Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[~shefty/rdma-dev.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222         if (tp->ecn_flags & TCP_ECN_OK) {
223                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225                 /* Funny extension: if ECT is not set on a segment,
226                  * it is surely retransmit. It is not in ECN RFC,
227                  * but Linux follows this rule. */
228                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229                         tcp_enter_quickack_mode((struct sock *)tp);
230         }
231 }
232
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236                 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242                 tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248                 return 1;
249         return 0;
250 }
251
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260                      sizeof(struct sk_buff);
261
262         if (sk->sk_sndbuf < 3 * sndmem)
263                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
264 }
265
266 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
267  *
268  * All tcp_full_space() is split to two parts: "network" buffer, allocated
269  * forward and advertised in receiver window (tp->rcv_wnd) and
270  * "application buffer", required to isolate scheduling/application
271  * latencies from network.
272  * window_clamp is maximal advertised window. It can be less than
273  * tcp_full_space(), in this case tcp_full_space() - window_clamp
274  * is reserved for "application" buffer. The less window_clamp is
275  * the smoother our behaviour from viewpoint of network, but the lower
276  * throughput and the higher sensitivity of the connection to losses. 8)
277  *
278  * rcv_ssthresh is more strict window_clamp used at "slow start"
279  * phase to predict further behaviour of this connection.
280  * It is used for two goals:
281  * - to enforce header prediction at sender, even when application
282  *   requires some significant "application buffer". It is check #1.
283  * - to prevent pruning of receive queue because of misprediction
284  *   of receiver window. Check #2.
285  *
286  * The scheme does not work when sender sends good segments opening
287  * window and then starts to feed us spaghetti. But it should work
288  * in common situations. Otherwise, we have to rely on queue collapsing.
289  */
290
291 /* Slow part of check#2. */
292 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
293 {
294         struct tcp_sock *tp = tcp_sk(sk);
295         /* Optimize this! */
296         int truesize = tcp_win_from_space(skb->truesize) >> 1;
297         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
298
299         while (tp->rcv_ssthresh <= window) {
300                 if (truesize <= skb->len)
301                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
302
303                 truesize >>= 1;
304                 window >>= 1;
305         }
306         return 0;
307 }
308
309 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
310 {
311         struct tcp_sock *tp = tcp_sk(sk);
312
313         /* Check #1 */
314         if (tp->rcv_ssthresh < tp->window_clamp &&
315             (int)tp->rcv_ssthresh < tcp_space(sk) &&
316             !tcp_memory_pressure) {
317                 int incr;
318
319                 /* Check #2. Increase window, if skb with such overhead
320                  * will fit to rcvbuf in future.
321                  */
322                 if (tcp_win_from_space(skb->truesize) <= skb->len)
323                         incr = 2 * tp->advmss;
324                 else
325                         incr = __tcp_grow_window(sk, skb);
326
327                 if (incr) {
328                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
329                                                tp->window_clamp);
330                         inet_csk(sk)->icsk_ack.quick |= 1;
331                 }
332         }
333 }
334
335 /* 3. Tuning rcvbuf, when connection enters established state. */
336
337 static void tcp_fixup_rcvbuf(struct sock *sk)
338 {
339         struct tcp_sock *tp = tcp_sk(sk);
340         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
341
342         /* Try to select rcvbuf so that 4 mss-sized segments
343          * will fit to window and corresponding skbs will fit to our rcvbuf.
344          * (was 3; 4 is minimum to allow fast retransmit to work.)
345          */
346         while (tcp_win_from_space(rcvmem) < tp->advmss)
347                 rcvmem += 128;
348         if (sk->sk_rcvbuf < 4 * rcvmem)
349                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
350 }
351
352 /* 4. Try to fixup all. It is made immediately after connection enters
353  *    established state.
354  */
355 static void tcp_init_buffer_space(struct sock *sk)
356 {
357         struct tcp_sock *tp = tcp_sk(sk);
358         int maxwin;
359
360         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
361                 tcp_fixup_rcvbuf(sk);
362         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
363                 tcp_fixup_sndbuf(sk);
364
365         tp->rcvq_space.space = tp->rcv_wnd;
366
367         maxwin = tcp_full_space(sk);
368
369         if (tp->window_clamp >= maxwin) {
370                 tp->window_clamp = maxwin;
371
372                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
373                         tp->window_clamp = max(maxwin -
374                                                (maxwin >> sysctl_tcp_app_win),
375                                                4 * tp->advmss);
376         }
377
378         /* Force reservation of one segment. */
379         if (sysctl_tcp_app_win &&
380             tp->window_clamp > 2 * tp->advmss &&
381             tp->window_clamp + tp->advmss > maxwin)
382                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
383
384         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
385         tp->snd_cwnd_stamp = tcp_time_stamp;
386 }
387
388 /* 5. Recalculate window clamp after socket hit its memory bounds. */
389 static void tcp_clamp_window(struct sock *sk)
390 {
391         struct tcp_sock *tp = tcp_sk(sk);
392         struct inet_connection_sock *icsk = inet_csk(sk);
393
394         icsk->icsk_ack.quick = 0;
395
396         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
397             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
398             !tcp_memory_pressure &&
399             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
400                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
401                                     sysctl_tcp_rmem[2]);
402         }
403         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
404                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
405 }
406
407 /* Initialize RCV_MSS value.
408  * RCV_MSS is an our guess about MSS used by the peer.
409  * We haven't any direct information about the MSS.
410  * It's better to underestimate the RCV_MSS rather than overestimate.
411  * Overestimations make us ACKing less frequently than needed.
412  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
413  */
414 void tcp_initialize_rcv_mss(struct sock *sk)
415 {
416         struct tcp_sock *tp = tcp_sk(sk);
417         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
418
419         hint = min(hint, tp->rcv_wnd / 2);
420         hint = min(hint, TCP_MSS_DEFAULT);
421         hint = max(hint, TCP_MIN_MSS);
422
423         inet_csk(sk)->icsk_ack.rcv_mss = hint;
424 }
425 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
426
427 /* Receiver "autotuning" code.
428  *
429  * The algorithm for RTT estimation w/o timestamps is based on
430  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
431  * <http://public.lanl.gov/radiant/pubs.html#DRS>
432  *
433  * More detail on this code can be found at
434  * <http://staff.psc.edu/jheffner/>,
435  * though this reference is out of date.  A new paper
436  * is pending.
437  */
438 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
439 {
440         u32 new_sample = tp->rcv_rtt_est.rtt;
441         long m = sample;
442
443         if (m == 0)
444                 m = 1;
445
446         if (new_sample != 0) {
447                 /* If we sample in larger samples in the non-timestamp
448                  * case, we could grossly overestimate the RTT especially
449                  * with chatty applications or bulk transfer apps which
450                  * are stalled on filesystem I/O.
451                  *
452                  * Also, since we are only going for a minimum in the
453                  * non-timestamp case, we do not smooth things out
454                  * else with timestamps disabled convergence takes too
455                  * long.
456                  */
457                 if (!win_dep) {
458                         m -= (new_sample >> 3);
459                         new_sample += m;
460                 } else if (m < new_sample)
461                         new_sample = m << 3;
462         } else {
463                 /* No previous measure. */
464                 new_sample = m << 3;
465         }
466
467         if (tp->rcv_rtt_est.rtt != new_sample)
468                 tp->rcv_rtt_est.rtt = new_sample;
469 }
470
471 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
472 {
473         if (tp->rcv_rtt_est.time == 0)
474                 goto new_measure;
475         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
476                 return;
477         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
478
479 new_measure:
480         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
481         tp->rcv_rtt_est.time = tcp_time_stamp;
482 }
483
484 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
485                                           const struct sk_buff *skb)
486 {
487         struct tcp_sock *tp = tcp_sk(sk);
488         if (tp->rx_opt.rcv_tsecr &&
489             (TCP_SKB_CB(skb)->end_seq -
490              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
491                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492 }
493
494 /*
495  * This function should be called every time data is copied to user space.
496  * It calculates the appropriate TCP receive buffer space.
497  */
498 void tcp_rcv_space_adjust(struct sock *sk)
499 {
500         struct tcp_sock *tp = tcp_sk(sk);
501         int time;
502         int space;
503
504         if (tp->rcvq_space.time == 0)
505                 goto new_measure;
506
507         time = tcp_time_stamp - tp->rcvq_space.time;
508         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
509                 return;
510
511         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
512
513         space = max(tp->rcvq_space.space, space);
514
515         if (tp->rcvq_space.space != space) {
516                 int rcvmem;
517
518                 tp->rcvq_space.space = space;
519
520                 if (sysctl_tcp_moderate_rcvbuf &&
521                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
522                         int new_clamp = space;
523
524                         /* Receive space grows, normalize in order to
525                          * take into account packet headers and sk_buff
526                          * structure overhead.
527                          */
528                         space /= tp->advmss;
529                         if (!space)
530                                 space = 1;
531                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
532                                   16 + sizeof(struct sk_buff));
533                         while (tcp_win_from_space(rcvmem) < tp->advmss)
534                                 rcvmem += 128;
535                         space *= rcvmem;
536                         space = min(space, sysctl_tcp_rmem[2]);
537                         if (space > sk->sk_rcvbuf) {
538                                 sk->sk_rcvbuf = space;
539
540                                 /* Make the window clamp follow along.  */
541                                 tp->window_clamp = new_clamp;
542                         }
543                 }
544         }
545
546 new_measure:
547         tp->rcvq_space.seq = tp->copied_seq;
548         tp->rcvq_space.time = tcp_time_stamp;
549 }
550
551 /* There is something which you must keep in mind when you analyze the
552  * behavior of the tp->ato delayed ack timeout interval.  When a
553  * connection starts up, we want to ack as quickly as possible.  The
554  * problem is that "good" TCP's do slow start at the beginning of data
555  * transmission.  The means that until we send the first few ACK's the
556  * sender will sit on his end and only queue most of his data, because
557  * he can only send snd_cwnd unacked packets at any given time.  For
558  * each ACK we send, he increments snd_cwnd and transmits more of his
559  * queue.  -DaveM
560  */
561 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
562 {
563         struct tcp_sock *tp = tcp_sk(sk);
564         struct inet_connection_sock *icsk = inet_csk(sk);
565         u32 now;
566
567         inet_csk_schedule_ack(sk);
568
569         tcp_measure_rcv_mss(sk, skb);
570
571         tcp_rcv_rtt_measure(tp);
572
573         now = tcp_time_stamp;
574
575         if (!icsk->icsk_ack.ato) {
576                 /* The _first_ data packet received, initialize
577                  * delayed ACK engine.
578                  */
579                 tcp_incr_quickack(sk);
580                 icsk->icsk_ack.ato = TCP_ATO_MIN;
581         } else {
582                 int m = now - icsk->icsk_ack.lrcvtime;
583
584                 if (m <= TCP_ATO_MIN / 2) {
585                         /* The fastest case is the first. */
586                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
587                 } else if (m < icsk->icsk_ack.ato) {
588                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
589                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
590                                 icsk->icsk_ack.ato = icsk->icsk_rto;
591                 } else if (m > icsk->icsk_rto) {
592                         /* Too long gap. Apparently sender failed to
593                          * restart window, so that we send ACKs quickly.
594                          */
595                         tcp_incr_quickack(sk);
596                         sk_mem_reclaim(sk);
597                 }
598         }
599         icsk->icsk_ack.lrcvtime = now;
600
601         TCP_ECN_check_ce(tp, skb);
602
603         if (skb->len >= 128)
604                 tcp_grow_window(sk, skb);
605 }
606
607 /* Called to compute a smoothed rtt estimate. The data fed to this
608  * routine either comes from timestamps, or from segments that were
609  * known _not_ to have been retransmitted [see Karn/Partridge
610  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
611  * piece by Van Jacobson.
612  * NOTE: the next three routines used to be one big routine.
613  * To save cycles in the RFC 1323 implementation it was better to break
614  * it up into three procedures. -- erics
615  */
616 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
617 {
618         struct tcp_sock *tp = tcp_sk(sk);
619         long m = mrtt; /* RTT */
620
621         /*      The following amusing code comes from Jacobson's
622          *      article in SIGCOMM '88.  Note that rtt and mdev
623          *      are scaled versions of rtt and mean deviation.
624          *      This is designed to be as fast as possible
625          *      m stands for "measurement".
626          *
627          *      On a 1990 paper the rto value is changed to:
628          *      RTO = rtt + 4 * mdev
629          *
630          * Funny. This algorithm seems to be very broken.
631          * These formulae increase RTO, when it should be decreased, increase
632          * too slowly, when it should be increased quickly, decrease too quickly
633          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
634          * does not matter how to _calculate_ it. Seems, it was trap
635          * that VJ failed to avoid. 8)
636          */
637         if (m == 0)
638                 m = 1;
639         if (tp->srtt != 0) {
640                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
641                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
642                 if (m < 0) {
643                         m = -m;         /* m is now abs(error) */
644                         m -= (tp->mdev >> 2);   /* similar update on mdev */
645                         /* This is similar to one of Eifel findings.
646                          * Eifel blocks mdev updates when rtt decreases.
647                          * This solution is a bit different: we use finer gain
648                          * for mdev in this case (alpha*beta).
649                          * Like Eifel it also prevents growth of rto,
650                          * but also it limits too fast rto decreases,
651                          * happening in pure Eifel.
652                          */
653                         if (m > 0)
654                                 m >>= 3;
655                 } else {
656                         m -= (tp->mdev >> 2);   /* similar update on mdev */
657                 }
658                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
659                 if (tp->mdev > tp->mdev_max) {
660                         tp->mdev_max = tp->mdev;
661                         if (tp->mdev_max > tp->rttvar)
662                                 tp->rttvar = tp->mdev_max;
663                 }
664                 if (after(tp->snd_una, tp->rtt_seq)) {
665                         if (tp->mdev_max < tp->rttvar)
666                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
667                         tp->rtt_seq = tp->snd_nxt;
668                         tp->mdev_max = tcp_rto_min(sk);
669                 }
670         } else {
671                 /* no previous measure. */
672                 tp->srtt = m << 3;      /* take the measured time to be rtt */
673                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
674                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
675                 tp->rtt_seq = tp->snd_nxt;
676         }
677 }
678
679 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
680  * routine referred to above.
681  */
682 static inline void tcp_set_rto(struct sock *sk)
683 {
684         const struct tcp_sock *tp = tcp_sk(sk);
685         /* Old crap is replaced with new one. 8)
686          *
687          * More seriously:
688          * 1. If rtt variance happened to be less 50msec, it is hallucination.
689          *    It cannot be less due to utterly erratic ACK generation made
690          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
691          *    to do with delayed acks, because at cwnd>2 true delack timeout
692          *    is invisible. Actually, Linux-2.4 also generates erratic
693          *    ACKs in some circumstances.
694          */
695         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
696
697         /* 2. Fixups made earlier cannot be right.
698          *    If we do not estimate RTO correctly without them,
699          *    all the algo is pure shit and should be replaced
700          *    with correct one. It is exactly, which we pretend to do.
701          */
702
703         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
704          * guarantees that rto is higher.
705          */
706         tcp_bound_rto(sk);
707 }
708
709 /* Save metrics learned by this TCP session.
710    This function is called only, when TCP finishes successfully
711    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
712  */
713 void tcp_update_metrics(struct sock *sk)
714 {
715         struct tcp_sock *tp = tcp_sk(sk);
716         struct dst_entry *dst = __sk_dst_get(sk);
717
718         if (sysctl_tcp_nometrics_save)
719                 return;
720
721         dst_confirm(dst);
722
723         if (dst && (dst->flags & DST_HOST)) {
724                 const struct inet_connection_sock *icsk = inet_csk(sk);
725                 int m;
726                 unsigned long rtt;
727
728                 if (icsk->icsk_backoff || !tp->srtt) {
729                         /* This session failed to estimate rtt. Why?
730                          * Probably, no packets returned in time.
731                          * Reset our results.
732                          */
733                         if (!(dst_metric_locked(dst, RTAX_RTT)))
734                                 dst->metrics[RTAX_RTT - 1] = 0;
735                         return;
736                 }
737
738                 rtt = dst_metric_rtt(dst, RTAX_RTT);
739                 m = rtt - tp->srtt;
740
741                 /* If newly calculated rtt larger than stored one,
742                  * store new one. Otherwise, use EWMA. Remember,
743                  * rtt overestimation is always better than underestimation.
744                  */
745                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
746                         if (m <= 0)
747                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
748                         else
749                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
750                 }
751
752                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
753                         unsigned long var;
754                         if (m < 0)
755                                 m = -m;
756
757                         /* Scale deviation to rttvar fixed point */
758                         m >>= 1;
759                         if (m < tp->mdev)
760                                 m = tp->mdev;
761
762                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
763                         if (m >= var)
764                                 var = m;
765                         else
766                                 var -= (var - m) >> 2;
767
768                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
769                 }
770
771                 if (tcp_in_initial_slowstart(tp)) {
772                         /* Slow start still did not finish. */
773                         if (dst_metric(dst, RTAX_SSTHRESH) &&
774                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
775                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
776                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
777                         if (!dst_metric_locked(dst, RTAX_CWND) &&
778                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
779                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
780                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
781                            icsk->icsk_ca_state == TCP_CA_Open) {
782                         /* Cong. avoidance phase, cwnd is reliable. */
783                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
784                                 dst->metrics[RTAX_SSTHRESH-1] =
785                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
786                         if (!dst_metric_locked(dst, RTAX_CWND))
787                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
788                 } else {
789                         /* Else slow start did not finish, cwnd is non-sense,
790                            ssthresh may be also invalid.
791                          */
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
794                         if (dst_metric(dst, RTAX_SSTHRESH) &&
795                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
797                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
798                 }
799
800                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
801                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
802                             tp->reordering != sysctl_tcp_reordering)
803                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
804                 }
805         }
806 }
807
808 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
809 {
810         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
811
812         if (!cwnd)
813                 cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
814         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
815 }
816
817 /* Set slow start threshold and cwnd not falling to slow start */
818 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
819 {
820         struct tcp_sock *tp = tcp_sk(sk);
821         const struct inet_connection_sock *icsk = inet_csk(sk);
822
823         tp->prior_ssthresh = 0;
824         tp->bytes_acked = 0;
825         if (icsk->icsk_ca_state < TCP_CA_CWR) {
826                 tp->undo_marker = 0;
827                 if (set_ssthresh)
828                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
829                 tp->snd_cwnd = min(tp->snd_cwnd,
830                                    tcp_packets_in_flight(tp) + 1U);
831                 tp->snd_cwnd_cnt = 0;
832                 tp->high_seq = tp->snd_nxt;
833                 tp->snd_cwnd_stamp = tcp_time_stamp;
834                 TCP_ECN_queue_cwr(tp);
835
836                 tcp_set_ca_state(sk, TCP_CA_CWR);
837         }
838 }
839
840 /*
841  * Packet counting of FACK is based on in-order assumptions, therefore TCP
842  * disables it when reordering is detected
843  */
844 static void tcp_disable_fack(struct tcp_sock *tp)
845 {
846         /* RFC3517 uses different metric in lost marker => reset on change */
847         if (tcp_is_fack(tp))
848                 tp->lost_skb_hint = NULL;
849         tp->rx_opt.sack_ok &= ~2;
850 }
851
852 /* Take a notice that peer is sending D-SACKs */
853 static void tcp_dsack_seen(struct tcp_sock *tp)
854 {
855         tp->rx_opt.sack_ok |= 4;
856 }
857
858 /* Initialize metrics on socket. */
859
860 static void tcp_init_metrics(struct sock *sk)
861 {
862         struct tcp_sock *tp = tcp_sk(sk);
863         struct dst_entry *dst = __sk_dst_get(sk);
864
865         if (dst == NULL)
866                 goto reset;
867
868         dst_confirm(dst);
869
870         if (dst_metric_locked(dst, RTAX_CWND))
871                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
872         if (dst_metric(dst, RTAX_SSTHRESH)) {
873                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
874                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
875                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
876         }
877         if (dst_metric(dst, RTAX_REORDERING) &&
878             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
879                 tcp_disable_fack(tp);
880                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
881         }
882
883         if (dst_metric(dst, RTAX_RTT) == 0)
884                 goto reset;
885
886         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
887                 goto reset;
888
889         /* Initial rtt is determined from SYN,SYN-ACK.
890          * The segment is small and rtt may appear much
891          * less than real one. Use per-dst memory
892          * to make it more realistic.
893          *
894          * A bit of theory. RTT is time passed after "normal" sized packet
895          * is sent until it is ACKed. In normal circumstances sending small
896          * packets force peer to delay ACKs and calculation is correct too.
897          * The algorithm is adaptive and, provided we follow specs, it
898          * NEVER underestimate RTT. BUT! If peer tries to make some clever
899          * tricks sort of "quick acks" for time long enough to decrease RTT
900          * to low value, and then abruptly stops to do it and starts to delay
901          * ACKs, wait for troubles.
902          */
903         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
904                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
905                 tp->rtt_seq = tp->snd_nxt;
906         }
907         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
908                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
909                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
910         }
911         tcp_set_rto(sk);
912         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
913                 goto reset;
914
915 cwnd:
916         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
917         tp->snd_cwnd_stamp = tcp_time_stamp;
918         return;
919
920 reset:
921         /* Play conservative. If timestamps are not
922          * supported, TCP will fail to recalculate correct
923          * rtt, if initial rto is too small. FORGET ALL AND RESET!
924          */
925         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
926                 tp->srtt = 0;
927                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
928                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
929         }
930         goto cwnd;
931 }
932
933 static void tcp_update_reordering(struct sock *sk, const int metric,
934                                   const int ts)
935 {
936         struct tcp_sock *tp = tcp_sk(sk);
937         if (metric > tp->reordering) {
938                 int mib_idx;
939
940                 tp->reordering = min(TCP_MAX_REORDERING, metric);
941
942                 /* This exciting event is worth to be remembered. 8) */
943                 if (ts)
944                         mib_idx = LINUX_MIB_TCPTSREORDER;
945                 else if (tcp_is_reno(tp))
946                         mib_idx = LINUX_MIB_TCPRENOREORDER;
947                 else if (tcp_is_fack(tp))
948                         mib_idx = LINUX_MIB_TCPFACKREORDER;
949                 else
950                         mib_idx = LINUX_MIB_TCPSACKREORDER;
951
952                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
953 #if FASTRETRANS_DEBUG > 1
954                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
955                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
956                        tp->reordering,
957                        tp->fackets_out,
958                        tp->sacked_out,
959                        tp->undo_marker ? tp->undo_retrans : 0);
960 #endif
961                 tcp_disable_fack(tp);
962         }
963 }
964
965 /* This must be called before lost_out is incremented */
966 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
967 {
968         if ((tp->retransmit_skb_hint == NULL) ||
969             before(TCP_SKB_CB(skb)->seq,
970                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
971                 tp->retransmit_skb_hint = skb;
972
973         if (!tp->lost_out ||
974             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
975                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
976 }
977
978 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
979 {
980         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
981                 tcp_verify_retransmit_hint(tp, skb);
982
983                 tp->lost_out += tcp_skb_pcount(skb);
984                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
985         }
986 }
987
988 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
989                                             struct sk_buff *skb)
990 {
991         tcp_verify_retransmit_hint(tp, skb);
992
993         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994                 tp->lost_out += tcp_skb_pcount(skb);
995                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
996         }
997 }
998
999 /* This procedure tags the retransmission queue when SACKs arrive.
1000  *
1001  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1002  * Packets in queue with these bits set are counted in variables
1003  * sacked_out, retrans_out and lost_out, correspondingly.
1004  *
1005  * Valid combinations are:
1006  * Tag  InFlight        Description
1007  * 0    1               - orig segment is in flight.
1008  * S    0               - nothing flies, orig reached receiver.
1009  * L    0               - nothing flies, orig lost by net.
1010  * R    2               - both orig and retransmit are in flight.
1011  * L|R  1               - orig is lost, retransmit is in flight.
1012  * S|R  1               - orig reached receiver, retrans is still in flight.
1013  * (L|S|R is logically valid, it could occur when L|R is sacked,
1014  *  but it is equivalent to plain S and code short-curcuits it to S.
1015  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1016  *
1017  * These 6 states form finite state machine, controlled by the following events:
1018  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1019  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1020  * 3. Loss detection event of one of three flavors:
1021  *      A. Scoreboard estimator decided the packet is lost.
1022  *         A'. Reno "three dupacks" marks head of queue lost.
1023  *         A''. Its FACK modfication, head until snd.fack is lost.
1024  *      B. SACK arrives sacking data transmitted after never retransmitted
1025  *         hole was sent out.
1026  *      C. SACK arrives sacking SND.NXT at the moment, when the
1027  *         segment was retransmitted.
1028  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1029  *
1030  * It is pleasant to note, that state diagram turns out to be commutative,
1031  * so that we are allowed not to be bothered by order of our actions,
1032  * when multiple events arrive simultaneously. (see the function below).
1033  *
1034  * Reordering detection.
1035  * --------------------
1036  * Reordering metric is maximal distance, which a packet can be displaced
1037  * in packet stream. With SACKs we can estimate it:
1038  *
1039  * 1. SACK fills old hole and the corresponding segment was not
1040  *    ever retransmitted -> reordering. Alas, we cannot use it
1041  *    when segment was retransmitted.
1042  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1043  *    for retransmitted and already SACKed segment -> reordering..
1044  * Both of these heuristics are not used in Loss state, when we cannot
1045  * account for retransmits accurately.
1046  *
1047  * SACK block validation.
1048  * ----------------------
1049  *
1050  * SACK block range validation checks that the received SACK block fits to
1051  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1052  * Note that SND.UNA is not included to the range though being valid because
1053  * it means that the receiver is rather inconsistent with itself reporting
1054  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1055  * perfectly valid, however, in light of RFC2018 which explicitly states
1056  * that "SACK block MUST reflect the newest segment.  Even if the newest
1057  * segment is going to be discarded ...", not that it looks very clever
1058  * in case of head skb. Due to potentional receiver driven attacks, we
1059  * choose to avoid immediate execution of a walk in write queue due to
1060  * reneging and defer head skb's loss recovery to standard loss recovery
1061  * procedure that will eventually trigger (nothing forbids us doing this).
1062  *
1063  * Implements also blockage to start_seq wrap-around. Problem lies in the
1064  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1065  * there's no guarantee that it will be before snd_nxt (n). The problem
1066  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1067  * wrap (s_w):
1068  *
1069  *         <- outs wnd ->                          <- wrapzone ->
1070  *         u     e      n                         u_w   e_w  s n_w
1071  *         |     |      |                          |     |   |  |
1072  * |<------------+------+----- TCP seqno space --------------+---------->|
1073  * ...-- <2^31 ->|                                           |<--------...
1074  * ...---- >2^31 ------>|                                    |<--------...
1075  *
1076  * Current code wouldn't be vulnerable but it's better still to discard such
1077  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1078  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1079  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1080  * equal to the ideal case (infinite seqno space without wrap caused issues).
1081  *
1082  * With D-SACK the lower bound is extended to cover sequence space below
1083  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1084  * again, D-SACK block must not to go across snd_una (for the same reason as
1085  * for the normal SACK blocks, explained above). But there all simplicity
1086  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1087  * fully below undo_marker they do not affect behavior in anyway and can
1088  * therefore be safely ignored. In rare cases (which are more or less
1089  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1090  * fragmentation and packet reordering past skb's retransmission. To consider
1091  * them correctly, the acceptable range must be extended even more though
1092  * the exact amount is rather hard to quantify. However, tp->max_window can
1093  * be used as an exaggerated estimate.
1094  */
1095 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1096                                   u32 start_seq, u32 end_seq)
1097 {
1098         /* Too far in future, or reversed (interpretation is ambiguous) */
1099         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1100                 return 0;
1101
1102         /* Nasty start_seq wrap-around check (see comments above) */
1103         if (!before(start_seq, tp->snd_nxt))
1104                 return 0;
1105
1106         /* In outstanding window? ...This is valid exit for D-SACKs too.
1107          * start_seq == snd_una is non-sensical (see comments above)
1108          */
1109         if (after(start_seq, tp->snd_una))
1110                 return 1;
1111
1112         if (!is_dsack || !tp->undo_marker)
1113                 return 0;
1114
1115         /* ...Then it's D-SACK, and must reside below snd_una completely */
1116         if (!after(end_seq, tp->snd_una))
1117                 return 0;
1118
1119         if (!before(start_seq, tp->undo_marker))
1120                 return 1;
1121
1122         /* Too old */
1123         if (!after(end_seq, tp->undo_marker))
1124                 return 0;
1125
1126         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1127          *   start_seq < undo_marker and end_seq >= undo_marker.
1128          */
1129         return !before(start_seq, end_seq - tp->max_window);
1130 }
1131
1132 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1133  * Event "C". Later note: FACK people cheated me again 8), we have to account
1134  * for reordering! Ugly, but should help.
1135  *
1136  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1137  * less than what is now known to be received by the other end (derived from
1138  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1139  * retransmitted skbs to avoid some costly processing per ACKs.
1140  */
1141 static void tcp_mark_lost_retrans(struct sock *sk)
1142 {
1143         const struct inet_connection_sock *icsk = inet_csk(sk);
1144         struct tcp_sock *tp = tcp_sk(sk);
1145         struct sk_buff *skb;
1146         int cnt = 0;
1147         u32 new_low_seq = tp->snd_nxt;
1148         u32 received_upto = tcp_highest_sack_seq(tp);
1149
1150         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1151             !after(received_upto, tp->lost_retrans_low) ||
1152             icsk->icsk_ca_state != TCP_CA_Recovery)
1153                 return;
1154
1155         tcp_for_write_queue(skb, sk) {
1156                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1157
1158                 if (skb == tcp_send_head(sk))
1159                         break;
1160                 if (cnt == tp->retrans_out)
1161                         break;
1162                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1163                         continue;
1164
1165                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1166                         continue;
1167
1168                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1169                  * constraint here (see above) but figuring out that at
1170                  * least tp->reordering SACK blocks reside between ack_seq
1171                  * and received_upto is not easy task to do cheaply with
1172                  * the available datastructures.
1173                  *
1174                  * Whether FACK should check here for tp->reordering segs
1175                  * in-between one could argue for either way (it would be
1176                  * rather simple to implement as we could count fack_count
1177                  * during the walk and do tp->fackets_out - fack_count).
1178                  */
1179                 if (after(received_upto, ack_seq)) {
1180                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1181                         tp->retrans_out -= tcp_skb_pcount(skb);
1182
1183                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1184                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1185                 } else {
1186                         if (before(ack_seq, new_low_seq))
1187                                 new_low_seq = ack_seq;
1188                         cnt += tcp_skb_pcount(skb);
1189                 }
1190         }
1191
1192         if (tp->retrans_out)
1193                 tp->lost_retrans_low = new_low_seq;
1194 }
1195
1196 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1197                            struct tcp_sack_block_wire *sp, int num_sacks,
1198                            u32 prior_snd_una)
1199 {
1200         struct tcp_sock *tp = tcp_sk(sk);
1201         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1202         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1203         int dup_sack = 0;
1204
1205         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1206                 dup_sack = 1;
1207                 tcp_dsack_seen(tp);
1208                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1209         } else if (num_sacks > 1) {
1210                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1211                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1212
1213                 if (!after(end_seq_0, end_seq_1) &&
1214                     !before(start_seq_0, start_seq_1)) {
1215                         dup_sack = 1;
1216                         tcp_dsack_seen(tp);
1217                         NET_INC_STATS_BH(sock_net(sk),
1218                                         LINUX_MIB_TCPDSACKOFORECV);
1219                 }
1220         }
1221
1222         /* D-SACK for already forgotten data... Do dumb counting. */
1223         if (dup_sack &&
1224             !after(end_seq_0, prior_snd_una) &&
1225             after(end_seq_0, tp->undo_marker))
1226                 tp->undo_retrans--;
1227
1228         return dup_sack;
1229 }
1230
1231 struct tcp_sacktag_state {
1232         int reord;
1233         int fack_count;
1234         int flag;
1235 };
1236
1237 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1238  * the incoming SACK may not exactly match but we can find smaller MSS
1239  * aligned portion of it that matches. Therefore we might need to fragment
1240  * which may fail and creates some hassle (caller must handle error case
1241  * returns).
1242  *
1243  * FIXME: this could be merged to shift decision code
1244  */
1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1246                                  u32 start_seq, u32 end_seq)
1247 {
1248         int in_sack, err;
1249         unsigned int pkt_len;
1250         unsigned int mss;
1251
1252         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1253                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1254
1255         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1256             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1257                 mss = tcp_skb_mss(skb);
1258                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1259
1260                 if (!in_sack) {
1261                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1262                         if (pkt_len < mss)
1263                                 pkt_len = mss;
1264                 } else {
1265                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1266                         if (pkt_len < mss)
1267                                 return -EINVAL;
1268                 }
1269
1270                 /* Round if necessary so that SACKs cover only full MSSes
1271                  * and/or the remaining small portion (if present)
1272                  */
1273                 if (pkt_len > mss) {
1274                         unsigned int new_len = (pkt_len / mss) * mss;
1275                         if (!in_sack && new_len < pkt_len) {
1276                                 new_len += mss;
1277                                 if (new_len > skb->len)
1278                                         return 0;
1279                         }
1280                         pkt_len = new_len;
1281                 }
1282                 err = tcp_fragment(sk, skb, pkt_len, mss);
1283                 if (err < 0)
1284                         return err;
1285         }
1286
1287         return in_sack;
1288 }
1289
1290 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1291                           struct tcp_sacktag_state *state,
1292                           int dup_sack, int pcount)
1293 {
1294         struct tcp_sock *tp = tcp_sk(sk);
1295         u8 sacked = TCP_SKB_CB(skb)->sacked;
1296         int fack_count = state->fack_count;
1297
1298         /* Account D-SACK for retransmitted packet. */
1299         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1300                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1301                         tp->undo_retrans--;
1302                 if (sacked & TCPCB_SACKED_ACKED)
1303                         state->reord = min(fack_count, state->reord);
1304         }
1305
1306         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1307         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1308                 return sacked;
1309
1310         if (!(sacked & TCPCB_SACKED_ACKED)) {
1311                 if (sacked & TCPCB_SACKED_RETRANS) {
1312                         /* If the segment is not tagged as lost,
1313                          * we do not clear RETRANS, believing
1314                          * that retransmission is still in flight.
1315                          */
1316                         if (sacked & TCPCB_LOST) {
1317                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1318                                 tp->lost_out -= pcount;
1319                                 tp->retrans_out -= pcount;
1320                         }
1321                 } else {
1322                         if (!(sacked & TCPCB_RETRANS)) {
1323                                 /* New sack for not retransmitted frame,
1324                                  * which was in hole. It is reordering.
1325                                  */
1326                                 if (before(TCP_SKB_CB(skb)->seq,
1327                                            tcp_highest_sack_seq(tp)))
1328                                         state->reord = min(fack_count,
1329                                                            state->reord);
1330
1331                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1332                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1333                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1334                         }
1335
1336                         if (sacked & TCPCB_LOST) {
1337                                 sacked &= ~TCPCB_LOST;
1338                                 tp->lost_out -= pcount;
1339                         }
1340                 }
1341
1342                 sacked |= TCPCB_SACKED_ACKED;
1343                 state->flag |= FLAG_DATA_SACKED;
1344                 tp->sacked_out += pcount;
1345
1346                 fack_count += pcount;
1347
1348                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1349                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1350                     before(TCP_SKB_CB(skb)->seq,
1351                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1352                         tp->lost_cnt_hint += pcount;
1353
1354                 if (fack_count > tp->fackets_out)
1355                         tp->fackets_out = fack_count;
1356         }
1357
1358         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1359          * frames and clear it. undo_retrans is decreased above, L|R frames
1360          * are accounted above as well.
1361          */
1362         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1363                 sacked &= ~TCPCB_SACKED_RETRANS;
1364                 tp->retrans_out -= pcount;
1365         }
1366
1367         return sacked;
1368 }
1369
1370 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1371                            struct tcp_sacktag_state *state,
1372                            unsigned int pcount, int shifted, int mss,
1373                            int dup_sack)
1374 {
1375         struct tcp_sock *tp = tcp_sk(sk);
1376         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1377
1378         BUG_ON(!pcount);
1379
1380         /* Tweak before seqno plays */
1381         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1382             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1383                 tp->lost_cnt_hint += pcount;
1384
1385         TCP_SKB_CB(prev)->end_seq += shifted;
1386         TCP_SKB_CB(skb)->seq += shifted;
1387
1388         skb_shinfo(prev)->gso_segs += pcount;
1389         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1390         skb_shinfo(skb)->gso_segs -= pcount;
1391
1392         /* When we're adding to gso_segs == 1, gso_size will be zero,
1393          * in theory this shouldn't be necessary but as long as DSACK
1394          * code can come after this skb later on it's better to keep
1395          * setting gso_size to something.
1396          */
1397         if (!skb_shinfo(prev)->gso_size) {
1398                 skb_shinfo(prev)->gso_size = mss;
1399                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1400         }
1401
1402         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1403         if (skb_shinfo(skb)->gso_segs <= 1) {
1404                 skb_shinfo(skb)->gso_size = 0;
1405                 skb_shinfo(skb)->gso_type = 0;
1406         }
1407
1408         /* We discard results */
1409         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1410
1411         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1412         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1413
1414         if (skb->len > 0) {
1415                 BUG_ON(!tcp_skb_pcount(skb));
1416                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1417                 return 0;
1418         }
1419
1420         /* Whole SKB was eaten :-) */
1421
1422         if (skb == tp->retransmit_skb_hint)
1423                 tp->retransmit_skb_hint = prev;
1424         if (skb == tp->scoreboard_skb_hint)
1425                 tp->scoreboard_skb_hint = prev;
1426         if (skb == tp->lost_skb_hint) {
1427                 tp->lost_skb_hint = prev;
1428                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1429         }
1430
1431         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1432         if (skb == tcp_highest_sack(sk))
1433                 tcp_advance_highest_sack(sk, skb);
1434
1435         tcp_unlink_write_queue(skb, sk);
1436         sk_wmem_free_skb(sk, skb);
1437
1438         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1439
1440         return 1;
1441 }
1442
1443 /* I wish gso_size would have a bit more sane initialization than
1444  * something-or-zero which complicates things
1445  */
1446 static int tcp_skb_seglen(struct sk_buff *skb)
1447 {
1448         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1449 }
1450
1451 /* Shifting pages past head area doesn't work */
1452 static int skb_can_shift(struct sk_buff *skb)
1453 {
1454         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1455 }
1456
1457 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1458  * skb.
1459  */
1460 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1461                                           struct tcp_sacktag_state *state,
1462                                           u32 start_seq, u32 end_seq,
1463                                           int dup_sack)
1464 {
1465         struct tcp_sock *tp = tcp_sk(sk);
1466         struct sk_buff *prev;
1467         int mss;
1468         int pcount = 0;
1469         int len;
1470         int in_sack;
1471
1472         if (!sk_can_gso(sk))
1473                 goto fallback;
1474
1475         /* Normally R but no L won't result in plain S */
1476         if (!dup_sack &&
1477             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1478                 goto fallback;
1479         if (!skb_can_shift(skb))
1480                 goto fallback;
1481         /* This frame is about to be dropped (was ACKed). */
1482         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1483                 goto fallback;
1484
1485         /* Can only happen with delayed DSACK + discard craziness */
1486         if (unlikely(skb == tcp_write_queue_head(sk)))
1487                 goto fallback;
1488         prev = tcp_write_queue_prev(sk, skb);
1489
1490         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1491                 goto fallback;
1492
1493         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1494                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1495
1496         if (in_sack) {
1497                 len = skb->len;
1498                 pcount = tcp_skb_pcount(skb);
1499                 mss = tcp_skb_seglen(skb);
1500
1501                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1502                  * drop this restriction as unnecessary
1503                  */
1504                 if (mss != tcp_skb_seglen(prev))
1505                         goto fallback;
1506         } else {
1507                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1508                         goto noop;
1509                 /* CHECKME: This is non-MSS split case only?, this will
1510                  * cause skipped skbs due to advancing loop btw, original
1511                  * has that feature too
1512                  */
1513                 if (tcp_skb_pcount(skb) <= 1)
1514                         goto noop;
1515
1516                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1517                 if (!in_sack) {
1518                         /* TODO: head merge to next could be attempted here
1519                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1520                          * though it might not be worth of the additional hassle
1521                          *
1522                          * ...we can probably just fallback to what was done
1523                          * previously. We could try merging non-SACKed ones
1524                          * as well but it probably isn't going to buy off
1525                          * because later SACKs might again split them, and
1526                          * it would make skb timestamp tracking considerably
1527                          * harder problem.
1528                          */
1529                         goto fallback;
1530                 }
1531
1532                 len = end_seq - TCP_SKB_CB(skb)->seq;
1533                 BUG_ON(len < 0);
1534                 BUG_ON(len > skb->len);
1535
1536                 /* MSS boundaries should be honoured or else pcount will
1537                  * severely break even though it makes things bit trickier.
1538                  * Optimize common case to avoid most of the divides
1539                  */
1540                 mss = tcp_skb_mss(skb);
1541
1542                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1543                  * drop this restriction as unnecessary
1544                  */
1545                 if (mss != tcp_skb_seglen(prev))
1546                         goto fallback;
1547
1548                 if (len == mss) {
1549                         pcount = 1;
1550                 } else if (len < mss) {
1551                         goto noop;
1552                 } else {
1553                         pcount = len / mss;
1554                         len = pcount * mss;
1555                 }
1556         }
1557
1558         if (!skb_shift(prev, skb, len))
1559                 goto fallback;
1560         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1561                 goto out;
1562
1563         /* Hole filled allows collapsing with the next as well, this is very
1564          * useful when hole on every nth skb pattern happens
1565          */
1566         if (prev == tcp_write_queue_tail(sk))
1567                 goto out;
1568         skb = tcp_write_queue_next(sk, prev);
1569
1570         if (!skb_can_shift(skb) ||
1571             (skb == tcp_send_head(sk)) ||
1572             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1573             (mss != tcp_skb_seglen(skb)))
1574                 goto out;
1575
1576         len = skb->len;
1577         if (skb_shift(prev, skb, len)) {
1578                 pcount += tcp_skb_pcount(skb);
1579                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1580         }
1581
1582 out:
1583         state->fack_count += pcount;
1584         return prev;
1585
1586 noop:
1587         return skb;
1588
1589 fallback:
1590         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1591         return NULL;
1592 }
1593
1594 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1595                                         struct tcp_sack_block *next_dup,
1596                                         struct tcp_sacktag_state *state,
1597                                         u32 start_seq, u32 end_seq,
1598                                         int dup_sack_in)
1599 {
1600         struct tcp_sock *tp = tcp_sk(sk);
1601         struct sk_buff *tmp;
1602
1603         tcp_for_write_queue_from(skb, sk) {
1604                 int in_sack = 0;
1605                 int dup_sack = dup_sack_in;
1606
1607                 if (skb == tcp_send_head(sk))
1608                         break;
1609
1610                 /* queue is in-order => we can short-circuit the walk early */
1611                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1612                         break;
1613
1614                 if ((next_dup != NULL) &&
1615                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1616                         in_sack = tcp_match_skb_to_sack(sk, skb,
1617                                                         next_dup->start_seq,
1618                                                         next_dup->end_seq);
1619                         if (in_sack > 0)
1620                                 dup_sack = 1;
1621                 }
1622
1623                 /* skb reference here is a bit tricky to get right, since
1624                  * shifting can eat and free both this skb and the next,
1625                  * so not even _safe variant of the loop is enough.
1626                  */
1627                 if (in_sack <= 0) {
1628                         tmp = tcp_shift_skb_data(sk, skb, state,
1629                                                  start_seq, end_seq, dup_sack);
1630                         if (tmp != NULL) {
1631                                 if (tmp != skb) {
1632                                         skb = tmp;
1633                                         continue;
1634                                 }
1635
1636                                 in_sack = 0;
1637                         } else {
1638                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1639                                                                 start_seq,
1640                                                                 end_seq);
1641                         }
1642                 }
1643
1644                 if (unlikely(in_sack < 0))
1645                         break;
1646
1647                 if (in_sack) {
1648                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1649                                                                   state,
1650                                                                   dup_sack,
1651                                                                   tcp_skb_pcount(skb));
1652
1653                         if (!before(TCP_SKB_CB(skb)->seq,
1654                                     tcp_highest_sack_seq(tp)))
1655                                 tcp_advance_highest_sack(sk, skb);
1656                 }
1657
1658                 state->fack_count += tcp_skb_pcount(skb);
1659         }
1660         return skb;
1661 }
1662
1663 /* Avoid all extra work that is being done by sacktag while walking in
1664  * a normal way
1665  */
1666 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1667                                         struct tcp_sacktag_state *state,
1668                                         u32 skip_to_seq)
1669 {
1670         tcp_for_write_queue_from(skb, sk) {
1671                 if (skb == tcp_send_head(sk))
1672                         break;
1673
1674                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1675                         break;
1676
1677                 state->fack_count += tcp_skb_pcount(skb);
1678         }
1679         return skb;
1680 }
1681
1682 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1683                                                 struct sock *sk,
1684                                                 struct tcp_sack_block *next_dup,
1685                                                 struct tcp_sacktag_state *state,
1686                                                 u32 skip_to_seq)
1687 {
1688         if (next_dup == NULL)
1689                 return skb;
1690
1691         if (before(next_dup->start_seq, skip_to_seq)) {
1692                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1693                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1694                                        next_dup->start_seq, next_dup->end_seq,
1695                                        1);
1696         }
1697
1698         return skb;
1699 }
1700
1701 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1702 {
1703         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1704 }
1705
1706 static int
1707 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1708                         u32 prior_snd_una)
1709 {
1710         const struct inet_connection_sock *icsk = inet_csk(sk);
1711         struct tcp_sock *tp = tcp_sk(sk);
1712         unsigned char *ptr = (skb_transport_header(ack_skb) +
1713                               TCP_SKB_CB(ack_skb)->sacked);
1714         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1715         struct tcp_sack_block sp[TCP_NUM_SACKS];
1716         struct tcp_sack_block *cache;
1717         struct tcp_sacktag_state state;
1718         struct sk_buff *skb;
1719         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1720         int used_sacks;
1721         int found_dup_sack = 0;
1722         int i, j;
1723         int first_sack_index;
1724
1725         state.flag = 0;
1726         state.reord = tp->packets_out;
1727
1728         if (!tp->sacked_out) {
1729                 if (WARN_ON(tp->fackets_out))
1730                         tp->fackets_out = 0;
1731                 tcp_highest_sack_reset(sk);
1732         }
1733
1734         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1735                                          num_sacks, prior_snd_una);
1736         if (found_dup_sack)
1737                 state.flag |= FLAG_DSACKING_ACK;
1738
1739         /* Eliminate too old ACKs, but take into
1740          * account more or less fresh ones, they can
1741          * contain valid SACK info.
1742          */
1743         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1744                 return 0;
1745
1746         if (!tp->packets_out)
1747                 goto out;
1748
1749         used_sacks = 0;
1750         first_sack_index = 0;
1751         for (i = 0; i < num_sacks; i++) {
1752                 int dup_sack = !i && found_dup_sack;
1753
1754                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1755                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1756
1757                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1758                                             sp[used_sacks].start_seq,
1759                                             sp[used_sacks].end_seq)) {
1760                         int mib_idx;
1761
1762                         if (dup_sack) {
1763                                 if (!tp->undo_marker)
1764                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1765                                 else
1766                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1767                         } else {
1768                                 /* Don't count olds caused by ACK reordering */
1769                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1770                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1771                                         continue;
1772                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1773                         }
1774
1775                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1776                         if (i == 0)
1777                                 first_sack_index = -1;
1778                         continue;
1779                 }
1780
1781                 /* Ignore very old stuff early */
1782                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1783                         continue;
1784
1785                 used_sacks++;
1786         }
1787
1788         /* order SACK blocks to allow in order walk of the retrans queue */
1789         for (i = used_sacks - 1; i > 0; i--) {
1790                 for (j = 0; j < i; j++) {
1791                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1792                                 swap(sp[j], sp[j + 1]);
1793
1794                                 /* Track where the first SACK block goes to */
1795                                 if (j == first_sack_index)
1796                                         first_sack_index = j + 1;
1797                         }
1798                 }
1799         }
1800
1801         skb = tcp_write_queue_head(sk);
1802         state.fack_count = 0;
1803         i = 0;
1804
1805         if (!tp->sacked_out) {
1806                 /* It's already past, so skip checking against it */
1807                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1808         } else {
1809                 cache = tp->recv_sack_cache;
1810                 /* Skip empty blocks in at head of the cache */
1811                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1812                        !cache->end_seq)
1813                         cache++;
1814         }
1815
1816         while (i < used_sacks) {
1817                 u32 start_seq = sp[i].start_seq;
1818                 u32 end_seq = sp[i].end_seq;
1819                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1820                 struct tcp_sack_block *next_dup = NULL;
1821
1822                 if (found_dup_sack && ((i + 1) == first_sack_index))
1823                         next_dup = &sp[i + 1];
1824
1825                 /* Event "B" in the comment above. */
1826                 if (after(end_seq, tp->high_seq))
1827                         state.flag |= FLAG_DATA_LOST;
1828
1829                 /* Skip too early cached blocks */
1830                 while (tcp_sack_cache_ok(tp, cache) &&
1831                        !before(start_seq, cache->end_seq))
1832                         cache++;
1833
1834                 /* Can skip some work by looking recv_sack_cache? */
1835                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1836                     after(end_seq, cache->start_seq)) {
1837
1838                         /* Head todo? */
1839                         if (before(start_seq, cache->start_seq)) {
1840                                 skb = tcp_sacktag_skip(skb, sk, &state,
1841                                                        start_seq);
1842                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1843                                                        &state,
1844                                                        start_seq,
1845                                                        cache->start_seq,
1846                                                        dup_sack);
1847                         }
1848
1849                         /* Rest of the block already fully processed? */
1850                         if (!after(end_seq, cache->end_seq))
1851                                 goto advance_sp;
1852
1853                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1854                                                        &state,
1855                                                        cache->end_seq);
1856
1857                         /* ...tail remains todo... */
1858                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1859                                 /* ...but better entrypoint exists! */
1860                                 skb = tcp_highest_sack(sk);
1861                                 if (skb == NULL)
1862                                         break;
1863                                 state.fack_count = tp->fackets_out;
1864                                 cache++;
1865                                 goto walk;
1866                         }
1867
1868                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1869                         /* Check overlap against next cached too (past this one already) */
1870                         cache++;
1871                         continue;
1872                 }
1873
1874                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1875                         skb = tcp_highest_sack(sk);
1876                         if (skb == NULL)
1877                                 break;
1878                         state.fack_count = tp->fackets_out;
1879                 }
1880                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1881
1882 walk:
1883                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1884                                        start_seq, end_seq, dup_sack);
1885
1886 advance_sp:
1887                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1888                  * due to in-order walk
1889                  */
1890                 if (after(end_seq, tp->frto_highmark))
1891                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1892
1893                 i++;
1894         }
1895
1896         /* Clear the head of the cache sack blocks so we can skip it next time */
1897         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1898                 tp->recv_sack_cache[i].start_seq = 0;
1899                 tp->recv_sack_cache[i].end_seq = 0;
1900         }
1901         for (j = 0; j < used_sacks; j++)
1902                 tp->recv_sack_cache[i++] = sp[j];
1903
1904         tcp_mark_lost_retrans(sk);
1905
1906         tcp_verify_left_out(tp);
1907
1908         if ((state.reord < tp->fackets_out) &&
1909             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1910             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1911                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1912
1913 out:
1914
1915 #if FASTRETRANS_DEBUG > 0
1916         WARN_ON((int)tp->sacked_out < 0);
1917         WARN_ON((int)tp->lost_out < 0);
1918         WARN_ON((int)tp->retrans_out < 0);
1919         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1920 #endif
1921         return state.flag;
1922 }
1923
1924 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1925  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1926  */
1927 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1928 {
1929         u32 holes;
1930
1931         holes = max(tp->lost_out, 1U);
1932         holes = min(holes, tp->packets_out);
1933
1934         if ((tp->sacked_out + holes) > tp->packets_out) {
1935                 tp->sacked_out = tp->packets_out - holes;
1936                 return 1;
1937         }
1938         return 0;
1939 }
1940
1941 /* If we receive more dupacks than we expected counting segments
1942  * in assumption of absent reordering, interpret this as reordering.
1943  * The only another reason could be bug in receiver TCP.
1944  */
1945 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1946 {
1947         struct tcp_sock *tp = tcp_sk(sk);
1948         if (tcp_limit_reno_sacked(tp))
1949                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1950 }
1951
1952 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1953
1954 static void tcp_add_reno_sack(struct sock *sk)
1955 {
1956         struct tcp_sock *tp = tcp_sk(sk);
1957         tp->sacked_out++;
1958         tcp_check_reno_reordering(sk, 0);
1959         tcp_verify_left_out(tp);
1960 }
1961
1962 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1963
1964 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1965 {
1966         struct tcp_sock *tp = tcp_sk(sk);
1967
1968         if (acked > 0) {
1969                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1970                 if (acked - 1 >= tp->sacked_out)
1971                         tp->sacked_out = 0;
1972                 else
1973                         tp->sacked_out -= acked - 1;
1974         }
1975         tcp_check_reno_reordering(sk, acked);
1976         tcp_verify_left_out(tp);
1977 }
1978
1979 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1980 {
1981         tp->sacked_out = 0;
1982 }
1983
1984 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1985 {
1986         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1987 }
1988
1989 /* F-RTO can only be used if TCP has never retransmitted anything other than
1990  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1991  */
1992 int tcp_use_frto(struct sock *sk)
1993 {
1994         const struct tcp_sock *tp = tcp_sk(sk);
1995         const struct inet_connection_sock *icsk = inet_csk(sk);
1996         struct sk_buff *skb;
1997
1998         if (!sysctl_tcp_frto)
1999                 return 0;
2000
2001         /* MTU probe and F-RTO won't really play nicely along currently */
2002         if (icsk->icsk_mtup.probe_size)
2003                 return 0;
2004
2005         if (tcp_is_sackfrto(tp))
2006                 return 1;
2007
2008         /* Avoid expensive walking of rexmit queue if possible */
2009         if (tp->retrans_out > 1)
2010                 return 0;
2011
2012         skb = tcp_write_queue_head(sk);
2013         if (tcp_skb_is_last(sk, skb))
2014                 return 1;
2015         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2016         tcp_for_write_queue_from(skb, sk) {
2017                 if (skb == tcp_send_head(sk))
2018                         break;
2019                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2020                         return 0;
2021                 /* Short-circuit when first non-SACKed skb has been checked */
2022                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2023                         break;
2024         }
2025         return 1;
2026 }
2027
2028 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2029  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2030  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2031  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2032  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2033  * bits are handled if the Loss state is really to be entered (in
2034  * tcp_enter_frto_loss).
2035  *
2036  * Do like tcp_enter_loss() would; when RTO expires the second time it
2037  * does:
2038  *  "Reduce ssthresh if it has not yet been made inside this window."
2039  */
2040 void tcp_enter_frto(struct sock *sk)
2041 {
2042         const struct inet_connection_sock *icsk = inet_csk(sk);
2043         struct tcp_sock *tp = tcp_sk(sk);
2044         struct sk_buff *skb;
2045
2046         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2047             tp->snd_una == tp->high_seq ||
2048             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2049              !icsk->icsk_retransmits)) {
2050                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2051                 /* Our state is too optimistic in ssthresh() call because cwnd
2052                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2053                  * recovery has not yet completed. Pattern would be this: RTO,
2054                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2055                  * up here twice).
2056                  * RFC4138 should be more specific on what to do, even though
2057                  * RTO is quite unlikely to occur after the first Cumulative ACK
2058                  * due to back-off and complexity of triggering events ...
2059                  */
2060                 if (tp->frto_counter) {
2061                         u32 stored_cwnd;
2062                         stored_cwnd = tp->snd_cwnd;
2063                         tp->snd_cwnd = 2;
2064                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2065                         tp->snd_cwnd = stored_cwnd;
2066                 } else {
2067                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2068                 }
2069                 /* ... in theory, cong.control module could do "any tricks" in
2070                  * ssthresh(), which means that ca_state, lost bits and lost_out
2071                  * counter would have to be faked before the call occurs. We
2072                  * consider that too expensive, unlikely and hacky, so modules
2073                  * using these in ssthresh() must deal these incompatibility
2074                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2075                  */
2076                 tcp_ca_event(sk, CA_EVENT_FRTO);
2077         }
2078
2079         tp->undo_marker = tp->snd_una;
2080         tp->undo_retrans = 0;
2081
2082         skb = tcp_write_queue_head(sk);
2083         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2084                 tp->undo_marker = 0;
2085         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2086                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2087                 tp->retrans_out -= tcp_skb_pcount(skb);
2088         }
2089         tcp_verify_left_out(tp);
2090
2091         /* Too bad if TCP was application limited */
2092         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2093
2094         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2095          * The last condition is necessary at least in tp->frto_counter case.
2096          */
2097         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2098             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2099             after(tp->high_seq, tp->snd_una)) {
2100                 tp->frto_highmark = tp->high_seq;
2101         } else {
2102                 tp->frto_highmark = tp->snd_nxt;
2103         }
2104         tcp_set_ca_state(sk, TCP_CA_Disorder);
2105         tp->high_seq = tp->snd_nxt;
2106         tp->frto_counter = 1;
2107 }
2108
2109 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2110  * which indicates that we should follow the traditional RTO recovery,
2111  * i.e. mark everything lost and do go-back-N retransmission.
2112  */
2113 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2114 {
2115         struct tcp_sock *tp = tcp_sk(sk);
2116         struct sk_buff *skb;
2117
2118         tp->lost_out = 0;
2119         tp->retrans_out = 0;
2120         if (tcp_is_reno(tp))
2121                 tcp_reset_reno_sack(tp);
2122
2123         tcp_for_write_queue(skb, sk) {
2124                 if (skb == tcp_send_head(sk))
2125                         break;
2126
2127                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2128                 /*
2129                  * Count the retransmission made on RTO correctly (only when
2130                  * waiting for the first ACK and did not get it)...
2131                  */
2132                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2133                         /* For some reason this R-bit might get cleared? */
2134                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2135                                 tp->retrans_out += tcp_skb_pcount(skb);
2136                         /* ...enter this if branch just for the first segment */
2137                         flag |= FLAG_DATA_ACKED;
2138                 } else {
2139                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2140                                 tp->undo_marker = 0;
2141                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2142                 }
2143
2144                 /* Marking forward transmissions that were made after RTO lost
2145                  * can cause unnecessary retransmissions in some scenarios,
2146                  * SACK blocks will mitigate that in some but not in all cases.
2147                  * We used to not mark them but it was causing break-ups with
2148                  * receivers that do only in-order receival.
2149                  *
2150                  * TODO: we could detect presence of such receiver and select
2151                  * different behavior per flow.
2152                  */
2153                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2154                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2155                         tp->lost_out += tcp_skb_pcount(skb);
2156                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2157                 }
2158         }
2159         tcp_verify_left_out(tp);
2160
2161         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2162         tp->snd_cwnd_cnt = 0;
2163         tp->snd_cwnd_stamp = tcp_time_stamp;
2164         tp->frto_counter = 0;
2165         tp->bytes_acked = 0;
2166
2167         tp->reordering = min_t(unsigned int, tp->reordering,
2168                                sysctl_tcp_reordering);
2169         tcp_set_ca_state(sk, TCP_CA_Loss);
2170         tp->high_seq = tp->snd_nxt;
2171         TCP_ECN_queue_cwr(tp);
2172
2173         tcp_clear_all_retrans_hints(tp);
2174 }
2175
2176 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2177 {
2178         tp->retrans_out = 0;
2179         tp->lost_out = 0;
2180
2181         tp->undo_marker = 0;
2182         tp->undo_retrans = 0;
2183 }
2184
2185 void tcp_clear_retrans(struct tcp_sock *tp)
2186 {
2187         tcp_clear_retrans_partial(tp);
2188
2189         tp->fackets_out = 0;
2190         tp->sacked_out = 0;
2191 }
2192
2193 /* Enter Loss state. If "how" is not zero, forget all SACK information
2194  * and reset tags completely, otherwise preserve SACKs. If receiver
2195  * dropped its ofo queue, we will know this due to reneging detection.
2196  */
2197 void tcp_enter_loss(struct sock *sk, int how)
2198 {
2199         const struct inet_connection_sock *icsk = inet_csk(sk);
2200         struct tcp_sock *tp = tcp_sk(sk);
2201         struct sk_buff *skb;
2202
2203         /* Reduce ssthresh if it has not yet been made inside this window. */
2204         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2205             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2206                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2207                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2208                 tcp_ca_event(sk, CA_EVENT_LOSS);
2209         }
2210         tp->snd_cwnd       = 1;
2211         tp->snd_cwnd_cnt   = 0;
2212         tp->snd_cwnd_stamp = tcp_time_stamp;
2213
2214         tp->bytes_acked = 0;
2215         tcp_clear_retrans_partial(tp);
2216
2217         if (tcp_is_reno(tp))
2218                 tcp_reset_reno_sack(tp);
2219
2220         if (!how) {
2221                 /* Push undo marker, if it was plain RTO and nothing
2222                  * was retransmitted. */
2223                 tp->undo_marker = tp->snd_una;
2224         } else {
2225                 tp->sacked_out = 0;
2226                 tp->fackets_out = 0;
2227         }
2228         tcp_clear_all_retrans_hints(tp);
2229
2230         tcp_for_write_queue(skb, sk) {
2231                 if (skb == tcp_send_head(sk))
2232                         break;
2233
2234                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2235                         tp->undo_marker = 0;
2236                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2237                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2238                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2239                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2240                         tp->lost_out += tcp_skb_pcount(skb);
2241                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2242                 }
2243         }
2244         tcp_verify_left_out(tp);
2245
2246         tp->reordering = min_t(unsigned int, tp->reordering,
2247                                sysctl_tcp_reordering);
2248         tcp_set_ca_state(sk, TCP_CA_Loss);
2249         tp->high_seq = tp->snd_nxt;
2250         TCP_ECN_queue_cwr(tp);
2251         /* Abort F-RTO algorithm if one is in progress */
2252         tp->frto_counter = 0;
2253 }
2254
2255 /* If ACK arrived pointing to a remembered SACK, it means that our
2256  * remembered SACKs do not reflect real state of receiver i.e.
2257  * receiver _host_ is heavily congested (or buggy).
2258  *
2259  * Do processing similar to RTO timeout.
2260  */
2261 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2262 {
2263         if (flag & FLAG_SACK_RENEGING) {
2264                 struct inet_connection_sock *icsk = inet_csk(sk);
2265                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2266
2267                 tcp_enter_loss(sk, 1);
2268                 icsk->icsk_retransmits++;
2269                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2270                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2271                                           icsk->icsk_rto, TCP_RTO_MAX);
2272                 return 1;
2273         }
2274         return 0;
2275 }
2276
2277 static inline int tcp_fackets_out(struct tcp_sock *tp)
2278 {
2279         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2280 }
2281
2282 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2283  * counter when SACK is enabled (without SACK, sacked_out is used for
2284  * that purpose).
2285  *
2286  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2287  * segments up to the highest received SACK block so far and holes in
2288  * between them.
2289  *
2290  * With reordering, holes may still be in flight, so RFC3517 recovery
2291  * uses pure sacked_out (total number of SACKed segments) even though
2292  * it violates the RFC that uses duplicate ACKs, often these are equal
2293  * but when e.g. out-of-window ACKs or packet duplication occurs,
2294  * they differ. Since neither occurs due to loss, TCP should really
2295  * ignore them.
2296  */
2297 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2298 {
2299         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2300 }
2301
2302 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2303 {
2304         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2305 }
2306
2307 static inline int tcp_head_timedout(struct sock *sk)
2308 {
2309         struct tcp_sock *tp = tcp_sk(sk);
2310
2311         return tp->packets_out &&
2312                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2313 }
2314
2315 /* Linux NewReno/SACK/FACK/ECN state machine.
2316  * --------------------------------------
2317  *
2318  * "Open"       Normal state, no dubious events, fast path.
2319  * "Disorder"   In all the respects it is "Open",
2320  *              but requires a bit more attention. It is entered when
2321  *              we see some SACKs or dupacks. It is split of "Open"
2322  *              mainly to move some processing from fast path to slow one.
2323  * "CWR"        CWND was reduced due to some Congestion Notification event.
2324  *              It can be ECN, ICMP source quench, local device congestion.
2325  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2326  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2327  *
2328  * tcp_fastretrans_alert() is entered:
2329  * - each incoming ACK, if state is not "Open"
2330  * - when arrived ACK is unusual, namely:
2331  *      * SACK
2332  *      * Duplicate ACK.
2333  *      * ECN ECE.
2334  *
2335  * Counting packets in flight is pretty simple.
2336  *
2337  *      in_flight = packets_out - left_out + retrans_out
2338  *
2339  *      packets_out is SND.NXT-SND.UNA counted in packets.
2340  *
2341  *      retrans_out is number of retransmitted segments.
2342  *
2343  *      left_out is number of segments left network, but not ACKed yet.
2344  *
2345  *              left_out = sacked_out + lost_out
2346  *
2347  *     sacked_out: Packets, which arrived to receiver out of order
2348  *                 and hence not ACKed. With SACKs this number is simply
2349  *                 amount of SACKed data. Even without SACKs
2350  *                 it is easy to give pretty reliable estimate of this number,
2351  *                 counting duplicate ACKs.
2352  *
2353  *       lost_out: Packets lost by network. TCP has no explicit
2354  *                 "loss notification" feedback from network (for now).
2355  *                 It means that this number can be only _guessed_.
2356  *                 Actually, it is the heuristics to predict lossage that
2357  *                 distinguishes different algorithms.
2358  *
2359  *      F.e. after RTO, when all the queue is considered as lost,
2360  *      lost_out = packets_out and in_flight = retrans_out.
2361  *
2362  *              Essentially, we have now two algorithms counting
2363  *              lost packets.
2364  *
2365  *              FACK: It is the simplest heuristics. As soon as we decided
2366  *              that something is lost, we decide that _all_ not SACKed
2367  *              packets until the most forward SACK are lost. I.e.
2368  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2369  *              It is absolutely correct estimate, if network does not reorder
2370  *              packets. And it loses any connection to reality when reordering
2371  *              takes place. We use FACK by default until reordering
2372  *              is suspected on the path to this destination.
2373  *
2374  *              NewReno: when Recovery is entered, we assume that one segment
2375  *              is lost (classic Reno). While we are in Recovery and
2376  *              a partial ACK arrives, we assume that one more packet
2377  *              is lost (NewReno). This heuristics are the same in NewReno
2378  *              and SACK.
2379  *
2380  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2381  *  deflation etc. CWND is real congestion window, never inflated, changes
2382  *  only according to classic VJ rules.
2383  *
2384  * Really tricky (and requiring careful tuning) part of algorithm
2385  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2386  * The first determines the moment _when_ we should reduce CWND and,
2387  * hence, slow down forward transmission. In fact, it determines the moment
2388  * when we decide that hole is caused by loss, rather than by a reorder.
2389  *
2390  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2391  * holes, caused by lost packets.
2392  *
2393  * And the most logically complicated part of algorithm is undo
2394  * heuristics. We detect false retransmits due to both too early
2395  * fast retransmit (reordering) and underestimated RTO, analyzing
2396  * timestamps and D-SACKs. When we detect that some segments were
2397  * retransmitted by mistake and CWND reduction was wrong, we undo
2398  * window reduction and abort recovery phase. This logic is hidden
2399  * inside several functions named tcp_try_undo_<something>.
2400  */
2401
2402 /* This function decides, when we should leave Disordered state
2403  * and enter Recovery phase, reducing congestion window.
2404  *
2405  * Main question: may we further continue forward transmission
2406  * with the same cwnd?
2407  */
2408 static int tcp_time_to_recover(struct sock *sk)
2409 {
2410         struct tcp_sock *tp = tcp_sk(sk);
2411         __u32 packets_out;
2412
2413         /* Do not perform any recovery during F-RTO algorithm */
2414         if (tp->frto_counter)
2415                 return 0;
2416
2417         /* Trick#1: The loss is proven. */
2418         if (tp->lost_out)
2419                 return 1;
2420
2421         /* Not-A-Trick#2 : Classic rule... */
2422         if (tcp_dupack_heuristics(tp) > tp->reordering)
2423                 return 1;
2424
2425         /* Trick#3 : when we use RFC2988 timer restart, fast
2426          * retransmit can be triggered by timeout of queue head.
2427          */
2428         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2429                 return 1;
2430
2431         /* Trick#4: It is still not OK... But will it be useful to delay
2432          * recovery more?
2433          */
2434         packets_out = tp->packets_out;
2435         if (packets_out <= tp->reordering &&
2436             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2437             !tcp_may_send_now(sk)) {
2438                 /* We have nothing to send. This connection is limited
2439                  * either by receiver window or by application.
2440                  */
2441                 return 1;
2442         }
2443
2444         /* If a thin stream is detected, retransmit after first
2445          * received dupack. Employ only if SACK is supported in order
2446          * to avoid possible corner-case series of spurious retransmissions
2447          * Use only if there are no unsent data.
2448          */
2449         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2450             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2451             tcp_is_sack(tp) && !tcp_send_head(sk))
2452                 return 1;
2453
2454         return 0;
2455 }
2456
2457 /* New heuristics: it is possible only after we switched to restart timer
2458  * each time when something is ACKed. Hence, we can detect timed out packets
2459  * during fast retransmit without falling to slow start.
2460  *
2461  * Usefulness of this as is very questionable, since we should know which of
2462  * the segments is the next to timeout which is relatively expensive to find
2463  * in general case unless we add some data structure just for that. The
2464  * current approach certainly won't find the right one too often and when it
2465  * finally does find _something_ it usually marks large part of the window
2466  * right away (because a retransmission with a larger timestamp blocks the
2467  * loop from advancing). -ij
2468  */
2469 static void tcp_timeout_skbs(struct sock *sk)
2470 {
2471         struct tcp_sock *tp = tcp_sk(sk);
2472         struct sk_buff *skb;
2473
2474         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2475                 return;
2476
2477         skb = tp->scoreboard_skb_hint;
2478         if (tp->scoreboard_skb_hint == NULL)
2479                 skb = tcp_write_queue_head(sk);
2480
2481         tcp_for_write_queue_from(skb, sk) {
2482                 if (skb == tcp_send_head(sk))
2483                         break;
2484                 if (!tcp_skb_timedout(sk, skb))
2485                         break;
2486
2487                 tcp_skb_mark_lost(tp, skb);
2488         }
2489
2490         tp->scoreboard_skb_hint = skb;
2491
2492         tcp_verify_left_out(tp);
2493 }
2494
2495 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2496  * is against sacked "cnt", otherwise it's against facked "cnt"
2497  */
2498 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2499 {
2500         struct tcp_sock *tp = tcp_sk(sk);
2501         struct sk_buff *skb;
2502         int cnt, oldcnt;
2503         int err;
2504         unsigned int mss;
2505
2506         WARN_ON(packets > tp->packets_out);
2507         if (tp->lost_skb_hint) {
2508                 skb = tp->lost_skb_hint;
2509                 cnt = tp->lost_cnt_hint;
2510                 /* Head already handled? */
2511                 if (mark_head && skb != tcp_write_queue_head(sk))
2512                         return;
2513         } else {
2514                 skb = tcp_write_queue_head(sk);
2515                 cnt = 0;
2516         }
2517
2518         tcp_for_write_queue_from(skb, sk) {
2519                 if (skb == tcp_send_head(sk))
2520                         break;
2521                 /* TODO: do this better */
2522                 /* this is not the most efficient way to do this... */
2523                 tp->lost_skb_hint = skb;
2524                 tp->lost_cnt_hint = cnt;
2525
2526                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2527                         break;
2528
2529                 oldcnt = cnt;
2530                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2531                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2532                         cnt += tcp_skb_pcount(skb);
2533
2534                 if (cnt > packets) {
2535                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2536                             (oldcnt >= packets))
2537                                 break;
2538
2539                         mss = skb_shinfo(skb)->gso_size;
2540                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2541                         if (err < 0)
2542                                 break;
2543                         cnt = packets;
2544                 }
2545
2546                 tcp_skb_mark_lost(tp, skb);
2547
2548                 if (mark_head)
2549                         break;
2550         }
2551         tcp_verify_left_out(tp);
2552 }
2553
2554 /* Account newly detected lost packet(s) */
2555
2556 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2557 {
2558         struct tcp_sock *tp = tcp_sk(sk);
2559
2560         if (tcp_is_reno(tp)) {
2561                 tcp_mark_head_lost(sk, 1, 1);
2562         } else if (tcp_is_fack(tp)) {
2563                 int lost = tp->fackets_out - tp->reordering;
2564                 if (lost <= 0)
2565                         lost = 1;
2566                 tcp_mark_head_lost(sk, lost, 0);
2567         } else {
2568                 int sacked_upto = tp->sacked_out - tp->reordering;
2569                 if (sacked_upto >= 0)
2570                         tcp_mark_head_lost(sk, sacked_upto, 0);
2571                 else if (fast_rexmit)
2572                         tcp_mark_head_lost(sk, 1, 1);
2573         }
2574
2575         tcp_timeout_skbs(sk);
2576 }
2577
2578 /* CWND moderation, preventing bursts due to too big ACKs
2579  * in dubious situations.
2580  */
2581 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2582 {
2583         tp->snd_cwnd = min(tp->snd_cwnd,
2584                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2585         tp->snd_cwnd_stamp = tcp_time_stamp;
2586 }
2587
2588 /* Lower bound on congestion window is slow start threshold
2589  * unless congestion avoidance choice decides to overide it.
2590  */
2591 static inline u32 tcp_cwnd_min(const struct sock *sk)
2592 {
2593         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2594
2595         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2596 }
2597
2598 /* Decrease cwnd each second ack. */
2599 static void tcp_cwnd_down(struct sock *sk, int flag)
2600 {
2601         struct tcp_sock *tp = tcp_sk(sk);
2602         int decr = tp->snd_cwnd_cnt + 1;
2603
2604         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2605             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2606                 tp->snd_cwnd_cnt = decr & 1;
2607                 decr >>= 1;
2608
2609                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2610                         tp->snd_cwnd -= decr;
2611
2612                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2613                 tp->snd_cwnd_stamp = tcp_time_stamp;
2614         }
2615 }
2616
2617 /* Nothing was retransmitted or returned timestamp is less
2618  * than timestamp of the first retransmission.
2619  */
2620 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2621 {
2622         return !tp->retrans_stamp ||
2623                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2624                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2625 }
2626
2627 /* Undo procedures. */
2628
2629 #if FASTRETRANS_DEBUG > 1
2630 static void DBGUNDO(struct sock *sk, const char *msg)
2631 {
2632         struct tcp_sock *tp = tcp_sk(sk);
2633         struct inet_sock *inet = inet_sk(sk);
2634
2635         if (sk->sk_family == AF_INET) {
2636                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2637                        msg,
2638                        &inet->inet_daddr, ntohs(inet->inet_dport),
2639                        tp->snd_cwnd, tcp_left_out(tp),
2640                        tp->snd_ssthresh, tp->prior_ssthresh,
2641                        tp->packets_out);
2642         }
2643 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2644         else if (sk->sk_family == AF_INET6) {
2645                 struct ipv6_pinfo *np = inet6_sk(sk);
2646                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2647                        msg,
2648                        &np->daddr, ntohs(inet->inet_dport),
2649                        tp->snd_cwnd, tcp_left_out(tp),
2650                        tp->snd_ssthresh, tp->prior_ssthresh,
2651                        tp->packets_out);
2652         }
2653 #endif
2654 }
2655 #else
2656 #define DBGUNDO(x...) do { } while (0)
2657 #endif
2658
2659 static void tcp_undo_cwr(struct sock *sk, const int undo)
2660 {
2661         struct tcp_sock *tp = tcp_sk(sk);
2662
2663         if (tp->prior_ssthresh) {
2664                 const struct inet_connection_sock *icsk = inet_csk(sk);
2665
2666                 if (icsk->icsk_ca_ops->undo_cwnd)
2667                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2668                 else
2669                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2670
2671                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2672                         tp->snd_ssthresh = tp->prior_ssthresh;
2673                         TCP_ECN_withdraw_cwr(tp);
2674                 }
2675         } else {
2676                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2677         }
2678         tcp_moderate_cwnd(tp);
2679         tp->snd_cwnd_stamp = tcp_time_stamp;
2680 }
2681
2682 static inline int tcp_may_undo(struct tcp_sock *tp)
2683 {
2684         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2685 }
2686
2687 /* People celebrate: "We love our President!" */
2688 static int tcp_try_undo_recovery(struct sock *sk)
2689 {
2690         struct tcp_sock *tp = tcp_sk(sk);
2691
2692         if (tcp_may_undo(tp)) {
2693                 int mib_idx;
2694
2695                 /* Happy end! We did not retransmit anything
2696                  * or our original transmission succeeded.
2697                  */
2698                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2699                 tcp_undo_cwr(sk, 1);
2700                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2701                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2702                 else
2703                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2704
2705                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2706                 tp->undo_marker = 0;
2707         }
2708         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2709                 /* Hold old state until something *above* high_seq
2710                  * is ACKed. For Reno it is MUST to prevent false
2711                  * fast retransmits (RFC2582). SACK TCP is safe. */
2712                 tcp_moderate_cwnd(tp);
2713                 return 1;
2714         }
2715         tcp_set_ca_state(sk, TCP_CA_Open);
2716         return 0;
2717 }
2718
2719 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2720 static void tcp_try_undo_dsack(struct sock *sk)
2721 {
2722         struct tcp_sock *tp = tcp_sk(sk);
2723
2724         if (tp->undo_marker && !tp->undo_retrans) {
2725                 DBGUNDO(sk, "D-SACK");
2726                 tcp_undo_cwr(sk, 1);
2727                 tp->undo_marker = 0;
2728                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2729         }
2730 }
2731
2732 /* We can clear retrans_stamp when there are no retransmissions in the
2733  * window. It would seem that it is trivially available for us in
2734  * tp->retrans_out, however, that kind of assumptions doesn't consider
2735  * what will happen if errors occur when sending retransmission for the
2736  * second time. ...It could the that such segment has only
2737  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2738  * the head skb is enough except for some reneging corner cases that
2739  * are not worth the effort.
2740  *
2741  * Main reason for all this complexity is the fact that connection dying
2742  * time now depends on the validity of the retrans_stamp, in particular,
2743  * that successive retransmissions of a segment must not advance
2744  * retrans_stamp under any conditions.
2745  */
2746 static int tcp_any_retrans_done(struct sock *sk)
2747 {
2748         struct tcp_sock *tp = tcp_sk(sk);
2749         struct sk_buff *skb;
2750
2751         if (tp->retrans_out)
2752                 return 1;
2753
2754         skb = tcp_write_queue_head(sk);
2755         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2756                 return 1;
2757
2758         return 0;
2759 }
2760
2761 /* Undo during fast recovery after partial ACK. */
2762
2763 static int tcp_try_undo_partial(struct sock *sk, int acked)
2764 {
2765         struct tcp_sock *tp = tcp_sk(sk);
2766         /* Partial ACK arrived. Force Hoe's retransmit. */
2767         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2768
2769         if (tcp_may_undo(tp)) {
2770                 /* Plain luck! Hole if filled with delayed
2771                  * packet, rather than with a retransmit.
2772                  */
2773                 if (!tcp_any_retrans_done(sk))
2774                         tp->retrans_stamp = 0;
2775
2776                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2777
2778                 DBGUNDO(sk, "Hoe");
2779                 tcp_undo_cwr(sk, 0);
2780                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2781
2782                 /* So... Do not make Hoe's retransmit yet.
2783                  * If the first packet was delayed, the rest
2784                  * ones are most probably delayed as well.
2785                  */
2786                 failed = 0;
2787         }
2788         return failed;
2789 }
2790
2791 /* Undo during loss recovery after partial ACK. */
2792 static int tcp_try_undo_loss(struct sock *sk)
2793 {
2794         struct tcp_sock *tp = tcp_sk(sk);
2795
2796         if (tcp_may_undo(tp)) {
2797                 struct sk_buff *skb;
2798                 tcp_for_write_queue(skb, sk) {
2799                         if (skb == tcp_send_head(sk))
2800                                 break;
2801                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2802                 }
2803
2804                 tcp_clear_all_retrans_hints(tp);
2805
2806                 DBGUNDO(sk, "partial loss");
2807                 tp->lost_out = 0;
2808                 tcp_undo_cwr(sk, 1);
2809                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2810                 inet_csk(sk)->icsk_retransmits = 0;
2811                 tp->undo_marker = 0;
2812                 if (tcp_is_sack(tp))
2813                         tcp_set_ca_state(sk, TCP_CA_Open);
2814                 return 1;
2815         }
2816         return 0;
2817 }
2818
2819 static inline void tcp_complete_cwr(struct sock *sk)
2820 {
2821         struct tcp_sock *tp = tcp_sk(sk);
2822         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2823         tp->snd_cwnd_stamp = tcp_time_stamp;
2824         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2825 }
2826
2827 static void tcp_try_keep_open(struct sock *sk)
2828 {
2829         struct tcp_sock *tp = tcp_sk(sk);
2830         int state = TCP_CA_Open;
2831
2832         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2833                 state = TCP_CA_Disorder;
2834
2835         if (inet_csk(sk)->icsk_ca_state != state) {
2836                 tcp_set_ca_state(sk, state);
2837                 tp->high_seq = tp->snd_nxt;
2838         }
2839 }
2840
2841 static void tcp_try_to_open(struct sock *sk, int flag)
2842 {
2843         struct tcp_sock *tp = tcp_sk(sk);
2844
2845         tcp_verify_left_out(tp);
2846
2847         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2848                 tp->retrans_stamp = 0;
2849
2850         if (flag & FLAG_ECE)
2851                 tcp_enter_cwr(sk, 1);
2852
2853         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2854                 tcp_try_keep_open(sk);
2855                 tcp_moderate_cwnd(tp);
2856         } else {
2857                 tcp_cwnd_down(sk, flag);
2858         }
2859 }
2860
2861 static void tcp_mtup_probe_failed(struct sock *sk)
2862 {
2863         struct inet_connection_sock *icsk = inet_csk(sk);
2864
2865         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2866         icsk->icsk_mtup.probe_size = 0;
2867 }
2868
2869 static void tcp_mtup_probe_success(struct sock *sk)
2870 {
2871         struct tcp_sock *tp = tcp_sk(sk);
2872         struct inet_connection_sock *icsk = inet_csk(sk);
2873
2874         /* FIXME: breaks with very large cwnd */
2875         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2876         tp->snd_cwnd = tp->snd_cwnd *
2877                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2878                        icsk->icsk_mtup.probe_size;
2879         tp->snd_cwnd_cnt = 0;
2880         tp->snd_cwnd_stamp = tcp_time_stamp;
2881         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2882
2883         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2884         icsk->icsk_mtup.probe_size = 0;
2885         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2886 }
2887
2888 /* Do a simple retransmit without using the backoff mechanisms in
2889  * tcp_timer. This is used for path mtu discovery.
2890  * The socket is already locked here.
2891  */
2892 void tcp_simple_retransmit(struct sock *sk)
2893 {
2894         const struct inet_connection_sock *icsk = inet_csk(sk);
2895         struct tcp_sock *tp = tcp_sk(sk);
2896         struct sk_buff *skb;
2897         unsigned int mss = tcp_current_mss(sk);
2898         u32 prior_lost = tp->lost_out;
2899
2900         tcp_for_write_queue(skb, sk) {
2901                 if (skb == tcp_send_head(sk))
2902                         break;
2903                 if (tcp_skb_seglen(skb) > mss &&
2904                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2905                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2906                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2907                                 tp->retrans_out -= tcp_skb_pcount(skb);
2908                         }
2909                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2910                 }
2911         }
2912
2913         tcp_clear_retrans_hints_partial(tp);
2914
2915         if (prior_lost == tp->lost_out)
2916                 return;
2917
2918         if (tcp_is_reno(tp))
2919                 tcp_limit_reno_sacked(tp);
2920
2921         tcp_verify_left_out(tp);
2922
2923         /* Don't muck with the congestion window here.
2924          * Reason is that we do not increase amount of _data_
2925          * in network, but units changed and effective
2926          * cwnd/ssthresh really reduced now.
2927          */
2928         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2929                 tp->high_seq = tp->snd_nxt;
2930                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2931                 tp->prior_ssthresh = 0;
2932                 tp->undo_marker = 0;
2933                 tcp_set_ca_state(sk, TCP_CA_Loss);
2934         }
2935         tcp_xmit_retransmit_queue(sk);
2936 }
2937 EXPORT_SYMBOL(tcp_simple_retransmit);
2938
2939 /* Process an event, which can update packets-in-flight not trivially.
2940  * Main goal of this function is to calculate new estimate for left_out,
2941  * taking into account both packets sitting in receiver's buffer and
2942  * packets lost by network.
2943  *
2944  * Besides that it does CWND reduction, when packet loss is detected
2945  * and changes state of machine.
2946  *
2947  * It does _not_ decide what to send, it is made in function
2948  * tcp_xmit_retransmit_queue().
2949  */
2950 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2951 {
2952         struct inet_connection_sock *icsk = inet_csk(sk);
2953         struct tcp_sock *tp = tcp_sk(sk);
2954         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2955         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2956                                     (tcp_fackets_out(tp) > tp->reordering));
2957         int fast_rexmit = 0, mib_idx;
2958
2959         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2960                 tp->sacked_out = 0;
2961         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2962                 tp->fackets_out = 0;
2963
2964         /* Now state machine starts.
2965          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2966         if (flag & FLAG_ECE)
2967                 tp->prior_ssthresh = 0;
2968
2969         /* B. In all the states check for reneging SACKs. */
2970         if (tcp_check_sack_reneging(sk, flag))
2971                 return;
2972
2973         /* C. Process data loss notification, provided it is valid. */
2974         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2975             before(tp->snd_una, tp->high_seq) &&
2976             icsk->icsk_ca_state != TCP_CA_Open &&
2977             tp->fackets_out > tp->reordering) {
2978                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2979                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2980         }
2981
2982         /* D. Check consistency of the current state. */
2983         tcp_verify_left_out(tp);
2984
2985         /* E. Check state exit conditions. State can be terminated
2986          *    when high_seq is ACKed. */
2987         if (icsk->icsk_ca_state == TCP_CA_Open) {
2988                 WARN_ON(tp->retrans_out != 0);
2989                 tp->retrans_stamp = 0;
2990         } else if (!before(tp->snd_una, tp->high_seq)) {
2991                 switch (icsk->icsk_ca_state) {
2992                 case TCP_CA_Loss:
2993                         icsk->icsk_retransmits = 0;
2994                         if (tcp_try_undo_recovery(sk))
2995                                 return;
2996                         break;
2997
2998                 case TCP_CA_CWR:
2999                         /* CWR is to be held something *above* high_seq
3000                          * is ACKed for CWR bit to reach receiver. */
3001                         if (tp->snd_una != tp->high_seq) {
3002                                 tcp_complete_cwr(sk);
3003                                 tcp_set_ca_state(sk, TCP_CA_Open);
3004                         }
3005                         break;
3006
3007                 case TCP_CA_Disorder:
3008                         tcp_try_undo_dsack(sk);
3009                         if (!tp->undo_marker ||
3010                             /* For SACK case do not Open to allow to undo
3011                              * catching for all duplicate ACKs. */
3012                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3013                                 tp->undo_marker = 0;
3014                                 tcp_set_ca_state(sk, TCP_CA_Open);
3015                         }
3016                         break;
3017
3018                 case TCP_CA_Recovery:
3019                         if (tcp_is_reno(tp))
3020                                 tcp_reset_reno_sack(tp);
3021                         if (tcp_try_undo_recovery(sk))
3022                                 return;
3023                         tcp_complete_cwr(sk);
3024                         break;
3025                 }
3026         }
3027
3028         /* F. Process state. */
3029         switch (icsk->icsk_ca_state) {
3030         case TCP_CA_Recovery:
3031                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3032                         if (tcp_is_reno(tp) && is_dupack)
3033                                 tcp_add_reno_sack(sk);
3034                 } else
3035                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3036                 break;
3037         case TCP_CA_Loss:
3038                 if (flag & FLAG_DATA_ACKED)
3039                         icsk->icsk_retransmits = 0;
3040                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3041                         tcp_reset_reno_sack(tp);
3042                 if (!tcp_try_undo_loss(sk)) {
3043                         tcp_moderate_cwnd(tp);
3044                         tcp_xmit_retransmit_queue(sk);
3045                         return;
3046                 }
3047                 if (icsk->icsk_ca_state != TCP_CA_Open)
3048                         return;
3049                 /* Loss is undone; fall through to processing in Open state. */
3050         default:
3051                 if (tcp_is_reno(tp)) {
3052                         if (flag & FLAG_SND_UNA_ADVANCED)
3053                                 tcp_reset_reno_sack(tp);
3054                         if (is_dupack)
3055                                 tcp_add_reno_sack(sk);
3056                 }
3057
3058                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3059                         tcp_try_undo_dsack(sk);
3060
3061                 if (!tcp_time_to_recover(sk)) {
3062                         tcp_try_to_open(sk, flag);
3063                         return;
3064                 }
3065
3066                 /* MTU probe failure: don't reduce cwnd */
3067                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3068                     icsk->icsk_mtup.probe_size &&
3069                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3070                         tcp_mtup_probe_failed(sk);
3071                         /* Restores the reduction we did in tcp_mtup_probe() */
3072                         tp->snd_cwnd++;
3073                         tcp_simple_retransmit(sk);
3074                         return;
3075                 }
3076
3077                 /* Otherwise enter Recovery state */
3078
3079                 if (tcp_is_reno(tp))
3080                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3081                 else
3082                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3083
3084                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3085
3086                 tp->high_seq = tp->snd_nxt;
3087                 tp->prior_ssthresh = 0;
3088                 tp->undo_marker = tp->snd_una;
3089                 tp->undo_retrans = tp->retrans_out;
3090
3091                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3092                         if (!(flag & FLAG_ECE))
3093                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3094                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3095                         TCP_ECN_queue_cwr(tp);
3096                 }
3097
3098                 tp->bytes_acked = 0;
3099                 tp->snd_cwnd_cnt = 0;
3100                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3101                 fast_rexmit = 1;
3102         }
3103
3104         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3105                 tcp_update_scoreboard(sk, fast_rexmit);
3106         tcp_cwnd_down(sk, flag);
3107         tcp_xmit_retransmit_queue(sk);
3108 }
3109
3110 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3111 {
3112         tcp_rtt_estimator(sk, seq_rtt);
3113         tcp_set_rto(sk);
3114         inet_csk(sk)->icsk_backoff = 0;
3115 }
3116
3117 /* Read draft-ietf-tcplw-high-performance before mucking
3118  * with this code. (Supersedes RFC1323)
3119  */
3120 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3121 {
3122         /* RTTM Rule: A TSecr value received in a segment is used to
3123          * update the averaged RTT measurement only if the segment
3124          * acknowledges some new data, i.e., only if it advances the
3125          * left edge of the send window.
3126          *
3127          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3128          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3129          *
3130          * Changed: reset backoff as soon as we see the first valid sample.
3131          * If we do not, we get strongly overestimated rto. With timestamps
3132          * samples are accepted even from very old segments: f.e., when rtt=1
3133          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3134          * answer arrives rto becomes 120 seconds! If at least one of segments
3135          * in window is lost... Voila.                          --ANK (010210)
3136          */
3137         struct tcp_sock *tp = tcp_sk(sk);
3138
3139         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3140 }
3141
3142 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3143 {
3144         /* We don't have a timestamp. Can only use
3145          * packets that are not retransmitted to determine
3146          * rtt estimates. Also, we must not reset the
3147          * backoff for rto until we get a non-retransmitted
3148          * packet. This allows us to deal with a situation
3149          * where the network delay has increased suddenly.
3150          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3151          */
3152
3153         if (flag & FLAG_RETRANS_DATA_ACKED)
3154                 return;
3155
3156         tcp_valid_rtt_meas(sk, seq_rtt);
3157 }
3158
3159 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3160                                       const s32 seq_rtt)
3161 {
3162         const struct tcp_sock *tp = tcp_sk(sk);
3163         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3164         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3165                 tcp_ack_saw_tstamp(sk, flag);
3166         else if (seq_rtt >= 0)
3167                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3168 }
3169
3170 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3171 {
3172         const struct inet_connection_sock *icsk = inet_csk(sk);
3173         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3174         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3175 }
3176
3177 /* Restart timer after forward progress on connection.
3178  * RFC2988 recommends to restart timer to now+rto.
3179  */
3180 static void tcp_rearm_rto(struct sock *sk)
3181 {
3182         struct tcp_sock *tp = tcp_sk(sk);
3183
3184         if (!tp->packets_out) {
3185                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3186         } else {
3187                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3188                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3189         }
3190 }
3191
3192 /* If we get here, the whole TSO packet has not been acked. */
3193 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3194 {
3195         struct tcp_sock *tp = tcp_sk(sk);
3196         u32 packets_acked;
3197
3198         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3199
3200         packets_acked = tcp_skb_pcount(skb);
3201         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3202                 return 0;
3203         packets_acked -= tcp_skb_pcount(skb);
3204
3205         if (packets_acked) {
3206                 BUG_ON(tcp_skb_pcount(skb) == 0);
3207                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3208         }
3209
3210         return packets_acked;
3211 }
3212
3213 /* Remove acknowledged frames from the retransmission queue. If our packet
3214  * is before the ack sequence we can discard it as it's confirmed to have
3215  * arrived at the other end.
3216  */
3217 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3218                                u32 prior_snd_una)
3219 {
3220         struct tcp_sock *tp = tcp_sk(sk);
3221         const struct inet_connection_sock *icsk = inet_csk(sk);
3222         struct sk_buff *skb;
3223         u32 now = tcp_time_stamp;
3224         int fully_acked = 1;
3225