2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
83 * Array of node states.
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 [N_CPU] = { { [0] = 1UL } },
96 EXPORT_SYMBOL(node_states);
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
106 unsigned long dirty_balance_reserve __read_mostly;
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
111 #ifdef CONFIG_PM_SLEEP
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
121 static gfp_t saved_gfp_mask;
123 void pm_restore_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
132 void pm_restrict_gfp_mask(void)
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
140 bool pm_suspended_storage(void)
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 #endif /* CONFIG_PM_SLEEP */
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
152 static void __free_pages_ok(struct page *page, unsigned int order);
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
169 #ifdef CONFIG_ZONE_DMA32
172 #ifdef CONFIG_HIGHMEM
178 EXPORT_SYMBOL(totalram_pages);
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
184 #ifdef CONFIG_ZONE_DMA32
188 #ifdef CONFIG_HIGHMEM
194 int min_free_kbytes = 1024;
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
219 int page_group_by_mobility_disabled __read_mostly;
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
226 void set_pageblock_migratetype(struct page *page, int migratetype)
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
236 bool oom_killer_disabled __read_mostly;
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
243 unsigned long pfn = page_to_pfn(page);
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 else if (pfn < zone->zone_start_pfn)
251 } while (zone_span_seqretry(zone, seq));
256 static int page_is_consistent(struct zone *zone, struct page *page)
258 if (!pfn_valid_within(page_to_pfn(page)))
260 if (zone != page_zone(page))
266 * Temporary debugging check for pages not lying within a given zone.
268 static int bad_range(struct zone *zone, struct page *page)
270 if (page_outside_zone_boundaries(zone, page))
272 if (!page_is_consistent(zone, page))
278 static inline int bad_range(struct zone *zone, struct page *page)
284 static void bad_page(struct page *page)
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
307 "BUG: Bad page state: %lu messages suppressed\n",
314 resume = jiffies + 60 * HZ;
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
329 * Higher-order pages are called "compound pages". They are structured thusly:
331 * The first PAGE_SIZE page is called the "head page".
333 * The remaining PAGE_SIZE pages are called "tail pages".
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
343 static void free_compound_page(struct page *page)
345 __free_pages_ok(page, compound_order(page));
348 void prep_compound_page(struct page *page, unsigned long order)
351 int nr_pages = 1 << order;
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
359 set_page_count(p, 0);
360 p->first_page = page;
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
368 int nr_pages = 1 << order;
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
377 __ClearPageHead(page);
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
408 static int __init debug_guardpage_minorder_setup(char *buf)
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
422 static inline void set_page_guard_flag(struct page *page)
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427 static inline void clear_page_guard_flag(struct page *page)
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
436 static inline void set_page_order(struct page *page, int order)
438 set_page_private(page, order);
439 __SetPageBuddy(page);
442 static inline void rmv_page_order(struct page *page)
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
455 * For example, if the starting buddy (buddy2) is #8 its order
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
468 return page_idx ^ (1 << order);
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
482 * For recording page's order, we use page_private(page).
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
487 if (!pfn_valid_within(page_to_pfn(buddy)))
490 if (page_zone_id(page) != page_zone_id(buddy))
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
506 * Freeing function for a buddy system allocator.
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
529 static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
542 VM_BUG_ON(migratetype == -1);
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_freepage_state(zone, 1 << order,
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
568 combined_idx = buddy_idx & page_idx;
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
573 set_page_order(page, order);
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
584 struct page *higher_page, *higher_buddy;
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
588 higher_buddy = higher_page + (buddy_idx - combined_idx);
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
598 zone->free_area[order].nr_free++;
601 static inline int free_pages_check(struct page *page)
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
605 (atomic_read(&page->_count) != 0) |
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
617 * Frees a number of pages from the PCP lists
618 * Assumes all pages on list are in same zone, and of same order.
619 * count is the number of pages to free.
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
627 static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
634 spin_lock(&zone->lock);
635 zone->all_unreclaimable = 0;
636 zone->pages_scanned = 0;
640 struct list_head *list;
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
651 if (++migratetype == MIGRATE_PCPTYPES)
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
661 int mt; /* migratetype of the to-be-freed page */
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
666 mt = get_freepage_migratetype(page);
667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
670 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
671 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
672 if (is_migrate_cma(mt))
673 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
675 } while (--to_free && --batch_free && !list_empty(list));
677 spin_unlock(&zone->lock);
680 static void free_one_page(struct zone *zone, struct page *page, int order,
683 spin_lock(&zone->lock);
684 zone->all_unreclaimable = 0;
685 zone->pages_scanned = 0;
687 __free_one_page(page, zone, order, migratetype);
688 if (unlikely(migratetype != MIGRATE_ISOLATE))
689 __mod_zone_freepage_state(zone, 1 << order, migratetype);
690 spin_unlock(&zone->lock);
693 static bool free_pages_prepare(struct page *page, unsigned int order)
698 trace_mm_page_free(page, order);
699 kmemcheck_free_shadow(page, order);
702 page->mapping = NULL;
703 for (i = 0; i < (1 << order); i++)
704 bad += free_pages_check(page + i);
708 if (!PageHighMem(page)) {
709 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
710 debug_check_no_obj_freed(page_address(page),
713 arch_free_page(page, order);
714 kernel_map_pages(page, 1 << order, 0);
719 static void __free_pages_ok(struct page *page, unsigned int order)
724 if (!free_pages_prepare(page, order))
727 local_irq_save(flags);
728 __count_vm_events(PGFREE, 1 << order);
729 migratetype = get_pageblock_migratetype(page);
730 set_freepage_migratetype(page, migratetype);
731 free_one_page(page_zone(page), page, order, migratetype);
732 local_irq_restore(flags);
735 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
737 unsigned int nr_pages = 1 << order;
741 for (loop = 0; loop < nr_pages; loop++) {
742 struct page *p = &page[loop];
744 if (loop + 1 < nr_pages)
746 __ClearPageReserved(p);
747 set_page_count(p, 0);
750 set_page_refcounted(page);
751 __free_pages(page, order);
755 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
756 void __init init_cma_reserved_pageblock(struct page *page)
758 unsigned i = pageblock_nr_pages;
759 struct page *p = page;
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
766 set_page_refcounted(page);
767 set_pageblock_migratetype(page, MIGRATE_CMA);
768 __free_pages(page, pageblock_order);
769 totalram_pages += pageblock_nr_pages;
774 * The order of subdivision here is critical for the IO subsystem.
775 * Please do not alter this order without good reasons and regression
776 * testing. Specifically, as large blocks of memory are subdivided,
777 * the order in which smaller blocks are delivered depends on the order
778 * they're subdivided in this function. This is the primary factor
779 * influencing the order in which pages are delivered to the IO
780 * subsystem according to empirical testing, and this is also justified
781 * by considering the behavior of a buddy system containing a single
782 * large block of memory acted on by a series of small allocations.
783 * This behavior is a critical factor in sglist merging's success.
787 static inline void expand(struct zone *zone, struct page *page,
788 int low, int high, struct free_area *area,
791 unsigned long size = 1 << high;
797 VM_BUG_ON(bad_range(zone, &page[size]));
799 #ifdef CONFIG_DEBUG_PAGEALLOC
800 if (high < debug_guardpage_minorder()) {
802 * Mark as guard pages (or page), that will allow to
803 * merge back to allocator when buddy will be freed.
804 * Corresponding page table entries will not be touched,
805 * pages will stay not present in virtual address space
807 INIT_LIST_HEAD(&page[size].lru);
808 set_page_guard_flag(&page[size]);
809 set_page_private(&page[size], high);
810 /* Guard pages are not available for any usage */
811 __mod_zone_freepage_state(zone, -(1 << high),
816 list_add(&page[size].lru, &area->free_list[migratetype]);
818 set_page_order(&page[size], high);
823 * This page is about to be returned from the page allocator
825 static inline int check_new_page(struct page *page)
827 if (unlikely(page_mapcount(page) |
828 (page->mapping != NULL) |
829 (atomic_read(&page->_count) != 0) |
830 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
831 (mem_cgroup_bad_page_check(page)))) {
838 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
842 for (i = 0; i < (1 << order); i++) {
843 struct page *p = page + i;
844 if (unlikely(check_new_page(p)))
848 set_page_private(page, 0);
849 set_page_refcounted(page);
851 arch_alloc_page(page, order);
852 kernel_map_pages(page, 1 << order, 1);
854 if (gfp_flags & __GFP_ZERO)
855 prep_zero_page(page, order, gfp_flags);
857 if (order && (gfp_flags & __GFP_COMP))
858 prep_compound_page(page, order);
864 * Go through the free lists for the given migratetype and remove
865 * the smallest available page from the freelists
868 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
871 unsigned int current_order;
872 struct free_area * area;
875 /* Find a page of the appropriate size in the preferred list */
876 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
877 area = &(zone->free_area[current_order]);
878 if (list_empty(&area->free_list[migratetype]))
881 page = list_entry(area->free_list[migratetype].next,
883 list_del(&page->lru);
884 rmv_page_order(page);
886 expand(zone, page, order, current_order, area, migratetype);
895 * This array describes the order lists are fallen back to when
896 * the free lists for the desirable migrate type are depleted
898 static int fallbacks[MIGRATE_TYPES][4] = {
899 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
900 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
902 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
903 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
905 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
907 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
908 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
912 * Move the free pages in a range to the free lists of the requested type.
913 * Note that start_page and end_pages are not aligned on a pageblock
914 * boundary. If alignment is required, use move_freepages_block()
916 int move_freepages(struct zone *zone,
917 struct page *start_page, struct page *end_page,
924 #ifndef CONFIG_HOLES_IN_ZONE
926 * page_zone is not safe to call in this context when
927 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
928 * anyway as we check zone boundaries in move_freepages_block().
929 * Remove at a later date when no bug reports exist related to
930 * grouping pages by mobility
932 BUG_ON(page_zone(start_page) != page_zone(end_page));
935 for (page = start_page; page <= end_page;) {
936 /* Make sure we are not inadvertently changing nodes */
937 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
939 if (!pfn_valid_within(page_to_pfn(page))) {
944 if (!PageBuddy(page)) {
949 order = page_order(page);
950 list_move(&page->lru,
951 &zone->free_area[order].free_list[migratetype]);
952 set_freepage_migratetype(page, migratetype);
954 pages_moved += 1 << order;
960 int move_freepages_block(struct zone *zone, struct page *page,
963 unsigned long start_pfn, end_pfn;
964 struct page *start_page, *end_page;
966 start_pfn = page_to_pfn(page);
967 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
968 start_page = pfn_to_page(start_pfn);
969 end_page = start_page + pageblock_nr_pages - 1;
970 end_pfn = start_pfn + pageblock_nr_pages - 1;
972 /* Do not cross zone boundaries */
973 if (start_pfn < zone->zone_start_pfn)
975 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
978 return move_freepages(zone, start_page, end_page, migratetype);
981 static void change_pageblock_range(struct page *pageblock_page,
982 int start_order, int migratetype)
984 int nr_pageblocks = 1 << (start_order - pageblock_order);
986 while (nr_pageblocks--) {
987 set_pageblock_migratetype(pageblock_page, migratetype);
988 pageblock_page += pageblock_nr_pages;
992 /* Remove an element from the buddy allocator from the fallback list */
993 static inline struct page *
994 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
996 struct free_area * area;
1001 /* Find the largest possible block of pages in the other list */
1002 for (current_order = MAX_ORDER-1; current_order >= order;
1005 migratetype = fallbacks[start_migratetype][i];
1007 /* MIGRATE_RESERVE handled later if necessary */
1008 if (migratetype == MIGRATE_RESERVE)
1011 area = &(zone->free_area[current_order]);
1012 if (list_empty(&area->free_list[migratetype]))
1015 page = list_entry(area->free_list[migratetype].next,
1020 * If breaking a large block of pages, move all free
1021 * pages to the preferred allocation list. If falling
1022 * back for a reclaimable kernel allocation, be more
1023 * aggressive about taking ownership of free pages
1025 * On the other hand, never change migration
1026 * type of MIGRATE_CMA pageblocks nor move CMA
1027 * pages on different free lists. We don't
1028 * want unmovable pages to be allocated from
1029 * MIGRATE_CMA areas.
1031 if (!is_migrate_cma(migratetype) &&
1032 (unlikely(current_order >= pageblock_order / 2) ||
1033 start_migratetype == MIGRATE_RECLAIMABLE ||
1034 page_group_by_mobility_disabled)) {
1036 pages = move_freepages_block(zone, page,
1039 /* Claim the whole block if over half of it is free */
1040 if (pages >= (1 << (pageblock_order-1)) ||
1041 page_group_by_mobility_disabled)
1042 set_pageblock_migratetype(page,
1045 migratetype = start_migratetype;
1048 /* Remove the page from the freelists */
1049 list_del(&page->lru);
1050 rmv_page_order(page);
1052 /* Take ownership for orders >= pageblock_order */
1053 if (current_order >= pageblock_order &&
1054 !is_migrate_cma(migratetype))
1055 change_pageblock_range(page, current_order,
1058 expand(zone, page, order, current_order, area,
1059 is_migrate_cma(migratetype)
1060 ? migratetype : start_migratetype);
1062 trace_mm_page_alloc_extfrag(page, order, current_order,
1063 start_migratetype, migratetype);
1073 * Do the hard work of removing an element from the buddy allocator.
1074 * Call me with the zone->lock already held.
1076 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1082 page = __rmqueue_smallest(zone, order, migratetype);
1084 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1085 page = __rmqueue_fallback(zone, order, migratetype);
1088 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1089 * is used because __rmqueue_smallest is an inline function
1090 * and we want just one call site
1093 migratetype = MIGRATE_RESERVE;
1098 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1103 * Obtain a specified number of elements from the buddy allocator, all under
1104 * a single hold of the lock, for efficiency. Add them to the supplied list.
1105 * Returns the number of new pages which were placed at *list.
1107 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1108 unsigned long count, struct list_head *list,
1109 int migratetype, int cold)
1111 int mt = migratetype, i;
1113 spin_lock(&zone->lock);
1114 for (i = 0; i < count; ++i) {
1115 struct page *page = __rmqueue(zone, order, migratetype);
1116 if (unlikely(page == NULL))
1120 * Split buddy pages returned by expand() are received here
1121 * in physical page order. The page is added to the callers and
1122 * list and the list head then moves forward. From the callers
1123 * perspective, the linked list is ordered by page number in
1124 * some conditions. This is useful for IO devices that can
1125 * merge IO requests if the physical pages are ordered
1128 if (likely(cold == 0))
1129 list_add(&page->lru, list);
1131 list_add_tail(&page->lru, list);
1132 if (IS_ENABLED(CONFIG_CMA)) {
1133 mt = get_pageblock_migratetype(page);
1134 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1137 set_freepage_migratetype(page, mt);
1139 if (is_migrate_cma(mt))
1140 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1143 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1144 spin_unlock(&zone->lock);
1150 * Called from the vmstat counter updater to drain pagesets of this
1151 * currently executing processor on remote nodes after they have
1154 * Note that this function must be called with the thread pinned to
1155 * a single processor.
1157 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1159 unsigned long flags;
1162 local_irq_save(flags);
1163 if (pcp->count >= pcp->batch)
1164 to_drain = pcp->batch;
1166 to_drain = pcp->count;
1168 free_pcppages_bulk(zone, to_drain, pcp);
1169 pcp->count -= to_drain;
1171 local_irq_restore(flags);
1176 * Drain pages of the indicated processor.
1178 * The processor must either be the current processor and the
1179 * thread pinned to the current processor or a processor that
1182 static void drain_pages(unsigned int cpu)
1184 unsigned long flags;
1187 for_each_populated_zone(zone) {
1188 struct per_cpu_pageset *pset;
1189 struct per_cpu_pages *pcp;
1191 local_irq_save(flags);
1192 pset = per_cpu_ptr(zone->pageset, cpu);
1196 free_pcppages_bulk(zone, pcp->count, pcp);
1199 local_irq_restore(flags);
1204 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1206 void drain_local_pages(void *arg)
1208 drain_pages(smp_processor_id());
1212 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1214 * Note that this code is protected against sending an IPI to an offline
1215 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1216 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1217 * nothing keeps CPUs from showing up after we populated the cpumask and
1218 * before the call to on_each_cpu_mask().
1220 void drain_all_pages(void)
1223 struct per_cpu_pageset *pcp;
1227 * Allocate in the BSS so we wont require allocation in
1228 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1230 static cpumask_t cpus_with_pcps;
1233 * We don't care about racing with CPU hotplug event
1234 * as offline notification will cause the notified
1235 * cpu to drain that CPU pcps and on_each_cpu_mask
1236 * disables preemption as part of its processing
1238 for_each_online_cpu(cpu) {
1239 bool has_pcps = false;
1240 for_each_populated_zone(zone) {
1241 pcp = per_cpu_ptr(zone->pageset, cpu);
1242 if (pcp->pcp.count) {
1248 cpumask_set_cpu(cpu, &cpus_with_pcps);
1250 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1252 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1255 #ifdef CONFIG_HIBERNATION
1257 void mark_free_pages(struct zone *zone)
1259 unsigned long pfn, max_zone_pfn;
1260 unsigned long flags;
1262 struct list_head *curr;
1264 if (!zone->spanned_pages)
1267 spin_lock_irqsave(&zone->lock, flags);
1269 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1270 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1271 if (pfn_valid(pfn)) {
1272 struct page *page = pfn_to_page(pfn);
1274 if (!swsusp_page_is_forbidden(page))
1275 swsusp_unset_page_free(page);
1278 for_each_migratetype_order(order, t) {
1279 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1282 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1283 for (i = 0; i < (1UL << order); i++)
1284 swsusp_set_page_free(pfn_to_page(pfn + i));
1287 spin_unlock_irqrestore(&zone->lock, flags);
1289 #endif /* CONFIG_PM */
1292 * Free a 0-order page
1293 * cold == 1 ? free a cold page : free a hot page
1295 void free_hot_cold_page(struct page *page, int cold)
1297 struct zone *zone = page_zone(page);
1298 struct per_cpu_pages *pcp;
1299 unsigned long flags;
1302 if (!free_pages_prepare(page, 0))
1305 migratetype = get_pageblock_migratetype(page);
1306 set_freepage_migratetype(page, migratetype);
1307 local_irq_save(flags);
1308 __count_vm_event(PGFREE);
1311 * We only track unmovable, reclaimable and movable on pcp lists.
1312 * Free ISOLATE pages back to the allocator because they are being
1313 * offlined but treat RESERVE as movable pages so we can get those
1314 * areas back if necessary. Otherwise, we may have to free
1315 * excessively into the page allocator
1317 if (migratetype >= MIGRATE_PCPTYPES) {
1318 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1319 free_one_page(zone, page, 0, migratetype);
1322 migratetype = MIGRATE_MOVABLE;
1325 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1327 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1329 list_add(&page->lru, &pcp->lists[migratetype]);
1331 if (pcp->count >= pcp->high) {
1332 free_pcppages_bulk(zone, pcp->batch, pcp);
1333 pcp->count -= pcp->batch;
1337 local_irq_restore(flags);
1341 * Free a list of 0-order pages
1343 void free_hot_cold_page_list(struct list_head *list, int cold)
1345 struct page *page, *next;
1347 list_for_each_entry_safe(page, next, list, lru) {
1348 trace_mm_page_free_batched(page, cold);
1349 free_hot_cold_page(page, cold);
1354 * split_page takes a non-compound higher-order page, and splits it into
1355 * n (1<<order) sub-pages: page[0..n]
1356 * Each sub-page must be freed individually.
1358 * Note: this is probably too low level an operation for use in drivers.
1359 * Please consult with lkml before using this in your driver.
1361 void split_page(struct page *page, unsigned int order)
1365 VM_BUG_ON(PageCompound(page));
1366 VM_BUG_ON(!page_count(page));
1368 #ifdef CONFIG_KMEMCHECK
1370 * Split shadow pages too, because free(page[0]) would
1371 * otherwise free the whole shadow.
1373 if (kmemcheck_page_is_tracked(page))
1374 split_page(virt_to_page(page[0].shadow), order);
1377 for (i = 1; i < (1 << order); i++)
1378 set_page_refcounted(page + i);
1382 * Similar to the split_page family of functions except that the page
1383 * required at the given order and being isolated now to prevent races
1384 * with parallel allocators
1386 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1389 unsigned long watermark;
1393 BUG_ON(!PageBuddy(page));
1395 zone = page_zone(page);
1396 order = page_order(page);
1397 mt = get_pageblock_migratetype(page);
1399 if (mt != MIGRATE_ISOLATE) {
1400 /* Obey watermarks as if the page was being allocated */
1401 watermark = low_wmark_pages(zone) + (1 << order);
1402 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1405 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1408 /* Remove page from free list */
1409 list_del(&page->lru);
1410 zone->free_area[order].nr_free--;
1411 rmv_page_order(page);
1413 if (alloc_order != order)
1414 expand(zone, page, alloc_order, order,
1415 &zone->free_area[order], migratetype);
1417 /* Set the pageblock if the captured page is at least a pageblock */
1418 if (order >= pageblock_order - 1) {
1419 struct page *endpage = page + (1 << order) - 1;
1420 for (; page < endpage; page += pageblock_nr_pages) {
1421 int mt = get_pageblock_migratetype(page);
1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 set_pageblock_migratetype(page,
1428 return 1UL << alloc_order;
1432 * Similar to split_page except the page is already free. As this is only
1433 * being used for migration, the migratetype of the block also changes.
1434 * As this is called with interrupts disabled, the caller is responsible
1435 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1438 * Note: this is probably too low level an operation for use in drivers.
1439 * Please consult with lkml before using this in your driver.
1441 int split_free_page(struct page *page)
1446 BUG_ON(!PageBuddy(page));
1447 order = page_order(page);
1449 nr_pages = capture_free_page(page, order, 0);
1453 /* Split into individual pages */
1454 set_page_refcounted(page);
1455 split_page(page, order);
1460 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1461 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1465 struct page *buffered_rmqueue(struct zone *preferred_zone,
1466 struct zone *zone, int order, gfp_t gfp_flags,
1469 unsigned long flags;
1471 int cold = !!(gfp_flags & __GFP_COLD);
1474 if (likely(order == 0)) {
1475 struct per_cpu_pages *pcp;
1476 struct list_head *list;
1478 local_irq_save(flags);
1479 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1480 list = &pcp->lists[migratetype];
1481 if (list_empty(list)) {
1482 pcp->count += rmqueue_bulk(zone, 0,
1485 if (unlikely(list_empty(list)))
1490 page = list_entry(list->prev, struct page, lru);
1492 page = list_entry(list->next, struct page, lru);
1494 list_del(&page->lru);
1497 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1499 * __GFP_NOFAIL is not to be used in new code.
1501 * All __GFP_NOFAIL callers should be fixed so that they
1502 * properly detect and handle allocation failures.
1504 * We most definitely don't want callers attempting to
1505 * allocate greater than order-1 page units with
1508 WARN_ON_ONCE(order > 1);
1510 spin_lock_irqsave(&zone->lock, flags);
1511 page = __rmqueue(zone, order, migratetype);
1512 spin_unlock(&zone->lock);
1515 __mod_zone_freepage_state(zone, -(1 << order),
1516 get_pageblock_migratetype(page));
1519 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1520 zone_statistics(preferred_zone, zone, gfp_flags);
1521 local_irq_restore(flags);
1523 VM_BUG_ON(bad_range(zone, page));
1524 if (prep_new_page(page, order, gfp_flags))
1529 local_irq_restore(flags);
1533 #ifdef CONFIG_FAIL_PAGE_ALLOC
1536 struct fault_attr attr;
1538 u32 ignore_gfp_highmem;
1539 u32 ignore_gfp_wait;
1541 } fail_page_alloc = {
1542 .attr = FAULT_ATTR_INITIALIZER,
1543 .ignore_gfp_wait = 1,
1544 .ignore_gfp_highmem = 1,
1548 static int __init setup_fail_page_alloc(char *str)
1550 return setup_fault_attr(&fail_page_alloc.attr, str);
1552 __setup("fail_page_alloc=", setup_fail_page_alloc);
1554 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1556 if (order < fail_page_alloc.min_order)
1558 if (gfp_mask & __GFP_NOFAIL)
1560 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1562 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1565 return should_fail(&fail_page_alloc.attr, 1 << order);
1568 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1570 static int __init fail_page_alloc_debugfs(void)
1572 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1575 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1576 &fail_page_alloc.attr);
1578 return PTR_ERR(dir);
1580 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1581 &fail_page_alloc.ignore_gfp_wait))
1583 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1584 &fail_page_alloc.ignore_gfp_highmem))
1586 if (!debugfs_create_u32("min-order", mode, dir,
1587 &fail_page_alloc.min_order))
1592 debugfs_remove_recursive(dir);
1597 late_initcall(fail_page_alloc_debugfs);
1599 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1601 #else /* CONFIG_FAIL_PAGE_ALLOC */
1603 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1608 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1611 * Return true if free pages are above 'mark'. This takes into account the order
1612 * of the allocation.
1614 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1615 int classzone_idx, int alloc_flags, long free_pages)
1617 /* free_pages my go negative - that's OK */
1619 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1622 free_pages -= (1 << order) - 1;
1623 if (alloc_flags & ALLOC_HIGH)
1625 if (alloc_flags & ALLOC_HARDER)
1628 /* If allocation can't use CMA areas don't use free CMA pages */
1629 if (!(alloc_flags & ALLOC_CMA))
1630 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1632 if (free_pages <= min + lowmem_reserve)
1634 for (o = 0; o < order; o++) {
1635 /* At the next order, this order's pages become unavailable */
1636 free_pages -= z->free_area[o].nr_free << o;
1638 /* Require fewer higher order pages to be free */
1641 if (free_pages <= min)
1647 #ifdef CONFIG_MEMORY_ISOLATION
1648 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1650 if (unlikely(zone->nr_pageblock_isolate))
1651 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1655 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1661 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1662 int classzone_idx, int alloc_flags)
1664 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1665 zone_page_state(z, NR_FREE_PAGES));
1668 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1669 int classzone_idx, int alloc_flags)
1671 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1673 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1674 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1677 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1678 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1679 * sleep although it could do so. But this is more desirable for memory
1680 * hotplug than sleeping which can cause a livelock in the direct
1683 free_pages -= nr_zone_isolate_freepages(z);
1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1690 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1691 * skip over zones that are not allowed by the cpuset, or that have
1692 * been recently (in last second) found to be nearly full. See further
1693 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1694 * that have to skip over a lot of full or unallowed zones.
1696 * If the zonelist cache is present in the passed in zonelist, then
1697 * returns a pointer to the allowed node mask (either the current
1698 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1700 * If the zonelist cache is not available for this zonelist, does
1701 * nothing and returns NULL.
1703 * If the fullzones BITMAP in the zonelist cache is stale (more than
1704 * a second since last zap'd) then we zap it out (clear its bits.)
1706 * We hold off even calling zlc_setup, until after we've checked the
1707 * first zone in the zonelist, on the theory that most allocations will
1708 * be satisfied from that first zone, so best to examine that zone as
1709 * quickly as we can.
1711 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1713 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1714 nodemask_t *allowednodes; /* zonelist_cache approximation */
1716 zlc = zonelist->zlcache_ptr;
1720 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1721 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1722 zlc->last_full_zap = jiffies;
1725 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1726 &cpuset_current_mems_allowed :
1727 &node_states[N_HIGH_MEMORY];
1728 return allowednodes;
1732 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1733 * if it is worth looking at further for free memory:
1734 * 1) Check that the zone isn't thought to be full (doesn't have its
1735 * bit set in the zonelist_cache fullzones BITMAP).
1736 * 2) Check that the zones node (obtained from the zonelist_cache
1737 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1738 * Return true (non-zero) if zone is worth looking at further, or
1739 * else return false (zero) if it is not.
1741 * This check -ignores- the distinction between various watermarks,
1742 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1743 * found to be full for any variation of these watermarks, it will
1744 * be considered full for up to one second by all requests, unless
1745 * we are so low on memory on all allowed nodes that we are forced
1746 * into the second scan of the zonelist.
1748 * In the second scan we ignore this zonelist cache and exactly
1749 * apply the watermarks to all zones, even it is slower to do so.
1750 * We are low on memory in the second scan, and should leave no stone
1751 * unturned looking for a free page.
1753 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1754 nodemask_t *allowednodes)
1756 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1757 int i; /* index of *z in zonelist zones */
1758 int n; /* node that zone *z is on */
1760 zlc = zonelist->zlcache_ptr;
1764 i = z - zonelist->_zonerefs;
1767 /* This zone is worth trying if it is allowed but not full */
1768 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1772 * Given 'z' scanning a zonelist, set the corresponding bit in
1773 * zlc->fullzones, so that subsequent attempts to allocate a page
1774 * from that zone don't waste time re-examining it.
1776 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1778 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1779 int i; /* index of *z in zonelist zones */
1781 zlc = zonelist->zlcache_ptr;
1785 i = z - zonelist->_zonerefs;
1787 set_bit(i, zlc->fullzones);
1791 * clear all zones full, called after direct reclaim makes progress so that
1792 * a zone that was recently full is not skipped over for up to a second
1794 static void zlc_clear_zones_full(struct zonelist *zonelist)
1796 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1798 zlc = zonelist->zlcache_ptr;
1802 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1805 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1807 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1810 static void __paginginit init_zone_allows_reclaim(int nid)
1814 for_each_online_node(i)
1815 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1816 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1818 zone_reclaim_mode = 1;
1821 #else /* CONFIG_NUMA */
1823 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1828 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1829 nodemask_t *allowednodes)
1834 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1838 static void zlc_clear_zones_full(struct zonelist *zonelist)
1842 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1847 static inline void init_zone_allows_reclaim(int nid)
1850 #endif /* CONFIG_NUMA */
1853 * get_page_from_freelist goes through the zonelist trying to allocate
1856 static struct page *
1857 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1858 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1859 struct zone *preferred_zone, int migratetype)
1862 struct page *page = NULL;
1865 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1866 int zlc_active = 0; /* set if using zonelist_cache */
1867 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1869 classzone_idx = zone_idx(preferred_zone);
1872 * Scan zonelist, looking for a zone with enough free.
1873 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1875 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1876 high_zoneidx, nodemask) {
1877 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1878 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1880 if ((alloc_flags & ALLOC_CPUSET) &&
1881 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1884 * When allocating a page cache page for writing, we
1885 * want to get it from a zone that is within its dirty
1886 * limit, such that no single zone holds more than its
1887 * proportional share of globally allowed dirty pages.
1888 * The dirty limits take into account the zone's
1889 * lowmem reserves and high watermark so that kswapd
1890 * should be able to balance it without having to
1891 * write pages from its LRU list.
1893 * This may look like it could increase pressure on
1894 * lower zones by failing allocations in higher zones
1895 * before they are full. But the pages that do spill
1896 * over are limited as the lower zones are protected
1897 * by this very same mechanism. It should not become
1898 * a practical burden to them.
1900 * XXX: For now, allow allocations to potentially
1901 * exceed the per-zone dirty limit in the slowpath
1902 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1903 * which is important when on a NUMA setup the allowed
1904 * zones are together not big enough to reach the
1905 * global limit. The proper fix for these situations
1906 * will require awareness of zones in the
1907 * dirty-throttling and the flusher threads.
1909 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1910 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1911 goto this_zone_full;
1913 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1914 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1918 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1919 if (zone_watermark_ok(zone, order, mark,
1920 classzone_idx, alloc_flags))
1923 if (IS_ENABLED(CONFIG_NUMA) &&
1924 !did_zlc_setup && nr_online_nodes > 1) {
1926 * we do zlc_setup if there are multiple nodes
1927 * and before considering the first zone allowed
1930 allowednodes = zlc_setup(zonelist, alloc_flags);
1935 if (zone_reclaim_mode == 0 ||
1936 !zone_allows_reclaim(preferred_zone, zone))
1937 goto this_zone_full;
1940 * As we may have just activated ZLC, check if the first
1941 * eligible zone has failed zone_reclaim recently.
1943 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1944 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1947 ret = zone_reclaim(zone, gfp_mask, order);
1949 case ZONE_RECLAIM_NOSCAN:
1952 case ZONE_RECLAIM_FULL:
1953 /* scanned but unreclaimable */
1956 /* did we reclaim enough */
1957 if (!zone_watermark_ok(zone, order, mark,
1958 classzone_idx, alloc_flags))
1959 goto this_zone_full;
1964 page = buffered_rmqueue(preferred_zone, zone, order,
1965 gfp_mask, migratetype);
1969 if (IS_ENABLED(CONFIG_NUMA))
1970 zlc_mark_zone_full(zonelist, z);
1973 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1974 /* Disable zlc cache for second zonelist scan */
1981 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1982 * necessary to allocate the page. The expectation is
1983 * that the caller is taking steps that will free more
1984 * memory. The caller should avoid the page being used
1985 * for !PFMEMALLOC purposes.
1987 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1993 * Large machines with many possible nodes should not always dump per-node
1994 * meminfo in irq context.
1996 static inline bool should_suppress_show_mem(void)
2001 ret = in_interrupt();
2006 static DEFINE_RATELIMIT_STATE(nopage_rs,
2007 DEFAULT_RATELIMIT_INTERVAL,
2008 DEFAULT_RATELIMIT_BURST);
2010 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2012 unsigned int filter = SHOW_MEM_FILTER_NODES;
2014 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2015 debug_guardpage_minorder() > 0)
2019 * This documents exceptions given to allocations in certain
2020 * contexts that are allowed to allocate outside current's set
2023 if (!(gfp_mask & __GFP_NOMEMALLOC))
2024 if (test_thread_flag(TIF_MEMDIE) ||
2025 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2026 filter &= ~SHOW_MEM_FILTER_NODES;
2027 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2028 filter &= ~SHOW_MEM_FILTER_NODES;
2031 struct va_format vaf;
2034 va_start(args, fmt);
2039 pr_warn("%pV", &vaf);
2044 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2045 current->comm, order, gfp_mask);
2048 if (!should_suppress_show_mem())
2053 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2054 unsigned long did_some_progress,
2055 unsigned long pages_reclaimed)
2057 /* Do not loop if specifically requested */
2058 if (gfp_mask & __GFP_NORETRY)
2061 /* Always retry if specifically requested */
2062 if (gfp_mask & __GFP_NOFAIL)
2066 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2067 * making forward progress without invoking OOM. Suspend also disables
2068 * storage devices so kswapd will not help. Bail if we are suspending.
2070 if (!did_some_progress && pm_suspended_storage())
2074 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2075 * means __GFP_NOFAIL, but that may not be true in other
2078 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2082 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2083 * specified, then we retry until we no longer reclaim any pages
2084 * (above), or we've reclaimed an order of pages at least as
2085 * large as the allocation's order. In both cases, if the
2086 * allocation still fails, we stop retrying.
2088 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2094 static inline struct page *
2095 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2096 struct zonelist *zonelist, enum zone_type high_zoneidx,
2097 nodemask_t *nodemask, struct zone *preferred_zone,
2102 /* Acquire the OOM killer lock for the zones in zonelist */
2103 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2104 schedule_timeout_uninterruptible(1);
2109 * Go through the zonelist yet one more time, keep very high watermark
2110 * here, this is only to catch a parallel oom killing, we must fail if
2111 * we're still under heavy pressure.
2113 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2114 order, zonelist, high_zoneidx,
2115 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2116 preferred_zone, migratetype);
2120 if (!(gfp_mask & __GFP_NOFAIL)) {
2121 /* The OOM killer will not help higher order allocs */
2122 if (order > PAGE_ALLOC_COSTLY_ORDER)
2124 /* The OOM killer does not needlessly kill tasks for lowmem */
2125 if (high_zoneidx < ZONE_NORMAL)
2128 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2129 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2130 * The caller should handle page allocation failure by itself if
2131 * it specifies __GFP_THISNODE.
2132 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2134 if (gfp_mask & __GFP_THISNODE)
2137 /* Exhausted what can be done so it's blamo time */
2138 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2141 clear_zonelist_oom(zonelist, gfp_mask);
2145 #ifdef CONFIG_COMPACTION
2146 /* Try memory compaction for high-order allocations before reclaim */
2147 static struct page *
2148 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2149 struct zonelist *zonelist, enum zone_type high_zoneidx,
2150 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2151 int migratetype, bool sync_migration,
2152 bool *contended_compaction, bool *deferred_compaction,
2153 unsigned long *did_some_progress)
2155 struct page *page = NULL;
2160 if (compaction_deferred(preferred_zone, order)) {
2161 *deferred_compaction = true;
2165 current->flags |= PF_MEMALLOC;
2166 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2167 nodemask, sync_migration,
2168 contended_compaction, &page);
2169 current->flags &= ~PF_MEMALLOC;
2171 /* If compaction captured a page, prep and use it */
2173 prep_new_page(page, order, gfp_mask);
2177 if (*did_some_progress != COMPACT_SKIPPED) {
2178 /* Page migration frees to the PCP lists but we want merging */
2179 drain_pages(get_cpu());
2182 page = get_page_from_freelist(gfp_mask, nodemask,
2183 order, zonelist, high_zoneidx,
2184 alloc_flags & ~ALLOC_NO_WATERMARKS,
2185 preferred_zone, migratetype);
2188 preferred_zone->compact_blockskip_flush = false;
2189 preferred_zone->compact_considered = 0;
2190 preferred_zone->compact_defer_shift = 0;
2191 if (order >= preferred_zone->compact_order_failed)
2192 preferred_zone->compact_order_failed = order + 1;
2193 count_vm_event(COMPACTSUCCESS);
2198 * It's bad if compaction run occurs and fails.
2199 * The most likely reason is that pages exist,
2200 * but not enough to satisfy watermarks.
2202 count_vm_event(COMPACTFAIL);
2205 * As async compaction considers a subset of pageblocks, only
2206 * defer if the failure was a sync compaction failure.
2209 defer_compaction(preferred_zone, order);
2217 static inline struct page *
2218 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2219 struct zonelist *zonelist, enum zone_type high_zoneidx,
2220 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2221 int migratetype, bool sync_migration,
2222 bool *contended_compaction, bool *deferred_compaction,
2223 unsigned long *did_some_progress)
2227 #endif /* CONFIG_COMPACTION */
2229 /* Perform direct synchronous page reclaim */
2231 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2232 nodemask_t *nodemask)
2234 struct reclaim_state reclaim_state;
2239 /* We now go into synchronous reclaim */
2240 cpuset_memory_pressure_bump();
2241 current->flags |= PF_MEMALLOC;
2242 lockdep_set_current_reclaim_state(gfp_mask);
2243 reclaim_state.reclaimed_slab = 0;
2244 current->reclaim_state = &reclaim_state;
2246 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2248 current->reclaim_state = NULL;
2249 lockdep_clear_current_reclaim_state();
2250 current->flags &= ~PF_MEMALLOC;
2257 /* The really slow allocator path where we enter direct reclaim */
2258 static inline struct page *
2259 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2260 struct zonelist *zonelist, enum zone_type high_zoneidx,
2261 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2262 int migratetype, unsigned long *did_some_progress)
2264 struct page *page = NULL;
2265 bool drained = false;
2267 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2269 if (unlikely(!(*did_some_progress)))
2272 /* After successful reclaim, reconsider all zones for allocation */
2273 if (IS_ENABLED(CONFIG_NUMA))
2274 zlc_clear_zones_full(zonelist);
2277 page = get_page_from_freelist(gfp_mask, nodemask, order,
2278 zonelist, high_zoneidx,
2279 alloc_flags & ~ALLOC_NO_WATERMARKS,
2280 preferred_zone, migratetype);
2283 * If an allocation failed after direct reclaim, it could be because
2284 * pages are pinned on the per-cpu lists. Drain them and try again
2286 if (!page && !drained) {
2296 * This is called in the allocator slow-path if the allocation request is of
2297 * sufficient urgency to ignore watermarks and take other desperate measures
2299 static inline struct page *
2300 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2301 struct zonelist *zonelist, enum zone_type high_zoneidx,
2302 nodemask_t *nodemask, struct zone *preferred_zone,
2308 page = get_page_from_freelist(gfp_mask, nodemask, order,
2309 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2310 preferred_zone, migratetype);
2312 if (!page && gfp_mask & __GFP_NOFAIL)
2313 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2314 } while (!page && (gfp_mask & __GFP_NOFAIL));
2320 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2321 enum zone_type high_zoneidx,
2322 enum zone_type classzone_idx)
2327 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2328 wakeup_kswapd(zone, order, classzone_idx);
2332 gfp_to_alloc_flags(gfp_t gfp_mask)
2334 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2335 const gfp_t wait = gfp_mask & __GFP_WAIT;
2337 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2338 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2341 * The caller may dip into page reserves a bit more if the caller
2342 * cannot run direct reclaim, or if the caller has realtime scheduling
2343 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2344 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2346 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2350 * Not worth trying to allocate harder for
2351 * __GFP_NOMEMALLOC even if it can't schedule.
2353 if (!(gfp_mask & __GFP_NOMEMALLOC))
2354 alloc_flags |= ALLOC_HARDER;
2356 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2357 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2359 alloc_flags &= ~ALLOC_CPUSET;
2360 } else if (unlikely(rt_task(current)) && !in_interrupt())
2361 alloc_flags |= ALLOC_HARDER;
2363 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2364 if (gfp_mask & __GFP_MEMALLOC)
2365 alloc_flags |= ALLOC_NO_WATERMARKS;
2366 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2367 alloc_flags |= ALLOC_NO_WATERMARKS;
2368 else if (!in_interrupt() &&
2369 ((current->flags & PF_MEMALLOC) ||
2370 unlikely(test_thread_flag(TIF_MEMDIE))))
2371 alloc_flags |= ALLOC_NO_WATERMARKS;
2374 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2375 alloc_flags |= ALLOC_CMA;
2380 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2382 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2385 static inline struct page *
2386 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2387 struct zonelist *zonelist, enum zone_type high_zoneidx,
2388 nodemask_t *nodemask, struct zone *preferred_zone,
2391 const gfp_t wait = gfp_mask & __GFP_WAIT;
2392 struct page *page = NULL;
2394 unsigned long pages_reclaimed = 0;
2395 unsigned long did_some_progress;
2396 bool sync_migration = false;
2397 bool deferred_compaction = false;
2398 bool contended_compaction = false;
2401 * In the slowpath, we sanity check order to avoid ever trying to
2402 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2403 * be using allocators in order of preference for an area that is
2406 if (order >= MAX_ORDER) {
2407 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2412 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2413 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2414 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2415 * using a larger set of nodes after it has established that the
2416 * allowed per node queues are empty and that nodes are
2419 if (IS_ENABLED(CONFIG_NUMA) &&
2420 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2424 if (!(gfp_mask & __GFP_NO_KSWAPD))
2425 wake_all_kswapd(order, zonelist, high_zoneidx,
2426 zone_idx(preferred_zone));
2429 * OK, we're below the kswapd watermark and have kicked background
2430 * reclaim. Now things get more complex, so set up alloc_flags according
2431 * to how we want to proceed.
2433 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2436 * Find the true preferred zone if the allocation is unconstrained by
2439 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2440 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2444 /* This is the last chance, in general, before the goto nopage. */
2445 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2446 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2447 preferred_zone, migratetype);
2451 /* Allocate without watermarks if the context allows */
2452 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2454 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2455 * the allocation is high priority and these type of
2456 * allocations are system rather than user orientated
2458 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2460 page = __alloc_pages_high_priority(gfp_mask, order,
2461 zonelist, high_zoneidx, nodemask,
2462 preferred_zone, migratetype);
2468 /* Atomic allocations - we can't balance anything */
2472 /* Avoid recursion of direct reclaim */
2473 if (current->flags & PF_MEMALLOC)
2476 /* Avoid allocations with no watermarks from looping endlessly */
2477 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2481 * Try direct compaction. The first pass is asynchronous. Subsequent
2482 * attempts after direct reclaim are synchronous
2484 page = __alloc_pages_direct_compact(gfp_mask, order,
2485 zonelist, high_zoneidx,
2487 alloc_flags, preferred_zone,
2488 migratetype, sync_migration,
2489 &contended_compaction,
2490 &deferred_compaction,
2491 &did_some_progress);
2494 sync_migration = true;
2497 * If compaction is deferred for high-order allocations, it is because
2498 * sync compaction recently failed. In this is the case and the caller
2499 * requested a movable allocation that does not heavily disrupt the
2500 * system then fail the allocation instead of entering direct reclaim.
2502 if ((deferred_compaction || contended_compaction) &&
2503 (gfp_mask & __GFP_NO_KSWAPD))
2506 /* Try direct reclaim and then allocating */
2507 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2508 zonelist, high_zoneidx,
2510 alloc_flags, preferred_zone,
2511 migratetype, &did_some_progress);
2516 * If we failed to make any progress reclaiming, then we are
2517 * running out of options and have to consider going OOM
2519 if (!did_some_progress) {
2520 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2521 if (oom_killer_disabled)
2523 /* Coredumps can quickly deplete all memory reserves */
2524 if ((current->flags & PF_DUMPCORE) &&
2525 !(gfp_mask & __GFP_NOFAIL))
2527 page = __alloc_pages_may_oom(gfp_mask, order,
2528 zonelist, high_zoneidx,
2529 nodemask, preferred_zone,
2534 if (!(gfp_mask & __GFP_NOFAIL)) {
2536 * The oom killer is not called for high-order
2537 * allocations that may fail, so if no progress
2538 * is being made, there are no other options and
2539 * retrying is unlikely to help.
2541 if (order > PAGE_ALLOC_COSTLY_ORDER)
2544 * The oom killer is not called for lowmem
2545 * allocations to prevent needlessly killing
2548 if (high_zoneidx < ZONE_NORMAL)
2556 /* Check if we should retry the allocation */
2557 pages_reclaimed += did_some_progress;
2558 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2560 /* Wait for some write requests to complete then retry */
2561 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2565 * High-order allocations do not necessarily loop after
2566 * direct reclaim and reclaim/compaction depends on compaction
2567 * being called after reclaim so call directly if necessary
2569 page = __alloc_pages_direct_compact(gfp_mask, order,
2570 zonelist, high_zoneidx,
2572 alloc_flags, preferred_zone,
2573 migratetype, sync_migration,
2574 &contended_compaction,
2575 &deferred_compaction,
2576 &did_some_progress);
2582 warn_alloc_failed(gfp_mask, order, NULL);
2585 if (kmemcheck_enabled)
2586 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2592 * This is the 'heart' of the zoned buddy allocator.
2595 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2596 struct zonelist *zonelist, nodemask_t *nodemask)
2598 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2599 struct zone *preferred_zone;
2600 struct page *page = NULL;
2601 int migratetype = allocflags_to_migratetype(gfp_mask);
2602 unsigned int cpuset_mems_cookie;
2603 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2605 gfp_mask &= gfp_allowed_mask;
2607 lockdep_trace_alloc(gfp_mask);
2609 might_sleep_if(gfp_mask & __GFP_WAIT);
2611 if (should_fail_alloc_page(gfp_mask, order))
2615 * Check the zones suitable for the gfp_mask contain at least one
2616 * valid zone. It's possible to have an empty zonelist as a result
2617 * of GFP_THISNODE and a memoryless node
2619 if (unlikely(!zonelist->_zonerefs->zone))
2623 cpuset_mems_cookie = get_mems_allowed();
2625 /* The preferred zone is used for statistics later */
2626 first_zones_zonelist(zonelist, high_zoneidx,
2627 nodemask ? : &cpuset_current_mems_allowed,
2629 if (!preferred_zone)
2633 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2634 alloc_flags |= ALLOC_CMA;
2636 /* First allocation attempt */
2637 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2638 zonelist, high_zoneidx, alloc_flags,
2639 preferred_zone, migratetype);
2640 if (unlikely(!page))
2641 page = __alloc_pages_slowpath(gfp_mask, order,
2642 zonelist, high_zoneidx, nodemask,
2643 preferred_zone, migratetype);
2645 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2649 * When updating a task's mems_allowed, it is possible to race with
2650 * parallel threads in such a way that an allocation can fail while
2651 * the mask is being updated. If a page allocation is about to fail,
2652 * check if the cpuset changed during allocation and if so, retry.
2654 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2659 EXPORT_SYMBOL(__alloc_pages_nodemask);
2662 * Common helper functions.
2664 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2669 * __get_free_pages() returns a 32-bit address, which cannot represent
2672 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2674 page = alloc_pages(gfp_mask, order);
2677 return (unsigned long) page_address(page);
2679 EXPORT_SYMBOL(__get_free_pages);
2681 unsigned long get_zeroed_page(gfp_t gfp_mask)
2683 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2685 EXPORT_SYMBOL(get_zeroed_page);
2687 void __free_pages(struct page *page, unsigned int order)
2689 if (put_page_testzero(page)) {
2691 free_hot_cold_page(page, 0);
2693 __free_pages_ok(page, order);
2697 EXPORT_SYMBOL(__free_pages);
2699 void free_pages(unsigned long addr, unsigned int order)
2702 VM_BUG_ON(!virt_addr_valid((void *)addr));
2703 __free_pages(virt_to_page((void *)addr), order);
2707 EXPORT_SYMBOL(free_pages);
2709 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2712 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2713 unsigned long used = addr + PAGE_ALIGN(size);
2715 split_page(virt_to_page((void *)addr), order);
2716 while (used < alloc_end) {
2721 return (void *)addr;
2725 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2726 * @size: the number of bytes to allocate
2727 * @gfp_mask: GFP flags for the allocation
2729 * This function is similar to alloc_pages(), except that it allocates the
2730 * minimum number of pages to satisfy the request. alloc_pages() can only
2731 * allocate memory in power-of-two pages.
2733 * This function is also limited by MAX_ORDER.
2735 * Memory allocated by this function must be released by free_pages_exact().
2737 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2739 unsigned int order = get_order(size);
2742 addr = __get_free_pages(gfp_mask, order);
2743 return make_alloc_exact(addr, order, size);
2745 EXPORT_SYMBOL(alloc_pages_exact);
2748 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2750 * @nid: the preferred node ID where memory should be allocated
2751 * @size: the number of bytes to allocate
2752 * @gfp_mask: GFP flags for the allocation
2754 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2756 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2759 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2761 unsigned order = get_order(size);
2762 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2765 return make_alloc_exact((unsigned long)page_address(p), order, size);
2767 EXPORT_SYMBOL(alloc_pages_exact_nid);
2770 * free_pages_exact - release memory allocated via alloc_pages_exact()
2771 * @virt: the value returned by alloc_pages_exact.
2772 * @size: size of allocation, same value as passed to alloc_pages_exact().
2774 * Release the memory allocated by a previous call to alloc_pages_exact.
2776 void free_pages_exact(void *virt, size_t size)
2778 unsigned long addr = (unsigned long)virt;
2779 unsigned long end = addr + PAGE_ALIGN(size);
2781 while (addr < end) {
2786 EXPORT_SYMBOL(free_pages_exact);
2788 static unsigned int nr_free_zone_pages(int offset)
2793 /* Just pick one node, since fallback list is circular */
2794 unsigned int sum = 0;
2796 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2798 for_each_zone_zonelist(zone, z, zonelist, offset) {
2799 unsigned long size = zone->present_pages;
2800 unsigned long high = high_wmark_pages(zone);
2809 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2811 unsigned int nr_free_buffer_pages(void)
2813 return nr_free_zone_pages(gfp_zone(GFP_USER));
2815 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2818 * Amount of free RAM allocatable within all zones
2820 unsigned int nr_free_pagecache_pages(void)
2822 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2825 static inline void show_node(struct zone *zone)
2827 if (IS_ENABLED(CONFIG_NUMA))
2828 printk("Node %d ", zone_to_nid(zone));
2831 void si_meminfo(struct sysinfo *val)
2833 val->totalram = totalram_pages;
2835 val->freeram = global_page_state(NR_FREE_PAGES);
2836 val->bufferram = nr_blockdev_pages();
2837 val->totalhigh = totalhigh_pages;
2838 val->freehigh = nr_free_highpages();
2839 val->mem_unit = PAGE_SIZE;
2842 EXPORT_SYMBOL(si_meminfo);
2845 void si_meminfo_node(struct sysinfo *val, int nid)
2847 pg_data_t *pgdat = NODE_DATA(nid);
2849 val->totalram = pgdat->node_present_pages;
2850 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2851 #ifdef CONFIG_HIGHMEM
2852 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2853 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2859 val->mem_unit = PAGE_SIZE;
2864 * Determine whether the node should be displayed or not, depending on whether
2865 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2867 bool skip_free_areas_node(unsigned int flags, int nid)
2870 unsigned int cpuset_mems_cookie;
2872 if (!(flags & SHOW_MEM_FILTER_NODES))
2876 cpuset_mems_cookie = get_mems_allowed();
2877 ret = !node_isset(nid, cpuset_current_mems_allowed);
2878 } while (!put_mems_allowed(cpuset_mems_cookie));
2883 #define K(x) ((x) << (PAGE_SHIFT-10))
2885 static void show_migration_types(unsigned char type)
2887 static const char types[MIGRATE_TYPES] = {
2888 [MIGRATE_UNMOVABLE] = 'U',
2889 [MIGRATE_RECLAIMABLE] = 'E',
2890 [MIGRATE_MOVABLE] = 'M',
2891 [MIGRATE_RESERVE] = 'R',
2893 [MIGRATE_CMA] = 'C',
2895 [MIGRATE_ISOLATE] = 'I',
2897 char tmp[MIGRATE_TYPES + 1];
2901 for (i = 0; i < MIGRATE_TYPES; i++) {
2902 if (type & (1 << i))
2907 printk("(%s) ", tmp);
2911 * Show free area list (used inside shift_scroll-lock stuff)
2912 * We also calculate the percentage fragmentation. We do this by counting the
2913 * memory on each free list with the exception of the first item on the list.
2914 * Suppresses nodes that are not allowed by current's cpuset if
2915 * SHOW_MEM_FILTER_NODES is passed.
2917 void show_free_areas(unsigned int filter)
2922 for_each_populated_zone(zone) {
2923 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2926 printk("%s per-cpu:\n", zone->name);
2928 for_each_online_cpu(cpu) {
2929 struct per_cpu_pageset *pageset;
2931 pageset = per_cpu_ptr(zone->pageset, cpu);
2933 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2934 cpu, pageset->pcp.high,
2935 pageset->pcp.batch, pageset->pcp.count);
2939 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2940 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2942 " dirty:%lu writeback:%lu unstable:%lu\n"
2943 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2944 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2946 global_page_state(NR_ACTIVE_ANON),
2947 global_page_state(NR_INACTIVE_ANON),
2948 global_page_state(NR_ISOLATED_ANON),
2949 global_page_state(NR_ACTIVE_FILE),
2950 global_page_state(NR_INACTIVE_FILE),
2951 global_page_state(NR_ISOLATED_FILE),
2952 global_page_state(NR_UNEVICTABLE),
2953 global_page_state(NR_FILE_DIRTY),
2954 global_page_state(NR_WRITEBACK),
2955 global_page_state(NR_UNSTABLE_NFS),
2956 global_page_state(NR_FREE_PAGES),
2957 global_page_state(NR_SLAB_RECLAIMABLE),
2958 global_page_state(NR_SLAB_UNRECLAIMABLE),
2959 global_page_state(NR_FILE_MAPPED),
2960 global_page_state(NR_SHMEM),
2961 global_page_state(NR_PAGETABLE),
2962 global_page_state(NR_BOUNCE),
2963 global_page_state(NR_FREE_CMA_PAGES));
2965 for_each_populated_zone(zone) {
2968 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2976 " active_anon:%lukB"
2977 " inactive_anon:%lukB"
2978 " active_file:%lukB"
2979 " inactive_file:%lukB"
2980 " unevictable:%lukB"
2981 " isolated(anon):%lukB"
2982 " isolated(file):%lukB"
2989 " slab_reclaimable:%lukB"
2990 " slab_unreclaimable:%lukB"
2991 " kernel_stack:%lukB"
2996 " writeback_tmp:%lukB"
2997 " pages_scanned:%lu"
2998 " all_unreclaimable? %s"
3001 K(zone_page_state(zone, NR_FREE_PAGES)),
3002 K(min_wmark_pages(zone)),
3003 K(low_wmark_pages(zone)),
3004 K(high_wmark_pages(zone)),
3005 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3006 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3007 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3008 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3009 K(zone_page_state(zone, NR_UNEVICTABLE)),
3010 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3011 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3012 K(zone->present_pages),
3013 K(zone_page_state(zone, NR_MLOCK)),
3014 K(zone_page_state(zone, NR_FILE_DIRTY)),
3015 K(zone_page_state(zone, NR_WRITEBACK)),
3016 K(zone_page_state(zone, NR_FILE_MAPPED)),
3017 K(zone_page_state(zone, NR_SHMEM)),
3018 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3019 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3020 zone_page_state(zone, NR_KERNEL_STACK) *
3022 K(zone_page_state(zone, NR_PAGETABLE)),
3023 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3024 K(zone_page_state(zone, NR_BOUNCE)),
3025 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3026 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3027 zone->pages_scanned,
3028 (zone->all_unreclaimable ? "yes" : "no")
3030 printk("lowmem_reserve[]:");
3031 for (i = 0; i < MAX_NR_ZONES; i++)
3032 printk(" %lu", zone->lowmem_reserve[i]);
3036 for_each_populated_zone(zone) {
3037 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3038 unsigned char types[MAX_ORDER];
3040 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3043 printk("%s: ", zone->name);
3045 spin_lock_irqsave(&zone->lock, flags);
3046 for (order = 0; order < MAX_ORDER; order++) {
3047 struct free_area *area = &zone->free_area[order];
3050 nr[order] = area->nr_free;
3051 total += nr[order] << order;
3054 for (type = 0; type < MIGRATE_TYPES; type++) {
3055 if (!list_empty(&area->free_list[type]))
3056 types[order] |= 1 << type;
3059 spin_unlock_irqrestore(&zone->lock, flags);
3060 for (order = 0; order < MAX_ORDER; order++) {
3061 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3063 show_migration_types(types[order]);
3065 printk("= %lukB\n", K(total));
3068 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3070 show_swap_cache_info();
3073 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3075 zoneref->zone = zone;
3076 zoneref->zone_idx = zone_idx(zone);
3080 * Builds allocation fallback zone lists.
3082 * Add all populated zones of a node to the zonelist.
3084 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3085 int nr_zones, enum zone_type zone_type)
3089 BUG_ON(zone_type >= MAX_NR_ZONES);
3094 zone = pgdat->node_zones + zone_type;
3095 if (populated_zone(zone)) {
3096 zoneref_set_zone(zone,
3097 &zonelist->_zonerefs[nr_zones++]);
3098 check_highest_zone(zone_type);
3101 } while (zone_type);
3108 * 0 = automatic detection of better ordering.
3109 * 1 = order by ([node] distance, -zonetype)
3110 * 2 = order by (-zonetype, [node] distance)
3112 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3113 * the same zonelist. So only NUMA can configure this param.
3115 #define ZONELIST_ORDER_DEFAULT 0
3116 #define ZONELIST_ORDER_NODE 1
3117 #define ZONELIST_ORDER_ZONE 2
3119 /* zonelist order in the kernel.
3120 * set_zonelist_order() will set this to NODE or ZONE.
3122 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3123 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3127 /* The value user specified ....changed by config */
3128 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3129 /* string for sysctl */
3130 #define NUMA_ZONELIST_ORDER_LEN 16
3131 char numa_zonelist_order[16] = "default";
3134 * interface for configure zonelist ordering.
3135 * command line option "numa_zonelist_order"
3136 * = "[dD]efault - default, automatic configuration.
3137 * = "[nN]ode - order by node locality, then by zone within node
3138 * = "[zZ]one - order by zone, then by locality within zone
3141 static int __parse_numa_zonelist_order(char *s)
3143 if (*s == 'd' || *s == 'D') {
3144 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3145 } else if (*s == 'n' || *s == 'N') {
3146 user_zonelist_order = ZONELIST_ORDER_NODE;
3147 } else if (*s == 'z' || *s == 'Z') {
3148 user_zonelist_order = ZONELIST_ORDER_ZONE;
3151 "Ignoring invalid numa_zonelist_order value: "
3158 static __init int setup_numa_zonelist_order(char *s)
3165 ret = __parse_numa_zonelist_order(s);
3167 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3171 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3174 * sysctl handler for numa_zonelist_order
3176 int numa_zonelist_order_handler(ctl_table *table, int write,
3177 void __user *buffer, size_t *length,
3180 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3182 static DEFINE_MUTEX(zl_order_mutex);
3184 mutex_lock(&zl_order_mutex);
3186 strcpy(saved_string, (char*)table->data);
3187 ret = proc_dostring(table, write, buffer, length, ppos);
3191 int oldval = user_zonelist_order;
3192 if (__parse_numa_zonelist_order((char*)table->data)) {
3194 * bogus value. restore saved string
3196 strncpy((char*)table->data, saved_string,
3197 NUMA_ZONELIST_ORDER_LEN);
3198 user_zonelist_order = oldval;
3199 } else if (oldval != user_zonelist_order) {
3200 mutex_lock(&zonelists_mutex);
3201 build_all_zonelists(NULL, NULL);
3202 mutex_unlock(&zonelists_mutex);
3206 mutex_unlock(&zl_order_mutex);
3211 #define MAX_NODE_LOAD (nr_online_nodes)
3212 static int node_load[MAX_NUMNODES];
3215 * find_next_best_node - find the next node that should appear in a given node's fallback list
3216 * @node: node whose fallback list we're appending
3217 * @used_node_mask: nodemask_t of already used nodes
3219 * We use a number of factors to determine which is the next node that should
3220 * appear on a given node's fallback list. The node should not have appeared
3221 * already in @node's fallback list, and it should be the next closest node
3222 * according to the distance array (which contains arbitrary distance values
3223 * from each node to each node in the system), and should also prefer nodes
3224 * with no CPUs, since presumably they'll have very little allocation pressure
3225 * on them otherwise.
3226 * It returns -1 if no node is found.
3228 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3231 int min_val = INT_MAX;
3233 const struct cpumask *tmp = cpumask_of_node(0);
3235 /* Use the local node if we haven't already */
3236 if (!node_isset(node, *used_node_mask)) {
3237 node_set(node, *used_node_mask);
3241 for_each_node_state(n, N_HIGH_MEMORY) {
3243 /* Don't want a node to appear more than once */
3244 if (node_isset(n, *used_node_mask))
3247 /* Use the distance array to find the distance */
3248 val = node_distance(node, n);
3250 /* Penalize nodes under us ("prefer the next node") */
3253 /* Give preference to headless and unused nodes */
3254 tmp = cpumask_of_node(n);
3255 if (!cpumask_empty(tmp))
3256 val += PENALTY_FOR_NODE_WITH_CPUS;
3258 /* Slight preference for less loaded node */
3259 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3260 val += node_load[n];
3262 if (val < min_val) {
3269 node_set(best_node, *used_node_mask);
3276 * Build zonelists ordered by node and zones within node.
3277 * This results in maximum locality--normal zone overflows into local
3278 * DMA zone, if any--but risks exhausting DMA zone.
3280 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3283 struct zonelist *zonelist;
3285 zonelist = &pgdat->node_zonelists[0];
3286 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3288 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3290 zonelist->_zonerefs[j].zone = NULL;
3291 zonelist->_zonerefs[j].zone_idx = 0;
3295 * Build gfp_thisnode zonelists
3297 static void build_thisnode_zonelists(pg_data_t *pgdat)
3300 struct zonelist *zonelist;
3302 zonelist = &pgdat->node_zonelists[1];
3303 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3304 zonelist->_zonerefs[j].zone = NULL;
3305 zonelist->_zonerefs[j].zone_idx = 0;
3309 * Build zonelists ordered by zone and nodes within zones.
3310 * This results in conserving DMA zone[s] until all Normal memory is
3311 * exhausted, but results in overflowing to remote node while memory
3312 * may still exist in local DMA zone.
3314 static int node_order[MAX_NUMNODES];
3316 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3319 int zone_type; /* needs to be signed */
3321 struct zonelist *zonelist;
3323 zonelist = &pgdat->node_zonelists[0];
3325 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3326 for (j = 0; j < nr_nodes; j++) {
3327 node = node_order[j];
3328 z = &NODE_DATA(node)->node_zones[zone_type];
3329 if (populated_zone(z)) {
3331 &zonelist->_zonerefs[pos++]);
3332 check_highest_zone(zone_type);
3336 zonelist->_zonerefs[pos].zone = NULL;
3337 zonelist->_zonerefs[pos].zone_idx = 0;
3340 static int default_zonelist_order(void)
3343 unsigned long low_kmem_size,total_size;
3347 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3348 * If they are really small and used heavily, the system can fall
3349 * into OOM very easily.
3350 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3352 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3355 for_each_online_node(nid) {
3356 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3357 z = &NODE_DATA(nid)->node_zones[zone_type];
3358 if (populated_zone(z)) {
3359 if (zone_type < ZONE_NORMAL)
3360 low_kmem_size += z->present_pages;
3361 total_size += z->present_pages;
3362 } else if (zone_type == ZONE_NORMAL) {
3364 * If any node has only lowmem, then node order
3365 * is preferred to allow kernel allocations
3366 * locally; otherwise, they can easily infringe
3367 * on other nodes when there is an abundance of
3368 * lowmem available to allocate from.
3370 return ZONELIST_ORDER_NODE;
3374 if (!low_kmem_size || /* there are no DMA area. */
3375 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3376 return ZONELIST_ORDER_NODE;
3378 * look into each node's config.
3379 * If there is a node whose DMA/DMA32 memory is very big area on
3380 * local memory, NODE_ORDER may be suitable.
3382 average_size = total_size /
3383 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3384 for_each_online_node(nid) {
3387 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3388 z = &NODE_DATA(nid)->node_zones[zone_type];
3389 if (populated_zone(z)) {
3390 if (zone_type < ZONE_NORMAL)
3391 low_kmem_size += z->present_pages;
3392 total_size += z->present_pages;
3395 if (low_kmem_size &&
3396 total_size > average_size && /* ignore small node */
3397 low_kmem_size > total_size * 70/100)
3398 return ZONELIST_ORDER_NODE;
3400 return ZONELIST_ORDER_ZONE;
3403 static void set_zonelist_order(void)
3405 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3406 current_zonelist_order = default_zonelist_order();
3408 current_zonelist_order = user_zonelist_order;
3411 static void build_zonelists(pg_data_t *pgdat)
3415 nodemask_t used_mask;