2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
83 * Array of node states.
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #ifdef CONFIG_MOVABLE_NODE
94 [N_MEMORY] = { { [0] = 1UL } },
96 [N_CPU] = { { [0] = 1UL } },
99 EXPORT_SYMBOL(node_states);
101 unsigned long totalram_pages __read_mostly;
102 unsigned long totalreserve_pages __read_mostly;
104 * When calculating the number of globally allowed dirty pages, there
105 * is a certain number of per-zone reserves that should not be
106 * considered dirtyable memory. This is the sum of those reserves
107 * over all existing zones that contribute dirtyable memory.
109 unsigned long dirty_balance_reserve __read_mostly;
111 int percpu_pagelist_fraction;
112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114 #ifdef CONFIG_PM_SLEEP
116 * The following functions are used by the suspend/hibernate code to temporarily
117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118 * while devices are suspended. To avoid races with the suspend/hibernate code,
119 * they should always be called with pm_mutex held (gfp_allowed_mask also should
120 * only be modified with pm_mutex held, unless the suspend/hibernate code is
121 * guaranteed not to run in parallel with that modification).
124 static gfp_t saved_gfp_mask;
126 void pm_restore_gfp_mask(void)
128 WARN_ON(!mutex_is_locked(&pm_mutex));
129 if (saved_gfp_mask) {
130 gfp_allowed_mask = saved_gfp_mask;
135 void pm_restrict_gfp_mask(void)
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 WARN_ON(saved_gfp_mask);
139 saved_gfp_mask = gfp_allowed_mask;
140 gfp_allowed_mask &= ~GFP_IOFS;
143 bool pm_suspended_storage(void)
145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
149 #endif /* CONFIG_PM_SLEEP */
151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152 int pageblock_order __read_mostly;
155 static void __free_pages_ok(struct page *page, unsigned int order);
158 * results with 256, 32 in the lowmem_reserve sysctl:
159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160 * 1G machine -> (16M dma, 784M normal, 224M high)
161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 * TBD: should special case ZONE_DMA32 machines here - in those we normally
166 * don't need any ZONE_NORMAL reservation
168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169 #ifdef CONFIG_ZONE_DMA
172 #ifdef CONFIG_ZONE_DMA32
175 #ifdef CONFIG_HIGHMEM
181 EXPORT_SYMBOL(totalram_pages);
183 static char * const zone_names[MAX_NR_ZONES] = {
184 #ifdef CONFIG_ZONE_DMA
187 #ifdef CONFIG_ZONE_DMA32
191 #ifdef CONFIG_HIGHMEM
197 int min_free_kbytes = 1024;
199 static unsigned long __meminitdata nr_kernel_pages;
200 static unsigned long __meminitdata nr_all_pages;
201 static unsigned long __meminitdata dma_reserve;
203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
222 int page_group_by_mobility_disabled __read_mostly;
224 void set_pageblock_migratetype(struct page *page, int migratetype)
227 if (unlikely(page_group_by_mobility_disabled))
228 migratetype = MIGRATE_UNMOVABLE;
230 set_pageblock_flags_group(page, (unsigned long)migratetype,
231 PB_migrate, PB_migrate_end);
234 bool oom_killer_disabled __read_mostly;
236 #ifdef CONFIG_DEBUG_VM
237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
241 unsigned long pfn = page_to_pfn(page);
244 seq = zone_span_seqbegin(zone);
245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
247 else if (pfn < zone->zone_start_pfn)
249 } while (zone_span_seqretry(zone, seq));
254 static int page_is_consistent(struct zone *zone, struct page *page)
256 if (!pfn_valid_within(page_to_pfn(page)))
258 if (zone != page_zone(page))
264 * Temporary debugging check for pages not lying within a given zone.
266 static int bad_range(struct zone *zone, struct page *page)
268 if (page_outside_zone_boundaries(zone, page))
270 if (!page_is_consistent(zone, page))
276 static inline int bad_range(struct zone *zone, struct page *page)
282 static void bad_page(struct page *page)
284 static unsigned long resume;
285 static unsigned long nr_shown;
286 static unsigned long nr_unshown;
288 /* Don't complain about poisoned pages */
289 if (PageHWPoison(page)) {
290 reset_page_mapcount(page); /* remove PageBuddy */
295 * Allow a burst of 60 reports, then keep quiet for that minute;
296 * or allow a steady drip of one report per second.
298 if (nr_shown == 60) {
299 if (time_before(jiffies, resume)) {
305 "BUG: Bad page state: %lu messages suppressed\n",
312 resume = jiffies + 60 * HZ;
314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
315 current->comm, page_to_pfn(page));
321 /* Leave bad fields for debug, except PageBuddy could make trouble */
322 reset_page_mapcount(page); /* remove PageBuddy */
323 add_taint(TAINT_BAD_PAGE);
327 * Higher-order pages are called "compound pages". They are structured thusly:
329 * The first PAGE_SIZE page is called the "head page".
331 * The remaining PAGE_SIZE pages are called "tail pages".
333 * All pages have PG_compound set. All tail pages have their ->first_page
334 * pointing at the head page.
336 * The first tail page's ->lru.next holds the address of the compound page's
337 * put_page() function. Its ->lru.prev holds the order of allocation.
338 * This usage means that zero-order pages may not be compound.
341 static void free_compound_page(struct page *page)
343 __free_pages_ok(page, compound_order(page));
346 void prep_compound_page(struct page *page, unsigned long order)
349 int nr_pages = 1 << order;
351 set_compound_page_dtor(page, free_compound_page);
352 set_compound_order(page, order);
354 for (i = 1; i < nr_pages; i++) {
355 struct page *p = page + i;
357 set_page_count(p, 0);
358 p->first_page = page;
362 /* update __split_huge_page_refcount if you change this function */
363 static int destroy_compound_page(struct page *page, unsigned long order)
366 int nr_pages = 1 << order;
369 if (unlikely(compound_order(page) != order)) {
374 __ClearPageHead(page);
376 for (i = 1; i < nr_pages; i++) {
377 struct page *p = page + i;
379 if (unlikely(!PageTail(p) || (p->first_page != page))) {
389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
398 for (i = 0; i < (1 << order); i++)
399 clear_highpage(page + i);
402 #ifdef CONFIG_DEBUG_PAGEALLOC
403 unsigned int _debug_guardpage_minorder;
405 static int __init debug_guardpage_minorder_setup(char *buf)
409 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
410 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
413 _debug_guardpage_minorder = res;
414 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
417 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
419 static inline void set_page_guard_flag(struct page *page)
421 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
424 static inline void clear_page_guard_flag(struct page *page)
426 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
429 static inline void set_page_guard_flag(struct page *page) { }
430 static inline void clear_page_guard_flag(struct page *page) { }
433 static inline void set_page_order(struct page *page, int order)
435 set_page_private(page, order);
436 __SetPageBuddy(page);
439 static inline void rmv_page_order(struct page *page)
441 __ClearPageBuddy(page);
442 set_page_private(page, 0);
446 * Locate the struct page for both the matching buddy in our
447 * pair (buddy1) and the combined O(n+1) page they form (page).
449 * 1) Any buddy B1 will have an order O twin B2 which satisfies
450 * the following equation:
452 * For example, if the starting buddy (buddy2) is #8 its order
454 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
456 * 2) Any buddy B will have an order O+1 parent P which
457 * satisfies the following equation:
460 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
462 static inline unsigned long
463 __find_buddy_index(unsigned long page_idx, unsigned int order)
465 return page_idx ^ (1 << order);
469 * This function checks whether a page is free && is the buddy
470 * we can do coalesce a page and its buddy if
471 * (a) the buddy is not in a hole &&
472 * (b) the buddy is in the buddy system &&
473 * (c) a page and its buddy have the same order &&
474 * (d) a page and its buddy are in the same zone.
476 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
477 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
479 * For recording page's order, we use page_private(page).
481 static inline int page_is_buddy(struct page *page, struct page *buddy,
484 if (!pfn_valid_within(page_to_pfn(buddy)))
487 if (page_zone_id(page) != page_zone_id(buddy))
490 if (page_is_guard(buddy) && page_order(buddy) == order) {
491 VM_BUG_ON(page_count(buddy) != 0);
495 if (PageBuddy(buddy) && page_order(buddy) == order) {
496 VM_BUG_ON(page_count(buddy) != 0);
503 * Freeing function for a buddy system allocator.
505 * The concept of a buddy system is to maintain direct-mapped table
506 * (containing bit values) for memory blocks of various "orders".
507 * The bottom level table contains the map for the smallest allocatable
508 * units of memory (here, pages), and each level above it describes
509 * pairs of units from the levels below, hence, "buddies".
510 * At a high level, all that happens here is marking the table entry
511 * at the bottom level available, and propagating the changes upward
512 * as necessary, plus some accounting needed to play nicely with other
513 * parts of the VM system.
514 * At each level, we keep a list of pages, which are heads of continuous
515 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
516 * order is recorded in page_private(page) field.
517 * So when we are allocating or freeing one, we can derive the state of the
518 * other. That is, if we allocate a small block, and both were
519 * free, the remainder of the region must be split into blocks.
520 * If a block is freed, and its buddy is also free, then this
521 * triggers coalescing into a block of larger size.
526 static inline void __free_one_page(struct page *page,
527 struct zone *zone, unsigned int order,
530 unsigned long page_idx;
531 unsigned long combined_idx;
532 unsigned long uninitialized_var(buddy_idx);
535 if (unlikely(PageCompound(page)))
536 if (unlikely(destroy_compound_page(page, order)))
539 VM_BUG_ON(migratetype == -1);
541 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
543 VM_BUG_ON(page_idx & ((1 << order) - 1));
544 VM_BUG_ON(bad_range(zone, page));
546 while (order < MAX_ORDER-1) {
547 buddy_idx = __find_buddy_index(page_idx, order);
548 buddy = page + (buddy_idx - page_idx);
549 if (!page_is_buddy(page, buddy, order))
552 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
553 * merge with it and move up one order.
555 if (page_is_guard(buddy)) {
556 clear_page_guard_flag(buddy);
557 set_page_private(page, 0);
558 __mod_zone_freepage_state(zone, 1 << order,
561 list_del(&buddy->lru);
562 zone->free_area[order].nr_free--;
563 rmv_page_order(buddy);
565 combined_idx = buddy_idx & page_idx;
566 page = page + (combined_idx - page_idx);
567 page_idx = combined_idx;
570 set_page_order(page, order);
573 * If this is not the largest possible page, check if the buddy
574 * of the next-highest order is free. If it is, it's possible
575 * that pages are being freed that will coalesce soon. In case,
576 * that is happening, add the free page to the tail of the list
577 * so it's less likely to be used soon and more likely to be merged
578 * as a higher order page
580 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
581 struct page *higher_page, *higher_buddy;
582 combined_idx = buddy_idx & page_idx;
583 higher_page = page + (combined_idx - page_idx);
584 buddy_idx = __find_buddy_index(combined_idx, order + 1);
585 higher_buddy = higher_page + (buddy_idx - combined_idx);
586 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
587 list_add_tail(&page->lru,
588 &zone->free_area[order].free_list[migratetype]);
593 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
595 zone->free_area[order].nr_free++;
598 static inline int free_pages_check(struct page *page)
600 if (unlikely(page_mapcount(page) |
601 (page->mapping != NULL) |
602 (atomic_read(&page->_count) != 0) |
603 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
604 (mem_cgroup_bad_page_check(page)))) {
608 reset_page_last_nid(page);
609 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
610 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
615 * Frees a number of pages from the PCP lists
616 * Assumes all pages on list are in same zone, and of same order.
617 * count is the number of pages to free.
619 * If the zone was previously in an "all pages pinned" state then look to
620 * see if this freeing clears that state.
622 * And clear the zone's pages_scanned counter, to hold off the "all pages are
623 * pinned" detection logic.
625 static void free_pcppages_bulk(struct zone *zone, int count,
626 struct per_cpu_pages *pcp)
632 spin_lock(&zone->lock);
633 zone->all_unreclaimable = 0;
634 zone->pages_scanned = 0;
638 struct list_head *list;
641 * Remove pages from lists in a round-robin fashion. A
642 * batch_free count is maintained that is incremented when an
643 * empty list is encountered. This is so more pages are freed
644 * off fuller lists instead of spinning excessively around empty
649 if (++migratetype == MIGRATE_PCPTYPES)
651 list = &pcp->lists[migratetype];
652 } while (list_empty(list));
654 /* This is the only non-empty list. Free them all. */
655 if (batch_free == MIGRATE_PCPTYPES)
656 batch_free = to_free;
659 int mt; /* migratetype of the to-be-freed page */
661 page = list_entry(list->prev, struct page, lru);
662 /* must delete as __free_one_page list manipulates */
663 list_del(&page->lru);
664 mt = get_freepage_migratetype(page);
665 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
666 __free_one_page(page, zone, 0, mt);
667 trace_mm_page_pcpu_drain(page, 0, mt);
668 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
669 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
673 } while (--to_free && --batch_free && !list_empty(list));
675 spin_unlock(&zone->lock);
678 static void free_one_page(struct zone *zone, struct page *page, int order,
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
685 __free_one_page(page, zone, order, migratetype);
686 if (unlikely(migratetype != MIGRATE_ISOLATE))
687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
688 spin_unlock(&zone->lock);
691 static bool free_pages_prepare(struct page *page, unsigned int order)
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
717 static void __free_pages_ok(struct page *page, unsigned int order)
722 if (!free_pages_prepare(page, order))
725 local_irq_save(flags);
726 __count_vm_events(PGFREE, 1 << order);
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
730 local_irq_restore(flags);
734 * Read access to zone->managed_pages is safe because it's unsigned long,
735 * but we still need to serialize writers. Currently all callers of
736 * __free_pages_bootmem() except put_page_bootmem() should only be used
737 * at boot time. So for shorter boot time, we shift the burden to
738 * put_page_bootmem() to serialize writers.
740 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
742 unsigned int nr_pages = 1 << order;
746 for (loop = 0; loop < nr_pages; loop++) {
747 struct page *p = &page[loop];
749 if (loop + 1 < nr_pages)
751 __ClearPageReserved(p);
752 set_page_count(p, 0);
755 page_zone(page)->managed_pages += 1 << order;
756 set_page_refcounted(page);
757 __free_pages(page, order);
761 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
762 void __init init_cma_reserved_pageblock(struct page *page)
764 unsigned i = pageblock_nr_pages;
765 struct page *p = page;
768 __ClearPageReserved(p);
769 set_page_count(p, 0);
772 set_page_refcounted(page);
773 set_pageblock_migratetype(page, MIGRATE_CMA);
774 __free_pages(page, pageblock_order);
775 totalram_pages += pageblock_nr_pages;
780 * The order of subdivision here is critical for the IO subsystem.
781 * Please do not alter this order without good reasons and regression
782 * testing. Specifically, as large blocks of memory are subdivided,
783 * the order in which smaller blocks are delivered depends on the order
784 * they're subdivided in this function. This is the primary factor
785 * influencing the order in which pages are delivered to the IO
786 * subsystem according to empirical testing, and this is also justified
787 * by considering the behavior of a buddy system containing a single
788 * large block of memory acted on by a series of small allocations.
789 * This behavior is a critical factor in sglist merging's success.
793 static inline void expand(struct zone *zone, struct page *page,
794 int low, int high, struct free_area *area,
797 unsigned long size = 1 << high;
803 VM_BUG_ON(bad_range(zone, &page[size]));
805 #ifdef CONFIG_DEBUG_PAGEALLOC
806 if (high < debug_guardpage_minorder()) {
808 * Mark as guard pages (or page), that will allow to
809 * merge back to allocator when buddy will be freed.
810 * Corresponding page table entries will not be touched,
811 * pages will stay not present in virtual address space
813 INIT_LIST_HEAD(&page[size].lru);
814 set_page_guard_flag(&page[size]);
815 set_page_private(&page[size], high);
816 /* Guard pages are not available for any usage */
817 __mod_zone_freepage_state(zone, -(1 << high),
822 list_add(&page[size].lru, &area->free_list[migratetype]);
824 set_page_order(&page[size], high);
829 * This page is about to be returned from the page allocator
831 static inline int check_new_page(struct page *page)
833 if (unlikely(page_mapcount(page) |
834 (page->mapping != NULL) |
835 (atomic_read(&page->_count) != 0) |
836 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
837 (mem_cgroup_bad_page_check(page)))) {
844 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
848 for (i = 0; i < (1 << order); i++) {
849 struct page *p = page + i;
850 if (unlikely(check_new_page(p)))
854 set_page_private(page, 0);
855 set_page_refcounted(page);
857 arch_alloc_page(page, order);
858 kernel_map_pages(page, 1 << order, 1);
860 if (gfp_flags & __GFP_ZERO)
861 prep_zero_page(page, order, gfp_flags);
863 if (order && (gfp_flags & __GFP_COMP))
864 prep_compound_page(page, order);
870 * Go through the free lists for the given migratetype and remove
871 * the smallest available page from the freelists
874 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
877 unsigned int current_order;
878 struct free_area * area;
881 /* Find a page of the appropriate size in the preferred list */
882 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
883 area = &(zone->free_area[current_order]);
884 if (list_empty(&area->free_list[migratetype]))
887 page = list_entry(area->free_list[migratetype].next,
889 list_del(&page->lru);
890 rmv_page_order(page);
892 expand(zone, page, order, current_order, area, migratetype);
901 * This array describes the order lists are fallen back to when
902 * the free lists for the desirable migrate type are depleted
904 static int fallbacks[MIGRATE_TYPES][4] = {
905 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
906 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
908 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
909 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
911 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
913 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
914 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
918 * Move the free pages in a range to the free lists of the requested type.
919 * Note that start_page and end_pages are not aligned on a pageblock
920 * boundary. If alignment is required, use move_freepages_block()
922 int move_freepages(struct zone *zone,
923 struct page *start_page, struct page *end_page,
930 #ifndef CONFIG_HOLES_IN_ZONE
932 * page_zone is not safe to call in this context when
933 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
934 * anyway as we check zone boundaries in move_freepages_block().
935 * Remove at a later date when no bug reports exist related to
936 * grouping pages by mobility
938 BUG_ON(page_zone(start_page) != page_zone(end_page));
941 for (page = start_page; page <= end_page;) {
942 /* Make sure we are not inadvertently changing nodes */
943 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
945 if (!pfn_valid_within(page_to_pfn(page))) {
950 if (!PageBuddy(page)) {
955 order = page_order(page);
956 list_move(&page->lru,
957 &zone->free_area[order].free_list[migratetype]);
958 set_freepage_migratetype(page, migratetype);
960 pages_moved += 1 << order;
966 int move_freepages_block(struct zone *zone, struct page *page,
969 unsigned long start_pfn, end_pfn;
970 struct page *start_page, *end_page;
972 start_pfn = page_to_pfn(page);
973 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
974 start_page = pfn_to_page(start_pfn);
975 end_page = start_page + pageblock_nr_pages - 1;
976 end_pfn = start_pfn + pageblock_nr_pages - 1;
978 /* Do not cross zone boundaries */
979 if (start_pfn < zone->zone_start_pfn)
981 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
984 return move_freepages(zone, start_page, end_page, migratetype);
987 static void change_pageblock_range(struct page *pageblock_page,
988 int start_order, int migratetype)
990 int nr_pageblocks = 1 << (start_order - pageblock_order);
992 while (nr_pageblocks--) {
993 set_pageblock_migratetype(pageblock_page, migratetype);
994 pageblock_page += pageblock_nr_pages;
998 /* Remove an element from the buddy allocator from the fallback list */
999 static inline struct page *
1000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1002 struct free_area * area;
1007 /* Find the largest possible block of pages in the other list */
1008 for (current_order = MAX_ORDER-1; current_order >= order;
1011 migratetype = fallbacks[start_migratetype][i];
1013 /* MIGRATE_RESERVE handled later if necessary */
1014 if (migratetype == MIGRATE_RESERVE)
1017 area = &(zone->free_area[current_order]);
1018 if (list_empty(&area->free_list[migratetype]))
1021 page = list_entry(area->free_list[migratetype].next,
1026 * If breaking a large block of pages, move all free
1027 * pages to the preferred allocation list. If falling
1028 * back for a reclaimable kernel allocation, be more
1029 * aggressive about taking ownership of free pages
1031 * On the other hand, never change migration
1032 * type of MIGRATE_CMA pageblocks nor move CMA
1033 * pages on different free lists. We don't
1034 * want unmovable pages to be allocated from
1035 * MIGRATE_CMA areas.
1037 if (!is_migrate_cma(migratetype) &&
1038 (unlikely(current_order >= pageblock_order / 2) ||
1039 start_migratetype == MIGRATE_RECLAIMABLE ||
1040 page_group_by_mobility_disabled)) {
1042 pages = move_freepages_block(zone, page,
1045 /* Claim the whole block if over half of it is free */
1046 if (pages >= (1 << (pageblock_order-1)) ||
1047 page_group_by_mobility_disabled)
1048 set_pageblock_migratetype(page,
1051 migratetype = start_migratetype;
1054 /* Remove the page from the freelists */
1055 list_del(&page->lru);
1056 rmv_page_order(page);
1058 /* Take ownership for orders >= pageblock_order */
1059 if (current_order >= pageblock_order &&
1060 !is_migrate_cma(migratetype))
1061 change_pageblock_range(page, current_order,
1064 expand(zone, page, order, current_order, area,
1065 is_migrate_cma(migratetype)
1066 ? migratetype : start_migratetype);
1068 trace_mm_page_alloc_extfrag(page, order, current_order,
1069 start_migratetype, migratetype);
1079 * Do the hard work of removing an element from the buddy allocator.
1080 * Call me with the zone->lock already held.
1082 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1088 page = __rmqueue_smallest(zone, order, migratetype);
1090 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1091 page = __rmqueue_fallback(zone, order, migratetype);
1094 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1095 * is used because __rmqueue_smallest is an inline function
1096 * and we want just one call site
1099 migratetype = MIGRATE_RESERVE;
1104 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1109 * Obtain a specified number of elements from the buddy allocator, all under
1110 * a single hold of the lock, for efficiency. Add them to the supplied list.
1111 * Returns the number of new pages which were placed at *list.
1113 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1114 unsigned long count, struct list_head *list,
1115 int migratetype, int cold)
1117 int mt = migratetype, i;
1119 spin_lock(&zone->lock);
1120 for (i = 0; i < count; ++i) {
1121 struct page *page = __rmqueue(zone, order, migratetype);
1122 if (unlikely(page == NULL))
1126 * Split buddy pages returned by expand() are received here
1127 * in physical page order. The page is added to the callers and
1128 * list and the list head then moves forward. From the callers
1129 * perspective, the linked list is ordered by page number in
1130 * some conditions. This is useful for IO devices that can
1131 * merge IO requests if the physical pages are ordered
1134 if (likely(cold == 0))
1135 list_add(&page->lru, list);
1137 list_add_tail(&page->lru, list);
1138 if (IS_ENABLED(CONFIG_CMA)) {
1139 mt = get_pageblock_migratetype(page);
1140 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1143 set_freepage_migratetype(page, mt);
1145 if (is_migrate_cma(mt))
1146 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1149 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1150 spin_unlock(&zone->lock);
1156 * Called from the vmstat counter updater to drain pagesets of this
1157 * currently executing processor on remote nodes after they have
1160 * Note that this function must be called with the thread pinned to
1161 * a single processor.
1163 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1165 unsigned long flags;
1168 local_irq_save(flags);
1169 if (pcp->count >= pcp->batch)
1170 to_drain = pcp->batch;
1172 to_drain = pcp->count;
1174 free_pcppages_bulk(zone, to_drain, pcp);
1175 pcp->count -= to_drain;
1177 local_irq_restore(flags);
1182 * Drain pages of the indicated processor.
1184 * The processor must either be the current processor and the
1185 * thread pinned to the current processor or a processor that
1188 static void drain_pages(unsigned int cpu)
1190 unsigned long flags;
1193 for_each_populated_zone(zone) {
1194 struct per_cpu_pageset *pset;
1195 struct per_cpu_pages *pcp;
1197 local_irq_save(flags);
1198 pset = per_cpu_ptr(zone->pageset, cpu);
1202 free_pcppages_bulk(zone, pcp->count, pcp);
1205 local_irq_restore(flags);
1210 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1212 void drain_local_pages(void *arg)
1214 drain_pages(smp_processor_id());
1218 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1220 * Note that this code is protected against sending an IPI to an offline
1221 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1222 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1223 * nothing keeps CPUs from showing up after we populated the cpumask and
1224 * before the call to on_each_cpu_mask().
1226 void drain_all_pages(void)
1229 struct per_cpu_pageset *pcp;
1233 * Allocate in the BSS so we wont require allocation in
1234 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1236 static cpumask_t cpus_with_pcps;
1239 * We don't care about racing with CPU hotplug event
1240 * as offline notification will cause the notified
1241 * cpu to drain that CPU pcps and on_each_cpu_mask
1242 * disables preemption as part of its processing
1244 for_each_online_cpu(cpu) {
1245 bool has_pcps = false;
1246 for_each_populated_zone(zone) {
1247 pcp = per_cpu_ptr(zone->pageset, cpu);
1248 if (pcp->pcp.count) {
1254 cpumask_set_cpu(cpu, &cpus_with_pcps);
1256 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1258 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1261 #ifdef CONFIG_HIBERNATION
1263 void mark_free_pages(struct zone *zone)
1265 unsigned long pfn, max_zone_pfn;
1266 unsigned long flags;
1268 struct list_head *curr;
1270 if (!zone->spanned_pages)
1273 spin_lock_irqsave(&zone->lock, flags);
1275 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1276 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1277 if (pfn_valid(pfn)) {
1278 struct page *page = pfn_to_page(pfn);
1280 if (!swsusp_page_is_forbidden(page))
1281 swsusp_unset_page_free(page);
1284 for_each_migratetype_order(order, t) {
1285 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1288 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1289 for (i = 0; i < (1UL << order); i++)
1290 swsusp_set_page_free(pfn_to_page(pfn + i));
1293 spin_unlock_irqrestore(&zone->lock, flags);
1295 #endif /* CONFIG_PM */
1298 * Free a 0-order page
1299 * cold == 1 ? free a cold page : free a hot page
1301 void free_hot_cold_page(struct page *page, int cold)
1303 struct zone *zone = page_zone(page);
1304 struct per_cpu_pages *pcp;
1305 unsigned long flags;
1308 if (!free_pages_prepare(page, 0))
1311 migratetype = get_pageblock_migratetype(page);
1312 set_freepage_migratetype(page, migratetype);
1313 local_irq_save(flags);
1314 __count_vm_event(PGFREE);
1317 * We only track unmovable, reclaimable and movable on pcp lists.
1318 * Free ISOLATE pages back to the allocator because they are being
1319 * offlined but treat RESERVE as movable pages so we can get those
1320 * areas back if necessary. Otherwise, we may have to free
1321 * excessively into the page allocator
1323 if (migratetype >= MIGRATE_PCPTYPES) {
1324 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1325 free_one_page(zone, page, 0, migratetype);
1328 migratetype = MIGRATE_MOVABLE;
1331 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1333 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1335 list_add(&page->lru, &pcp->lists[migratetype]);
1337 if (pcp->count >= pcp->high) {
1338 free_pcppages_bulk(zone, pcp->batch, pcp);
1339 pcp->count -= pcp->batch;
1343 local_irq_restore(flags);
1347 * Free a list of 0-order pages
1349 void free_hot_cold_page_list(struct list_head *list, int cold)
1351 struct page *page, *next;
1353 list_for_each_entry_safe(page, next, list, lru) {
1354 trace_mm_page_free_batched(page, cold);
1355 free_hot_cold_page(page, cold);
1360 * split_page takes a non-compound higher-order page, and splits it into
1361 * n (1<<order) sub-pages: page[0..n]
1362 * Each sub-page must be freed individually.
1364 * Note: this is probably too low level an operation for use in drivers.
1365 * Please consult with lkml before using this in your driver.
1367 void split_page(struct page *page, unsigned int order)
1371 VM_BUG_ON(PageCompound(page));
1372 VM_BUG_ON(!page_count(page));
1374 #ifdef CONFIG_KMEMCHECK
1376 * Split shadow pages too, because free(page[0]) would
1377 * otherwise free the whole shadow.
1379 if (kmemcheck_page_is_tracked(page))
1380 split_page(virt_to_page(page[0].shadow), order);
1383 for (i = 1; i < (1 << order); i++)
1384 set_page_refcounted(page + i);
1387 static int __isolate_free_page(struct page *page, unsigned int order)
1389 unsigned long watermark;
1393 BUG_ON(!PageBuddy(page));
1395 zone = page_zone(page);
1396 mt = get_pageblock_migratetype(page);
1398 if (mt != MIGRATE_ISOLATE) {
1399 /* Obey watermarks as if the page was being allocated */
1400 watermark = low_wmark_pages(zone) + (1 << order);
1401 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1404 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1407 /* Remove page from free list */
1408 list_del(&page->lru);
1409 zone->free_area[order].nr_free--;
1410 rmv_page_order(page);
1412 /* Set the pageblock if the isolated page is at least a pageblock */
1413 if (order >= pageblock_order - 1) {
1414 struct page *endpage = page + (1 << order) - 1;
1415 for (; page < endpage; page += pageblock_nr_pages) {
1416 int mt = get_pageblock_migratetype(page);
1417 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1418 set_pageblock_migratetype(page,
1423 return 1UL << order;
1427 * Similar to split_page except the page is already free. As this is only
1428 * being used for migration, the migratetype of the block also changes.
1429 * As this is called with interrupts disabled, the caller is responsible
1430 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1433 * Note: this is probably too low level an operation for use in drivers.
1434 * Please consult with lkml before using this in your driver.
1436 int split_free_page(struct page *page)
1441 order = page_order(page);
1443 nr_pages = __isolate_free_page(page, order);
1447 /* Split into individual pages */
1448 set_page_refcounted(page);
1449 split_page(page, order);
1454 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1455 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1459 struct page *buffered_rmqueue(struct zone *preferred_zone,
1460 struct zone *zone, int order, gfp_t gfp_flags,
1463 unsigned long flags;
1465 int cold = !!(gfp_flags & __GFP_COLD);
1468 if (likely(order == 0)) {
1469 struct per_cpu_pages *pcp;
1470 struct list_head *list;
1472 local_irq_save(flags);
1473 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1474 list = &pcp->lists[migratetype];
1475 if (list_empty(list)) {
1476 pcp->count += rmqueue_bulk(zone, 0,
1479 if (unlikely(list_empty(list)))
1484 page = list_entry(list->prev, struct page, lru);
1486 page = list_entry(list->next, struct page, lru);
1488 list_del(&page->lru);
1491 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1493 * __GFP_NOFAIL is not to be used in new code.
1495 * All __GFP_NOFAIL callers should be fixed so that they
1496 * properly detect and handle allocation failures.
1498 * We most definitely don't want callers attempting to
1499 * allocate greater than order-1 page units with
1502 WARN_ON_ONCE(order > 1);
1504 spin_lock_irqsave(&zone->lock, flags);
1505 page = __rmqueue(zone, order, migratetype);
1506 spin_unlock(&zone->lock);
1509 __mod_zone_freepage_state(zone, -(1 << order),
1510 get_pageblock_migratetype(page));
1513 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1514 zone_statistics(preferred_zone, zone, gfp_flags);
1515 local_irq_restore(flags);
1517 VM_BUG_ON(bad_range(zone, page));
1518 if (prep_new_page(page, order, gfp_flags))
1523 local_irq_restore(flags);
1527 #ifdef CONFIG_FAIL_PAGE_ALLOC
1530 struct fault_attr attr;
1532 u32 ignore_gfp_highmem;
1533 u32 ignore_gfp_wait;
1535 } fail_page_alloc = {
1536 .attr = FAULT_ATTR_INITIALIZER,
1537 .ignore_gfp_wait = 1,
1538 .ignore_gfp_highmem = 1,
1542 static int __init setup_fail_page_alloc(char *str)
1544 return setup_fault_attr(&fail_page_alloc.attr, str);
1546 __setup("fail_page_alloc=", setup_fail_page_alloc);
1548 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1550 if (order < fail_page_alloc.min_order)
1552 if (gfp_mask & __GFP_NOFAIL)
1554 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1556 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1559 return should_fail(&fail_page_alloc.attr, 1 << order);
1562 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1564 static int __init fail_page_alloc_debugfs(void)
1566 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1569 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1570 &fail_page_alloc.attr);
1572 return PTR_ERR(dir);
1574 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1575 &fail_page_alloc.ignore_gfp_wait))
1577 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1578 &fail_page_alloc.ignore_gfp_highmem))
1580 if (!debugfs_create_u32("min-order", mode, dir,
1581 &fail_page_alloc.min_order))
1586 debugfs_remove_recursive(dir);
1591 late_initcall(fail_page_alloc_debugfs);
1593 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1595 #else /* CONFIG_FAIL_PAGE_ALLOC */
1597 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1602 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1605 * Return true if free pages are above 'mark'. This takes into account the order
1606 * of the allocation.
1608 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1609 int classzone_idx, int alloc_flags, long free_pages)
1611 /* free_pages my go negative - that's OK */
1613 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1616 free_pages -= (1 << order) - 1;
1617 if (alloc_flags & ALLOC_HIGH)
1619 if (alloc_flags & ALLOC_HARDER)
1622 /* If allocation can't use CMA areas don't use free CMA pages */
1623 if (!(alloc_flags & ALLOC_CMA))
1624 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1626 if (free_pages <= min + lowmem_reserve)
1628 for (o = 0; o < order; o++) {
1629 /* At the next order, this order's pages become unavailable */
1630 free_pages -= z->free_area[o].nr_free << o;
1632 /* Require fewer higher order pages to be free */
1635 if (free_pages <= min)
1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1642 int classzone_idx, int alloc_flags)
1644 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1645 zone_page_state(z, NR_FREE_PAGES));
1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1649 int classzone_idx, int alloc_flags)
1651 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1653 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1654 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1656 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1663 * skip over zones that are not allowed by the cpuset, or that have
1664 * been recently (in last second) found to be nearly full. See further
1665 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1666 * that have to skip over a lot of full or unallowed zones.
1668 * If the zonelist cache is present in the passed in zonelist, then
1669 * returns a pointer to the allowed node mask (either the current
1670 * tasks mems_allowed, or node_states[N_MEMORY].)
1672 * If the zonelist cache is not available for this zonelist, does
1673 * nothing and returns NULL.
1675 * If the fullzones BITMAP in the zonelist cache is stale (more than
1676 * a second since last zap'd) then we zap it out (clear its bits.)
1678 * We hold off even calling zlc_setup, until after we've checked the
1679 * first zone in the zonelist, on the theory that most allocations will
1680 * be satisfied from that first zone, so best to examine that zone as
1681 * quickly as we can.
1683 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1685 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1686 nodemask_t *allowednodes; /* zonelist_cache approximation */
1688 zlc = zonelist->zlcache_ptr;
1692 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1693 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1694 zlc->last_full_zap = jiffies;
1697 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1698 &cpuset_current_mems_allowed :
1699 &node_states[N_MEMORY];
1700 return allowednodes;
1704 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1705 * if it is worth looking at further for free memory:
1706 * 1) Check that the zone isn't thought to be full (doesn't have its
1707 * bit set in the zonelist_cache fullzones BITMAP).
1708 * 2) Check that the zones node (obtained from the zonelist_cache
1709 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1710 * Return true (non-zero) if zone is worth looking at further, or
1711 * else return false (zero) if it is not.
1713 * This check -ignores- the distinction between various watermarks,
1714 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1715 * found to be full for any variation of these watermarks, it will
1716 * be considered full for up to one second by all requests, unless
1717 * we are so low on memory on all allowed nodes that we are forced
1718 * into the second scan of the zonelist.
1720 * In the second scan we ignore this zonelist cache and exactly
1721 * apply the watermarks to all zones, even it is slower to do so.
1722 * We are low on memory in the second scan, and should leave no stone
1723 * unturned looking for a free page.
1725 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1726 nodemask_t *allowednodes)
1728 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1729 int i; /* index of *z in zonelist zones */
1730 int n; /* node that zone *z is on */
1732 zlc = zonelist->zlcache_ptr;
1736 i = z - zonelist->_zonerefs;
1739 /* This zone is worth trying if it is allowed but not full */
1740 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1744 * Given 'z' scanning a zonelist, set the corresponding bit in
1745 * zlc->fullzones, so that subsequent attempts to allocate a page
1746 * from that zone don't waste time re-examining it.
1748 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1750 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1751 int i; /* index of *z in zonelist zones */
1753 zlc = zonelist->zlcache_ptr;
1757 i = z - zonelist->_zonerefs;
1759 set_bit(i, zlc->fullzones);
1763 * clear all zones full, called after direct reclaim makes progress so that
1764 * a zone that was recently full is not skipped over for up to a second
1766 static void zlc_clear_zones_full(struct zonelist *zonelist)
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1770 zlc = zonelist->zlcache_ptr;
1774 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1777 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1779 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1782 static void __paginginit init_zone_allows_reclaim(int nid)
1786 for_each_online_node(i)
1787 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1788 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1790 zone_reclaim_mode = 1;
1793 #else /* CONFIG_NUMA */
1795 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1800 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1801 nodemask_t *allowednodes)
1806 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1810 static void zlc_clear_zones_full(struct zonelist *zonelist)
1814 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1819 static inline void init_zone_allows_reclaim(int nid)
1822 #endif /* CONFIG_NUMA */
1825 * get_page_from_freelist goes through the zonelist trying to allocate
1828 static struct page *
1829 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1830 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1831 struct zone *preferred_zone, int migratetype)
1834 struct page *page = NULL;
1837 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1838 int zlc_active = 0; /* set if using zonelist_cache */
1839 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1841 classzone_idx = zone_idx(preferred_zone);
1844 * Scan zonelist, looking for a zone with enough free.
1845 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1847 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1848 high_zoneidx, nodemask) {
1849 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1850 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1852 if ((alloc_flags & ALLOC_CPUSET) &&
1853 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1856 * When allocating a page cache page for writing, we
1857 * want to get it from a zone that is within its dirty
1858 * limit, such that no single zone holds more than its
1859 * proportional share of globally allowed dirty pages.
1860 * The dirty limits take into account the zone's
1861 * lowmem reserves and high watermark so that kswapd
1862 * should be able to balance it without having to
1863 * write pages from its LRU list.
1865 * This may look like it could increase pressure on
1866 * lower zones by failing allocations in higher zones
1867 * before they are full. But the pages that do spill
1868 * over are limited as the lower zones are protected
1869 * by this very same mechanism. It should not become
1870 * a practical burden to them.
1872 * XXX: For now, allow allocations to potentially
1873 * exceed the per-zone dirty limit in the slowpath
1874 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1875 * which is important when on a NUMA setup the allowed
1876 * zones are together not big enough to reach the
1877 * global limit. The proper fix for these situations
1878 * will require awareness of zones in the
1879 * dirty-throttling and the flusher threads.
1881 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1882 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1883 goto this_zone_full;
1885 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1886 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1890 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1891 if (zone_watermark_ok(zone, order, mark,
1892 classzone_idx, alloc_flags))
1895 if (IS_ENABLED(CONFIG_NUMA) &&
1896 !did_zlc_setup && nr_online_nodes > 1) {
1898 * we do zlc_setup if there are multiple nodes
1899 * and before considering the first zone allowed
1902 allowednodes = zlc_setup(zonelist, alloc_flags);
1907 if (zone_reclaim_mode == 0 ||
1908 !zone_allows_reclaim(preferred_zone, zone))
1909 goto this_zone_full;
1912 * As we may have just activated ZLC, check if the first
1913 * eligible zone has failed zone_reclaim recently.
1915 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1916 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1919 ret = zone_reclaim(zone, gfp_mask, order);
1921 case ZONE_RECLAIM_NOSCAN:
1924 case ZONE_RECLAIM_FULL:
1925 /* scanned but unreclaimable */
1928 /* did we reclaim enough */
1929 if (!zone_watermark_ok(zone, order, mark,
1930 classzone_idx, alloc_flags))
1931 goto this_zone_full;
1936 page = buffered_rmqueue(preferred_zone, zone, order,
1937 gfp_mask, migratetype);
1941 if (IS_ENABLED(CONFIG_NUMA))
1942 zlc_mark_zone_full(zonelist, z);
1945 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1946 /* Disable zlc cache for second zonelist scan */
1953 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1954 * necessary to allocate the page. The expectation is
1955 * that the caller is taking steps that will free more
1956 * memory. The caller should avoid the page being used
1957 * for !PFMEMALLOC purposes.
1959 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1965 * Large machines with many possible nodes should not always dump per-node
1966 * meminfo in irq context.
1968 static inline bool should_suppress_show_mem(void)
1973 ret = in_interrupt();
1978 static DEFINE_RATELIMIT_STATE(nopage_rs,
1979 DEFAULT_RATELIMIT_INTERVAL,
1980 DEFAULT_RATELIMIT_BURST);
1982 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1984 unsigned int filter = SHOW_MEM_FILTER_NODES;
1986 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1987 debug_guardpage_minorder() > 0)
1991 * This documents exceptions given to allocations in certain
1992 * contexts that are allowed to allocate outside current's set
1995 if (!(gfp_mask & __GFP_NOMEMALLOC))
1996 if (test_thread_flag(TIF_MEMDIE) ||
1997 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1998 filter &= ~SHOW_MEM_FILTER_NODES;
1999 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2000 filter &= ~SHOW_MEM_FILTER_NODES;
2003 struct va_format vaf;
2006 va_start(args, fmt);
2011 pr_warn("%pV", &vaf);
2016 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2017 current->comm, order, gfp_mask);
2020 if (!should_suppress_show_mem())
2025 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2026 unsigned long did_some_progress,
2027 unsigned long pages_reclaimed)
2029 /* Do not loop if specifically requested */
2030 if (gfp_mask & __GFP_NORETRY)
2033 /* Always retry if specifically requested */
2034 if (gfp_mask & __GFP_NOFAIL)
2038 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2039 * making forward progress without invoking OOM. Suspend also disables
2040 * storage devices so kswapd will not help. Bail if we are suspending.
2042 if (!did_some_progress && pm_suspended_storage())
2046 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2047 * means __GFP_NOFAIL, but that may not be true in other
2050 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2054 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2055 * specified, then we retry until we no longer reclaim any pages
2056 * (above), or we've reclaimed an order of pages at least as
2057 * large as the allocation's order. In both cases, if the
2058 * allocation still fails, we stop retrying.
2060 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2066 static inline struct page *
2067 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2068 struct zonelist *zonelist, enum zone_type high_zoneidx,
2069 nodemask_t *nodemask, struct zone *preferred_zone,
2074 /* Acquire the OOM killer lock for the zones in zonelist */
2075 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2076 schedule_timeout_uninterruptible(1);
2081 * Go through the zonelist yet one more time, keep very high watermark
2082 * here, this is only to catch a parallel oom killing, we must fail if
2083 * we're still under heavy pressure.
2085 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2086 order, zonelist, high_zoneidx,
2087 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2088 preferred_zone, migratetype);
2092 if (!(gfp_mask & __GFP_NOFAIL)) {
2093 /* The OOM killer will not help higher order allocs */
2094 if (order > PAGE_ALLOC_COSTLY_ORDER)
2096 /* The OOM killer does not needlessly kill tasks for lowmem */
2097 if (high_zoneidx < ZONE_NORMAL)
2100 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2101 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2102 * The caller should handle page allocation failure by itself if
2103 * it specifies __GFP_THISNODE.
2104 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2106 if (gfp_mask & __GFP_THISNODE)
2109 /* Exhausted what can be done so it's blamo time */
2110 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2113 clear_zonelist_oom(zonelist, gfp_mask);
2117 #ifdef CONFIG_COMPACTION
2118 /* Try memory compaction for high-order allocations before reclaim */
2119 static struct page *
2120 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2121 struct zonelist *zonelist, enum zone_type high_zoneidx,
2122 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2123 int migratetype, bool sync_migration,
2124 bool *contended_compaction, bool *deferred_compaction,
2125 unsigned long *did_some_progress)
2130 if (compaction_deferred(preferred_zone, order)) {
2131 *deferred_compaction = true;
2135 current->flags |= PF_MEMALLOC;
2136 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2137 nodemask, sync_migration,
2138 contended_compaction);
2139 current->flags &= ~PF_MEMALLOC;
2141 if (*did_some_progress != COMPACT_SKIPPED) {
2144 /* Page migration frees to the PCP lists but we want merging */
2145 drain_pages(get_cpu());
2148 page = get_page_from_freelist(gfp_mask, nodemask,
2149 order, zonelist, high_zoneidx,
2150 alloc_flags & ~ALLOC_NO_WATERMARKS,
2151 preferred_zone, migratetype);
2153 preferred_zone->compact_blockskip_flush = false;
2154 preferred_zone->compact_considered = 0;
2155 preferred_zone->compact_defer_shift = 0;
2156 if (order >= preferred_zone->compact_order_failed)
2157 preferred_zone->compact_order_failed = order + 1;
2158 count_vm_event(COMPACTSUCCESS);
2163 * It's bad if compaction run occurs and fails.
2164 * The most likely reason is that pages exist,
2165 * but not enough to satisfy watermarks.
2167 count_vm_event(COMPACTFAIL);
2170 * As async compaction considers a subset of pageblocks, only
2171 * defer if the failure was a sync compaction failure.
2174 defer_compaction(preferred_zone, order);
2182 static inline struct page *
2183 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2184 struct zonelist *zonelist, enum zone_type high_zoneidx,
2185 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2186 int migratetype, bool sync_migration,
2187 bool *contended_compaction, bool *deferred_compaction,
2188 unsigned long *did_some_progress)
2192 #endif /* CONFIG_COMPACTION */
2194 /* Perform direct synchronous page reclaim */
2196 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2197 nodemask_t *nodemask)
2199 struct reclaim_state reclaim_state;
2204 /* We now go into synchronous reclaim */
2205 cpuset_memory_pressure_bump();
2206 current->flags |= PF_MEMALLOC;
2207 lockdep_set_current_reclaim_state(gfp_mask);
2208 reclaim_state.reclaimed_slab = 0;
2209 current->reclaim_state = &reclaim_state;
2211 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2213 current->reclaim_state = NULL;
2214 lockdep_clear_current_reclaim_state();
2215 current->flags &= ~PF_MEMALLOC;
2222 /* The really slow allocator path where we enter direct reclaim */
2223 static inline struct page *
2224 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2225 struct zonelist *zonelist, enum zone_type high_zoneidx,
2226 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2227 int migratetype, unsigned long *did_some_progress)
2229 struct page *page = NULL;
2230 bool drained = false;
2232 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2234 if (unlikely(!(*did_some_progress)))
2237 /* After successful reclaim, reconsider all zones for allocation */
2238 if (IS_ENABLED(CONFIG_NUMA))
2239 zlc_clear_zones_full(zonelist);
2242 page = get_page_from_freelist(gfp_mask, nodemask, order,
2243 zonelist, high_zoneidx,
2244 alloc_flags & ~ALLOC_NO_WATERMARKS,
2245 preferred_zone, migratetype);
2248 * If an allocation failed after direct reclaim, it could be because
2249 * pages are pinned on the per-cpu lists. Drain them and try again
2251 if (!page && !drained) {
2261 * This is called in the allocator slow-path if the allocation request is of
2262 * sufficient urgency to ignore watermarks and take other desperate measures
2264 static inline struct page *
2265 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2266 struct zonelist *zonelist, enum zone_type high_zoneidx,
2267 nodemask_t *nodemask, struct zone *preferred_zone,
2273 page = get_page_from_freelist(gfp_mask, nodemask, order,
2274 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2275 preferred_zone, migratetype);
2277 if (!page && gfp_mask & __GFP_NOFAIL)
2278 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2279 } while (!page && (gfp_mask & __GFP_NOFAIL));
2285 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2286 enum zone_type high_zoneidx,
2287 enum zone_type classzone_idx)
2292 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2293 wakeup_kswapd(zone, order, classzone_idx);
2297 gfp_to_alloc_flags(gfp_t gfp_mask)
2299 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2300 const gfp_t wait = gfp_mask & __GFP_WAIT;
2302 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2303 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2306 * The caller may dip into page reserves a bit more if the caller
2307 * cannot run direct reclaim, or if the caller has realtime scheduling
2308 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2309 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2311 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2315 * Not worth trying to allocate harder for
2316 * __GFP_NOMEMALLOC even if it can't schedule.
2318 if (!(gfp_mask & __GFP_NOMEMALLOC))
2319 alloc_flags |= ALLOC_HARDER;
2321 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2322 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2324 alloc_flags &= ~ALLOC_CPUSET;
2325 } else if (unlikely(rt_task(current)) && !in_interrupt())
2326 alloc_flags |= ALLOC_HARDER;
2328 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2329 if (gfp_mask & __GFP_MEMALLOC)
2330 alloc_flags |= ALLOC_NO_WATERMARKS;
2331 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2332 alloc_flags |= ALLOC_NO_WATERMARKS;
2333 else if (!in_interrupt() &&
2334 ((current->flags & PF_MEMALLOC) ||
2335 unlikely(test_thread_flag(TIF_MEMDIE))))
2336 alloc_flags |= ALLOC_NO_WATERMARKS;
2339 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2340 alloc_flags |= ALLOC_CMA;
2345 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2347 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2350 static inline struct page *
2351 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2352 struct zonelist *zonelist, enum zone_type high_zoneidx,
2353 nodemask_t *nodemask, struct zone *preferred_zone,
2356 const gfp_t wait = gfp_mask & __GFP_WAIT;
2357 struct page *page = NULL;
2359 unsigned long pages_reclaimed = 0;
2360 unsigned long did_some_progress;
2361 bool sync_migration = false;
2362 bool deferred_compaction = false;
2363 bool contended_compaction = false;
2366 * In the slowpath, we sanity check order to avoid ever trying to
2367 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2368 * be using allocators in order of preference for an area that is
2371 if (order >= MAX_ORDER) {
2372 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2377 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2378 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2379 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2380 * using a larger set of nodes after it has established that the
2381 * allowed per node queues are empty and that nodes are
2384 if (IS_ENABLED(CONFIG_NUMA) &&
2385 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2389 if (!(gfp_mask & __GFP_NO_KSWAPD))
2390 wake_all_kswapd(order, zonelist, high_zoneidx,
2391 zone_idx(preferred_zone));
2394 * OK, we're below the kswapd watermark and have kicked background
2395 * reclaim. Now things get more complex, so set up alloc_flags according
2396 * to how we want to proceed.
2398 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2401 * Find the true preferred zone if the allocation is unconstrained by
2404 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2405 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2409 /* This is the last chance, in general, before the goto nopage. */
2410 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2411 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2412 preferred_zone, migratetype);
2416 /* Allocate without watermarks if the context allows */
2417 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2419 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2420 * the allocation is high priority and these type of
2421 * allocations are system rather than user orientated
2423 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2425 page = __alloc_pages_high_priority(gfp_mask, order,
2426 zonelist, high_zoneidx, nodemask,
2427 preferred_zone, migratetype);
2433 /* Atomic allocations - we can't balance anything */
2437 /* Avoid recursion of direct reclaim */
2438 if (current->flags & PF_MEMALLOC)
2441 /* Avoid allocations with no watermarks from looping endlessly */
2442 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2446 * Try direct compaction. The first pass is asynchronous. Subsequent
2447 * attempts after direct reclaim are synchronous
2449 page = __alloc_pages_direct_compact(gfp_mask, order,
2450 zonelist, high_zoneidx,
2452 alloc_flags, preferred_zone,
2453 migratetype, sync_migration,
2454 &contended_compaction,
2455 &deferred_compaction,
2456 &did_some_progress);
2459 sync_migration = true;
2462 * If compaction is deferred for high-order allocations, it is because
2463 * sync compaction recently failed. In this is the case and the caller
2464 * requested a movable allocation that does not heavily disrupt the
2465 * system then fail the allocation instead of entering direct reclaim.
2467 if ((deferred_compaction || contended_compaction) &&
2468 (gfp_mask & __GFP_NO_KSWAPD))
2471 /* Try direct reclaim and then allocating */
2472 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2473 zonelist, high_zoneidx,
2475 alloc_flags, preferred_zone,
2476 migratetype, &did_some_progress);
2481 * If we failed to make any progress reclaiming, then we are
2482 * running out of options and have to consider going OOM
2484 if (!did_some_progress) {
2485 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2486 if (oom_killer_disabled)
2488 /* Coredumps can quickly deplete all memory reserves */
2489 if ((current->flags & PF_DUMPCORE) &&
2490 !(gfp_mask & __GFP_NOFAIL))
2492 page = __alloc_pages_may_oom(gfp_mask, order,
2493 zonelist, high_zoneidx,
2494 nodemask, preferred_zone,
2499 if (!(gfp_mask & __GFP_NOFAIL)) {
2501 * The oom killer is not called for high-order
2502 * allocations that may fail, so if no progress
2503 * is being made, there are no other options and
2504 * retrying is unlikely to help.
2506 if (order > PAGE_ALLOC_COSTLY_ORDER)
2509 * The oom killer is not called for lowmem
2510 * allocations to prevent needlessly killing
2513 if (high_zoneidx < ZONE_NORMAL)
2521 /* Check if we should retry the allocation */
2522 pages_reclaimed += did_some_progress;
2523 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2525 /* Wait for some write requests to complete then retry */
2526 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2530 * High-order allocations do not necessarily loop after
2531 * direct reclaim and reclaim/compaction depends on compaction
2532 * being called after reclaim so call directly if necessary
2534 page = __alloc_pages_direct_compact(gfp_mask, order,
2535 zonelist, high_zoneidx,
2537 alloc_flags, preferred_zone,
2538 migratetype, sync_migration,
2539 &contended_compaction,
2540 &deferred_compaction,
2541 &did_some_progress);
2547 warn_alloc_failed(gfp_mask, order, NULL);
2550 if (kmemcheck_enabled)
2551 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2557 * This is the 'heart' of the zoned buddy allocator.
2560 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2561 struct zonelist *zonelist, nodemask_t *nodemask)
2563 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2564 struct zone *preferred_zone;
2565 struct page *page = NULL;
2566 int migratetype = allocflags_to_migratetype(gfp_mask);
2567 unsigned int cpuset_mems_cookie;
2568 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2569 struct mem_cgroup *memcg = NULL;
2571 gfp_mask &= gfp_allowed_mask;
2573 lockdep_trace_alloc(gfp_mask);
2575 might_sleep_if(gfp_mask & __GFP_WAIT);
2577 if (should_fail_alloc_page(gfp_mask, order))
2581 * Check the zones suitable for the gfp_mask contain at least one
2582 * valid zone. It's possible to have an empty zonelist as a result
2583 * of GFP_THISNODE and a memoryless node
2585 if (unlikely(!zonelist->_zonerefs->zone))
2589 * Will only have any effect when __GFP_KMEMCG is set. This is
2590 * verified in the (always inline) callee
2592 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2596 cpuset_mems_cookie = get_mems_allowed();
2598 /* The preferred zone is used for statistics later */
2599 first_zones_zonelist(zonelist, high_zoneidx,
2600 nodemask ? : &cpuset_current_mems_allowed,
2602 if (!preferred_zone)
2606 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2607 alloc_flags |= ALLOC_CMA;
2609 /* First allocation attempt */
2610 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2611 zonelist, high_zoneidx, alloc_flags,
2612 preferred_zone, migratetype);
2613 if (unlikely(!page))
2614 page = __alloc_pages_slowpath(gfp_mask, order,
2615 zonelist, high_zoneidx, nodemask,
2616 preferred_zone, migratetype);
2618 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2622 * When updating a task's mems_allowed, it is possible to race with
2623 * parallel threads in such a way that an allocation can fail while
2624 * the mask is being updated. If a page allocation is about to fail,
2625 * check if the cpuset changed during allocation and if so, retry.
2627 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2630 memcg_kmem_commit_charge(page, memcg, order);
2634 EXPORT_SYMBOL(__alloc_pages_nodemask);
2637 * Common helper functions.
2639 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2644 * __get_free_pages() returns a 32-bit address, which cannot represent
2647 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2649 page = alloc_pages(gfp_mask, order);
2652 return (unsigned long) page_address(page);
2654 EXPORT_SYMBOL(__get_free_pages);
2656 unsigned long get_zeroed_page(gfp_t gfp_mask)
2658 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2660 EXPORT_SYMBOL(get_zeroed_page);
2662 void __free_pages(struct page *page, unsigned int order)
2664 if (put_page_testzero(page)) {
2666 free_hot_cold_page(page, 0);
2668 __free_pages_ok(page, order);
2672 EXPORT_SYMBOL(__free_pages);
2674 void free_pages(unsigned long addr, unsigned int order)
2677 VM_BUG_ON(!virt_addr_valid((void *)addr));
2678 __free_pages(virt_to_page((void *)addr), order);
2682 EXPORT_SYMBOL(free_pages);
2685 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2686 * pages allocated with __GFP_KMEMCG.
2688 * Those pages are accounted to a particular memcg, embedded in the
2689 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2690 * for that information only to find out that it is NULL for users who have no
2691 * interest in that whatsoever, we provide these functions.
2693 * The caller knows better which flags it relies on.
2695 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2697 memcg_kmem_uncharge_pages(page, order);
2698 __free_pages(page, order);
2701 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2704 VM_BUG_ON(!virt_addr_valid((void *)addr));
2705 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2709 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2712 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2713 unsigned long used = addr + PAGE_ALIGN(size);
2715 split_page(virt_to_page((void *)addr), order);
2716 while (used < alloc_end) {
2721 return (void *)addr;
2725 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2726 * @size: the number of bytes to allocate
2727 * @gfp_mask: GFP flags for the allocation
2729 * This function is similar to alloc_pages(), except that it allocates the
2730 * minimum number of pages to satisfy the request. alloc_pages() can only
2731 * allocate memory in power-of-two pages.
2733 * This function is also limited by MAX_ORDER.
2735 * Memory allocated by this function must be released by free_pages_exact().
2737 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2739 unsigned int order = get_order(size);
2742 addr = __get_free_pages(gfp_mask, order);
2743 return make_alloc_exact(addr, order, size);
2745 EXPORT_SYMBOL(alloc_pages_exact);
2748 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2750 * @nid: the preferred node ID where memory should be allocated
2751 * @size: the number of bytes to allocate
2752 * @gfp_mask: GFP flags for the allocation
2754 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2756 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2759 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2761 unsigned order = get_order(size);
2762 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2765 return make_alloc_exact((unsigned long)page_address(p), order, size);
2767 EXPORT_SYMBOL(alloc_pages_exact_nid);
2770 * free_pages_exact - release memory allocated via alloc_pages_exact()
2771 * @virt: the value returned by alloc_pages_exact.
2772 * @size: size of allocation, same value as passed to alloc_pages_exact().
2774 * Release the memory allocated by a previous call to alloc_pages_exact.
2776 void free_pages_exact(void *virt, size_t size)
2778 unsigned long addr = (unsigned long)virt;
2779 unsigned long end = addr + PAGE_ALIGN(size);
2781 while (addr < end) {
2786 EXPORT_SYMBOL(free_pages_exact);
2788 static unsigned int nr_free_zone_pages(int offset)
2793 /* Just pick one node, since fallback list is circular */
2794 unsigned int sum = 0;
2796 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2798 for_each_zone_zonelist(zone, z, zonelist, offset) {
2799 unsigned long size = zone->present_pages;
2800 unsigned long high = high_wmark_pages(zone);
2809 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2811 unsigned int nr_free_buffer_pages(void)
2813 return nr_free_zone_pages(gfp_zone(GFP_USER));
2815 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2818 * Amount of free RAM allocatable within all zones
2820 unsigned int nr_free_pagecache_pages(void)
2822 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2825 static inline void show_node(struct zone *zone)
2827 if (IS_ENABLED(CONFIG_NUMA))
2828 printk("Node %d ", zone_to_nid(zone));
2831 void si_meminfo(struct sysinfo *val)
2833 val->totalram = totalram_pages;
2835 val->freeram = global_page_state(NR_FREE_PAGES);
2836 val->bufferram = nr_blockdev_pages();
2837 val->totalhigh = totalhigh_pages;
2838 val->freehigh = nr_free_highpages();
2839 val->mem_unit = PAGE_SIZE;
2842 EXPORT_SYMBOL(si_meminfo);
2845 void si_meminfo_node(struct sysinfo *val, int nid)
2847 pg_data_t *pgdat = NODE_DATA(nid);
2849 val->totalram = pgdat->node_present_pages;
2850 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2851 #ifdef CONFIG_HIGHMEM
2852 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2853 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2859 val->mem_unit = PAGE_SIZE;
2864 * Determine whether the node should be displayed or not, depending on whether
2865 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2867 bool skip_free_areas_node(unsigned int flags, int nid)
2870 unsigned int cpuset_mems_cookie;
2872 if (!(flags & SHOW_MEM_FILTER_NODES))
2876 cpuset_mems_cookie = get_mems_allowed();
2877 ret = !node_isset(nid, cpuset_current_mems_allowed);
2878 } while (!put_mems_allowed(cpuset_mems_cookie));
2883 #define K(x) ((x) << (PAGE_SHIFT-10))
2885 static void show_migration_types(unsigned char type)
2887 static const char types[MIGRATE_TYPES] = {
2888 [MIGRATE_UNMOVABLE] = 'U',
2889 [MIGRATE_RECLAIMABLE] = 'E',
2890 [MIGRATE_MOVABLE] = 'M',
2891 [MIGRATE_RESERVE] = 'R',
2893 [MIGRATE_CMA] = 'C',
2895 [MIGRATE_ISOLATE] = 'I',
2897 char tmp[MIGRATE_TYPES + 1];
2901 for (i = 0; i < MIGRATE_TYPES; i++) {
2902 if (type & (1 << i))
2907 printk("(%s) ", tmp);
2911 * Show free area list (used inside shift_scroll-lock stuff)
2912 * We also calculate the percentage fragmentation. We do this by counting the
2913 * memory on each free list with the exception of the first item on the list.
2914 * Suppresses nodes that are not allowed by current's cpuset if
2915 * SHOW_MEM_FILTER_NODES is passed.
2917 void show_free_areas(unsigned int filter)
2922 for_each_populated_zone(zone) {
2923 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2926 printk("%s per-cpu:\n", zone->name);
2928 for_each_online_cpu(cpu) {
2929 struct per_cpu_pageset *pageset;
2931 pageset = per_cpu_ptr(zone->pageset, cpu);
2933 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2934 cpu, pageset->pcp.high,
2935 pageset->pcp.batch, pageset->pcp.count);
2939 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2940 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2942 " dirty:%lu writeback:%lu unstable:%lu\n"
2943 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2944 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2946 global_page_state(NR_ACTIVE_ANON),
2947 global_page_state(NR_INACTIVE_ANON),
2948 global_page_state(NR_ISOLATED_ANON),
2949 global_page_state(NR_ACTIVE_FILE),
2950 global_page_state(NR_INACTIVE_FILE),
2951 global_page_state(NR_ISOLATED_FILE),
2952 global_page_state(NR_UNEVICTABLE),
2953 global_page_state(NR_FILE_DIRTY),
2954 global_page_state(NR_WRITEBACK),
2955 global_page_state(NR_UNSTABLE_NFS),
2956 global_page_state(NR_FREE_PAGES),
2957 global_page_state(NR_SLAB_RECLAIMABLE),
2958 global_page_state(NR_SLAB_UNRECLAIMABLE),
2959 global_page_state(NR_FILE_MAPPED),
2960 global_page_state(NR_SHMEM),
2961 global_page_state(NR_PAGETABLE),
2962 global_page_state(NR_BOUNCE),
2963 global_page_state(NR_FREE_CMA_PAGES));
2965 for_each_populated_zone(zone) {
2968 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2976 " active_anon:%lukB"
2977 " inactive_anon:%lukB"
2978 " active_file:%lukB"
2979 " inactive_file:%lukB"
2980 " unevictable:%lukB"
2981 " isolated(anon):%lukB"
2982 " isolated(file):%lukB"
2990 " slab_reclaimable:%lukB"
2991 " slab_unreclaimable:%lukB"
2992 " kernel_stack:%lukB"
2997 " writeback_tmp:%lukB"
2998 " pages_scanned:%lu"
2999 " all_unreclaimable? %s"
3002 K(zone_page_state(zone, NR_FREE_PAGES)),
3003 K(min_wmark_pages(zone)),
3004 K(low_wmark_pages(zone)),
3005 K(high_wmark_pages(zone)),
3006 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3007 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3008 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3009 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3010 K(zone_page_state(zone, NR_UNEVICTABLE)),
3011 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3012 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3013 K(zone->present_pages),
3014 K(zone->managed_pages),
3015 K(zone_page_state(zone, NR_MLOCK)),
3016 K(zone_page_state(zone, NR_FILE_DIRTY)),
3017 K(zone_page_state(zone, NR_WRITEBACK)),
3018 K(zone_page_state(zone, NR_FILE_MAPPED)),
3019 K(zone_page_state(zone, NR_SHMEM)),
3020 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3021 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3022 zone_page_state(zone, NR_KERNEL_STACK) *
3024 K(zone_page_state(zone, NR_PAGETABLE)),
3025 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3026 K(zone_page_state(zone, NR_BOUNCE)),
3027 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3028 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3029 zone->pages_scanned,
3030 (zone->all_unreclaimable ? "yes" : "no")
3032 printk("lowmem_reserve[]:");
3033 for (i = 0; i < MAX_NR_ZONES; i++)
3034 printk(" %lu", zone->lowmem_reserve[i]);
3038 for_each_populated_zone(zone) {
3039 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3040 unsigned char types[MAX_ORDER];
3042 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3045 printk("%s: ", zone->name);
3047 spin_lock_irqsave(&zone->lock, flags);
3048 for (order = 0; order < MAX_ORDER; order++) {
3049 struct free_area *area = &zone->free_area[order];
3052 nr[order] = area->nr_free;
3053 total += nr[order] << order;
3056 for (type = 0; type < MIGRATE_TYPES; type++) {
3057 if (!list_empty(&area->free_list[type]))
3058 types[order] |= 1 << type;
3061 spin_unlock_irqrestore(&zone->lock, flags);
3062 for (order = 0; order < MAX_ORDER; order++) {
3063 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3065 show_migration_types(types[order]);
3067 printk("= %lukB\n", K(total));
3070 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3072 show_swap_cache_info();
3075 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3077 zoneref->zone = zone;
3078 zoneref->zone_idx = zone_idx(zone);
3082 * Builds allocation fallback zone lists.
3084 * Add all populated zones of a node to the zonelist.
3086 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3087 int nr_zones, enum zone_type zone_type)
3091 BUG_ON(zone_type >= MAX_NR_ZONES);
3096 zone = pgdat->node_zones + zone_type;
3097 if (populated_zone(zone)) {
3098 zoneref_set_zone(zone,
3099 &zonelist->_zonerefs[nr_zones++]);
3100 check_highest_zone(zone_type);
3103 } while (zone_type);
3110 * 0 = automatic detection of better ordering.
3111 * 1 = order by ([node] distance, -zonetype)
3112 * 2 = order by (-zonetype, [node] distance)
3114 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3115 * the same zonelist. So only NUMA can configure this param.
3117 #define ZONELIST_ORDER_DEFAULT 0
3118 #define ZONELIST_ORDER_NODE 1
3119 #define ZONELIST_ORDER_ZONE 2
3121 /* zonelist order in the kernel.
3122 * set_zonelist_order() will set this to NODE or ZONE.
3124 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3125 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3129 /* The value user specified ....changed by config */
3130 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3131 /* string for sysctl */
3132 #define NUMA_ZONELIST_ORDER_LEN 16
3133 char numa_zonelist_order[16] = "default";
3136 * interface for configure zonelist ordering.
3137 * command line option "numa_zonelist_order"
3138 * = "[dD]efault - default, automatic configuration.
3139 * = "[nN]ode - order by node locality, then by zone within node
3140 * = "[zZ]one - order by zone, then by locality within zone
3143 static int __parse_numa_zonelist_order(char *s)
3145 if (*s == 'd' || *s == 'D') {
3146 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3147 } else if (*s == 'n' || *s == 'N') {
3148 user_zonelist_order = ZONELIST_ORDER_NODE;
3149 } else if (*s == 'z' || *s == 'Z') {
3150 user_zonelist_order = ZONELIST_ORDER_ZONE;
3153 "Ignoring invalid numa_zonelist_order value: "
3160 static __init int setup_numa_zonelist_order(char *s)
3167 ret = __parse_numa_zonelist_order(s);
3169 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3173 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3176 * sysctl handler for numa_zonelist_order
3178 int numa_zonelist_order_handler(ctl_table *table, int write,
3179 void __user *buffer, size_t *length,
3182 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3184 static DEFINE_MUTEX(zl_order_mutex);
3186 mutex_lock(&zl_order_mutex);
3188 strcpy(saved_string, (char*)table->data);
3189 ret = proc_dostring(table, write, buffer, length, ppos);
3193 int oldval = user_zonelist_order;
3194 if (__parse_numa_zonelist_order((char*)table->data)) {
3196 * bogus value. restore saved string
3198 strncpy((char*)table->data, saved_string,
3199 NUMA_ZONELIST_ORDER_LEN);
3200 user_zonelist_order = oldval;
3201 } else if (oldval != user_zonelist_order) {
3202 mutex_lock(&zonelists_mutex);
3203 build_all_zonelists(NULL, NULL);
3204 mutex_unlock(&zonelists_mutex);
3208 mutex_unlock(&zl_order_mutex);
3213 #define MAX_NODE_LOAD (nr_online_nodes)
3214 static int node_load[MAX_NUMNODES];
3217 * find_next_best_node - find the next node that should appear in a given node's fallback list
3218 * @node: node whose fallback list we're appending
3219 * @used_node_mask: nodemask_t of already used nodes
3221 * We use a number of factors to determine which is the next node that should
3222 * appear on a given node's fallback list. The node should not have appeared
3223 * already in @node's fallback list, and it should be the next closest node
3224 * according to the distance array (which contains arbitrary distance values
3225 * from each node to each node in the system), and should also prefer nodes
3226 * with no CPUs, since presumably they'll have very little allocation pressure
3227 * on them otherwise.
3228 * It returns -1 if no node is found.
3230 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3233 int min_val = INT_MAX;
3235 const struct cpumask *tmp = cpumask_of_node(0);
3237 /* Use the local node if we haven't already */
3238 if (!node_isset(node, *used_node_mask)) {
3239 node_set(node, *used_node_mask);
3243 for_each_node_state(n, N_MEMORY) {
3245 /* Don't want a node to appear more than once */
3246 if (node_isset(n, *used_node_mask))
3249 /* Use the distance array to find the distance */
3250 val = node_distance(node, n);
3252 /* Penalize nodes under us ("prefer the next node") */
3255 /* Give preference to headless and unused nodes */
3256 tmp = cpumask_of_node(n);
3257 if (!cpumask_empty(tmp))
3258 val += PENALTY_FOR_NODE_WITH_CPUS;
3260 /* Slight preference for less loaded node */
3261 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3262 val += node_load[n];
3264 if (val < min_val) {
3271 node_set(best_node, *used_node_mask);
3278 * Build zonelists ordered by node and zones within node.
3279 * This results in maximum locality--normal zone overflows into local
3280 * DMA zone, if any--but risks exhausting DMA zone.
3282 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3285 struct zonelist *zonelist;
3287 zonelist = &pgdat->node_zonelists[0];
3288 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3290 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3292 zonelist->_zonerefs[j].zone = NULL;
3293 zonelist->_zonerefs[j].zone_idx = 0;
3297 * Build gfp_thisnode zonelists
3299 static void build_thisnode_zonelists(pg_data_t *pgdat)
3302 struct zonelist *zonelist;
3304 zonelist = &pgdat->node_zonelists[1];
3305 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3306 zonelist->_zonerefs[j].zone = NULL;
3307 zonelist->_zonerefs[j].zone_idx = 0;
3311 * Build zonelists ordered by zone and nodes within zones.
3312 * This results in conserving DMA zone[s] until all Normal memory is
3313 * exhausted, but results in overflowing to remote node while memory
3314 * may still exist in local DMA zone.
3316 static int node_order[MAX_NUMNODES];
3318 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3321 int zone_type; /* needs to be signed */
3323 struct zonelist *zonelist;
3325 zonelist = &pgdat->node_zonelists[0];
3327 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3328 for (j = 0; j < nr_nodes; j++) {
3329 node = node_order[j];
3330 z = &NODE_DATA(node)->node_zones[zone_type];
3331 if (populated_zone(z)) {
3333 &zonelist->_zonerefs[pos++]);
3334 check_highest_zone(zone_type);
3338 zonelist->_zonerefs[pos].zone = NULL;
3339 zonelist->_zonerefs[pos].zone_idx = 0;
3342 static int default_zonelist_order(void)
3345 unsigned long low_kmem_size,total_size;
3349 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3350 * If they are really small and used heavily, the system can fall
3351 * into OOM very easily.
3352 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3354 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3357 for_each_online_node(nid) {
3358 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3359 z = &NODE_DATA(nid)->node_zones[zone_type];
3360 if (populated_zone(z)) {
3361 if (zone_type < ZONE_NORMAL)
3362 low_kmem_size += z->present_pages;
3363 total_size += z->present_pages;
3364 } else if (zone_type == ZONE_NORMAL) {
3366 * If any node has only lowmem, then node order
3367 * is preferred to allow kernel allocations
3368 * locally; otherwise, they can easily infringe
3369 * on other nodes when there is an abundance of
3370 * lowmem available to allocate from.
3372 return ZONELIST_ORDER_NODE;
3376 if (!low_kmem_size || /* there are no DMA area. */
3377 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3378 return ZONELIST_ORDER_NODE;
3380 * look into each node's config.
3381 * If there is a node whose DMA/DMA32 memory is very big area on
3382 * local memory, NODE_ORDER may be suitable.
3384 average_size = total_size /
3385 (nodes_weight(node_states[N_MEMORY]) + 1);
3386 for_each_online_node(nid) {
3389 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3390 z = &NODE_DATA(nid)->node_zones[zone_type];
3391 if (populated_zone(z)) {
3392 if (zone_type < ZONE_NORMAL)
3393 low_kmem_size += z->present_pages;
3394 total_size += z->present_pages;
3397 if (low_kmem_size &&
3398 total_size > average_size && /* ignore small node */
3399 low_kmem_size > total_size * 70/100)
3400 return ZONELIST_ORDER_NODE;
3402 return ZONELIST_ORDER_ZONE;
3405 static void set_zonelist_order(void)
3407 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3408 current_zonelist_order = default_zonelist_order();
3410 current_zonelist_order = user_zonelist_order;
3413 static void build_zonelists(pg_data_t *pgdat)