first_active_region_index_in_nid(nid); i != -1; \
3808 i = next_active_region_index_in_nid(i, nid))
3811 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3812 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3813 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3815 * If an architecture guarantees that all ranges registered with
3816 * add_active_ranges() contain no holes and may be freed, this
3817 * this function may be used instead of calling free_bootmem() manually.
3819 void __init free_bootmem_with_active_regions(int nid,
3820 unsigned long max_low_pfn)
3824 for_each_active_range_index_in_nid(i, nid) {
3825 unsigned long size_pages = 0;
3826 unsigned long end_pfn = early_node_map[i].end_pfn;
3828 if (early_node_map[i].start_pfn >= max_low_pfn)
3831 if (end_pfn > max_low_pfn)
3832 end_pfn = max_low_pfn;
3834 size_pages = end_pfn - early_node_map[i].start_pfn;
3835 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3836 PFN_PHYS(early_node_map[i].start_pfn),
3837 size_pages << PAGE_SHIFT);
3841 #ifdef CONFIG_HAVE_MEMBLOCK
3843 * Basic iterator support. Return the last range of PFNs for a node
3844 * Note: nid == MAX_NUMNODES returns last region regardless of node
3846 static int __meminit last_active_region_index_in_nid(int nid)
3850 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3851 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3858 * Basic iterator support. Return the previous active range of PFNs for a node
3859 * Note: nid == MAX_NUMNODES returns next region regardless of node
3861 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3863 for (index = index - 1; index >= 0; index--)
3864 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3870 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3871 for (i = last_active_region_index_in_nid(nid); i != -1; \
3872 i = previous_active_region_index_in_nid(i, nid))
3874 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3875 u64 goal, u64 limit)
3879 /* Need to go over early_node_map to find out good range for node */
3880 for_each_active_range_index_in_nid_reverse(i, nid) {
3882 u64 ei_start, ei_last;
3883 u64 final_start, final_end;
3885 ei_last = early_node_map[i].end_pfn;
3886 ei_last <<= PAGE_SHIFT;
3887 ei_start = early_node_map[i].start_pfn;
3888 ei_start <<= PAGE_SHIFT;
3890 final_start = max(ei_start, goal);
3891 final_end = min(ei_last, limit);
3893 if (final_start >= final_end)
3896 addr = memblock_find_in_range(final_start, final_end, size, align);
3898 if (addr == MEMBLOCK_ERROR)
3904 return MEMBLOCK_ERROR;
3908 int __init add_from_early_node_map(struct range *range, int az,
3909 int nr_range, int nid)
3914 /* need to go over early_node_map to find out good range for node */
3915 for_each_active_range_index_in_nid(i, nid) {
3916 start = early_node_map[i].start_pfn;
3917 end = early_node_map[i].end_pfn;
3918 nr_range = add_range(range, az, nr_range, start, end);
3923 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3928 for_each_active_range_index_in_nid(i, nid) {
3929 ret = work_fn(early_node_map[i].start_pfn,
3930 early_node_map[i].end_pfn, data);
3936 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3937 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3939 * If an architecture guarantees that all ranges registered with
3940 * add_active_ranges() contain no holes and may be freed, this
3941 * function may be used instead of calling memory_present() manually.
3943 void __init sparse_memory_present_with_active_regions(int nid)
3947 for_each_active_range_index_in_nid(i, nid)
3948 memory_present(early_node_map[i].nid,
3949 early_node_map[i].start_pfn,
3950 early_node_map[i].end_pfn);
3954 * get_pfn_range_for_nid - Return the start and end page frames for a node
3955 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3956 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3957 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3959 * It returns the start and end page frame of a node based on information
3960 * provided by an arch calling add_active_range(). If called for a node
3961 * with no available memory, a warning is printed and the start and end
3964 void __meminit get_pfn_range_for_nid(unsigned int nid,
3965 unsigned long *start_pfn, unsigned long *end_pfn)
3971 for_each_active_range_index_in_nid(i, nid) {
3972 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3973 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3976 if (*start_pfn == -1UL)
3981 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3982 * assumption is made that zones within a node are ordered in monotonic
3983 * increasing memory addresses so that the "highest" populated zone is used
3985 static void __init find_usable_zone_for_movable(void)
3988 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3989 if (zone_index == ZONE_MOVABLE)
3992 if (arch_zone_highest_possible_pfn[zone_index] >
3993 arch_zone_lowest_possible_pfn[zone_index])
3997 VM_BUG_ON(zone_index == -1);
3998 movable_zone = zone_index;
4002 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4003 * because it is sized independent of architecture. Unlike the other zones,
4004 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4005 * in each node depending on the size of each node and how evenly kernelcore
4006 * is distributed. This helper function adjusts the zone ranges
4007 * provided by the architecture for a given node by using the end of the
4008 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4009 * zones within a node are in order of monotonic increases memory addresses
4011 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4012 unsigned long zone_type,
4013 unsigned long node_start_pfn,
4014 unsigned long node_end_pfn,
4015 unsigned long *zone_start_pfn,
4016 unsigned long *zone_end_pfn)
4018 /* Only adjust if ZONE_MOVABLE is on this node */
4019 if (zone_movable_pfn[nid]) {
4020 /* Size ZONE_MOVABLE */
4021 if (zone_type == ZONE_MOVABLE) {
4022 *zone_start_pfn = zone_movable_pfn[nid];
4023 *zone_end_pfn = min(node_end_pfn,
4024 arch_zone_highest_possible_pfn[movable_zone]);
4026 /* Adjust for ZONE_MOVABLE starting within this range */
4027 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4028 *zone_end_pfn > zone_movable_pfn[nid]) {
4029 *zone_end_pfn = zone_movable_pfn[nid];
4031 /* Check if this whole range is within ZONE_MOVABLE */
4032 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4033 *zone_start_pfn = *zone_end_pfn;
4038 * Return the number of pages a zone spans in a node, including holes
4039 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4041 static unsigned long __meminit zone_spanned_pages_in_node(int nid,