2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
96 int sysctl_tcp_thin_dupack __read_mostly;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 icsk->icsk_ack.last_seg_size = 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
164 icsk->icsk_ack.rcv_mss = len;
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
174 static void tcp_incr_quickack(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 static void tcp_enter_quickack_mode(struct sock *sk)
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
222 if (tp->ecn_flags & TCP_ECN_OK) {
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 tcp_enter_quickack_mode((struct sock *)tp);
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 tp->ecn_flags &= ~TCP_ECN_OK;
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 tp->ecn_flags &= ~TCP_ECN_OK;
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
252 /* Buffer size and advertised window tuning.
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
257 static void tcp_fixup_sndbuf(struct sock *sk)
259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 sizeof(struct sk_buff);
262 if (sk->sk_sndbuf < 3 * sndmem)
263 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
266 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
268 * All tcp_full_space() is split to two parts: "network" buffer, allocated
269 * forward and advertised in receiver window (tp->rcv_wnd) and
270 * "application buffer", required to isolate scheduling/application
271 * latencies from network.
272 * window_clamp is maximal advertised window. It can be less than
273 * tcp_full_space(), in this case tcp_full_space() - window_clamp
274 * is reserved for "application" buffer. The less window_clamp is
275 * the smoother our behaviour from viewpoint of network, but the lower
276 * throughput and the higher sensitivity of the connection to losses. 8)
278 * rcv_ssthresh is more strict window_clamp used at "slow start"
279 * phase to predict further behaviour of this connection.
280 * It is used for two goals:
281 * - to enforce header prediction at sender, even when application
282 * requires some significant "application buffer". It is check #1.
283 * - to prevent pruning of receive queue because of misprediction
284 * of receiver window. Check #2.
286 * The scheme does not work when sender sends good segments opening
287 * window and then starts to feed us spaghetti. But it should work
288 * in common situations. Otherwise, we have to rely on queue collapsing.
291 /* Slow part of check#2. */
292 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
294 struct tcp_sock *tp = tcp_sk(sk);
296 int truesize = tcp_win_from_space(skb->truesize) >> 1;
297 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
299 while (tp->rcv_ssthresh <= window) {
300 if (truesize <= skb->len)
301 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
309 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
311 struct tcp_sock *tp = tcp_sk(sk);
314 if (tp->rcv_ssthresh < tp->window_clamp &&
315 (int)tp->rcv_ssthresh < tcp_space(sk) &&
316 !tcp_memory_pressure) {
319 /* Check #2. Increase window, if skb with such overhead
320 * will fit to rcvbuf in future.
322 if (tcp_win_from_space(skb->truesize) <= skb->len)
323 incr = 2 * tp->advmss;
325 incr = __tcp_grow_window(sk, skb);
328 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
330 inet_csk(sk)->icsk_ack.quick |= 1;
335 /* 3. Tuning rcvbuf, when connection enters established state. */
337 static void tcp_fixup_rcvbuf(struct sock *sk)
339 struct tcp_sock *tp = tcp_sk(sk);
340 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
342 /* Try to select rcvbuf so that 4 mss-sized segments
343 * will fit to window and corresponding skbs will fit to our rcvbuf.
344 * (was 3; 4 is minimum to allow fast retransmit to work.)
346 while (tcp_win_from_space(rcvmem) < tp->advmss)
348 if (sk->sk_rcvbuf < 4 * rcvmem)
349 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
352 /* 4. Try to fixup all. It is made immediately after connection enters
355 static void tcp_init_buffer_space(struct sock *sk)
357 struct tcp_sock *tp = tcp_sk(sk);
360 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
361 tcp_fixup_rcvbuf(sk);
362 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
363 tcp_fixup_sndbuf(sk);
365 tp->rcvq_space.space = tp->rcv_wnd;
367 maxwin = tcp_full_space(sk);
369 if (tp->window_clamp >= maxwin) {
370 tp->window_clamp = maxwin;
372 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
373 tp->window_clamp = max(maxwin -
374 (maxwin >> sysctl_tcp_app_win),
378 /* Force reservation of one segment. */
379 if (sysctl_tcp_app_win &&
380 tp->window_clamp > 2 * tp->advmss &&
381 tp->window_clamp + tp->advmss > maxwin)
382 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
384 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
385 tp->snd_cwnd_stamp = tcp_time_stamp;
388 /* 5. Recalculate window clamp after socket hit its memory bounds. */
389 static void tcp_clamp_window(struct sock *sk)
391 struct tcp_sock *tp = tcp_sk(sk);
392 struct inet_connection_sock *icsk = inet_csk(sk);
394 icsk->icsk_ack.quick = 0;
396 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
397 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
398 !tcp_memory_pressure &&
399 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
400 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
403 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
404 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
407 /* Initialize RCV_MSS value.
408 * RCV_MSS is an our guess about MSS used by the peer.
409 * We haven't any direct information about the MSS.
410 * It's better to underestimate the RCV_MSS rather than overestimate.
411 * Overestimations make us ACKing less frequently than needed.
412 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
414 void tcp_initialize_rcv_mss(struct sock *sk)
416 struct tcp_sock *tp = tcp_sk(sk);
417 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
419 hint = min(hint, tp->rcv_wnd / 2);
420 hint = min(hint, TCP_MSS_DEFAULT);
421 hint = max(hint, TCP_MIN_MSS);
423 inet_csk(sk)->icsk_ack.rcv_mss = hint;
425 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
427 /* Receiver "autotuning" code.
429 * The algorithm for RTT estimation w/o timestamps is based on
430 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
431 * <http://public.lanl.gov/radiant/pubs.html#DRS>
433 * More detail on this code can be found at
434 * <http://staff.psc.edu/jheffner/>,
435 * though this reference is out of date. A new paper
438 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
440 u32 new_sample = tp->rcv_rtt_est.rtt;
446 if (new_sample != 0) {
447 /* If we sample in larger samples in the non-timestamp
448 * case, we could grossly overestimate the RTT especially
449 * with chatty applications or bulk transfer apps which
450 * are stalled on filesystem I/O.
452 * Also, since we are only going for a minimum in the
453 * non-timestamp case, we do not smooth things out
454 * else with timestamps disabled convergence takes too
458 m -= (new_sample >> 3);
460 } else if (m < new_sample)
463 /* No previous measure. */
467 if (tp->rcv_rtt_est.rtt != new_sample)
468 tp->rcv_rtt_est.rtt = new_sample;
471 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
473 if (tp->rcv_rtt_est.time == 0)
475 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
477 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
480 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
481 tp->rcv_rtt_est.time = tcp_time_stamp;
484 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
485 const struct sk_buff *skb)
487 struct tcp_sock *tp = tcp_sk(sk);
488 if (tp->rx_opt.rcv_tsecr &&
489 (TCP_SKB_CB(skb)->end_seq -
490 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
491 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495 * This function should be called every time data is copied to user space.
496 * It calculates the appropriate TCP receive buffer space.
498 void tcp_rcv_space_adjust(struct sock *sk)
500 struct tcp_sock *tp = tcp_sk(sk);
504 if (tp->rcvq_space.time == 0)
507 time = tcp_time_stamp - tp->rcvq_space.time;
508 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
511 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
513 space = max(tp->rcvq_space.space, space);
515 if (tp->rcvq_space.space != space) {
518 tp->rcvq_space.space = space;
520 if (sysctl_tcp_moderate_rcvbuf &&
521 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
522 int new_clamp = space;
524 /* Receive space grows, normalize in order to
525 * take into account packet headers and sk_buff
526 * structure overhead.
531 rcvmem = (tp->advmss + MAX_TCP_HEADER +
532 16 + sizeof(struct sk_buff));
533 while (tcp_win_from_space(rcvmem) < tp->advmss)
536 space = min(space, sysctl_tcp_rmem[2]);
537 if (space > sk->sk_rcvbuf) {
538 sk->sk_rcvbuf = space;
540 /* Make the window clamp follow along. */
541 tp->window_clamp = new_clamp;
547 tp->rcvq_space.seq = tp->copied_seq;
548 tp->rcvq_space.time = tcp_time_stamp;
551 /* There is something which you must keep in mind when you analyze the
552 * behavior of the tp->ato delayed ack timeout interval. When a
553 * connection starts up, we want to ack as quickly as possible. The
554 * problem is that "good" TCP's do slow start at the beginning of data
555 * transmission. The means that until we send the first few ACK's the
556 * sender will sit on his end and only queue most of his data, because
557 * he can only send snd_cwnd unacked packets at any given time. For
558 * each ACK we send, he increments snd_cwnd and transmits more of his
561 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
563 struct tcp_sock *tp = tcp_sk(sk);
564 struct inet_connection_sock *icsk = inet_csk(sk);
567 inet_csk_schedule_ack(sk);
569 tcp_measure_rcv_mss(sk, skb);
571 tcp_rcv_rtt_measure(tp);
573 now = tcp_time_stamp;
575 if (!icsk->icsk_ack.ato) {
576 /* The _first_ data packet received, initialize
577 * delayed ACK engine.
579 tcp_incr_quickack(sk);
580 icsk->icsk_ack.ato = TCP_ATO_MIN;
582 int m = now - icsk->icsk_ack.lrcvtime;
584 if (m <= TCP_ATO_MIN / 2) {
585 /* The fastest case is the first. */
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
587 } else if (m < icsk->icsk_ack.ato) {
588 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
589 if (icsk->icsk_ack.ato > icsk->icsk_rto)
590 icsk->icsk_ack.ato = icsk->icsk_rto;
591 } else if (m > icsk->icsk_rto) {
592 /* Too long gap. Apparently sender failed to
593 * restart window, so that we send ACKs quickly.
595 tcp_incr_quickack(sk);
599 icsk->icsk_ack.lrcvtime = now;
601 TCP_ECN_check_ce(tp, skb);
604 tcp_grow_window(sk, skb);
607 /* Called to compute a smoothed rtt estimate. The data fed to this
608 * routine either comes from timestamps, or from segments that were
609 * known _not_ to have been retransmitted [see Karn/Partridge
610 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
611 * piece by Van Jacobson.
612 * NOTE: the next three routines used to be one big routine.
613 * To save cycles in the RFC 1323 implementation it was better to break
614 * it up into three procedures. -- erics
616 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
618 struct tcp_sock *tp = tcp_sk(sk);
619 long m = mrtt; /* RTT */
621 /* The following amusing code comes from Jacobson's
622 * article in SIGCOMM '88. Note that rtt and mdev
623 * are scaled versions of rtt and mean deviation.
624 * This is designed to be as fast as possible
625 * m stands for "measurement".
627 * On a 1990 paper the rto value is changed to:
628 * RTO = rtt + 4 * mdev
630 * Funny. This algorithm seems to be very broken.
631 * These formulae increase RTO, when it should be decreased, increase
632 * too slowly, when it should be increased quickly, decrease too quickly
633 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
634 * does not matter how to _calculate_ it. Seems, it was trap
635 * that VJ failed to avoid. 8)
640 m -= (tp->srtt >> 3); /* m is now error in rtt est */
641 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
643 m = -m; /* m is now abs(error) */
644 m -= (tp->mdev >> 2); /* similar update on mdev */
645 /* This is similar to one of Eifel findings.
646 * Eifel blocks mdev updates when rtt decreases.
647 * This solution is a bit different: we use finer gain
648 * for mdev in this case (alpha*beta).
649 * Like Eifel it also prevents growth of rto,
650 * but also it limits too fast rto decreases,
651 * happening in pure Eifel.
656 m -= (tp->mdev >> 2); /* similar update on mdev */
658 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
659 if (tp->mdev > tp->mdev_max) {
660 tp->mdev_max = tp->mdev;
661 if (tp->mdev_max > tp->rttvar)
662 tp->rttvar = tp->mdev_max;
664 if (after(tp->snd_una, tp->rtt_seq)) {
665 if (tp->mdev_max < tp->rttvar)
666 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
667 tp->rtt_seq = tp->snd_nxt;
668 tp->mdev_max = tcp_rto_min(sk);
671 /* no previous measure. */
672 tp->srtt = m << 3; /* take the measured time to be rtt */
673 tp->mdev = m << 1; /* make sure rto = 3*rtt */
674 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
675 tp->rtt_seq = tp->snd_nxt;
679 /* Calculate rto without backoff. This is the second half of Van Jacobson's
680 * routine referred to above.
682 static inline void tcp_set_rto(struct sock *sk)
684 const struct tcp_sock *tp = tcp_sk(sk);
685 /* Old crap is replaced with new one. 8)
688 * 1. If rtt variance happened to be less 50msec, it is hallucination.
689 * It cannot be less due to utterly erratic ACK generation made
690 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
691 * to do with delayed acks, because at cwnd>2 true delack timeout
692 * is invisible. Actually, Linux-2.4 also generates erratic
693 * ACKs in some circumstances.
695 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
697 /* 2. Fixups made earlier cannot be right.
698 * If we do not estimate RTO correctly without them,
699 * all the algo is pure shit and should be replaced
700 * with correct one. It is exactly, which we pretend to do.
703 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
704 * guarantees that rto is higher.
709 /* Save metrics learned by this TCP session.
710 This function is called only, when TCP finishes successfully
711 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
713 void tcp_update_metrics(struct sock *sk)
715 struct tcp_sock *tp = tcp_sk(sk);
716 struct dst_entry *dst = __sk_dst_get(sk);
718 if (sysctl_tcp_nometrics_save)
723 if (dst && (dst->flags & DST_HOST)) {
724 const struct inet_connection_sock *icsk = inet_csk(sk);
728 if (icsk->icsk_backoff || !tp->srtt) {
729 /* This session failed to estimate rtt. Why?
730 * Probably, no packets returned in time.
733 if (!(dst_metric_locked(dst, RTAX_RTT)))
734 dst->metrics[RTAX_RTT - 1] = 0;
738 rtt = dst_metric_rtt(dst, RTAX_RTT);
741 /* If newly calculated rtt larger than stored one,
742 * store new one. Otherwise, use EWMA. Remember,
743 * rtt overestimation is always better than underestimation.
745 if (!(dst_metric_locked(dst, RTAX_RTT))) {
747 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
749 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
752 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
757 /* Scale deviation to rttvar fixed point */
762 var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 var -= (var - m) >> 2;
768 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
771 if (tcp_in_initial_slowstart(tp)) {
772 /* Slow start still did not finish. */
773 if (dst_metric(dst, RTAX_SSTHRESH) &&
774 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
775 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
776 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
777 if (!dst_metric_locked(dst, RTAX_CWND) &&
778 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
779 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
780 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
781 icsk->icsk_ca_state == TCP_CA_Open) {
782 /* Cong. avoidance phase, cwnd is reliable. */
783 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
784 dst->metrics[RTAX_SSTHRESH-1] =
785 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
786 if (!dst_metric_locked(dst, RTAX_CWND))
787 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
789 /* Else slow start did not finish, cwnd is non-sense,
790 ssthresh may be also invalid.
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
794 if (dst_metric(dst, RTAX_SSTHRESH) &&
795 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
797 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
800 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
801 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
802 tp->reordering != sysctl_tcp_reordering)
803 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
810 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
813 cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
814 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
817 /* Set slow start threshold and cwnd not falling to slow start */
818 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
820 struct tcp_sock *tp = tcp_sk(sk);
821 const struct inet_connection_sock *icsk = inet_csk(sk);
823 tp->prior_ssthresh = 0;
825 if (icsk->icsk_ca_state < TCP_CA_CWR) {
828 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
829 tp->snd_cwnd = min(tp->snd_cwnd,
830 tcp_packets_in_flight(tp) + 1U);
831 tp->snd_cwnd_cnt = 0;
832 tp->high_seq = tp->snd_nxt;
833 tp->snd_cwnd_stamp = tcp_time_stamp;
834 TCP_ECN_queue_cwr(tp);
836 tcp_set_ca_state(sk, TCP_CA_CWR);
841 * Packet counting of FACK is based on in-order assumptions, therefore TCP
842 * disables it when reordering is detected
844 static void tcp_disable_fack(struct tcp_sock *tp)
846 /* RFC3517 uses different metric in lost marker => reset on change */
848 tp->lost_skb_hint = NULL;
849 tp->rx_opt.sack_ok &= ~2;
852 /* Take a notice that peer is sending D-SACKs */
853 static void tcp_dsack_seen(struct tcp_sock *tp)
855 tp->rx_opt.sack_ok |= 4;
858 /* Initialize metrics on socket. */
860 static void tcp_init_metrics(struct sock *sk)
862 struct tcp_sock *tp = tcp_sk(sk);
863 struct dst_entry *dst = __sk_dst_get(sk);
870 if (dst_metric_locked(dst, RTAX_CWND))
871 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
872 if (dst_metric(dst, RTAX_SSTHRESH)) {
873 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
874 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
875 tp->snd_ssthresh = tp->snd_cwnd_clamp;
877 if (dst_metric(dst, RTAX_REORDERING) &&
878 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
879 tcp_disable_fack(tp);
880 tp->reordering = dst_metric(dst, RTAX_REORDERING);
883 if (dst_metric(dst, RTAX_RTT) == 0)
886 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
889 /* Initial rtt is determined from SYN,SYN-ACK.
890 * The segment is small and rtt may appear much
891 * less than real one. Use per-dst memory
892 * to make it more realistic.
894 * A bit of theory. RTT is time passed after "normal" sized packet
895 * is sent until it is ACKed. In normal circumstances sending small
896 * packets force peer to delay ACKs and calculation is correct too.
897 * The algorithm is adaptive and, provided we follow specs, it
898 * NEVER underestimate RTT. BUT! If peer tries to make some clever
899 * tricks sort of "quick acks" for time long enough to decrease RTT
900 * to low value, and then abruptly stops to do it and starts to delay
901 * ACKs, wait for troubles.
903 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
904 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
905 tp->rtt_seq = tp->snd_nxt;
907 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
908 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
909 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
912 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
916 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
917 tp->snd_cwnd_stamp = tcp_time_stamp;
921 /* Play conservative. If timestamps are not
922 * supported, TCP will fail to recalculate correct
923 * rtt, if initial rto is too small. FORGET ALL AND RESET!
925 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
927 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
928 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
933 static void tcp_update_reordering(struct sock *sk, const int metric,
936 struct tcp_sock *tp = tcp_sk(sk);
937 if (metric > tp->reordering) {
940 tp->reordering = min(TCP_MAX_REORDERING, metric);
942 /* This exciting event is worth to be remembered. 8) */
944 mib_idx = LINUX_MIB_TCPTSREORDER;
945 else if (tcp_is_reno(tp))
946 mib_idx = LINUX_MIB_TCPRENOREORDER;
947 else if (tcp_is_fack(tp))
948 mib_idx = LINUX_MIB_TCPFACKREORDER;
950 mib_idx = LINUX_MIB_TCPSACKREORDER;
952 NET_INC_STATS_BH(sock_net(sk), mib_idx);
953 #if FASTRETRANS_DEBUG > 1
954 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
955 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
959 tp->undo_marker ? tp->undo_retrans : 0);
961 tcp_disable_fack(tp);
965 /* This must be called before lost_out is incremented */
966 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
968 if ((tp->retransmit_skb_hint == NULL) ||
969 before(TCP_SKB_CB(skb)->seq,
970 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
971 tp->retransmit_skb_hint = skb;
974 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
975 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
978 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
980 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
981 tcp_verify_retransmit_hint(tp, skb);
983 tp->lost_out += tcp_skb_pcount(skb);
984 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
988 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
991 tcp_verify_retransmit_hint(tp, skb);
993 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994 tp->lost_out += tcp_skb_pcount(skb);
995 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
999 /* This procedure tags the retransmission queue when SACKs arrive.
1001 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1002 * Packets in queue with these bits set are counted in variables
1003 * sacked_out, retrans_out and lost_out, correspondingly.
1005 * Valid combinations are:
1006 * Tag InFlight Description
1007 * 0 1 - orig segment is in flight.
1008 * S 0 - nothing flies, orig reached receiver.
1009 * L 0 - nothing flies, orig lost by net.
1010 * R 2 - both orig and retransmit are in flight.
1011 * L|R 1 - orig is lost, retransmit is in flight.
1012 * S|R 1 - orig reached receiver, retrans is still in flight.
1013 * (L|S|R is logically valid, it could occur when L|R is sacked,
1014 * but it is equivalent to plain S and code short-curcuits it to S.
1015 * L|S is logically invalid, it would mean -1 packet in flight 8))
1017 * These 6 states form finite state machine, controlled by the following events:
1018 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1019 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1020 * 3. Loss detection event of one of three flavors:
1021 * A. Scoreboard estimator decided the packet is lost.
1022 * A'. Reno "three dupacks" marks head of queue lost.
1023 * A''. Its FACK modfication, head until snd.fack is lost.
1024 * B. SACK arrives sacking data transmitted after never retransmitted
1025 * hole was sent out.
1026 * C. SACK arrives sacking SND.NXT at the moment, when the
1027 * segment was retransmitted.
1028 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1030 * It is pleasant to note, that state diagram turns out to be commutative,
1031 * so that we are allowed not to be bothered by order of our actions,
1032 * when multiple events arrive simultaneously. (see the function below).
1034 * Reordering detection.
1035 * --------------------
1036 * Reordering metric is maximal distance, which a packet can be displaced
1037 * in packet stream. With SACKs we can estimate it:
1039 * 1. SACK fills old hole and the corresponding segment was not
1040 * ever retransmitted -> reordering. Alas, we cannot use it
1041 * when segment was retransmitted.
1042 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1043 * for retransmitted and already SACKed segment -> reordering..
1044 * Both of these heuristics are not used in Loss state, when we cannot
1045 * account for retransmits accurately.
1047 * SACK block validation.
1048 * ----------------------
1050 * SACK block range validation checks that the received SACK block fits to
1051 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1052 * Note that SND.UNA is not included to the range though being valid because
1053 * it means that the receiver is rather inconsistent with itself reporting
1054 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1055 * perfectly valid, however, in light of RFC2018 which explicitly states
1056 * that "SACK block MUST reflect the newest segment. Even if the newest
1057 * segment is going to be discarded ...", not that it looks very clever
1058 * in case of head skb. Due to potentional receiver driven attacks, we
1059 * choose to avoid immediate execution of a walk in write queue due to
1060 * reneging and defer head skb's loss recovery to standard loss recovery
1061 * procedure that will eventually trigger (nothing forbids us doing this).
1063 * Implements also blockage to start_seq wrap-around. Problem lies in the
1064 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1065 * there's no guarantee that it will be before snd_nxt (n). The problem
1066 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1069 * <- outs wnd -> <- wrapzone ->
1070 * u e n u_w e_w s n_w
1072 * |<------------+------+----- TCP seqno space --------------+---------->|
1073 * ...-- <2^31 ->| |<--------...
1074 * ...---- >2^31 ------>| |<--------...
1076 * Current code wouldn't be vulnerable but it's better still to discard such
1077 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1078 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1079 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1080 * equal to the ideal case (infinite seqno space without wrap caused issues).
1082 * With D-SACK the lower bound is extended to cover sequence space below
1083 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1084 * again, D-SACK block must not to go across snd_una (for the same reason as
1085 * for the normal SACK blocks, explained above). But there all simplicity
1086 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1087 * fully below undo_marker they do not affect behavior in anyway and can
1088 * therefore be safely ignored. In rare cases (which are more or less
1089 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1090 * fragmentation and packet reordering past skb's retransmission. To consider
1091 * them correctly, the acceptable range must be extended even more though
1092 * the exact amount is rather hard to quantify. However, tp->max_window can
1093 * be used as an exaggerated estimate.
1095 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1096 u32 start_seq, u32 end_seq)
1098 /* Too far in future, or reversed (interpretation is ambiguous) */
1099 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1102 /* Nasty start_seq wrap-around check (see comments above) */
1103 if (!before(start_seq, tp->snd_nxt))
1106 /* In outstanding window? ...This is valid exit for D-SACKs too.
1107 * start_seq == snd_una is non-sensical (see comments above)
1109 if (after(start_seq, tp->snd_una))
1112 if (!is_dsack || !tp->undo_marker)
1115 /* ...Then it's D-SACK, and must reside below snd_una completely */
1116 if (!after(end_seq, tp->snd_una))
1119 if (!before(start_seq, tp->undo_marker))
1123 if (!after(end_seq, tp->undo_marker))
1126 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1127 * start_seq < undo_marker and end_seq >= undo_marker.
1129 return !before(start_seq, end_seq - tp->max_window);
1132 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1133 * Event "C". Later note: FACK people cheated me again 8), we have to account
1134 * for reordering! Ugly, but should help.
1136 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1137 * less than what is now known to be received by the other end (derived from
1138 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1139 * retransmitted skbs to avoid some costly processing per ACKs.
1141 static void tcp_mark_lost_retrans(struct sock *sk)
1143 const struct inet_connection_sock *icsk = inet_csk(sk);
1144 struct tcp_sock *tp = tcp_sk(sk);
1145 struct sk_buff *skb;
1147 u32 new_low_seq = tp->snd_nxt;
1148 u32 received_upto = tcp_highest_sack_seq(tp);
1150 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1151 !after(received_upto, tp->lost_retrans_low) ||
1152 icsk->icsk_ca_state != TCP_CA_Recovery)
1155 tcp_for_write_queue(skb, sk) {
1156 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1158 if (skb == tcp_send_head(sk))
1160 if (cnt == tp->retrans_out)
1162 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1165 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1168 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1169 * constraint here (see above) but figuring out that at
1170 * least tp->reordering SACK blocks reside between ack_seq
1171 * and received_upto is not easy task to do cheaply with
1172 * the available datastructures.
1174 * Whether FACK should check here for tp->reordering segs
1175 * in-between one could argue for either way (it would be
1176 * rather simple to implement as we could count fack_count
1177 * during the walk and do tp->fackets_out - fack_count).
1179 if (after(received_upto, ack_seq)) {
1180 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1181 tp->retrans_out -= tcp_skb_pcount(skb);
1183 tcp_skb_mark_lost_uncond_verify(tp, skb);
1184 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1186 if (before(ack_seq, new_low_seq))
1187 new_low_seq = ack_seq;
1188 cnt += tcp_skb_pcount(skb);
1192 if (tp->retrans_out)
1193 tp->lost_retrans_low = new_low_seq;
1196 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1197 struct tcp_sack_block_wire *sp, int num_sacks,
1200 struct tcp_sock *tp = tcp_sk(sk);
1201 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1202 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1205 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1208 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1209 } else if (num_sacks > 1) {
1210 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1211 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1213 if (!after(end_seq_0, end_seq_1) &&
1214 !before(start_seq_0, start_seq_1)) {
1217 NET_INC_STATS_BH(sock_net(sk),
1218 LINUX_MIB_TCPDSACKOFORECV);
1222 /* D-SACK for already forgotten data... Do dumb counting. */
1224 !after(end_seq_0, prior_snd_una) &&
1225 after(end_seq_0, tp->undo_marker))
1231 struct tcp_sacktag_state {
1237 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1238 * the incoming SACK may not exactly match but we can find smaller MSS
1239 * aligned portion of it that matches. Therefore we might need to fragment
1240 * which may fail and creates some hassle (caller must handle error case
1243 * FIXME: this could be merged to shift decision code
1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1246 u32 start_seq, u32 end_seq)
1249 unsigned int pkt_len;
1252 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1253 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1255 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1256 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1257 mss = tcp_skb_mss(skb);
1258 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1261 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1265 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1270 /* Round if necessary so that SACKs cover only full MSSes
1271 * and/or the remaining small portion (if present)
1273 if (pkt_len > mss) {
1274 unsigned int new_len = (pkt_len / mss) * mss;
1275 if (!in_sack && new_len < pkt_len) {
1277 if (new_len > skb->len)
1282 err = tcp_fragment(sk, skb, pkt_len, mss);
1290 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1291 struct tcp_sacktag_state *state,
1292 int dup_sack, int pcount)
1294 struct tcp_sock *tp = tcp_sk(sk);
1295 u8 sacked = TCP_SKB_CB(skb)->sacked;
1296 int fack_count = state->fack_count;
1298 /* Account D-SACK for retransmitted packet. */
1299 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1300 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1302 if (sacked & TCPCB_SACKED_ACKED)
1303 state->reord = min(fack_count, state->reord);
1306 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1307 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1310 if (!(sacked & TCPCB_SACKED_ACKED)) {
1311 if (sacked & TCPCB_SACKED_RETRANS) {
1312 /* If the segment is not tagged as lost,
1313 * we do not clear RETRANS, believing
1314 * that retransmission is still in flight.
1316 if (sacked & TCPCB_LOST) {
1317 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1318 tp->lost_out -= pcount;
1319 tp->retrans_out -= pcount;
1322 if (!(sacked & TCPCB_RETRANS)) {
1323 /* New sack for not retransmitted frame,
1324 * which was in hole. It is reordering.
1326 if (before(TCP_SKB_CB(skb)->seq,
1327 tcp_highest_sack_seq(tp)))
1328 state->reord = min(fack_count,
1331 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1332 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1333 state->flag |= FLAG_ONLY_ORIG_SACKED;
1336 if (sacked & TCPCB_LOST) {
1337 sacked &= ~TCPCB_LOST;
1338 tp->lost_out -= pcount;
1342 sacked |= TCPCB_SACKED_ACKED;
1343 state->flag |= FLAG_DATA_SACKED;
1344 tp->sacked_out += pcount;
1346 fack_count += pcount;
1348 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1349 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1350 before(TCP_SKB_CB(skb)->seq,
1351 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1352 tp->lost_cnt_hint += pcount;
1354 if (fack_count > tp->fackets_out)
1355 tp->fackets_out = fack_count;
1358 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1359 * frames and clear it. undo_retrans is decreased above, L|R frames
1360 * are accounted above as well.
1362 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1363 sacked &= ~TCPCB_SACKED_RETRANS;
1364 tp->retrans_out -= pcount;
1370 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1371 struct tcp_sacktag_state *state,
1372 unsigned int pcount, int shifted, int mss,
1375 struct tcp_sock *tp = tcp_sk(sk);
1376 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1380 /* Tweak before seqno plays */
1381 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1382 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1383 tp->lost_cnt_hint += pcount;
1385 TCP_SKB_CB(prev)->end_seq += shifted;
1386 TCP_SKB_CB(skb)->seq += shifted;
1388 skb_shinfo(prev)->gso_segs += pcount;
1389 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1390 skb_shinfo(skb)->gso_segs -= pcount;
1392 /* When we're adding to gso_segs == 1, gso_size will be zero,
1393 * in theory this shouldn't be necessary but as long as DSACK
1394 * code can come after this skb later on it's better to keep
1395 * setting gso_size to something.
1397 if (!skb_shinfo(prev)->gso_size) {
1398 skb_shinfo(prev)->gso_size = mss;
1399 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1402 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1403 if (skb_shinfo(skb)->gso_segs <= 1) {
1404 skb_shinfo(skb)->gso_size = 0;
1405 skb_shinfo(skb)->gso_type = 0;
1408 /* We discard results */
1409 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1411 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1412 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1415 BUG_ON(!tcp_skb_pcount(skb));
1416 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1420 /* Whole SKB was eaten :-) */
1422 if (skb == tp->retransmit_skb_hint)
1423 tp->retransmit_skb_hint = prev;
1424 if (skb == tp->scoreboard_skb_hint)
1425 tp->scoreboard_skb_hint = prev;
1426 if (skb == tp->lost_skb_hint) {
1427 tp->lost_skb_hint = prev;
1428 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1431 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1432 if (skb == tcp_highest_sack(sk))
1433 tcp_advance_highest_sack(sk, skb);
1435 tcp_unlink_write_queue(skb, sk);
1436 sk_wmem_free_skb(sk, skb);
1438 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1443 /* I wish gso_size would have a bit more sane initialization than
1444 * something-or-zero which complicates things
1446 static int tcp_skb_seglen(struct sk_buff *skb)
1448 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1451 /* Shifting pages past head area doesn't work */
1452 static int skb_can_shift(struct sk_buff *skb)
1454 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1457 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1460 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1461 struct tcp_sacktag_state *state,
1462 u32 start_seq, u32 end_seq,
1465 struct tcp_sock *tp = tcp_sk(sk);
1466 struct sk_buff *prev;
1472 if (!sk_can_gso(sk))
1475 /* Normally R but no L won't result in plain S */
1477 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1479 if (!skb_can_shift(skb))
1481 /* This frame is about to be dropped (was ACKed). */
1482 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1485 /* Can only happen with delayed DSACK + discard craziness */
1486 if (unlikely(skb == tcp_write_queue_head(sk)))
1488 prev = tcp_write_queue_prev(sk, skb);
1490 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1493 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1494 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1498 pcount = tcp_skb_pcount(skb);
1499 mss = tcp_skb_seglen(skb);
1501 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1502 * drop this restriction as unnecessary
1504 if (mss != tcp_skb_seglen(prev))
1507 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1509 /* CHECKME: This is non-MSS split case only?, this will
1510 * cause skipped skbs due to advancing loop btw, original
1511 * has that feature too
1513 if (tcp_skb_pcount(skb) <= 1)
1516 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1518 /* TODO: head merge to next could be attempted here
1519 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1520 * though it might not be worth of the additional hassle
1522 * ...we can probably just fallback to what was done
1523 * previously. We could try merging non-SACKed ones
1524 * as well but it probably isn't going to buy off
1525 * because later SACKs might again split them, and
1526 * it would make skb timestamp tracking considerably
1532 len = end_seq - TCP_SKB_CB(skb)->seq;
1534 BUG_ON(len > skb->len);
1536 /* MSS boundaries should be honoured or else pcount will
1537 * severely break even though it makes things bit trickier.
1538 * Optimize common case to avoid most of the divides
1540 mss = tcp_skb_mss(skb);
1542 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1543 * drop this restriction as unnecessary
1545 if (mss != tcp_skb_seglen(prev))
1550 } else if (len < mss) {
1558 if (!skb_shift(prev, skb, len))
1560 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1563 /* Hole filled allows collapsing with the next as well, this is very
1564 * useful when hole on every nth skb pattern happens
1566 if (prev == tcp_write_queue_tail(sk))
1568 skb = tcp_write_queue_next(sk, prev);
1570 if (!skb_can_shift(skb) ||
1571 (skb == tcp_send_head(sk)) ||
1572 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1573 (mss != tcp_skb_seglen(skb)))
1577 if (skb_shift(prev, skb, len)) {
1578 pcount += tcp_skb_pcount(skb);
1579 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1583 state->fack_count += pcount;
1590 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1594 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1595 struct tcp_sack_block *next_dup,
1596 struct tcp_sacktag_state *state,
1597 u32 start_seq, u32 end_seq,
1600 struct tcp_sock *tp = tcp_sk(sk);
1601 struct sk_buff *tmp;
1603 tcp_for_write_queue_from(skb, sk) {
1605 int dup_sack = dup_sack_in;
1607 if (skb == tcp_send_head(sk))
1610 /* queue is in-order => we can short-circuit the walk early */
1611 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1614 if ((next_dup != NULL) &&
1615 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1616 in_sack = tcp_match_skb_to_sack(sk, skb,
1617 next_dup->start_seq,
1623 /* skb reference here is a bit tricky to get right, since
1624 * shifting can eat and free both this skb and the next,
1625 * so not even _safe variant of the loop is enough.
1628 tmp = tcp_shift_skb_data(sk, skb, state,
1629 start_seq, end_seq, dup_sack);
1638 in_sack = tcp_match_skb_to_sack(sk, skb,
1644 if (unlikely(in_sack < 0))
1648 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1651 tcp_skb_pcount(skb));
1653 if (!before(TCP_SKB_CB(skb)->seq,
1654 tcp_highest_sack_seq(tp)))
1655 tcp_advance_highest_sack(sk, skb);
1658 state->fack_count += tcp_skb_pcount(skb);
1663 /* Avoid all extra work that is being done by sacktag while walking in
1666 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1667 struct tcp_sacktag_state *state,
1670 tcp_for_write_queue_from(skb, sk) {
1671 if (skb == tcp_send_head(sk))
1674 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1677 state->fack_count += tcp_skb_pcount(skb);
1682 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1684 struct tcp_sack_block *next_dup,
1685 struct tcp_sacktag_state *state,
1688 if (next_dup == NULL)
1691 if (before(next_dup->start_seq, skip_to_seq)) {
1692 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1693 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1694 next_dup->start_seq, next_dup->end_seq,
1701 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1703 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1707 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1710 const struct inet_connection_sock *icsk = inet_csk(sk);
1711 struct tcp_sock *tp = tcp_sk(sk);
1712 unsigned char *ptr = (skb_transport_header(ack_skb) +
1713 TCP_SKB_CB(ack_skb)->sacked);
1714 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1715 struct tcp_sack_block sp[TCP_NUM_SACKS];
1716 struct tcp_sack_block *cache;
1717 struct tcp_sacktag_state state;
1718 struct sk_buff *skb;
1719 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1721 int found_dup_sack = 0;
1723 int first_sack_index;
1726 state.reord = tp->packets_out;
1728 if (!tp->sacked_out) {
1729 if (WARN_ON(tp->fackets_out))
1730 tp->fackets_out = 0;
1731 tcp_highest_sack_reset(sk);
1734 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1735 num_sacks, prior_snd_una);
1737 state.flag |= FLAG_DSACKING_ACK;
1739 /* Eliminate too old ACKs, but take into
1740 * account more or less fresh ones, they can
1741 * contain valid SACK info.
1743 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1746 if (!tp->packets_out)
1750 first_sack_index = 0;
1751 for (i = 0; i < num_sacks; i++) {
1752 int dup_sack = !i && found_dup_sack;
1754 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1755 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1757 if (!tcp_is_sackblock_valid(tp, dup_sack,
1758 sp[used_sacks].start_seq,
1759 sp[used_sacks].end_seq)) {
1763 if (!tp->undo_marker)
1764 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1766 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1768 /* Don't count olds caused by ACK reordering */
1769 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1770 !after(sp[used_sacks].end_seq, tp->snd_una))
1772 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1775 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1777 first_sack_index = -1;
1781 /* Ignore very old stuff early */
1782 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1788 /* order SACK blocks to allow in order walk of the retrans queue */
1789 for (i = used_sacks - 1; i > 0; i--) {
1790 for (j = 0; j < i; j++) {
1791 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1792 swap(sp[j], sp[j + 1]);
1794 /* Track where the first SACK block goes to */
1795 if (j == first_sack_index)
1796 first_sack_index = j + 1;
1801 skb = tcp_write_queue_head(sk);
1802 state.fack_count = 0;
1805 if (!tp->sacked_out) {
1806 /* It's already past, so skip checking against it */
1807 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1809 cache = tp->recv_sack_cache;
1810 /* Skip empty blocks in at head of the cache */
1811 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1816 while (i < used_sacks) {
1817 u32 start_seq = sp[i].start_seq;
1818 u32 end_seq = sp[i].end_seq;
1819 int dup_sack = (found_dup_sack && (i == first_sack_index));
1820 struct tcp_sack_block *next_dup = NULL;
1822 if (found_dup_sack && ((i + 1) == first_sack_index))
1823 next_dup = &sp[i + 1];
1825 /* Event "B" in the comment above. */
1826 if (after(end_seq, tp->high_seq))
1827 state.flag |= FLAG_DATA_LOST;
1829 /* Skip too early cached blocks */
1830 while (tcp_sack_cache_ok(tp, cache) &&
1831 !before(start_seq, cache->end_seq))
1834 /* Can skip some work by looking recv_sack_cache? */
1835 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1836 after(end_seq, cache->start_seq)) {
1839 if (before(start_seq, cache->start_seq)) {
1840 skb = tcp_sacktag_skip(skb, sk, &state,
1842 skb = tcp_sacktag_walk(skb, sk, next_dup,
1849 /* Rest of the block already fully processed? */
1850 if (!after(end_seq, cache->end_seq))
1853 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1857 /* ...tail remains todo... */
1858 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1859 /* ...but better entrypoint exists! */
1860 skb = tcp_highest_sack(sk);
1863 state.fack_count = tp->fackets_out;
1868 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1869 /* Check overlap against next cached too (past this one already) */
1874 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1875 skb = tcp_highest_sack(sk);
1878 state.fack_count = tp->fackets_out;
1880 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1883 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1884 start_seq, end_seq, dup_sack);
1887 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1888 * due to in-order walk
1890 if (after(end_seq, tp->frto_highmark))
1891 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1896 /* Clear the head of the cache sack blocks so we can skip it next time */
1897 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1898 tp->recv_sack_cache[i].start_seq = 0;
1899 tp->recv_sack_cache[i].end_seq = 0;
1901 for (j = 0; j < used_sacks; j++)
1902 tp->recv_sack_cache[i++] = sp[j];
1904 tcp_mark_lost_retrans(sk);
1906 tcp_verify_left_out(tp);
1908 if ((state.reord < tp->fackets_out) &&
1909 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1910 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1911 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1915 #if FASTRETRANS_DEBUG > 0
1916 WARN_ON((int)tp->sacked_out < 0);
1917 WARN_ON((int)tp->lost_out < 0);
1918 WARN_ON((int)tp->retrans_out < 0);
1919 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1924 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1925 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1927 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1931 holes = max(tp->lost_out, 1U);
1932 holes = min(holes, tp->packets_out);
1934 if ((tp->sacked_out + holes) > tp->packets_out) {
1935 tp->sacked_out = tp->packets_out - holes;
1941 /* If we receive more dupacks than we expected counting segments
1942 * in assumption of absent reordering, interpret this as reordering.
1943 * The only another reason could be bug in receiver TCP.
1945 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1947 struct tcp_sock *tp = tcp_sk(sk);
1948 if (tcp_limit_reno_sacked(tp))
1949 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1952 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1954 static void tcp_add_reno_sack(struct sock *sk)
1956 struct tcp_sock *tp = tcp_sk(sk);
1958 tcp_check_reno_reordering(sk, 0);
1959 tcp_verify_left_out(tp);
1962 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1964 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1966 struct tcp_sock *tp = tcp_sk(sk);
1969 /* One ACK acked hole. The rest eat duplicate ACKs. */
1970 if (acked - 1 >= tp->sacked_out)
1973 tp->sacked_out -= acked - 1;
1975 tcp_check_reno_reordering(sk, acked);
1976 tcp_verify_left_out(tp);
1979 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1984 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1986 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1989 /* F-RTO can only be used if TCP has never retransmitted anything other than
1990 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1992 int tcp_use_frto(struct sock *sk)
1994 const struct tcp_sock *tp = tcp_sk(sk);
1995 const struct inet_connection_sock *icsk = inet_csk(sk);
1996 struct sk_buff *skb;
1998 if (!sysctl_tcp_frto)
2001 /* MTU probe and F-RTO won't really play nicely along currently */
2002 if (icsk->icsk_mtup.probe_size)
2005 if (tcp_is_sackfrto(tp))
2008 /* Avoid expensive walking of rexmit queue if possible */
2009 if (tp->retrans_out > 1)
2012 skb = tcp_write_queue_head(sk);
2013 if (tcp_skb_is_last(sk, skb))
2015 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2016 tcp_for_write_queue_from(skb, sk) {
2017 if (skb == tcp_send_head(sk))
2019 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2021 /* Short-circuit when first non-SACKed skb has been checked */
2022 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2028 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2029 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2030 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2031 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2032 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2033 * bits are handled if the Loss state is really to be entered (in
2034 * tcp_enter_frto_loss).
2036 * Do like tcp_enter_loss() would; when RTO expires the second time it
2038 * "Reduce ssthresh if it has not yet been made inside this window."
2040 void tcp_enter_frto(struct sock *sk)
2042 const struct inet_connection_sock *icsk = inet_csk(sk);
2043 struct tcp_sock *tp = tcp_sk(sk);
2044 struct sk_buff *skb;
2046 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2047 tp->snd_una == tp->high_seq ||
2048 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2049 !icsk->icsk_retransmits)) {
2050 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2051 /* Our state is too optimistic in ssthresh() call because cwnd
2052 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2053 * recovery has not yet completed. Pattern would be this: RTO,
2054 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2056 * RFC4138 should be more specific on what to do, even though
2057 * RTO is quite unlikely to occur after the first Cumulative ACK
2058 * due to back-off and complexity of triggering events ...
2060 if (tp->frto_counter) {
2062 stored_cwnd = tp->snd_cwnd;
2064 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2065 tp->snd_cwnd = stored_cwnd;
2067 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2069 /* ... in theory, cong.control module could do "any tricks" in
2070 * ssthresh(), which means that ca_state, lost bits and lost_out
2071 * counter would have to be faked before the call occurs. We
2072 * consider that too expensive, unlikely and hacky, so modules
2073 * using these in ssthresh() must deal these incompatibility
2074 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2076 tcp_ca_event(sk, CA_EVENT_FRTO);
2079 tp->undo_marker = tp->snd_una;
2080 tp->undo_retrans = 0;
2082 skb = tcp_write_queue_head(sk);
2083 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2084 tp->undo_marker = 0;
2085 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2086 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2087 tp->retrans_out -= tcp_skb_pcount(skb);
2089 tcp_verify_left_out(tp);
2091 /* Too bad if TCP was application limited */
2092 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2094 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2095 * The last condition is necessary at least in tp->frto_counter case.
2097 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2098 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2099 after(tp->high_seq, tp->snd_una)) {
2100 tp->frto_highmark = tp->high_seq;
2102 tp->frto_highmark = tp->snd_nxt;
2104 tcp_set_ca_state(sk, TCP_CA_Disorder);
2105 tp->high_seq = tp->snd_nxt;
2106 tp->frto_counter = 1;
2109 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2110 * which indicates that we should follow the traditional RTO recovery,
2111 * i.e. mark everything lost and do go-back-N retransmission.
2113 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2115 struct tcp_sock *tp = tcp_sk(sk);
2116 struct sk_buff *skb;
2119 tp->retrans_out = 0;
2120 if (tcp_is_reno(tp))
2121 tcp_reset_reno_sack(tp);
2123 tcp_for_write_queue(skb, sk) {
2124 if (skb == tcp_send_head(sk))
2127 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2129 * Count the retransmission made on RTO correctly (only when
2130 * waiting for the first ACK and did not get it)...
2132 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2133 /* For some reason this R-bit might get cleared? */
2134 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2135 tp->retrans_out += tcp_skb_pcount(skb);
2136 /* ...enter this if branch just for the first segment */
2137 flag |= FLAG_DATA_ACKED;
2139 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2140 tp->undo_marker = 0;
2141 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2144 /* Marking forward transmissions that were made after RTO lost
2145 * can cause unnecessary retransmissions in some scenarios,
2146 * SACK blocks will mitigate that in some but not in all cases.
2147 * We used to not mark them but it was causing break-ups with
2148 * receivers that do only in-order receival.
2150 * TODO: we could detect presence of such receiver and select
2151 * different behavior per flow.
2153 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2154 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2155 tp->lost_out += tcp_skb_pcount(skb);
2156 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2159 tcp_verify_left_out(tp);
2161 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2162 tp->snd_cwnd_cnt = 0;
2163 tp->snd_cwnd_stamp = tcp_time_stamp;
2164 tp->frto_counter = 0;
2165 tp->bytes_acked = 0;
2167 tp->reordering = min_t(unsigned int, tp->reordering,
2168 sysctl_tcp_reordering);
2169 tcp_set_ca_state(sk, TCP_CA_Loss);
2170 tp->high_seq = tp->snd_nxt;
2171 TCP_ECN_queue_cwr(tp);
2173 tcp_clear_all_retrans_hints(tp);
2176 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2178 tp->retrans_out = 0;
2181 tp->undo_marker = 0;
2182 tp->undo_retrans = 0;
2185 void tcp_clear_retrans(struct tcp_sock *tp)
2187 tcp_clear_retrans_partial(tp);
2189 tp->fackets_out = 0;
2193 /* Enter Loss state. If "how" is not zero, forget all SACK information
2194 * and reset tags completely, otherwise preserve SACKs. If receiver
2195 * dropped its ofo queue, we will know this due to reneging detection.
2197 void tcp_enter_loss(struct sock *sk, int how)
2199 const struct inet_connection_sock *icsk = inet_csk(sk);
2200 struct tcp_sock *tp = tcp_sk(sk);
2201 struct sk_buff *skb;
2203 /* Reduce ssthresh if it has not yet been made inside this window. */
2204 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2205 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2206 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2207 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2208 tcp_ca_event(sk, CA_EVENT_LOSS);
2211 tp->snd_cwnd_cnt = 0;
2212 tp->snd_cwnd_stamp = tcp_time_stamp;
2214 tp->bytes_acked = 0;
2215 tcp_clear_retrans_partial(tp);
2217 if (tcp_is_reno(tp))
2218 tcp_reset_reno_sack(tp);
2221 /* Push undo marker, if it was plain RTO and nothing
2222 * was retransmitted. */
2223 tp->undo_marker = tp->snd_una;
2226 tp->fackets_out = 0;
2228 tcp_clear_all_retrans_hints(tp);
2230 tcp_for_write_queue(skb, sk) {
2231 if (skb == tcp_send_head(sk))
2234 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2235 tp->undo_marker = 0;
2236 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2237 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2238 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2239 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2240 tp->lost_out += tcp_skb_pcount(skb);
2241 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2244 tcp_verify_left_out(tp);
2246 tp->reordering = min_t(unsigned int, tp->reordering,
2247 sysctl_tcp_reordering);
2248 tcp_set_ca_state(sk, TCP_CA_Loss);
2249 tp->high_seq = tp->snd_nxt;
2250 TCP_ECN_queue_cwr(tp);
2251 /* Abort F-RTO algorithm if one is in progress */
2252 tp->frto_counter = 0;
2255 /* If ACK arrived pointing to a remembered SACK, it means that our
2256 * remembered SACKs do not reflect real state of receiver i.e.
2257 * receiver _host_ is heavily congested (or buggy).
2259 * Do processing similar to RTO timeout.
2261 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2263 if (flag & FLAG_SACK_RENEGING) {
2264 struct inet_connection_sock *icsk = inet_csk(sk);
2265 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2267 tcp_enter_loss(sk, 1);
2268 icsk->icsk_retransmits++;
2269 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2270 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2271 icsk->icsk_rto, TCP_RTO_MAX);
2277 static inline int tcp_fackets_out(struct tcp_sock *tp)
2279 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2282 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2283 * counter when SACK is enabled (without SACK, sacked_out is used for
2286 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2287 * segments up to the highest received SACK block so far and holes in
2290 * With reordering, holes may still be in flight, so RFC3517 recovery
2291 * uses pure sacked_out (total number of SACKed segments) even though
2292 * it violates the RFC that uses duplicate ACKs, often these are equal
2293 * but when e.g. out-of-window ACKs or packet duplication occurs,
2294 * they differ. Since neither occurs due to loss, TCP should really
2297 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2299 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2302 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2304 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2307 static inline int tcp_head_timedout(struct sock *sk)
2309 struct tcp_sock *tp = tcp_sk(sk);
2311 return tp->packets_out &&
2312 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2315 /* Linux NewReno/SACK/FACK/ECN state machine.
2316 * --------------------------------------
2318 * "Open" Normal state, no dubious events, fast path.
2319 * "Disorder" In all the respects it is "Open",
2320 * but requires a bit more attention. It is entered when
2321 * we see some SACKs or dupacks. It is split of "Open"
2322 * mainly to move some processing from fast path to slow one.
2323 * "CWR" CWND was reduced due to some Congestion Notification event.
2324 * It can be ECN, ICMP source quench, local device congestion.
2325 * "Recovery" CWND was reduced, we are fast-retransmitting.
2326 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2328 * tcp_fastretrans_alert() is entered:
2329 * - each incoming ACK, if state is not "Open"
2330 * - when arrived ACK is unusual, namely:
2335 * Counting packets in flight is pretty simple.
2337 * in_flight = packets_out - left_out + retrans_out
2339 * packets_out is SND.NXT-SND.UNA counted in packets.
2341 * retrans_out is number of retransmitted segments.
2343 * left_out is number of segments left network, but not ACKed yet.
2345 * left_out = sacked_out + lost_out
2347 * sacked_out: Packets, which arrived to receiver out of order
2348 * and hence not ACKed. With SACKs this number is simply
2349 * amount of SACKed data. Even without SACKs
2350 * it is easy to give pretty reliable estimate of this number,
2351 * counting duplicate ACKs.
2353 * lost_out: Packets lost by network. TCP has no explicit
2354 * "loss notification" feedback from network (for now).
2355 * It means that this number can be only _guessed_.
2356 * Actually, it is the heuristics to predict lossage that
2357 * distinguishes different algorithms.
2359 * F.e. after RTO, when all the queue is considered as lost,
2360 * lost_out = packets_out and in_flight = retrans_out.
2362 * Essentially, we have now two algorithms counting
2365 * FACK: It is the simplest heuristics. As soon as we decided
2366 * that something is lost, we decide that _all_ not SACKed
2367 * packets until the most forward SACK are lost. I.e.
2368 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2369 * It is absolutely correct estimate, if network does not reorder
2370 * packets. And it loses any connection to reality when reordering
2371 * takes place. We use FACK by default until reordering
2372 * is suspected on the path to this destination.
2374 * NewReno: when Recovery is entered, we assume that one segment
2375 * is lost (classic Reno). While we are in Recovery and
2376 * a partial ACK arrives, we assume that one more packet
2377 * is lost (NewReno). This heuristics are the same in NewReno
2380 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2381 * deflation etc. CWND is real congestion window, never inflated, changes
2382 * only according to classic VJ rules.
2384 * Really tricky (and requiring careful tuning) part of algorithm
2385 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2386 * The first determines the moment _when_ we should reduce CWND and,
2387 * hence, slow down forward transmission. In fact, it determines the moment
2388 * when we decide that hole is caused by loss, rather than by a reorder.
2390 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2391 * holes, caused by lost packets.
2393 * And the most logically complicated part of algorithm is undo
2394 * heuristics. We detect false retransmits due to both too early
2395 * fast retransmit (reordering) and underestimated RTO, analyzing
2396 * timestamps and D-SACKs. When we detect that some segments were
2397 * retransmitted by mistake and CWND reduction was wrong, we undo
2398 * window reduction and abort recovery phase. This logic is hidden
2399 * inside several functions named tcp_try_undo_<something>.
2402 /* This function decides, when we should leave Disordered state
2403 * and enter Recovery phase, reducing congestion window.
2405 * Main question: may we further continue forward transmission
2406 * with the same cwnd?
2408 static int tcp_time_to_recover(struct sock *sk)
2410 struct tcp_sock *tp = tcp_sk(sk);
2413 /* Do not perform any recovery during F-RTO algorithm */
2414 if (tp->frto_counter)
2417 /* Trick#1: The loss is proven. */
2421 /* Not-A-Trick#2 : Classic rule... */
2422 if (tcp_dupack_heuristics(tp) > tp->reordering)
2425 /* Trick#3 : when we use RFC2988 timer restart, fast
2426 * retransmit can be triggered by timeout of queue head.
2428 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2431 /* Trick#4: It is still not OK... But will it be useful to delay
2434 packets_out = tp->packets_out;
2435 if (packets_out <= tp->reordering &&
2436 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2437 !tcp_may_send_now(sk)) {
2438 /* We have nothing to send. This connection is limited
2439 * either by receiver window or by application.
2444 /* If a thin stream is detected, retransmit after first
2445 * received dupack. Employ only if SACK is supported in order
2446 * to avoid possible corner-case series of spurious retransmissions
2447 * Use only if there are no unsent data.
2449 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2450 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2451 tcp_is_sack(tp) && !tcp_send_head(sk))
2457 /* New heuristics: it is possible only after we switched to restart timer
2458 * each time when something is ACKed. Hence, we can detect timed out packets
2459 * during fast retransmit without falling to slow start.
2461 * Usefulness of this as is very questionable, since we should know which of
2462 * the segments is the next to timeout which is relatively expensive to find
2463 * in general case unless we add some data structure just for that. The
2464 * current approach certainly won't find the right one too often and when it
2465 * finally does find _something_ it usually marks large part of the window
2466 * right away (because a retransmission with a larger timestamp blocks the
2467 * loop from advancing). -ij
2469 static void tcp_timeout_skbs(struct sock *sk)
2471 struct tcp_sock *tp = tcp_sk(sk);
2472 struct sk_buff *skb;
2474 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2477 skb = tp->scoreboard_skb_hint;
2478 if (tp->scoreboard_skb_hint == NULL)
2479 skb = tcp_write_queue_head(sk);
2481 tcp_for_write_queue_from(skb, sk) {
2482 if (skb == tcp_send_head(sk))
2484 if (!tcp_skb_timedout(sk, skb))
2487 tcp_skb_mark_lost(tp, skb);
2490 tp->scoreboard_skb_hint = skb;
2492 tcp_verify_left_out(tp);
2495 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2496 * is against sacked "cnt", otherwise it's against facked "cnt"
2498 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2500 struct tcp_sock *tp = tcp_sk(sk);
2501 struct sk_buff *skb;
2506 WARN_ON(packets > tp->packets_out);
2507 if (tp->lost_skb_hint) {
2508 skb = tp->lost_skb_hint;
2509 cnt = tp->lost_cnt_hint;
2510 /* Head already handled? */
2511 if (mark_head && skb != tcp_write_queue_head(sk))
2514 skb = tcp_write_queue_head(sk);
2518 tcp_for_write_queue_from(skb, sk) {
2519 if (skb == tcp_send_head(sk))
2521 /* TODO: do this better */
2522 /* this is not the most efficient way to do this... */
2523 tp->lost_skb_hint = skb;
2524 tp->lost_cnt_hint = cnt;
2526 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2530 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2531 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2532 cnt += tcp_skb_pcount(skb);
2534 if (cnt > packets) {
2535 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2536 (oldcnt >= packets))
2539 mss = skb_shinfo(skb)->gso_size;
2540 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2546 tcp_skb_mark_lost(tp, skb);
2551 tcp_verify_left_out(tp);
2554 /* Account newly detected lost packet(s) */
2556 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2558 struct tcp_sock *tp = tcp_sk(sk);
2560 if (tcp_is_reno(tp)) {
2561 tcp_mark_head_lost(sk, 1, 1);
2562 } else if (tcp_is_fack(tp)) {
2563 int lost = tp->fackets_out - tp->reordering;
2566 tcp_mark_head_lost(sk, lost, 0);
2568 int sacked_upto = tp->sacked_out - tp->reordering;
2569 if (sacked_upto >= 0)
2570 tcp_mark_head_lost(sk, sacked_upto, 0);
2571 else if (fast_rexmit)
2572 tcp_mark_head_lost(sk, 1, 1);
2575 tcp_timeout_skbs(sk);
2578 /* CWND moderation, preventing bursts due to too big ACKs
2579 * in dubious situations.
2581 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2583 tp->snd_cwnd = min(tp->snd_cwnd,
2584 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2585 tp->snd_cwnd_stamp = tcp_time_stamp;
2588 /* Lower bound on congestion window is slow start threshold
2589 * unless congestion avoidance choice decides to overide it.
2591 static inline u32 tcp_cwnd_min(const struct sock *sk)
2593 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2595 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2598 /* Decrease cwnd each second ack. */
2599 static void tcp_cwnd_down(struct sock *sk, int flag)
2601 struct tcp_sock *tp = tcp_sk(sk);
2602 int decr = tp->snd_cwnd_cnt + 1;
2604 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2605 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2606 tp->snd_cwnd_cnt = decr & 1;
2609 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2610 tp->snd_cwnd -= decr;
2612 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2613 tp->snd_cwnd_stamp = tcp_time_stamp;
2617 /* Nothing was retransmitted or returned timestamp is less
2618 * than timestamp of the first retransmission.
2620 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2622 return !tp->retrans_stamp ||
2623 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2624 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2627 /* Undo procedures. */
2629 #if FASTRETRANS_DEBUG > 1
2630 static void DBGUNDO(struct sock *sk, const char *msg)
2632 struct tcp_sock *tp = tcp_sk(sk);
2633 struct inet_sock *inet = inet_sk(sk);
2635 if (sk->sk_family == AF_INET) {
2636 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2638 &inet->inet_daddr, ntohs(inet->inet_dport),
2639 tp->snd_cwnd, tcp_left_out(tp),
2640 tp->snd_ssthresh, tp->prior_ssthresh,
2643 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2644 else if (sk->sk_family == AF_INET6) {
2645 struct ipv6_pinfo *np = inet6_sk(sk);
2646 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2648 &np->daddr, ntohs(inet->inet_dport),
2649 tp->snd_cwnd, tcp_left_out(tp),
2650 tp->snd_ssthresh, tp->prior_ssthresh,
2656 #define DBGUNDO(x...) do { } while (0)
2659 static void tcp_undo_cwr(struct sock *sk, const int undo)
2661 struct tcp_sock *tp = tcp_sk(sk);
2663 if (tp->prior_ssthresh) {
2664 const struct inet_connection_sock *icsk = inet_csk(sk);
2666 if (icsk->icsk_ca_ops->undo_cwnd)
2667 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2669 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2671 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2672 tp->snd_ssthresh = tp->prior_ssthresh;
2673 TCP_ECN_withdraw_cwr(tp);
2676 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2678 tcp_moderate_cwnd(tp);
2679 tp->snd_cwnd_stamp = tcp_time_stamp;
2682 static inline int tcp_may_undo(struct tcp_sock *tp)
2684 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2687 /* People celebrate: "We love our President!" */
2688 static int tcp_try_undo_recovery(struct sock *sk)
2690 struct tcp_sock *tp = tcp_sk(sk);
2692 if (tcp_may_undo(tp)) {
2695 /* Happy end! We did not retransmit anything
2696 * or our original transmission succeeded.
2698 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2699 tcp_undo_cwr(sk, 1);
2700 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2701 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2703 mib_idx = LINUX_MIB_TCPFULLUNDO;
2705 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2706 tp->undo_marker = 0;
2708 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2709 /* Hold old state until something *above* high_seq
2710 * is ACKed. For Reno it is MUST to prevent false
2711 * fast retransmits (RFC2582). SACK TCP is safe. */
2712 tcp_moderate_cwnd(tp);
2715 tcp_set_ca_state(sk, TCP_CA_Open);
2719 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2720 static void tcp_try_undo_dsack(struct sock *sk)
2722 struct tcp_sock *tp = tcp_sk(sk);
2724 if (tp->undo_marker && !tp->undo_retrans) {
2725 DBGUNDO(sk, "D-SACK");
2726 tcp_undo_cwr(sk, 1);
2727 tp->undo_marker = 0;
2728 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2732 /* We can clear retrans_stamp when there are no retransmissions in the
2733 * window. It would seem that it is trivially available for us in
2734 * tp->retrans_out, however, that kind of assumptions doesn't consider
2735 * what will happen if errors occur when sending retransmission for the
2736 * second time. ...It could the that such segment has only
2737 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2738 * the head skb is enough except for some reneging corner cases that
2739 * are not worth the effort.
2741 * Main reason for all this complexity is the fact that connection dying
2742 * time now depends on the validity of the retrans_stamp, in particular,
2743 * that successive retransmissions of a segment must not advance
2744 * retrans_stamp under any conditions.
2746 static int tcp_any_retrans_done(struct sock *sk)
2748 struct tcp_sock *tp = tcp_sk(sk);
2749 struct sk_buff *skb;
2751 if (tp->retrans_out)
2754 skb = tcp_write_queue_head(sk);
2755 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2761 /* Undo during fast recovery after partial ACK. */
2763 static int tcp_try_undo_partial(struct sock *sk, int acked)
2765 struct tcp_sock *tp = tcp_sk(sk);
2766 /* Partial ACK arrived. Force Hoe's retransmit. */
2767 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2769 if (tcp_may_undo(tp)) {
2770 /* Plain luck! Hole if filled with delayed
2771 * packet, rather than with a retransmit.
2773 if (!tcp_any_retrans_done(sk))
2774 tp->retrans_stamp = 0;
2776 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2779 tcp_undo_cwr(sk, 0);
2780 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2782 /* So... Do not make Hoe's retransmit yet.
2783 * If the first packet was delayed, the rest
2784 * ones are most probably delayed as well.
2791 /* Undo during loss recovery after partial ACK. */
2792 static int tcp_try_undo_loss(struct sock *sk)
2794 struct tcp_sock *tp = tcp_sk(sk);
2796 if (tcp_may_undo(tp)) {
2797 struct sk_buff *skb;
2798 tcp_for_write_queue(skb, sk) {
2799 if (skb == tcp_send_head(sk))
2801 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2804 tcp_clear_all_retrans_hints(tp);
2806 DBGUNDO(sk, "partial loss");
2808 tcp_undo_cwr(sk, 1);
2809 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2810 inet_csk(sk)->icsk_retransmits = 0;
2811 tp->undo_marker = 0;
2812 if (tcp_is_sack(tp))
2813 tcp_set_ca_state(sk, TCP_CA_Open);
2819 static inline void tcp_complete_cwr(struct sock *sk)
2821 struct tcp_sock *tp = tcp_sk(sk);
2822 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2823 tp->snd_cwnd_stamp = tcp_time_stamp;
2824 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2827 static void tcp_try_keep_open(struct sock *sk)
2829 struct tcp_sock *tp = tcp_sk(sk);
2830 int state = TCP_CA_Open;
2832 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2833 state = TCP_CA_Disorder;
2835 if (inet_csk(sk)->icsk_ca_state != state) {
2836 tcp_set_ca_state(sk, state);
2837 tp->high_seq = tp->snd_nxt;
2841 static void tcp_try_to_open(struct sock *sk, int flag)
2843 struct tcp_sock *tp = tcp_sk(sk);
2845 tcp_verify_left_out(tp);
2847 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2848 tp->retrans_stamp = 0;
2850 if (flag & FLAG_ECE)
2851 tcp_enter_cwr(sk, 1);
2853 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2854 tcp_try_keep_open(sk);
2855 tcp_moderate_cwnd(tp);
2857 tcp_cwnd_down(sk, flag);
2861 static void tcp_mtup_probe_failed(struct sock *sk)
2863 struct inet_connection_sock *icsk = inet_csk(sk);
2865 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2866 icsk->icsk_mtup.probe_size = 0;
2869 static void tcp_mtup_probe_success(struct sock *sk)
2871 struct tcp_sock *tp = tcp_sk(sk);
2872 struct inet_connection_sock *icsk = inet_csk(sk);
2874 /* FIXME: breaks with very large cwnd */
2875 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2876 tp->snd_cwnd = tp->snd_cwnd *
2877 tcp_mss_to_mtu(sk, tp->mss_cache) /
2878 icsk->icsk_mtup.probe_size;
2879 tp->snd_cwnd_cnt = 0;
2880 tp->snd_cwnd_stamp = tcp_time_stamp;
2881 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2883 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2884 icsk->icsk_mtup.probe_size = 0;
2885 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2888 /* Do a simple retransmit without using the backoff mechanisms in
2889 * tcp_timer. This is used for path mtu discovery.
2890 * The socket is already locked here.
2892 void tcp_simple_retransmit(struct sock *sk)
2894 const struct inet_connection_sock *icsk = inet_csk(sk);
2895 struct tcp_sock *tp = tcp_sk(sk);
2896 struct sk_buff *skb;
2897 unsigned int mss = tcp_current_mss(sk);
2898 u32 prior_lost = tp->lost_out;
2900 tcp_for_write_queue(skb, sk) {
2901 if (skb == tcp_send_head(sk))
2903 if (tcp_skb_seglen(skb) > mss &&
2904 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2905 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2906 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2907 tp->retrans_out -= tcp_skb_pcount(skb);
2909 tcp_skb_mark_lost_uncond_verify(tp, skb);
2913 tcp_clear_retrans_hints_partial(tp);
2915 if (prior_lost == tp->lost_out)
2918 if (tcp_is_reno(tp))
2919 tcp_limit_reno_sacked(tp);
2921 tcp_verify_left_out(tp);
2923 /* Don't muck with the congestion window here.
2924 * Reason is that we do not increase amount of _data_
2925 * in network, but units changed and effective
2926 * cwnd/ssthresh really reduced now.
2928 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2929 tp->high_seq = tp->snd_nxt;
2930 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2931 tp->prior_ssthresh = 0;
2932 tp->undo_marker = 0;
2933 tcp_set_ca_state(sk, TCP_CA_Loss);
2935 tcp_xmit_retransmit_queue(sk);
2937 EXPORT_SYMBOL(tcp_simple_retransmit);
2939 /* Process an event, which can update packets-in-flight not trivially.
2940 * Main goal of this function is to calculate new estimate for left_out,
2941 * taking into account both packets sitting in receiver's buffer and
2942 * packets lost by network.
2944 * Besides that it does CWND reduction, when packet loss is detected
2945 * and changes state of machine.
2947 * It does _not_ decide what to send, it is made in function
2948 * tcp_xmit_retransmit_queue().
2950 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2952 struct inet_connection_sock *icsk = inet_csk(sk);
2953 struct tcp_sock *tp = tcp_sk(sk);
2954 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2955 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2956 (tcp_fackets_out(tp) > tp->reordering));
2957 int fast_rexmit = 0, mib_idx;
2959 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2961 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2962 tp->fackets_out = 0;
2964 /* Now state machine starts.
2965 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2966 if (flag & FLAG_ECE)
2967 tp->prior_ssthresh = 0;
2969 /* B. In all the states check for reneging SACKs. */
2970 if (tcp_check_sack_reneging(sk, flag))
2973 /* C. Process data loss notification, provided it is valid. */
2974 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2975 before(tp->snd_una, tp->high_seq) &&
2976 icsk->icsk_ca_state != TCP_CA_Open &&
2977 tp->fackets_out > tp->reordering) {
2978 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2979 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2982 /* D. Check consistency of the current state. */
2983 tcp_verify_left_out(tp);
2985 /* E. Check state exit conditions. State can be terminated
2986 * when high_seq is ACKed. */
2987 if (icsk->icsk_ca_state == TCP_CA_Open) {
2988 WARN_ON(tp->retrans_out != 0);
2989 tp->retrans_stamp = 0;
2990 } else if (!before(tp->snd_una, tp->high_seq)) {
2991 switch (icsk->icsk_ca_state) {
2993 icsk->icsk_retransmits = 0;
2994 if (tcp_try_undo_recovery(sk))
2999 /* CWR is to be held something *above* high_seq
3000 * is ACKed for CWR bit to reach receiver. */
3001 if (tp->snd_una != tp->high_seq) {
3002 tcp_complete_cwr(sk);
3003 tcp_set_ca_state(sk, TCP_CA_Open);
3007 case TCP_CA_Disorder:
3008 tcp_try_undo_dsack(sk);
3009 if (!tp->undo_marker ||
3010 /* For SACK case do not Open to allow to undo
3011 * catching for all duplicate ACKs. */
3012 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3013 tp->undo_marker = 0;
3014 tcp_set_ca_state(sk, TCP_CA_Open);
3018 case TCP_CA_Recovery:
3019 if (tcp_is_reno(tp))
3020 tcp_reset_reno_sack(tp);
3021 if (tcp_try_undo_recovery(sk))
3023 tcp_complete_cwr(sk);
3028 /* F. Process state. */
3029 switch (icsk->icsk_ca_state) {
3030 case TCP_CA_Recovery:
3031 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3032 if (tcp_is_reno(tp) && is_dupack)
3033 tcp_add_reno_sack(sk);
3035 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3038 if (flag & FLAG_DATA_ACKED)
3039 icsk->icsk_retransmits = 0;
3040 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3041 tcp_reset_reno_sack(tp);
3042 if (!tcp_try_undo_loss(sk)) {
3043 tcp_moderate_cwnd(tp);
3044 tcp_xmit_retransmit_queue(sk);
3047 if (icsk->icsk_ca_state != TCP_CA_Open)
3049 /* Loss is undone; fall through to processing in Open state. */
3051 if (tcp_is_reno(tp)) {
3052 if (flag & FLAG_SND_UNA_ADVANCED)
3053 tcp_reset_reno_sack(tp);
3055 tcp_add_reno_sack(sk);
3058 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3059 tcp_try_undo_dsack(sk);
3061 if (!tcp_time_to_recover(sk)) {
3062 tcp_try_to_open(sk, flag);
3066 /* MTU probe failure: don't reduce cwnd */
3067 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3068 icsk->icsk_mtup.probe_size &&
3069 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3070 tcp_mtup_probe_failed(sk);
3071 /* Restores the reduction we did in tcp_mtup_probe() */
3073 tcp_simple_retransmit(sk);
3077 /* Otherwise enter Recovery state */
3079 if (tcp_is_reno(tp))
3080 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3082 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3084 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3086 tp->high_seq = tp->snd_nxt;
3087 tp->prior_ssthresh = 0;
3088 tp->undo_marker = tp->snd_una;
3089 tp->undo_retrans = tp->retrans_out;
3091 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3092 if (!(flag & FLAG_ECE))
3093 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3094 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3095 TCP_ECN_queue_cwr(tp);
3098 tp->bytes_acked = 0;
3099 tp->snd_cwnd_cnt = 0;
3100 tcp_set_ca_state(sk, TCP_CA_Recovery);
3104 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3105 tcp_update_scoreboard(sk, fast_rexmit);
3106 tcp_cwnd_down(sk, flag);
3107 tcp_xmit_retransmit_queue(sk);
3110 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3112 tcp_rtt_estimator(sk, seq_rtt);
3114 inet_csk(sk)->icsk_backoff = 0;
3117 /* Read draft-ietf-tcplw-high-performance before mucking
3118 * with this code. (Supersedes RFC1323)
3120 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3122 /* RTTM Rule: A TSecr value received in a segment is used to
3123 * update the averaged RTT measurement only if the segment
3124 * acknowledges some new data, i.e., only if it advances the
3125 * left edge of the send window.
3127 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3128 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3130 * Changed: reset backoff as soon as we see the first valid sample.
3131 * If we do not, we get strongly overestimated rto. With timestamps
3132 * samples are accepted even from very old segments: f.e., when rtt=1
3133 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3134 * answer arrives rto becomes 120 seconds! If at least one of segments
3135 * in window is lost... Voila. --ANK (010210)
3137 struct tcp_sock *tp = tcp_sk(sk);
3139 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3142 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3144 /* We don't have a timestamp. Can only use
3145 * packets that are not retransmitted to determine
3146 * rtt estimates. Also, we must not reset the
3147 * backoff for rto until we get a non-retransmitted
3148 * packet. This allows us to deal with a situation
3149 * where the network delay has increased suddenly.
3150 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3153 if (flag & FLAG_RETRANS_DATA_ACKED)
3156 tcp_valid_rtt_meas(sk, seq_rtt);
3159 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3162 const struct tcp_sock *tp = tcp_sk(sk);
3163 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3164 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3165 tcp_ack_saw_tstamp(sk, flag);
3166 else if (seq_rtt >= 0)
3167 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3170 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3172 const struct inet_connection_sock *icsk = inet_csk(sk);
3173 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3174 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3177 /* Restart timer after forward progress on connection.
3178 * RFC2988 recommends to restart timer to now+rto.
3180 static void tcp_rearm_rto(struct sock *sk)
3182 struct tcp_sock *tp = tcp_sk(sk);
3184 if (!tp->packets_out) {
3185 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3187 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3188 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3192 /* If we get here, the whole TSO packet has not been acked. */
3193 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3195 struct tcp_sock *tp = tcp_sk(sk);
3198 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3200 packets_acked = tcp_skb_pcount(skb);
3201 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3203 packets_acked -= tcp_skb_pcount(skb);
3205 if (packets_acked) {
3206 BUG_ON(tcp_skb_pcount(skb) == 0);
3207 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3210 return packets_acked;
3213 /* Remove acknowledged frames from the retransmission queue. If our packet
3214 * is before the ack sequence we can discard it as it's confirmed to have
3215 * arrived at the other end.
3217 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3220 struct tcp_sock *tp = tcp_sk(sk);
3221 const struct inet_connection_sock *icsk = inet_csk(sk);
3222 struct sk_buff *skb;
3223 u32 now = tcp_time_stamp;
3224 int fully_acked = 1;