2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_frto_response __read_mostly;
98 int sysctl_tcp_thin_dupack __read_mostly;
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 2;
103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
109 #define FLAG_ECE 0x40 /* ECE in this ACK */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 /* Adapt the MSS value used to make delayed ack decision to the
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 struct inet_connection_sock *icsk = inet_csk(sk);
132 const unsigned int lss = icsk->icsk_ack.last_seg_size;
135 icsk->icsk_ack.last_seg_size = 0;
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
140 len = skb_shinfo(skb)->gso_size ? : skb->len;
141 if (len >= icsk->icsk_ack.rcv_mss) {
142 icsk->icsk_ack.rcv_mss = len;
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
147 * "len" is invariant segment length, including TCP header.
149 len += skb->data - skb_transport_header(skb);
150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
162 len -= tcp_sk(sk)->tcp_header_len;
163 icsk->icsk_ack.last_seg_size = len;
165 icsk->icsk_ack.rcv_mss = len;
169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175 static void tcp_incr_quickack(struct sock *sk)
177 struct inet_connection_sock *icsk = inet_csk(sk);
178 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182 if (quickacks > icsk->icsk_ack.quick)
183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
186 static void tcp_enter_quickack_mode(struct sock *sk)
188 struct inet_connection_sock *icsk = inet_csk(sk);
189 tcp_incr_quickack(sk);
190 icsk->icsk_ack.pingpong = 0;
191 icsk->icsk_ack.ato = TCP_ATO_MIN;
194 /* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
198 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 const struct inet_connection_sock *icsk = inet_csk(sk);
202 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
205 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207 if (tp->ecn_flags & TCP_ECN_OK)
208 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
211 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 if (tcp_hdr(skb)->cwr)
214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 if (!(tp->ecn_flags & TCP_ECN_OK))
227 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
228 case INET_ECN_NOT_ECT:
229 /* Funny extension: if ECT is not set on a segment,
230 * and we already seen ECT on a previous segment,
231 * it is probably a retransmit.
233 if (tp->ecn_flags & TCP_ECN_SEEN)
234 tcp_enter_quickack_mode((struct sock *)tp);
237 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
238 /* Better not delay acks, sender can have a very low cwnd */
239 tcp_enter_quickack_mode((struct sock *)tp);
240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
244 tp->ecn_flags |= TCP_ECN_SEEN;
248 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
250 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
251 tp->ecn_flags &= ~TCP_ECN_OK;
254 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
256 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
257 tp->ecn_flags &= ~TCP_ECN_OK;
260 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
262 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
267 /* Buffer size and advertised window tuning.
269 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
272 static void tcp_fixup_sndbuf(struct sock *sk)
274 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
276 sndmem *= TCP_INIT_CWND;
277 if (sk->sk_sndbuf < sndmem)
278 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
281 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
283 * All tcp_full_space() is split to two parts: "network" buffer, allocated
284 * forward and advertised in receiver window (tp->rcv_wnd) and
285 * "application buffer", required to isolate scheduling/application
286 * latencies from network.
287 * window_clamp is maximal advertised window. It can be less than
288 * tcp_full_space(), in this case tcp_full_space() - window_clamp
289 * is reserved for "application" buffer. The less window_clamp is
290 * the smoother our behaviour from viewpoint of network, but the lower
291 * throughput and the higher sensitivity of the connection to losses. 8)
293 * rcv_ssthresh is more strict window_clamp used at "slow start"
294 * phase to predict further behaviour of this connection.
295 * It is used for two goals:
296 * - to enforce header prediction at sender, even when application
297 * requires some significant "application buffer". It is check #1.
298 * - to prevent pruning of receive queue because of misprediction
299 * of receiver window. Check #2.
301 * The scheme does not work when sender sends good segments opening
302 * window and then starts to feed us spaghetti. But it should work
303 * in common situations. Otherwise, we have to rely on queue collapsing.
306 /* Slow part of check#2. */
307 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
309 struct tcp_sock *tp = tcp_sk(sk);
311 int truesize = tcp_win_from_space(skb->truesize) >> 1;
312 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
314 while (tp->rcv_ssthresh <= window) {
315 if (truesize <= skb->len)
316 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
324 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
326 struct tcp_sock *tp = tcp_sk(sk);
329 if (tp->rcv_ssthresh < tp->window_clamp &&
330 (int)tp->rcv_ssthresh < tcp_space(sk) &&
331 !sk_under_memory_pressure(sk)) {
334 /* Check #2. Increase window, if skb with such overhead
335 * will fit to rcvbuf in future.
337 if (tcp_win_from_space(skb->truesize) <= skb->len)
338 incr = 2 * tp->advmss;
340 incr = __tcp_grow_window(sk, skb);
343 incr = max_t(int, incr, 2 * skb->len);
344 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
346 inet_csk(sk)->icsk_ack.quick |= 1;
351 /* 3. Tuning rcvbuf, when connection enters established state. */
353 static void tcp_fixup_rcvbuf(struct sock *sk)
355 u32 mss = tcp_sk(sk)->advmss;
356 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
359 /* Limit to 10 segments if mss <= 1460,
360 * or 14600/mss segments, with a minimum of two segments.
363 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
365 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
366 while (tcp_win_from_space(rcvmem) < mss)
371 if (sk->sk_rcvbuf < rcvmem)
372 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
375 /* 4. Try to fixup all. It is made immediately after connection enters
378 void tcp_init_buffer_space(struct sock *sk)
380 struct tcp_sock *tp = tcp_sk(sk);
383 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
384 tcp_fixup_rcvbuf(sk);
385 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
386 tcp_fixup_sndbuf(sk);
388 tp->rcvq_space.space = tp->rcv_wnd;
390 maxwin = tcp_full_space(sk);
392 if (tp->window_clamp >= maxwin) {
393 tp->window_clamp = maxwin;
395 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
396 tp->window_clamp = max(maxwin -
397 (maxwin >> sysctl_tcp_app_win),
401 /* Force reservation of one segment. */
402 if (sysctl_tcp_app_win &&
403 tp->window_clamp > 2 * tp->advmss &&
404 tp->window_clamp + tp->advmss > maxwin)
405 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
407 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
408 tp->snd_cwnd_stamp = tcp_time_stamp;
411 /* 5. Recalculate window clamp after socket hit its memory bounds. */
412 static void tcp_clamp_window(struct sock *sk)
414 struct tcp_sock *tp = tcp_sk(sk);
415 struct inet_connection_sock *icsk = inet_csk(sk);
417 icsk->icsk_ack.quick = 0;
419 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
420 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
421 !sk_under_memory_pressure(sk) &&
422 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
423 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
426 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
427 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
430 /* Initialize RCV_MSS value.
431 * RCV_MSS is an our guess about MSS used by the peer.
432 * We haven't any direct information about the MSS.
433 * It's better to underestimate the RCV_MSS rather than overestimate.
434 * Overestimations make us ACKing less frequently than needed.
435 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
437 void tcp_initialize_rcv_mss(struct sock *sk)
439 const struct tcp_sock *tp = tcp_sk(sk);
440 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
442 hint = min(hint, tp->rcv_wnd / 2);
443 hint = min(hint, TCP_MSS_DEFAULT);
444 hint = max(hint, TCP_MIN_MSS);
446 inet_csk(sk)->icsk_ack.rcv_mss = hint;
448 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
450 /* Receiver "autotuning" code.
452 * The algorithm for RTT estimation w/o timestamps is based on
453 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
454 * <http://public.lanl.gov/radiant/pubs.html#DRS>
456 * More detail on this code can be found at
457 * <http://staff.psc.edu/jheffner/>,
458 * though this reference is out of date. A new paper
461 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
463 u32 new_sample = tp->rcv_rtt_est.rtt;
469 if (new_sample != 0) {
470 /* If we sample in larger samples in the non-timestamp
471 * case, we could grossly overestimate the RTT especially
472 * with chatty applications or bulk transfer apps which
473 * are stalled on filesystem I/O.
475 * Also, since we are only going for a minimum in the
476 * non-timestamp case, we do not smooth things out
477 * else with timestamps disabled convergence takes too
481 m -= (new_sample >> 3);
489 /* No previous measure. */
493 if (tp->rcv_rtt_est.rtt != new_sample)
494 tp->rcv_rtt_est.rtt = new_sample;
497 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
499 if (tp->rcv_rtt_est.time == 0)
501 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
503 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
506 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
507 tp->rcv_rtt_est.time = tcp_time_stamp;
510 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
511 const struct sk_buff *skb)
513 struct tcp_sock *tp = tcp_sk(sk);
514 if (tp->rx_opt.rcv_tsecr &&
515 (TCP_SKB_CB(skb)->end_seq -
516 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
517 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
521 * This function should be called every time data is copied to user space.
522 * It calculates the appropriate TCP receive buffer space.
524 void tcp_rcv_space_adjust(struct sock *sk)
526 struct tcp_sock *tp = tcp_sk(sk);
530 if (tp->rcvq_space.time == 0)
533 time = tcp_time_stamp - tp->rcvq_space.time;
534 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
537 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
539 space = max(tp->rcvq_space.space, space);
541 if (tp->rcvq_space.space != space) {
544 tp->rcvq_space.space = space;
546 if (sysctl_tcp_moderate_rcvbuf &&
547 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
548 int new_clamp = space;
550 /* Receive space grows, normalize in order to
551 * take into account packet headers and sk_buff
552 * structure overhead.
557 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
558 while (tcp_win_from_space(rcvmem) < tp->advmss)
561 space = min(space, sysctl_tcp_rmem[2]);
562 if (space > sk->sk_rcvbuf) {
563 sk->sk_rcvbuf = space;
565 /* Make the window clamp follow along. */
566 tp->window_clamp = new_clamp;
572 tp->rcvq_space.seq = tp->copied_seq;
573 tp->rcvq_space.time = tcp_time_stamp;
576 /* There is something which you must keep in mind when you analyze the
577 * behavior of the tp->ato delayed ack timeout interval. When a
578 * connection starts up, we want to ack as quickly as possible. The
579 * problem is that "good" TCP's do slow start at the beginning of data
580 * transmission. The means that until we send the first few ACK's the
581 * sender will sit on his end and only queue most of his data, because
582 * he can only send snd_cwnd unacked packets at any given time. For
583 * each ACK we send, he increments snd_cwnd and transmits more of his
586 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
588 struct tcp_sock *tp = tcp_sk(sk);
589 struct inet_connection_sock *icsk = inet_csk(sk);
592 inet_csk_schedule_ack(sk);
594 tcp_measure_rcv_mss(sk, skb);
596 tcp_rcv_rtt_measure(tp);
598 now = tcp_time_stamp;
600 if (!icsk->icsk_ack.ato) {
601 /* The _first_ data packet received, initialize
602 * delayed ACK engine.
604 tcp_incr_quickack(sk);
605 icsk->icsk_ack.ato = TCP_ATO_MIN;
607 int m = now - icsk->icsk_ack.lrcvtime;
609 if (m <= TCP_ATO_MIN / 2) {
610 /* The fastest case is the first. */
611 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
612 } else if (m < icsk->icsk_ack.ato) {
613 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
614 if (icsk->icsk_ack.ato > icsk->icsk_rto)
615 icsk->icsk_ack.ato = icsk->icsk_rto;
616 } else if (m > icsk->icsk_rto) {
617 /* Too long gap. Apparently sender failed to
618 * restart window, so that we send ACKs quickly.
620 tcp_incr_quickack(sk);
624 icsk->icsk_ack.lrcvtime = now;
626 TCP_ECN_check_ce(tp, skb);
629 tcp_grow_window(sk, skb);
632 /* Called to compute a smoothed rtt estimate. The data fed to this
633 * routine either comes from timestamps, or from segments that were
634 * known _not_ to have been retransmitted [see Karn/Partridge
635 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
636 * piece by Van Jacobson.
637 * NOTE: the next three routines used to be one big routine.
638 * To save cycles in the RFC 1323 implementation it was better to break
639 * it up into three procedures. -- erics
641 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
643 struct tcp_sock *tp = tcp_sk(sk);
644 long m = mrtt; /* RTT */
646 /* The following amusing code comes from Jacobson's
647 * article in SIGCOMM '88. Note that rtt and mdev
648 * are scaled versions of rtt and mean deviation.
649 * This is designed to be as fast as possible
650 * m stands for "measurement".
652 * On a 1990 paper the rto value is changed to:
653 * RTO = rtt + 4 * mdev
655 * Funny. This algorithm seems to be very broken.
656 * These formulae increase RTO, when it should be decreased, increase
657 * too slowly, when it should be increased quickly, decrease too quickly
658 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
659 * does not matter how to _calculate_ it. Seems, it was trap
660 * that VJ failed to avoid. 8)
665 m -= (tp->srtt >> 3); /* m is now error in rtt est */
666 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
668 m = -m; /* m is now abs(error) */
669 m -= (tp->mdev >> 2); /* similar update on mdev */
670 /* This is similar to one of Eifel findings.
671 * Eifel blocks mdev updates when rtt decreases.
672 * This solution is a bit different: we use finer gain
673 * for mdev in this case (alpha*beta).
674 * Like Eifel it also prevents growth of rto,
675 * but also it limits too fast rto decreases,
676 * happening in pure Eifel.
681 m -= (tp->mdev >> 2); /* similar update on mdev */
683 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
684 if (tp->mdev > tp->mdev_max) {
685 tp->mdev_max = tp->mdev;
686 if (tp->mdev_max > tp->rttvar)
687 tp->rttvar = tp->mdev_max;
689 if (after(tp->snd_una, tp->rtt_seq)) {
690 if (tp->mdev_max < tp->rttvar)
691 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
692 tp->rtt_seq = tp->snd_nxt;
693 tp->mdev_max = tcp_rto_min(sk);
696 /* no previous measure. */
697 tp->srtt = m << 3; /* take the measured time to be rtt */
698 tp->mdev = m << 1; /* make sure rto = 3*rtt */
699 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
700 tp->rtt_seq = tp->snd_nxt;
704 /* Calculate rto without backoff. This is the second half of Van Jacobson's
705 * routine referred to above.
707 void tcp_set_rto(struct sock *sk)
709 const struct tcp_sock *tp = tcp_sk(sk);
710 /* Old crap is replaced with new one. 8)
713 * 1. If rtt variance happened to be less 50msec, it is hallucination.
714 * It cannot be less due to utterly erratic ACK generation made
715 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
716 * to do with delayed acks, because at cwnd>2 true delack timeout
717 * is invisible. Actually, Linux-2.4 also generates erratic
718 * ACKs in some circumstances.
720 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
722 /* 2. Fixups made earlier cannot be right.
723 * If we do not estimate RTO correctly without them,
724 * all the algo is pure shit and should be replaced
725 * with correct one. It is exactly, which we pretend to do.
728 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
729 * guarantees that rto is higher.
734 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
736 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
739 cwnd = TCP_INIT_CWND;
740 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
744 * Packet counting of FACK is based on in-order assumptions, therefore TCP
745 * disables it when reordering is detected
747 void tcp_disable_fack(struct tcp_sock *tp)
749 /* RFC3517 uses different metric in lost marker => reset on change */
751 tp->lost_skb_hint = NULL;
752 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
755 /* Take a notice that peer is sending D-SACKs */
756 static void tcp_dsack_seen(struct tcp_sock *tp)
758 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
761 static void tcp_update_reordering(struct sock *sk, const int metric,
764 struct tcp_sock *tp = tcp_sk(sk);
765 if (metric > tp->reordering) {
768 tp->reordering = min(TCP_MAX_REORDERING, metric);
770 /* This exciting event is worth to be remembered. 8) */
772 mib_idx = LINUX_MIB_TCPTSREORDER;
773 else if (tcp_is_reno(tp))
774 mib_idx = LINUX_MIB_TCPRENOREORDER;
775 else if (tcp_is_fack(tp))
776 mib_idx = LINUX_MIB_TCPFACKREORDER;
778 mib_idx = LINUX_MIB_TCPSACKREORDER;
780 NET_INC_STATS_BH(sock_net(sk), mib_idx);
781 #if FASTRETRANS_DEBUG > 1
782 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
783 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
787 tp->undo_marker ? tp->undo_retrans : 0);
789 tcp_disable_fack(tp);
793 tcp_disable_early_retrans(tp);
796 /* This must be called before lost_out is incremented */
797 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
799 if ((tp->retransmit_skb_hint == NULL) ||
800 before(TCP_SKB_CB(skb)->seq,
801 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
802 tp->retransmit_skb_hint = skb;
805 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
806 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
809 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
811 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
812 tcp_verify_retransmit_hint(tp, skb);
814 tp->lost_out += tcp_skb_pcount(skb);
815 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
819 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
822 tcp_verify_retransmit_hint(tp, skb);
824 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
825 tp->lost_out += tcp_skb_pcount(skb);
826 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
830 /* This procedure tags the retransmission queue when SACKs arrive.
832 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
833 * Packets in queue with these bits set are counted in variables
834 * sacked_out, retrans_out and lost_out, correspondingly.
836 * Valid combinations are:
837 * Tag InFlight Description
838 * 0 1 - orig segment is in flight.
839 * S 0 - nothing flies, orig reached receiver.
840 * L 0 - nothing flies, orig lost by net.
841 * R 2 - both orig and retransmit are in flight.
842 * L|R 1 - orig is lost, retransmit is in flight.
843 * S|R 1 - orig reached receiver, retrans is still in flight.
844 * (L|S|R is logically valid, it could occur when L|R is sacked,
845 * but it is equivalent to plain S and code short-curcuits it to S.
846 * L|S is logically invalid, it would mean -1 packet in flight 8))
848 * These 6 states form finite state machine, controlled by the following events:
849 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
850 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
851 * 3. Loss detection event of two flavors:
852 * A. Scoreboard estimator decided the packet is lost.
853 * A'. Reno "three dupacks" marks head of queue lost.
854 * A''. Its FACK modification, head until snd.fack is lost.
855 * B. SACK arrives sacking SND.NXT at the moment, when the
856 * segment was retransmitted.
857 * 4. D-SACK added new rule: D-SACK changes any tag to S.
859 * It is pleasant to note, that state diagram turns out to be commutative,
860 * so that we are allowed not to be bothered by order of our actions,
861 * when multiple events arrive simultaneously. (see the function below).
863 * Reordering detection.
864 * --------------------
865 * Reordering metric is maximal distance, which a packet can be displaced
866 * in packet stream. With SACKs we can estimate it:
868 * 1. SACK fills old hole and the corresponding segment was not
869 * ever retransmitted -> reordering. Alas, we cannot use it
870 * when segment was retransmitted.
871 * 2. The last flaw is solved with D-SACK. D-SACK arrives
872 * for retransmitted and already SACKed segment -> reordering..
873 * Both of these heuristics are not used in Loss state, when we cannot
874 * account for retransmits accurately.
876 * SACK block validation.
877 * ----------------------
879 * SACK block range validation checks that the received SACK block fits to
880 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
881 * Note that SND.UNA is not included to the range though being valid because
882 * it means that the receiver is rather inconsistent with itself reporting
883 * SACK reneging when it should advance SND.UNA. Such SACK block this is
884 * perfectly valid, however, in light of RFC2018 which explicitly states
885 * that "SACK block MUST reflect the newest segment. Even if the newest
886 * segment is going to be discarded ...", not that it looks very clever
887 * in case of head skb. Due to potentional receiver driven attacks, we
888 * choose to avoid immediate execution of a walk in write queue due to
889 * reneging and defer head skb's loss recovery to standard loss recovery
890 * procedure that will eventually trigger (nothing forbids us doing this).
892 * Implements also blockage to start_seq wrap-around. Problem lies in the
893 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
894 * there's no guarantee that it will be before snd_nxt (n). The problem
895 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
898 * <- outs wnd -> <- wrapzone ->
899 * u e n u_w e_w s n_w
901 * |<------------+------+----- TCP seqno space --------------+---------->|
902 * ...-- <2^31 ->| |<--------...
903 * ...---- >2^31 ------>| |<--------...
905 * Current code wouldn't be vulnerable but it's better still to discard such
906 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
907 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
908 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
909 * equal to the ideal case (infinite seqno space without wrap caused issues).
911 * With D-SACK the lower bound is extended to cover sequence space below
912 * SND.UNA down to undo_marker, which is the last point of interest. Yet
913 * again, D-SACK block must not to go across snd_una (for the same reason as
914 * for the normal SACK blocks, explained above). But there all simplicity
915 * ends, TCP might receive valid D-SACKs below that. As long as they reside
916 * fully below undo_marker they do not affect behavior in anyway and can
917 * therefore be safely ignored. In rare cases (which are more or less
918 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
919 * fragmentation and packet reordering past skb's retransmission. To consider
920 * them correctly, the acceptable range must be extended even more though
921 * the exact amount is rather hard to quantify. However, tp->max_window can
922 * be used as an exaggerated estimate.
924 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
925 u32 start_seq, u32 end_seq)
927 /* Too far in future, or reversed (interpretation is ambiguous) */
928 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
931 /* Nasty start_seq wrap-around check (see comments above) */
932 if (!before(start_seq, tp->snd_nxt))
935 /* In outstanding window? ...This is valid exit for D-SACKs too.
936 * start_seq == snd_una is non-sensical (see comments above)
938 if (after(start_seq, tp->snd_una))
941 if (!is_dsack || !tp->undo_marker)
944 /* ...Then it's D-SACK, and must reside below snd_una completely */
945 if (after(end_seq, tp->snd_una))
948 if (!before(start_seq, tp->undo_marker))
952 if (!after(end_seq, tp->undo_marker))
955 /* Undo_marker boundary crossing (overestimates a lot). Known already:
956 * start_seq < undo_marker and end_seq >= undo_marker.
958 return !before(start_seq, end_seq - tp->max_window);
961 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
962 * Event "B". Later note: FACK people cheated me again 8), we have to account
963 * for reordering! Ugly, but should help.
965 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
966 * less than what is now known to be received by the other end (derived from
967 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
968 * retransmitted skbs to avoid some costly processing per ACKs.
970 static void tcp_mark_lost_retrans(struct sock *sk)
972 const struct inet_connection_sock *icsk = inet_csk(sk);
973 struct tcp_sock *tp = tcp_sk(sk);
976 u32 new_low_seq = tp->snd_nxt;
977 u32 received_upto = tcp_highest_sack_seq(tp);
979 if (!tcp_is_fack(tp) || !tp->retrans_out ||
980 !after(received_upto, tp->lost_retrans_low) ||
981 icsk->icsk_ca_state != TCP_CA_Recovery)
984 tcp_for_write_queue(skb, sk) {
985 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
987 if (skb == tcp_send_head(sk))
989 if (cnt == tp->retrans_out)
991 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
994 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
997 /* TODO: We would like to get rid of tcp_is_fack(tp) only
998 * constraint here (see above) but figuring out that at
999 * least tp->reordering SACK blocks reside between ack_seq
1000 * and received_upto is not easy task to do cheaply with
1001 * the available datastructures.
1003 * Whether FACK should check here for tp->reordering segs
1004 * in-between one could argue for either way (it would be
1005 * rather simple to implement as we could count fack_count
1006 * during the walk and do tp->fackets_out - fack_count).
1008 if (after(received_upto, ack_seq)) {
1009 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1010 tp->retrans_out -= tcp_skb_pcount(skb);
1012 tcp_skb_mark_lost_uncond_verify(tp, skb);
1013 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1015 if (before(ack_seq, new_low_seq))
1016 new_low_seq = ack_seq;
1017 cnt += tcp_skb_pcount(skb);
1021 if (tp->retrans_out)
1022 tp->lost_retrans_low = new_low_seq;
1025 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1026 struct tcp_sack_block_wire *sp, int num_sacks,
1029 struct tcp_sock *tp = tcp_sk(sk);
1030 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1031 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1032 bool dup_sack = false;
1034 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1037 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1038 } else if (num_sacks > 1) {
1039 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1040 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1042 if (!after(end_seq_0, end_seq_1) &&
1043 !before(start_seq_0, start_seq_1)) {
1046 NET_INC_STATS_BH(sock_net(sk),
1047 LINUX_MIB_TCPDSACKOFORECV);
1051 /* D-SACK for already forgotten data... Do dumb counting. */
1052 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1053 !after(end_seq_0, prior_snd_una) &&
1054 after(end_seq_0, tp->undo_marker))
1060 struct tcp_sacktag_state {
1066 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1067 * the incoming SACK may not exactly match but we can find smaller MSS
1068 * aligned portion of it that matches. Therefore we might need to fragment
1069 * which may fail and creates some hassle (caller must handle error case
1072 * FIXME: this could be merged to shift decision code
1074 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1075 u32 start_seq, u32 end_seq)
1079 unsigned int pkt_len;
1082 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1083 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1085 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1086 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1087 mss = tcp_skb_mss(skb);
1088 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1091 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1095 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1100 /* Round if necessary so that SACKs cover only full MSSes
1101 * and/or the remaining small portion (if present)
1103 if (pkt_len > mss) {
1104 unsigned int new_len = (pkt_len / mss) * mss;
1105 if (!in_sack && new_len < pkt_len) {
1107 if (new_len > skb->len)
1112 err = tcp_fragment(sk, skb, pkt_len, mss);
1120 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1121 static u8 tcp_sacktag_one(struct sock *sk,
1122 struct tcp_sacktag_state *state, u8 sacked,
1123 u32 start_seq, u32 end_seq,
1124 bool dup_sack, int pcount)
1126 struct tcp_sock *tp = tcp_sk(sk);
1127 int fack_count = state->fack_count;
1129 /* Account D-SACK for retransmitted packet. */
1130 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1131 if (tp->undo_marker && tp->undo_retrans &&
1132 after(end_seq, tp->undo_marker))
1134 if (sacked & TCPCB_SACKED_ACKED)
1135 state->reord = min(fack_count, state->reord);
1138 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1139 if (!after(end_seq, tp->snd_una))
1142 if (!(sacked & TCPCB_SACKED_ACKED)) {
1143 if (sacked & TCPCB_SACKED_RETRANS) {
1144 /* If the segment is not tagged as lost,
1145 * we do not clear RETRANS, believing
1146 * that retransmission is still in flight.
1148 if (sacked & TCPCB_LOST) {
1149 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1150 tp->lost_out -= pcount;
1151 tp->retrans_out -= pcount;
1154 if (!(sacked & TCPCB_RETRANS)) {
1155 /* New sack for not retransmitted frame,
1156 * which was in hole. It is reordering.
1158 if (before(start_seq,
1159 tcp_highest_sack_seq(tp)))
1160 state->reord = min(fack_count,
1163 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1164 if (!after(end_seq, tp->frto_highmark))
1165 state->flag |= FLAG_ONLY_ORIG_SACKED;
1168 if (sacked & TCPCB_LOST) {
1169 sacked &= ~TCPCB_LOST;
1170 tp->lost_out -= pcount;
1174 sacked |= TCPCB_SACKED_ACKED;
1175 state->flag |= FLAG_DATA_SACKED;
1176 tp->sacked_out += pcount;
1178 fack_count += pcount;
1180 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1181 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1182 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1183 tp->lost_cnt_hint += pcount;
1185 if (fack_count > tp->fackets_out)
1186 tp->fackets_out = fack_count;
1189 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1190 * frames and clear it. undo_retrans is decreased above, L|R frames
1191 * are accounted above as well.
1193 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1194 sacked &= ~TCPCB_SACKED_RETRANS;
1195 tp->retrans_out -= pcount;
1201 /* Shift newly-SACKed bytes from this skb to the immediately previous
1202 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1204 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1205 struct tcp_sacktag_state *state,
1206 unsigned int pcount, int shifted, int mss,
1209 struct tcp_sock *tp = tcp_sk(sk);
1210 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1211 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1212 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1216 /* Adjust counters and hints for the newly sacked sequence
1217 * range but discard the return value since prev is already
1218 * marked. We must tag the range first because the seq
1219 * advancement below implicitly advances
1220 * tcp_highest_sack_seq() when skb is highest_sack.
1222 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1223 start_seq, end_seq, dup_sack, pcount);
1225 if (skb == tp->lost_skb_hint)
1226 tp->lost_cnt_hint += pcount;
1228 TCP_SKB_CB(prev)->end_seq += shifted;
1229 TCP_SKB_CB(skb)->seq += shifted;
1231 skb_shinfo(prev)->gso_segs += pcount;
1232 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1233 skb_shinfo(skb)->gso_segs -= pcount;
1235 /* When we're adding to gso_segs == 1, gso_size will be zero,
1236 * in theory this shouldn't be necessary but as long as DSACK
1237 * code can come after this skb later on it's better to keep
1238 * setting gso_size to something.
1240 if (!skb_shinfo(prev)->gso_size) {
1241 skb_shinfo(prev)->gso_size = mss;
1242 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1245 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1246 if (skb_shinfo(skb)->gso_segs <= 1) {
1247 skb_shinfo(skb)->gso_size = 0;
1248 skb_shinfo(skb)->gso_type = 0;
1251 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1252 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1255 BUG_ON(!tcp_skb_pcount(skb));
1256 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1260 /* Whole SKB was eaten :-) */
1262 if (skb == tp->retransmit_skb_hint)
1263 tp->retransmit_skb_hint = prev;
1264 if (skb == tp->scoreboard_skb_hint)
1265 tp->scoreboard_skb_hint = prev;
1266 if (skb == tp->lost_skb_hint) {
1267 tp->lost_skb_hint = prev;
1268 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1271 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1272 if (skb == tcp_highest_sack(sk))
1273 tcp_advance_highest_sack(sk, skb);
1275 tcp_unlink_write_queue(skb, sk);
1276 sk_wmem_free_skb(sk, skb);
1278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1283 /* I wish gso_size would have a bit more sane initialization than
1284 * something-or-zero which complicates things
1286 static int tcp_skb_seglen(const struct sk_buff *skb)
1288 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1291 /* Shifting pages past head area doesn't work */
1292 static int skb_can_shift(const struct sk_buff *skb)
1294 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1297 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1300 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1301 struct tcp_sacktag_state *state,
1302 u32 start_seq, u32 end_seq,
1305 struct tcp_sock *tp = tcp_sk(sk);
1306 struct sk_buff *prev;
1312 if (!sk_can_gso(sk))
1315 /* Normally R but no L won't result in plain S */
1317 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1319 if (!skb_can_shift(skb))
1321 /* This frame is about to be dropped (was ACKed). */
1322 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1325 /* Can only happen with delayed DSACK + discard craziness */
1326 if (unlikely(skb == tcp_write_queue_head(sk)))
1328 prev = tcp_write_queue_prev(sk, skb);
1330 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1333 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1334 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1338 pcount = tcp_skb_pcount(skb);
1339 mss = tcp_skb_seglen(skb);
1341 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1342 * drop this restriction as unnecessary
1344 if (mss != tcp_skb_seglen(prev))
1347 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1349 /* CHECKME: This is non-MSS split case only?, this will
1350 * cause skipped skbs due to advancing loop btw, original
1351 * has that feature too
1353 if (tcp_skb_pcount(skb) <= 1)
1356 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1358 /* TODO: head merge to next could be attempted here
1359 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1360 * though it might not be worth of the additional hassle
1362 * ...we can probably just fallback to what was done
1363 * previously. We could try merging non-SACKed ones
1364 * as well but it probably isn't going to buy off
1365 * because later SACKs might again split them, and
1366 * it would make skb timestamp tracking considerably
1372 len = end_seq - TCP_SKB_CB(skb)->seq;
1374 BUG_ON(len > skb->len);
1376 /* MSS boundaries should be honoured or else pcount will
1377 * severely break even though it makes things bit trickier.
1378 * Optimize common case to avoid most of the divides
1380 mss = tcp_skb_mss(skb);
1382 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1383 * drop this restriction as unnecessary
1385 if (mss != tcp_skb_seglen(prev))
1390 } else if (len < mss) {
1398 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1399 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1402 if (!skb_shift(prev, skb, len))
1404 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1407 /* Hole filled allows collapsing with the next as well, this is very
1408 * useful when hole on every nth skb pattern happens
1410 if (prev == tcp_write_queue_tail(sk))
1412 skb = tcp_write_queue_next(sk, prev);
1414 if (!skb_can_shift(skb) ||
1415 (skb == tcp_send_head(sk)) ||
1416 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1417 (mss != tcp_skb_seglen(skb)))
1421 if (skb_shift(prev, skb, len)) {
1422 pcount += tcp_skb_pcount(skb);
1423 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1427 state->fack_count += pcount;
1434 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1438 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1439 struct tcp_sack_block *next_dup,
1440 struct tcp_sacktag_state *state,
1441 u32 start_seq, u32 end_seq,
1444 struct tcp_sock *tp = tcp_sk(sk);
1445 struct sk_buff *tmp;
1447 tcp_for_write_queue_from(skb, sk) {
1449 bool dup_sack = dup_sack_in;
1451 if (skb == tcp_send_head(sk))
1454 /* queue is in-order => we can short-circuit the walk early */
1455 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1458 if ((next_dup != NULL) &&
1459 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1460 in_sack = tcp_match_skb_to_sack(sk, skb,
1461 next_dup->start_seq,
1467 /* skb reference here is a bit tricky to get right, since
1468 * shifting can eat and free both this skb and the next,
1469 * so not even _safe variant of the loop is enough.
1472 tmp = tcp_shift_skb_data(sk, skb, state,
1473 start_seq, end_seq, dup_sack);
1482 in_sack = tcp_match_skb_to_sack(sk, skb,
1488 if (unlikely(in_sack < 0))
1492 TCP_SKB_CB(skb)->sacked =
1495 TCP_SKB_CB(skb)->sacked,
1496 TCP_SKB_CB(skb)->seq,
1497 TCP_SKB_CB(skb)->end_seq,
1499 tcp_skb_pcount(skb));
1501 if (!before(TCP_SKB_CB(skb)->seq,
1502 tcp_highest_sack_seq(tp)))
1503 tcp_advance_highest_sack(sk, skb);
1506 state->fack_count += tcp_skb_pcount(skb);
1511 /* Avoid all extra work that is being done by sacktag while walking in
1514 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1515 struct tcp_sacktag_state *state,
1518 tcp_for_write_queue_from(skb, sk) {
1519 if (skb == tcp_send_head(sk))
1522 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1525 state->fack_count += tcp_skb_pcount(skb);
1530 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1532 struct tcp_sack_block *next_dup,
1533 struct tcp_sacktag_state *state,
1536 if (next_dup == NULL)
1539 if (before(next_dup->start_seq, skip_to_seq)) {
1540 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1541 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1542 next_dup->start_seq, next_dup->end_seq,
1549 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1551 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1555 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1558 const struct inet_connection_sock *icsk = inet_csk(sk);
1559 struct tcp_sock *tp = tcp_sk(sk);
1560 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1561 TCP_SKB_CB(ack_skb)->sacked);
1562 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1563 struct tcp_sack_block sp[TCP_NUM_SACKS];
1564 struct tcp_sack_block *cache;
1565 struct tcp_sacktag_state state;
1566 struct sk_buff *skb;
1567 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1569 bool found_dup_sack = false;
1571 int first_sack_index;
1574 state.reord = tp->packets_out;
1576 if (!tp->sacked_out) {
1577 if (WARN_ON(tp->fackets_out))
1578 tp->fackets_out = 0;
1579 tcp_highest_sack_reset(sk);
1582 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1583 num_sacks, prior_snd_una);
1585 state.flag |= FLAG_DSACKING_ACK;
1587 /* Eliminate too old ACKs, but take into
1588 * account more or less fresh ones, they can
1589 * contain valid SACK info.
1591 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1594 if (!tp->packets_out)
1598 first_sack_index = 0;
1599 for (i = 0; i < num_sacks; i++) {
1600 bool dup_sack = !i && found_dup_sack;
1602 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1603 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1605 if (!tcp_is_sackblock_valid(tp, dup_sack,
1606 sp[used_sacks].start_seq,
1607 sp[used_sacks].end_seq)) {
1611 if (!tp->undo_marker)
1612 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1614 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1616 /* Don't count olds caused by ACK reordering */
1617 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1618 !after(sp[used_sacks].end_seq, tp->snd_una))
1620 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1623 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1625 first_sack_index = -1;
1629 /* Ignore very old stuff early */
1630 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1636 /* order SACK blocks to allow in order walk of the retrans queue */
1637 for (i = used_sacks - 1; i > 0; i--) {
1638 for (j = 0; j < i; j++) {
1639 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1640 swap(sp[j], sp[j + 1]);
1642 /* Track where the first SACK block goes to */
1643 if (j == first_sack_index)
1644 first_sack_index = j + 1;
1649 skb = tcp_write_queue_head(sk);
1650 state.fack_count = 0;
1653 if (!tp->sacked_out) {
1654 /* It's already past, so skip checking against it */
1655 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1657 cache = tp->recv_sack_cache;
1658 /* Skip empty blocks in at head of the cache */
1659 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1664 while (i < used_sacks) {
1665 u32 start_seq = sp[i].start_seq;
1666 u32 end_seq = sp[i].end_seq;
1667 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1668 struct tcp_sack_block *next_dup = NULL;
1670 if (found_dup_sack && ((i + 1) == first_sack_index))
1671 next_dup = &sp[i + 1];
1673 /* Skip too early cached blocks */
1674 while (tcp_sack_cache_ok(tp, cache) &&
1675 !before(start_seq, cache->end_seq))
1678 /* Can skip some work by looking recv_sack_cache? */
1679 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1680 after(end_seq, cache->start_seq)) {
1683 if (before(start_seq, cache->start_seq)) {
1684 skb = tcp_sacktag_skip(skb, sk, &state,
1686 skb = tcp_sacktag_walk(skb, sk, next_dup,
1693 /* Rest of the block already fully processed? */
1694 if (!after(end_seq, cache->end_seq))
1697 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1701 /* ...tail remains todo... */
1702 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1703 /* ...but better entrypoint exists! */
1704 skb = tcp_highest_sack(sk);
1707 state.fack_count = tp->fackets_out;
1712 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1713 /* Check overlap against next cached too (past this one already) */
1718 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1719 skb = tcp_highest_sack(sk);
1722 state.fack_count = tp->fackets_out;
1724 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1727 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1728 start_seq, end_seq, dup_sack);
1731 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1732 * due to in-order walk
1734 if (after(end_seq, tp->frto_highmark))
1735 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1740 /* Clear the head of the cache sack blocks so we can skip it next time */
1741 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1742 tp->recv_sack_cache[i].start_seq = 0;
1743 tp->recv_sack_cache[i].end_seq = 0;
1745 for (j = 0; j < used_sacks; j++)
1746 tp->recv_sack_cache[i++] = sp[j];
1748 tcp_mark_lost_retrans(sk);
1750 tcp_verify_left_out(tp);
1752 if ((state.reord < tp->fackets_out) &&
1753 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1754 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1755 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1759 #if FASTRETRANS_DEBUG > 0
1760 WARN_ON((int)tp->sacked_out < 0);
1761 WARN_ON((int)tp->lost_out < 0);
1762 WARN_ON((int)tp->retrans_out < 0);
1763 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1768 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1769 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1771 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1775 holes = max(tp->lost_out, 1U);
1776 holes = min(holes, tp->packets_out);
1778 if ((tp->sacked_out + holes) > tp->packets_out) {
1779 tp->sacked_out = tp->packets_out - holes;
1785 /* If we receive more dupacks than we expected counting segments
1786 * in assumption of absent reordering, interpret this as reordering.
1787 * The only another reason could be bug in receiver TCP.
1789 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1791 struct tcp_sock *tp = tcp_sk(sk);
1792 if (tcp_limit_reno_sacked(tp))
1793 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1796 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1798 static void tcp_add_reno_sack(struct sock *sk)
1800 struct tcp_sock *tp = tcp_sk(sk);
1802 tcp_check_reno_reordering(sk, 0);
1803 tcp_verify_left_out(tp);
1806 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1808 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1810 struct tcp_sock *tp = tcp_sk(sk);
1813 /* One ACK acked hole. The rest eat duplicate ACKs. */
1814 if (acked - 1 >= tp->sacked_out)
1817 tp->sacked_out -= acked - 1;
1819 tcp_check_reno_reordering(sk, acked);
1820 tcp_verify_left_out(tp);
1823 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1828 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1830 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1833 /* F-RTO can only be used if TCP has never retransmitted anything other than
1834 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1836 bool tcp_use_frto(struct sock *sk)
1838 const struct tcp_sock *tp = tcp_sk(sk);
1839 const struct inet_connection_sock *icsk = inet_csk(sk);
1840 struct sk_buff *skb;
1842 if (!sysctl_tcp_frto)
1845 /* MTU probe and F-RTO won't really play nicely along currently */
1846 if (icsk->icsk_mtup.probe_size)
1849 if (tcp_is_sackfrto(tp))
1852 /* Avoid expensive walking of rexmit queue if possible */
1853 if (tp->retrans_out > 1)
1856 skb = tcp_write_queue_head(sk);
1857 if (tcp_skb_is_last(sk, skb))
1859 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1860 tcp_for_write_queue_from(skb, sk) {
1861 if (skb == tcp_send_head(sk))
1863 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1865 /* Short-circuit when first non-SACKed skb has been checked */
1866 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1872 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1873 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1874 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1875 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1876 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1877 * bits are handled if the Loss state is really to be entered (in
1878 * tcp_enter_frto_loss).
1880 * Do like tcp_enter_loss() would; when RTO expires the second time it
1882 * "Reduce ssthresh if it has not yet been made inside this window."
1884 void tcp_enter_frto(struct sock *sk)
1886 const struct inet_connection_sock *icsk = inet_csk(sk);
1887 struct tcp_sock *tp = tcp_sk(sk);
1888 struct sk_buff *skb;
1890 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1891 tp->snd_una == tp->high_seq ||
1892 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1893 !icsk->icsk_retransmits)) {
1894 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1895 /* Our state is too optimistic in ssthresh() call because cwnd
1896 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1897 * recovery has not yet completed. Pattern would be this: RTO,
1898 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1900 * RFC4138 should be more specific on what to do, even though
1901 * RTO is quite unlikely to occur after the first Cumulative ACK
1902 * due to back-off and complexity of triggering events ...
1904 if (tp->frto_counter) {
1906 stored_cwnd = tp->snd_cwnd;
1908 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1909 tp->snd_cwnd = stored_cwnd;
1911 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1913 /* ... in theory, cong.control module could do "any tricks" in
1914 * ssthresh(), which means that ca_state, lost bits and lost_out
1915 * counter would have to be faked before the call occurs. We
1916 * consider that too expensive, unlikely and hacky, so modules
1917 * using these in ssthresh() must deal these incompatibility
1918 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1920 tcp_ca_event(sk, CA_EVENT_FRTO);
1923 tp->undo_marker = tp->snd_una;
1924 tp->undo_retrans = 0;
1926 skb = tcp_write_queue_head(sk);
1927 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1928 tp->undo_marker = 0;
1929 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1930 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1931 tp->retrans_out -= tcp_skb_pcount(skb);
1933 tcp_verify_left_out(tp);
1935 /* Too bad if TCP was application limited */
1936 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1938 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1939 * The last condition is necessary at least in tp->frto_counter case.
1941 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1942 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1943 after(tp->high_seq, tp->snd_una)) {
1944 tp->frto_highmark = tp->high_seq;
1946 tp->frto_highmark = tp->snd_nxt;
1948 tcp_set_ca_state(sk, TCP_CA_Disorder);
1949 tp->high_seq = tp->snd_nxt;
1950 tp->frto_counter = 1;
1953 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1954 * which indicates that we should follow the traditional RTO recovery,
1955 * i.e. mark everything lost and do go-back-N retransmission.
1957 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1959 struct tcp_sock *tp = tcp_sk(sk);
1960 struct sk_buff *skb;
1963 tp->retrans_out = 0;
1964 if (tcp_is_reno(tp))
1965 tcp_reset_reno_sack(tp);
1967 tcp_for_write_queue(skb, sk) {
1968 if (skb == tcp_send_head(sk))
1971 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1973 * Count the retransmission made on RTO correctly (only when
1974 * waiting for the first ACK and did not get it)...
1976 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1977 /* For some reason this R-bit might get cleared? */
1978 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1979 tp->retrans_out += tcp_skb_pcount(skb);
1980 /* ...enter this if branch just for the first segment */
1981 flag |= FLAG_DATA_ACKED;
1983 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1984 tp->undo_marker = 0;
1985 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1988 /* Marking forward transmissions that were made after RTO lost
1989 * can cause unnecessary retransmissions in some scenarios,
1990 * SACK blocks will mitigate that in some but not in all cases.
1991 * We used to not mark them but it was causing break-ups with
1992 * receivers that do only in-order receival.
1994 * TODO: we could detect presence of such receiver and select
1995 * different behavior per flow.
1997 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1998 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1999 tp->lost_out += tcp_skb_pcount(skb);
2000 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2003 tcp_verify_left_out(tp);
2005 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2006 tp->snd_cwnd_cnt = 0;
2007 tp->snd_cwnd_stamp = tcp_time_stamp;
2008 tp->frto_counter = 0;
2010 tp->reordering = min_t(unsigned int, tp->reordering,
2011 sysctl_tcp_reordering);
2012 tcp_set_ca_state(sk, TCP_CA_Loss);
2013 tp->high_seq = tp->snd_nxt;
2014 TCP_ECN_queue_cwr(tp);
2016 tcp_clear_all_retrans_hints(tp);
2019 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2021 tp->retrans_out = 0;
2024 tp->undo_marker = 0;
2025 tp->undo_retrans = 0;
2028 void tcp_clear_retrans(struct tcp_sock *tp)
2030 tcp_clear_retrans_partial(tp);
2032 tp->fackets_out = 0;
2036 /* Enter Loss state. If "how" is not zero, forget all SACK information
2037 * and reset tags completely, otherwise preserve SACKs. If receiver
2038 * dropped its ofo queue, we will know this due to reneging detection.
2040 void tcp_enter_loss(struct sock *sk, int how)
2042 const struct inet_connection_sock *icsk = inet_csk(sk);
2043 struct tcp_sock *tp = tcp_sk(sk);
2044 struct sk_buff *skb;
2046 /* Reduce ssthresh if it has not yet been made inside this window. */
2047 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2048 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2049 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2050 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2051 tcp_ca_event(sk, CA_EVENT_LOSS);
2054 tp->snd_cwnd_cnt = 0;
2055 tp->snd_cwnd_stamp = tcp_time_stamp;
2057 tcp_clear_retrans_partial(tp);
2059 if (tcp_is_reno(tp))
2060 tcp_reset_reno_sack(tp);
2063 /* Push undo marker, if it was plain RTO and nothing
2064 * was retransmitted. */
2065 tp->undo_marker = tp->snd_una;
2068 tp->fackets_out = 0;
2070 tcp_clear_all_retrans_hints(tp);
2072 tcp_for_write_queue(skb, sk) {
2073 if (skb == tcp_send_head(sk))
2076 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2077 tp->undo_marker = 0;
2078 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2079 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2080 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2081 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2082 tp->lost_out += tcp_skb_pcount(skb);
2083 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2086 tcp_verify_left_out(tp);
2088 tp->reordering = min_t(unsigned int, tp->reordering,
2089 sysctl_tcp_reordering);
2090 tcp_set_ca_state(sk, TCP_CA_Loss);
2091 tp->high_seq = tp->snd_nxt;
2092 TCP_ECN_queue_cwr(tp);
2093 /* Abort F-RTO algorithm if one is in progress */
2094 tp->frto_counter = 0;
2097 /* If ACK arrived pointing to a remembered SACK, it means that our
2098 * remembered SACKs do not reflect real state of receiver i.e.
2099 * receiver _host_ is heavily congested (or buggy).
2101 * Do processing similar to RTO timeout.
2103 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2105 if (flag & FLAG_SACK_RENEGING) {
2106 struct inet_connection_sock *icsk = inet_csk(sk);
2107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2109 tcp_enter_loss(sk, 1);
2110 icsk->icsk_retransmits++;
2111 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2112 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2113 icsk->icsk_rto, TCP_RTO_MAX);
2119 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2121 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2124 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2125 * counter when SACK is enabled (without SACK, sacked_out is used for
2128 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2129 * segments up to the highest received SACK block so far and holes in
2132 * With reordering, holes may still be in flight, so RFC3517 recovery
2133 * uses pure sacked_out (total number of SACKed segments) even though
2134 * it violates the RFC that uses duplicate ACKs, often these are equal
2135 * but when e.g. out-of-window ACKs or packet duplication occurs,
2136 * they differ. Since neither occurs due to loss, TCP should really
2139 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2141 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2144 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 unsigned long delay;
2149 /* Delay early retransmit and entering fast recovery for
2150 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2151 * available, or RTO is scheduled to fire first.
2153 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2156 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2157 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2160 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2161 tp->early_retrans_delayed = 1;
2165 static inline int tcp_skb_timedout(const struct sock *sk,
2166 const struct sk_buff *skb)
2168 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2171 static inline int tcp_head_timedout(const struct sock *sk)
2173 const struct tcp_sock *tp = tcp_sk(sk);
2175 return tp->packets_out &&
2176 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2179 /* Linux NewReno/SACK/FACK/ECN state machine.
2180 * --------------------------------------
2182 * "Open" Normal state, no dubious events, fast path.
2183 * "Disorder" In all the respects it is "Open",
2184 * but requires a bit more attention. It is entered when
2185 * we see some SACKs or dupacks. It is split of "Open"
2186 * mainly to move some processing from fast path to slow one.
2187 * "CWR" CWND was reduced due to some Congestion Notification event.
2188 * It can be ECN, ICMP source quench, local device congestion.
2189 * "Recovery" CWND was reduced, we are fast-retransmitting.
2190 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2192 * tcp_fastretrans_alert() is entered:
2193 * - each incoming ACK, if state is not "Open"
2194 * - when arrived ACK is unusual, namely:
2199 * Counting packets in flight is pretty simple.
2201 * in_flight = packets_out - left_out + retrans_out
2203 * packets_out is SND.NXT-SND.UNA counted in packets.
2205 * retrans_out is number of retransmitted segments.
2207 * left_out is number of segments left network, but not ACKed yet.
2209 * left_out = sacked_out + lost_out
2211 * sacked_out: Packets, which arrived to receiver out of order
2212 * and hence not ACKed. With SACKs this number is simply
2213 * amount of SACKed data. Even without SACKs
2214 * it is easy to give pretty reliable estimate of this number,
2215 * counting duplicate ACKs.
2217 * lost_out: Packets lost by network. TCP has no explicit
2218 * "loss notification" feedback from network (for now).
2219 * It means that this number can be only _guessed_.
2220 * Actually, it is the heuristics to predict lossage that
2221 * distinguishes different algorithms.
2223 * F.e. after RTO, when all the queue is considered as lost,
2224 * lost_out = packets_out and in_flight = retrans_out.
2226 * Essentially, we have now two algorithms counting
2229 * FACK: It is the simplest heuristics. As soon as we decided
2230 * that something is lost, we decide that _all_ not SACKed
2231 * packets until the most forward SACK are lost. I.e.
2232 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2233 * It is absolutely correct estimate, if network does not reorder
2234 * packets. And it loses any connection to reality when reordering
2235 * takes place. We use FACK by default until reordering
2236 * is suspected on the path to this destination.
2238 * NewReno: when Recovery is entered, we assume that one segment
2239 * is lost (classic Reno). While we are in Recovery and
2240 * a partial ACK arrives, we assume that one more packet
2241 * is lost (NewReno). This heuristics are the same in NewReno
2244 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2245 * deflation etc. CWND is real congestion window, never inflated, changes
2246 * only according to classic VJ rules.
2248 * Really tricky (and requiring careful tuning) part of algorithm
2249 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2250 * The first determines the moment _when_ we should reduce CWND and,
2251 * hence, slow down forward transmission. In fact, it determines the moment
2252 * when we decide that hole is caused by loss, rather than by a reorder.
2254 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2255 * holes, caused by lost packets.
2257 * And the most logically complicated part of algorithm is undo
2258 * heuristics. We detect false retransmits due to both too early
2259 * fast retransmit (reordering) and underestimated RTO, analyzing
2260 * timestamps and D-SACKs. When we detect that some segments were
2261 * retransmitted by mistake and CWND reduction was wrong, we undo
2262 * window reduction and abort recovery phase. This logic is hidden
2263 * inside several functions named tcp_try_undo_<something>.
2266 /* This function decides, when we should leave Disordered state
2267 * and enter Recovery phase, reducing congestion window.
2269 * Main question: may we further continue forward transmission
2270 * with the same cwnd?
2272 static bool tcp_time_to_recover(struct sock *sk, int flag)
2274 struct tcp_sock *tp = tcp_sk(sk);
2277 /* Do not perform any recovery during F-RTO algorithm */
2278 if (tp->frto_counter)
2281 /* Trick#1: The loss is proven. */
2285 /* Not-A-Trick#2 : Classic rule... */
2286 if (tcp_dupack_heuristics(tp) > tp->reordering)
2289 /* Trick#3 : when we use RFC2988 timer restart, fast
2290 * retransmit can be triggered by timeout of queue head.
2292 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2295 /* Trick#4: It is still not OK... But will it be useful to delay
2298 packets_out = tp->packets_out;
2299 if (packets_out <= tp->reordering &&
2300 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2301 !tcp_may_send_now(sk)) {
2302 /* We have nothing to send. This connection is limited
2303 * either by receiver window or by application.
2308 /* If a thin stream is detected, retransmit after first
2309 * received dupack. Employ only if SACK is supported in order
2310 * to avoid possible corner-case series of spurious retransmissions
2311 * Use only if there are no unsent data.
2313 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2314 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2315 tcp_is_sack(tp) && !tcp_send_head(sk))
2318 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2319 * retransmissions due to small network reorderings, we implement
2320 * Mitigation A.3 in the RFC and delay the retransmission for a short
2321 * interval if appropriate.
2323 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2324 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2325 !tcp_may_send_now(sk))
2326 return !tcp_pause_early_retransmit(sk, flag);
2331 /* New heuristics: it is possible only after we switched to restart timer
2332 * each time when something is ACKed. Hence, we can detect timed out packets
2333 * during fast retransmit without falling to slow start.
2335 * Usefulness of this as is very questionable, since we should know which of
2336 * the segments is the next to timeout which is relatively expensive to find
2337 * in general case unless we add some data structure just for that. The
2338 * current approach certainly won't find the right one too often and when it
2339 * finally does find _something_ it usually marks large part of the window
2340 * right away (because a retransmission with a larger timestamp blocks the
2341 * loop from advancing). -ij
2343 static void tcp_timeout_skbs(struct sock *sk)
2345 struct tcp_sock *tp = tcp_sk(sk);
2346 struct sk_buff *skb;
2348 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2351 skb = tp->scoreboard_skb_hint;
2352 if (tp->scoreboard_skb_hint == NULL)
2353 skb = tcp_write_queue_head(sk);
2355 tcp_for_write_queue_from(skb, sk) {
2356 if (skb == tcp_send_head(sk))
2358 if (!tcp_skb_timedout(sk, skb))
2361 tcp_skb_mark_lost(tp, skb);
2364 tp->scoreboard_skb_hint = skb;
2366 tcp_verify_left_out(tp);
2369 /* Detect loss in event "A" above by marking head of queue up as lost.
2370 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2371 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2372 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2373 * the maximum SACKed segments to pass before reaching this limit.
2375 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2377 struct tcp_sock *tp = tcp_sk(sk);
2378 struct sk_buff *skb;
2382 /* Use SACK to deduce losses of new sequences sent during recovery */
2383 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2385 WARN_ON(packets > tp->packets_out);
2386 if (tp->lost_skb_hint) {
2387 skb = tp->lost_skb_hint;
2388 cnt = tp->lost_cnt_hint;
2389 /* Head already handled? */
2390 if (mark_head && skb != tcp_write_queue_head(sk))
2393 skb = tcp_write_queue_head(sk);
2397 tcp_for_write_queue_from(skb, sk) {
2398 if (skb == tcp_send_head(sk))
2400 /* TODO: do this better */
2401 /* this is not the most efficient way to do this... */
2402 tp->lost_skb_hint = skb;
2403 tp->lost_cnt_hint = cnt;
2405 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2409 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2410 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2411 cnt += tcp_skb_pcount(skb);
2413 if (cnt > packets) {
2414 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2415 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2416 (oldcnt >= packets))
2419 mss = skb_shinfo(skb)->gso_size;
2420 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2426 tcp_skb_mark_lost(tp, skb);
2431 tcp_verify_left_out(tp);
2434 /* Account newly detected lost packet(s) */
2436 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2438 struct tcp_sock *tp = tcp_sk(sk);
2440 if (tcp_is_reno(tp)) {
2441 tcp_mark_head_lost(sk, 1, 1);
2442 } else if (tcp_is_fack(tp)) {
2443 int lost = tp->fackets_out - tp->reordering;
2446 tcp_mark_head_lost(sk, lost, 0);
2448 int sacked_upto = tp->sacked_out - tp->reordering;
2449 if (sacked_upto >= 0)
2450 tcp_mark_head_lost(sk, sacked_upto, 0);
2451 else if (fast_rexmit)
2452 tcp_mark_head_lost(sk, 1, 1);
2455 tcp_timeout_skbs(sk);
2458 /* CWND moderation, preventing bursts due to too big ACKs
2459 * in dubious situations.
2461 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2463 tp->snd_cwnd = min(tp->snd_cwnd,
2464 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2465 tp->snd_cwnd_stamp = tcp_time_stamp;
2468 /* Nothing was retransmitted or returned timestamp is less
2469 * than timestamp of the first retransmission.
2471 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2473 return !tp->retrans_stamp ||
2474 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2475 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2478 /* Undo procedures. */
2480 #if FASTRETRANS_DEBUG > 1
2481 static void DBGUNDO(struct sock *sk, const char *msg)
2483 struct tcp_sock *tp = tcp_sk(sk);
2484 struct inet_sock *inet = inet_sk(sk);
2486 if (sk->sk_family == AF_INET) {
2487 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2489 &inet->inet_daddr, ntohs(inet->inet_dport),
2490 tp->snd_cwnd, tcp_left_out(tp),
2491 tp->snd_ssthresh, tp->prior_ssthresh,
2494 #if IS_ENABLED(CONFIG_IPV6)
2495 else if (sk->sk_family == AF_INET6) {
2496 struct ipv6_pinfo *np = inet6_sk(sk);
2497 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2499 &np->daddr, ntohs(inet->inet_dport),
2500 tp->snd_cwnd, tcp_left_out(tp),
2501 tp->snd_ssthresh, tp->prior_ssthresh,
2507 #define DBGUNDO(x...) do { } while (0)
2510 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2512 struct tcp_sock *tp = tcp_sk(sk);
2514 if (tp->prior_ssthresh) {
2515 const struct inet_connection_sock *icsk = inet_csk(sk);
2517 if (icsk->icsk_ca_ops->undo_cwnd)
2518 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2520 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2522 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2523 tp->snd_ssthresh = tp->prior_ssthresh;
2524 TCP_ECN_withdraw_cwr(tp);
2527 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2529 tp->snd_cwnd_stamp = tcp_time_stamp;
2532 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2534 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2537 /* People celebrate: "We love our President!" */
2538 static bool tcp_try_undo_recovery(struct sock *sk)
2540 struct tcp_sock *tp = tcp_sk(sk);
2542 if (tcp_may_undo(tp)) {
2545 /* Happy end! We did not retransmit anything
2546 * or our original transmission succeeded.
2548 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2549 tcp_undo_cwr(sk, true);
2550 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2551 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2553 mib_idx = LINUX_MIB_TCPFULLUNDO;
2555 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2556 tp->undo_marker = 0;
2558 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2559 /* Hold old state until something *above* high_seq
2560 * is ACKed. For Reno it is MUST to prevent false
2561 * fast retransmits (RFC2582). SACK TCP is safe. */
2562 tcp_moderate_cwnd(tp);
2565 tcp_set_ca_state(sk, TCP_CA_Open);
2569 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2570 static void tcp_try_undo_dsack(struct sock *sk)
2572 struct tcp_sock *tp = tcp_sk(sk);
2574 if (tp->undo_marker && !tp->undo_retrans) {
2575 DBGUNDO(sk, "D-SACK");
2576 tcp_undo_cwr(sk, true);
2577 tp->undo_marker = 0;
2578 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2582 /* We can clear retrans_stamp when there are no retransmissions in the
2583 * window. It would seem that it is trivially available for us in
2584 * tp->retrans_out, however, that kind of assumptions doesn't consider
2585 * what will happen if errors occur when sending retransmission for the
2586 * second time. ...It could the that such segment has only
2587 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2588 * the head skb is enough except for some reneging corner cases that
2589 * are not worth the effort.
2591 * Main reason for all this complexity is the fact that connection dying
2592 * time now depends on the validity of the retrans_stamp, in particular,
2593 * that successive retransmissions of a segment must not advance
2594 * retrans_stamp under any conditions.
2596 static bool tcp_any_retrans_done(const struct sock *sk)
2598 const struct tcp_sock *tp = tcp_sk(sk);
2599 struct sk_buff *skb;
2601 if (tp->retrans_out)
2604 skb = tcp_write_queue_head(sk);
2605 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2611 /* Undo during fast recovery after partial ACK. */
2613 static int tcp_try_undo_partial(struct sock *sk, int acked)
2615 struct tcp_sock *tp = tcp_sk(sk);
2616 /* Partial ACK arrived. Force Hoe's retransmit. */
2617 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2619 if (tcp_may_undo(tp)) {
2620 /* Plain luck! Hole if filled with delayed
2621 * packet, rather than with a retransmit.
2623 if (!tcp_any_retrans_done(sk))
2624 tp->retrans_stamp = 0;
2626 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2629 tcp_undo_cwr(sk, false);
2630 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2632 /* So... Do not make Hoe's retransmit yet.
2633 * If the first packet was delayed, the rest
2634 * ones are most probably delayed as well.
2641 /* Undo during loss recovery after partial ACK. */
2642 static bool tcp_try_undo_loss(struct sock *sk)
2644 struct tcp_sock *tp = tcp_sk(sk);
2646 if (tcp_may_undo(tp)) {
2647 struct sk_buff *skb;
2648 tcp_for_write_queue(skb, sk) {
2649 if (skb == tcp_send_head(sk))
2651 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2654 tcp_clear_all_retrans_hints(tp);
2656 DBGUNDO(sk, "partial loss");
2658 tcp_undo_cwr(sk, true);
2659 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2660 inet_csk(sk)->icsk_retransmits = 0;
2661 tp->undo_marker = 0;
2662 if (tcp_is_sack(tp))
2663 tcp_set_ca_state(sk, TCP_CA_Open);
2669 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2670 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2671 * It computes the number of packets to send (sndcnt) based on packets newly
2673 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2674 * cwnd reductions across a full RTT.
2675 * 2) If packets in flight is lower than ssthresh (such as due to excess
2676 * losses and/or application stalls), do not perform any further cwnd
2677 * reductions, but instead slow start up to ssthresh.
2679 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2681 struct tcp_sock *tp = tcp_sk(sk);
2683 tp->high_seq = tp->snd_nxt;
2684 tp->snd_cwnd_cnt = 0;
2685 tp->prior_cwnd = tp->snd_cwnd;
2686 tp->prr_delivered = 0;
2689 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2690 TCP_ECN_queue_cwr(tp);
2693 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2696 struct tcp_sock *tp = tcp_sk(sk);
2698 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2700 tp->prr_delivered += newly_acked_sacked;
2701 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2702 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2704 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2706 sndcnt = min_t(int, delta,
2707 max_t(int, tp->prr_delivered - tp->prr_out,
2708 newly_acked_sacked) + 1);
2711 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2712 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2715 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2717 struct tcp_sock *tp = tcp_sk(sk);
2719 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2720 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2721 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2722 tp->snd_cwnd = tp->snd_ssthresh;
2723 tp->snd_cwnd_stamp = tcp_time_stamp;
2725 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2728 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2729 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2731 struct tcp_sock *tp = tcp_sk(sk);
2733 tp->prior_ssthresh = 0;
2734 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2735 tp->undo_marker = 0;
2736 tcp_init_cwnd_reduction(sk, set_ssthresh);
2737 tcp_set_ca_state(sk, TCP_CA_CWR);
2741 static void tcp_try_keep_open(struct sock *sk)
2743 struct tcp_sock *tp = tcp_sk(sk);
2744 int state = TCP_CA_Open;
2746 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2747 state = TCP_CA_Disorder;
2749 if (inet_csk(sk)->icsk_ca_state != state) {
2750 tcp_set_ca_state(sk, state);
2751 tp->high_seq = tp->snd_nxt;
2755 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2757 struct tcp_sock *tp = tcp_sk(sk);
2759 tcp_verify_left_out(tp);
2761 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2762 tp->retrans_stamp = 0;
2764 if (flag & FLAG_ECE)
2765 tcp_enter_cwr(sk, 1);
2767 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2768 tcp_try_keep_open(sk);
2769 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2770 tcp_moderate_cwnd(tp);
2772 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2776 static void tcp_mtup_probe_failed(struct sock *sk)
2778 struct inet_connection_sock *icsk = inet_csk(sk);
2780 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2781 icsk->icsk_mtup.probe_size = 0;
2784 static void tcp_mtup_probe_success(struct sock *sk)
2786 struct tcp_sock *tp = tcp_sk(sk);
2787 struct inet_connection_sock *icsk = inet_csk(sk);
2789 /* FIXME: breaks with very large cwnd */
2790 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2791 tp->snd_cwnd = tp->snd_cwnd *
2792 tcp_mss_to_mtu(sk, tp->mss_cache) /
2793 icsk->icsk_mtup.probe_size;
2794 tp->snd_cwnd_cnt = 0;
2795 tp->snd_cwnd_stamp = tcp_time_stamp;
2796 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2798 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2799 icsk->icsk_mtup.probe_size = 0;
2800 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2803 /* Do a simple retransmit without using the backoff mechanisms in
2804 * tcp_timer. This is used for path mtu discovery.
2805 * The socket is already locked here.
2807 void tcp_simple_retransmit(struct sock *sk)
2809 const struct inet_connection_sock *icsk = inet_csk(sk);
2810 struct tcp_sock *tp = tcp_sk(sk);
2811 struct sk_buff *skb;
2812 unsigned int mss = tcp_current_mss(sk);
2813 u32 prior_lost = tp->lost_out;
2815 tcp_for_write_queue(skb, sk) {
2816 if (skb == tcp_send_head(sk))
2818 if (tcp_skb_seglen(skb) > mss &&
2819 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2820 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2821 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2822 tp->retrans_out -= tcp_skb_pcount(skb);
2824 tcp_skb_mark_lost_uncond_verify(tp, skb);
2828 tcp_clear_retrans_hints_partial(tp);
2830 if (prior_lost == tp->lost_out)
2833 if (tcp_is_reno(tp))
2834 tcp_limit_reno_sacked(tp);
2836 tcp_verify_left_out(tp);
2838 /* Don't muck with the congestion window here.
2839 * Reason is that we do not increase amount of _data_
2840 * in network, but units changed and effective
2841 * cwnd/ssthresh really reduced now.
2843 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2844 tp->high_seq = tp->snd_nxt;
2845 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2846 tp->prior_ssthresh = 0;
2847 tp->undo_marker = 0;
2848 tcp_set_ca_state(sk, TCP_CA_Loss);
2850 tcp_xmit_retransmit_queue(sk);
2852 EXPORT_SYMBOL(tcp_simple_retransmit);
2854 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2856 struct tcp_sock *tp = tcp_sk(sk);
2859 if (tcp_is_reno(tp))
2860 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2862 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2864 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2866 tp->prior_ssthresh = 0;
2867 tp->undo_marker = tp->snd_una;
2868 tp->undo_retrans = tp->retrans_out;
2870 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2872 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2873 tcp_init_cwnd_reduction(sk, true);
2875 tcp_set_ca_state(sk, TCP_CA_Recovery);
2878 /* Process an event, which can update packets-in-flight not trivially.
2879 * Main goal of this function is to calculate new estimate for left_out,
2880 * taking into account both packets sitting in receiver's buffer and
2881 * packets lost by network.
2883 * Besides that it does CWND reduction, when packet loss is detected
2884 * and changes state of machine.
2886 * It does _not_ decide what to send, it is made in function
2887 * tcp_xmit_retransmit_queue().
2889 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2890 int prior_sacked, bool is_dupack,
2893 struct inet_connection_sock *icsk = inet_csk(sk);
2894 struct tcp_sock *tp = tcp_sk(sk);
2895 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2896 (tcp_fackets_out(tp) > tp->reordering));
2897 int newly_acked_sacked = 0;
2898 int fast_rexmit = 0;
2900 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2902 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2903 tp->fackets_out = 0;
2905 /* Now state machine starts.
2906 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2907 if (flag & FLAG_ECE)
2908 tp->prior_ssthresh = 0;
2910 /* B. In all the states check for reneging SACKs. */
2911 if (tcp_check_sack_reneging(sk, flag))
2914 /* C. Check consistency of the current state. */
2915 tcp_verify_left_out(tp);
2917 /* D. Check state exit conditions. State can be terminated
2918 * when high_seq is ACKed. */
2919 if (icsk->icsk_ca_state == TCP_CA_Open) {
2920 WARN_ON(tp->retrans_out != 0);
2921 tp->retrans_stamp = 0;
2922 } else if (!before(tp->snd_una, tp->high_seq)) {
2923 switch (icsk->icsk_ca_state) {
2925 icsk->icsk_retransmits = 0;
2926 if (tcp_try_undo_recovery(sk))
2931 /* CWR is to be held something *above* high_seq
2932 * is ACKed for CWR bit to reach receiver. */
2933 if (tp->snd_una != tp->high_seq) {
2934 tcp_end_cwnd_reduction(sk);
2935 tcp_set_ca_state(sk, TCP_CA_Open);
2939 case TCP_CA_Recovery:
2940 if (tcp_is_reno(tp))
2941 tcp_reset_reno_sack(tp);
2942 if (tcp_try_undo_recovery(sk))
2944 tcp_end_cwnd_reduction(sk);
2949 /* E. Process state. */
2950 switch (icsk->icsk_ca_state) {
2951 case TCP_CA_Recovery:
2952 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2953 if (tcp_is_reno(tp) && is_dupack)
2954 tcp_add_reno_sack(sk);
2956 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2957 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2960 if (flag & FLAG_DATA_ACKED)
2961 icsk->icsk_retransmits = 0;
2962 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2963 tcp_reset_reno_sack(tp);
2964 if (!tcp_try_undo_loss(sk)) {
2965 tcp_moderate_cwnd(tp);
2966 tcp_xmit_retransmit_queue(sk);
2969 if (icsk->icsk_ca_state != TCP_CA_Open)
2971 /* Loss is undone; fall through to processing in Open state. */
2973 if (tcp_is_reno(tp)) {
2974 if (flag & FLAG_SND_UNA_ADVANCED)
2975 tcp_reset_reno_sack(tp);
2977 tcp_add_reno_sack(sk);
2979 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2981 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2982 tcp_try_undo_dsack(sk);
2984 if (!tcp_time_to_recover(sk, flag)) {
2985 tcp_try_to_open(sk, flag, newly_acked_sacked);
2989 /* MTU probe failure: don't reduce cwnd */
2990 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2991 icsk->icsk_mtup.probe_size &&
2992 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2993 tcp_mtup_probe_failed(sk);
2994 /* Restores the reduction we did in tcp_mtup_probe() */
2996 tcp_simple_retransmit(sk);
3000 /* Otherwise enter Recovery state */
3001 tcp_enter_recovery(sk, (flag & FLAG_ECE));
3005 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3006 tcp_update_scoreboard(sk, fast_rexmit);
3007 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
3008 tcp_xmit_retransmit_queue(sk);
3011 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3013 tcp_rtt_estimator(sk, seq_rtt);
3015 inet_csk(sk)->icsk_backoff = 0;
3017 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3019 /* Read draft-ietf-tcplw-high-performance before mucking
3020 * with this code. (Supersedes RFC1323)
3022 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3024 /* RTTM Rule: A TSecr value received in a segment is used to
3025 * update the averaged RTT measurement only if the segment
3026 * acknowledges some new data, i.e., only if it advances the
3027 * left edge of the send window.
3029 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3030 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3032 * Changed: reset backoff as soon as we see the first valid sample.
3033 * If we do not, we get strongly overestimated rto. With timestamps
3034 * samples are accepted even from very old segments: f.e., when rtt=1
3035 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3036 * answer arrives rto becomes 120 seconds! If at least one of segments
3037 * in window is lost... Voila. --ANK (010210)
3039 struct tcp_sock *tp = tcp_sk(sk);
3041 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3044 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3046 /* We don't have a timestamp. Can only use
3047 * packets that are not retransmitted to determine
3048 * rtt estimates. Also, we must not reset the
3049 * backoff for rto until we get a non-retransmitted
3050 * packet. This allows us to deal with a situation
3051 * where the network delay has increased suddenly.
3052 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3055 if (flag & FLAG_RETRANS_DATA_ACKED)
3058 tcp_valid_rtt_meas(sk, seq_rtt);
3061 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3064 const struct tcp_sock *tp = tcp_sk(sk);
3065 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3066 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3067 tcp_ack_saw_tstamp(sk, flag);
3068 else if (seq_rtt >= 0)
3069 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3072 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3074 const struct inet_connection_sock *icsk = inet_csk(sk);
3075 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3076 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3079 /* Restart timer after forward progress on connection.
3080 * RFC2988 recommends to restart timer to now+rto.
3082 void tcp_rearm_rto(struct sock *sk)
3084 struct tcp_sock *tp = tcp_sk(sk);
3086 /* If the retrans timer is currently being used by Fast Open
3087 * for SYN-ACK retrans purpose, stay put.
3089 if (tp->fastopen_rsk)
3092 if (!tp->packets_out) {
3093 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3095 u32 rto = inet_csk(sk)->icsk_rto;
3096 /* Offset the time elapsed after installing regular RTO */
3097 if (tp->early_retrans_delayed) {
3098 struct sk_buff *skb = tcp_write_queue_head(sk);
3099 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3100 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3101 /* delta may not be positive if the socket is locked
3102 * when the delayed ER timer fires and is rescheduled.
3107 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3110 tp->early_retrans_delayed = 0;
3113 /* This function is called when the delayed ER timer fires. TCP enters
3114 * fast recovery and performs fast-retransmit.
3116 void tcp_resume_early_retransmit(struct sock *sk)
3118 struct tcp_sock *tp = tcp_sk(sk);
3122 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3123 if (!tp->do_early_retrans)
3126 tcp_enter_recovery(sk, false);
3127 tcp_update_scoreboard(sk, 1);
3128 tcp_xmit_retransmit_queue(sk);
3131 /* If we get here, the whole TSO packet has not been acked. */
3132 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3134 struct tcp_sock *tp = tcp_sk(sk);
3137 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3139 packets_acked = tcp_skb_pcount(skb);
3140 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3142 packets_acked -= tcp_skb_pcount(skb);
3144 if (packets_acked) {
3145 BUG_ON(tcp_skb_pcount(skb) == 0);
3146 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3149 return packets_acked;
3152 /* Remove acknowledged frames from the retransmission queue. If our packet
3153 * is before the ack sequence we can discard it as it's confirmed to have
3154 * arrived at the other end.
3156 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3159 struct tcp_sock *tp = tcp_sk(sk);
3160 const struct inet_connection_sock *icsk = inet_csk(sk);
3161 struct sk_buff *skb;
3162 u32 now = tcp_time_stamp;
3163 int fully_acked = true;
3166 u32 reord = tp->packets_out;
3167 u32 prior_sacked = tp->sacked_out;
3169 s32 ca_seq_rtt = -1;
3170 ktime_t last_ackt = net_invalid_timestamp();
3172 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3173 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3175 u8 sacked = scb->sacked;
3177 /* Determine how many packets and what bytes were acked, tso and else */
3178 if (after(scb->end_seq, tp->snd_una)) {
3179 if (tcp_skb_pcount(skb) == 1 ||
3180 !after(tp->snd_una, scb->seq))
3183 acked_pcount = tcp_tso_acked(sk, skb);
3187 fully_acked = false;
3189 acked_pcount = tcp_skb_pcount(skb);
3192 if (sacked & TCPCB_RETRANS) {
3193 if (sacked & TCPCB_SACKED_RETRANS)
3194 tp->retrans_out -= acked_pcount;
3195 flag |= FLAG_RETRANS_DATA_ACKED;
3198 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3199 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3201 ca_seq_rtt = now - scb->when;
3202 last_ackt = skb->tstamp;
3204 seq_rtt = ca_seq_rtt;
3206 if (!(sacked & TCPCB_SACKED_ACKED))
3207 reord = min(pkts_acked, reord);
3210 if (sacked & TCPCB_SACKED_ACKED)
3211 tp->sacked_out -= acked_pcount;
3212 if (sacked & TCPCB_LOST)
3213 tp->lost_out -= acked_pcount;
3215 tp->packets_out -= acked_pcount;
3216 pkts_acked += acked_pcount;
3218 /* Initial outgoing SYN's get put onto the write_queue
3219 * just like anything else we transmit. It is not
3220 * true data, and if we misinform our callers that
3221 * this ACK acks real data, we will erroneously exit
3222 * connection startup slow start one packet too
3223 * quickly. This is severely frowned upon behavior.
3225 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3226 flag |= FLAG_DATA_ACKED;
3228 flag |= FLAG_SYN_ACKED;
3229 tp->retrans_stamp = 0;
3235 tcp_unlink_write_queue(skb, sk);
3236 sk_wmem_free_skb(sk, skb);
3237 tp->scoreboard_skb_hint = NULL;
3238 if (skb == tp->retransmit_skb_hint)
3239 tp->retransmit_skb_hint = NULL;
3240 if (skb == tp->lost_skb_hint)
3241 tp->lost_skb_hint = NULL;
3244 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3245 tp->snd_up = tp->snd_una;
3247 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3248 flag |= FLAG_SACK_RENEGING;
3250 if (flag & FLAG_ACKED) {
3251 const struct tcp_congestion_ops *ca_ops
3252 = inet_csk(sk)->icsk_ca_ops;
3254 if (unlikely(icsk->icsk_mtup.probe_size &&
3255 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3256 tcp_mtup_probe_success(sk);
3259 tcp_ack_update_rtt(sk, flag, seq_rtt);
3262 if (tcp_is_reno(tp)) {
3263 tcp_remove_reno_sacks(sk, pkts_acked);
3267 /* Non-retransmitted hole got filled? That's reordering */
3268 if (reord < prior_fackets)
3269 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3271 delta = tcp_is_fack(tp) ? pkts_acked :
3272 prior_sacked - tp->sacked_out;
3273 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3276 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3278 if (ca_ops->pkts_acked) {
3281 /* Is the ACK triggering packet unambiguous? */
3282 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3283 /* High resolution needed and available? */
3284 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3285 !ktime_equal(last_ackt,
3286 net_invalid_timestamp()))
3287 rtt_us = ktime_us_delta(ktime_get_real(),
3289 else if (ca_seq_rtt >= 0)
3290 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3293 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3297 #if FASTRETRANS_DEBUG > 0
3298 WARN_ON((int)tp->sacked_out < 0);
3299 WARN_ON((int)tp->lost_out < 0);
3300 WARN_ON((int)tp->retrans_out < 0);
3301 if (!tp->packets_out && tcp_is_sack(tp)) {
3302 icsk = inet_csk(sk);
3304 pr_debug("Leak l=%u %d\n",
3305 tp->lost_out, icsk->icsk_ca_state);
3308 if (tp->sacked_out) {
3309 pr_debug("Leak s=%u %d\n",
3310 tp->sacked_out, icsk->icsk_ca_state);
3313 if (tp->retrans_out) {
3314 pr_debug("Leak r=%u %d\n",
3315 tp->retrans_out, icsk->icsk_ca_state);
3316 tp->retrans_out = 0;
3323 static void tcp_ack_probe(struct sock *sk)
3325 const struct tcp_sock *tp = tcp_sk(sk);
3326 struct inet_connection_sock *icsk = inet_csk(sk);
3328 /* Was it a usable window open? */
3330 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3331 icsk->icsk_backoff = 0;
3332 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3333 /* Socket must be waked up by subsequent tcp_data_snd_check().
3334 * This function is not for random using!
3337 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3338 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3343 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3345 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3346 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3349 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3351 const struct tcp_sock *tp = tcp_sk(sk);
3352 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3353 !tcp_in_cwnd_reduction(sk);
3356 /* Check that window update is acceptable.
3357 * The function assumes that snd_una<=ack<=snd_next.
3359 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3360 const u32 ack, const u32 ack_seq,
3363 return after(ack, tp->snd_una) ||
3364 after(ack_seq, tp->snd_wl1) ||
3365 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3368 /* Update our send window.
3370 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3371 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3373 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3376 struct tcp_sock *tp = tcp_sk(sk);
3378 u32 nwin = ntohs(tcp_hdr(skb)->window);
3380 if (likely(!tcp_hdr(skb)->syn))
3381 nwin <<= tp->rx_opt.snd_wscale;
3383 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3384 flag |= FLAG_WIN_UPDATE;
3385 tcp_update_wl(tp, ack_seq);
3387 if (tp->snd_wnd != nwin) {
3390 /* Note, it is the only place, where
3391 * fast path is recovered for sending TCP.
3394 tcp_fast_path_check(sk);
3396 if (nwin > tp->max_window) {
3397 tp->max_window = nwin;
3398 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3408 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3409 * continue in congestion avoidance.
3411 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3413 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3414 tp->snd_cwnd_cnt = 0;
3415 TCP_ECN_queue_cwr(tp);
3416 tcp_moderate_cwnd(tp);
3419 /* A conservative spurious RTO response algorithm: reduce cwnd using
3420 * PRR and continue in congestion avoidance.
3422 static void tcp_cwr_spur_to_response(struct sock *sk)
3424 tcp_enter_cwr(sk, 0);
3427 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3429 if (flag & FLAG_ECE)
3430 tcp_cwr_spur_to_response(sk);
3432 tcp_undo_cwr(sk, true);