2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
65 #include <net/net_namespace.h>
67 #include <net/inet_hashtables.h>
69 #include <net/transp_v6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
84 #include <linux/crypto.h>
85 #include <linux/scatterlist.h>
87 int sysctl_tcp_tw_reuse __read_mostly;
88 int sysctl_tcp_low_latency __read_mostly;
89 EXPORT_SYMBOL(sysctl_tcp_low_latency);
92 #ifdef CONFIG_TCP_MD5SIG
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 struct inet_hashinfo tcp_hashinfo;
98 EXPORT_SYMBOL(tcp_hashinfo);
100 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105 tcp_hdr(skb)->source);
108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
113 /* With PAWS, it is safe from the viewpoint
114 of data integrity. Even without PAWS it is safe provided sequence
115 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117 Actually, the idea is close to VJ's one, only timestamp cache is
118 held not per host, but per port pair and TW bucket is used as state
121 If TW bucket has been already destroyed we fall back to VJ's scheme
122 and use initial timestamp retrieved from peer table.
124 if (tcptw->tw_ts_recent_stamp &&
125 (twp == NULL || (sysctl_tcp_tw_reuse &&
126 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
127 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
128 if (tp->write_seq == 0)
130 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
131 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140 /* This will initiate an outgoing connection. */
141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
144 struct inet_sock *inet = inet_sk(sk);
145 struct tcp_sock *tp = tcp_sk(sk);
146 __be16 orig_sport, orig_dport;
147 __be32 daddr, nexthop;
151 struct ip_options_rcu *inet_opt;
153 if (addr_len < sizeof(struct sockaddr_in))
156 if (usin->sin_family != AF_INET)
157 return -EAFNOSUPPORT;
159 nexthop = daddr = usin->sin_addr.s_addr;
160 inet_opt = rcu_dereference_protected(inet->inet_opt,
161 sock_owned_by_user(sk));
162 if (inet_opt && inet_opt->opt.srr) {
165 nexthop = inet_opt->opt.faddr;
168 orig_sport = inet->inet_sport;
169 orig_dport = usin->sin_port;
170 fl4 = &inet->cork.fl.u.ip4;
171 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 orig_sport, orig_dport, sk, true);
177 if (err == -ENETUNREACH)
178 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187 if (!inet_opt || !inet_opt->opt.srr)
190 if (!inet->inet_saddr)
191 inet->inet_saddr = fl4->saddr;
192 inet->inet_rcv_saddr = inet->inet_saddr;
194 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
195 /* Reset inherited state */
196 tp->rx_opt.ts_recent = 0;
197 tp->rx_opt.ts_recent_stamp = 0;
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
203 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
205 * VJ's idea. We save last timestamp seen from
206 * the destination in peer table, when entering state
207 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
208 * when trying new connection.
211 inet_peer_refcheck(peer);
212 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
213 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
214 tp->rx_opt.ts_recent = peer->tcp_ts;
219 inet->inet_dport = usin->sin_port;
220 inet->inet_daddr = daddr;
222 inet_csk(sk)->icsk_ext_hdr_len = 0;
224 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
226 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
228 /* Socket identity is still unknown (sport may be zero).
229 * However we set state to SYN-SENT and not releasing socket
230 * lock select source port, enter ourselves into the hash tables and
231 * complete initialization after this.
233 tcp_set_state(sk, TCP_SYN_SENT);
234 err = inet_hash_connect(&tcp_death_row, sk);
238 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
239 inet->inet_sport, inet->inet_dport, sk);
245 /* OK, now commit destination to socket. */
246 sk->sk_gso_type = SKB_GSO_TCPV4;
247 sk_setup_caps(sk, &rt->dst);
250 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
255 inet->inet_id = tp->write_seq ^ jiffies;
257 err = tcp_connect(sk);
266 * This unhashes the socket and releases the local port,
269 tcp_set_state(sk, TCP_CLOSE);
271 sk->sk_route_caps = 0;
272 inet->inet_dport = 0;
275 EXPORT_SYMBOL(tcp_v4_connect);
278 * This routine does path mtu discovery as defined in RFC1191.
280 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
282 struct dst_entry *dst;
283 struct inet_sock *inet = inet_sk(sk);
285 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
286 * send out by Linux are always <576bytes so they should go through
289 if (sk->sk_state == TCP_LISTEN)
292 /* We don't check in the destentry if pmtu discovery is forbidden
293 * on this route. We just assume that no packet_to_big packets
294 * are send back when pmtu discovery is not active.
295 * There is a small race when the user changes this flag in the
296 * route, but I think that's acceptable.
298 if ((dst = __sk_dst_check(sk, 0)) == NULL)
301 dst->ops->update_pmtu(dst, mtu);
303 /* Something is about to be wrong... Remember soft error
304 * for the case, if this connection will not able to recover.
306 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
307 sk->sk_err_soft = EMSGSIZE;
311 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
312 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
313 tcp_sync_mss(sk, mtu);
315 /* Resend the TCP packet because it's
316 * clear that the old packet has been
317 * dropped. This is the new "fast" path mtu
320 tcp_simple_retransmit(sk);
321 } /* else let the usual retransmit timer handle it */
325 * This routine is called by the ICMP module when it gets some
326 * sort of error condition. If err < 0 then the socket should
327 * be closed and the error returned to the user. If err > 0
328 * it's just the icmp type << 8 | icmp code. After adjustment
329 * header points to the first 8 bytes of the tcp header. We need
330 * to find the appropriate port.
332 * The locking strategy used here is very "optimistic". When
333 * someone else accesses the socket the ICMP is just dropped
334 * and for some paths there is no check at all.
335 * A more general error queue to queue errors for later handling
336 * is probably better.
340 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
342 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
343 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
344 struct inet_connection_sock *icsk;
346 struct inet_sock *inet;
347 const int type = icmp_hdr(icmp_skb)->type;
348 const int code = icmp_hdr(icmp_skb)->code;
354 struct net *net = dev_net(icmp_skb->dev);
356 if (icmp_skb->len < (iph->ihl << 2) + 8) {
357 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
361 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
362 iph->saddr, th->source, inet_iif(icmp_skb));
364 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
367 if (sk->sk_state == TCP_TIME_WAIT) {
368 inet_twsk_put(inet_twsk(sk));
373 /* If too many ICMPs get dropped on busy
374 * servers this needs to be solved differently.
376 if (sock_owned_by_user(sk))
377 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
379 if (sk->sk_state == TCP_CLOSE)
382 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
383 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
389 seq = ntohl(th->seq);
390 if (sk->sk_state != TCP_LISTEN &&
391 !between(seq, tp->snd_una, tp->snd_nxt)) {
392 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
397 case ICMP_SOURCE_QUENCH:
398 /* Just silently ignore these. */
400 case ICMP_PARAMETERPROB:
403 case ICMP_DEST_UNREACH:
404 if (code > NR_ICMP_UNREACH)
407 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
408 if (!sock_owned_by_user(sk))
409 do_pmtu_discovery(sk, iph, info);
413 err = icmp_err_convert[code].errno;
414 /* check if icmp_skb allows revert of backoff
415 * (see draft-zimmermann-tcp-lcd) */
416 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
418 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
422 if (sock_owned_by_user(sk))
425 icsk->icsk_backoff--;
426 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
427 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
430 skb = tcp_write_queue_head(sk);
433 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
434 tcp_time_stamp - TCP_SKB_CB(skb)->when);
437 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
438 remaining, TCP_RTO_MAX);
440 /* RTO revert clocked out retransmission.
441 * Will retransmit now */
442 tcp_retransmit_timer(sk);
446 case ICMP_TIME_EXCEEDED:
453 switch (sk->sk_state) {
454 struct request_sock *req, **prev;
456 if (sock_owned_by_user(sk))
459 req = inet_csk_search_req(sk, &prev, th->dest,
460 iph->daddr, iph->saddr);
464 /* ICMPs are not backlogged, hence we cannot get
465 an established socket here.
469 if (seq != tcp_rsk(req)->snt_isn) {
470 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
475 * Still in SYN_RECV, just remove it silently.
476 * There is no good way to pass the error to the newly
477 * created socket, and POSIX does not want network
478 * errors returned from accept().
480 inet_csk_reqsk_queue_drop(sk, req, prev);
484 case TCP_SYN_RECV: /* Cannot happen.
485 It can f.e. if SYNs crossed.
487 if (!sock_owned_by_user(sk)) {
490 sk->sk_error_report(sk);
494 sk->sk_err_soft = err;
499 /* If we've already connected we will keep trying
500 * until we time out, or the user gives up.
502 * rfc1122 4.2.3.9 allows to consider as hard errors
503 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
504 * but it is obsoleted by pmtu discovery).
506 * Note, that in modern internet, where routing is unreliable
507 * and in each dark corner broken firewalls sit, sending random
508 * errors ordered by their masters even this two messages finally lose
509 * their original sense (even Linux sends invalid PORT_UNREACHs)
511 * Now we are in compliance with RFCs.
516 if (!sock_owned_by_user(sk) && inet->recverr) {
518 sk->sk_error_report(sk);
519 } else { /* Only an error on timeout */
520 sk->sk_err_soft = err;
528 static void __tcp_v4_send_check(struct sk_buff *skb,
529 __be32 saddr, __be32 daddr)
531 struct tcphdr *th = tcp_hdr(skb);
533 if (skb->ip_summed == CHECKSUM_PARTIAL) {
534 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
535 skb->csum_start = skb_transport_header(skb) - skb->head;
536 skb->csum_offset = offsetof(struct tcphdr, check);
538 th->check = tcp_v4_check(skb->len, saddr, daddr,
545 /* This routine computes an IPv4 TCP checksum. */
546 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
548 const struct inet_sock *inet = inet_sk(sk);
550 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
552 EXPORT_SYMBOL(tcp_v4_send_check);
554 int tcp_v4_gso_send_check(struct sk_buff *skb)
556 const struct iphdr *iph;
559 if (!pskb_may_pull(skb, sizeof(*th)))
566 skb->ip_summed = CHECKSUM_PARTIAL;
567 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
572 * This routine will send an RST to the other tcp.
574 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
576 * Answer: if a packet caused RST, it is not for a socket
577 * existing in our system, if it is matched to a socket,
578 * it is just duplicate segment or bug in other side's TCP.
579 * So that we build reply only basing on parameters
580 * arrived with segment.
581 * Exception: precedence violation. We do not implement it in any case.
584 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
586 const struct tcphdr *th = tcp_hdr(skb);
589 #ifdef CONFIG_TCP_MD5SIG
590 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
593 struct ip_reply_arg arg;
594 #ifdef CONFIG_TCP_MD5SIG
595 struct tcp_md5sig_key *key;
599 /* Never send a reset in response to a reset. */
603 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
606 /* Swap the send and the receive. */
607 memset(&rep, 0, sizeof(rep));
608 rep.th.dest = th->source;
609 rep.th.source = th->dest;
610 rep.th.doff = sizeof(struct tcphdr) / 4;
614 rep.th.seq = th->ack_seq;
617 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
618 skb->len - (th->doff << 2));
621 memset(&arg, 0, sizeof(arg));
622 arg.iov[0].iov_base = (unsigned char *)&rep;
623 arg.iov[0].iov_len = sizeof(rep.th);
625 #ifdef CONFIG_TCP_MD5SIG
626 key = sk ? tcp_md5_do_lookup(sk,
627 (union tcp_md5_addr *)&ip_hdr(skb)->saddr,
630 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
632 (TCPOPT_MD5SIG << 8) |
634 /* Update length and the length the header thinks exists */
635 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
636 rep.th.doff = arg.iov[0].iov_len / 4;
638 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
639 key, ip_hdr(skb)->saddr,
640 ip_hdr(skb)->daddr, &rep.th);
643 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
644 ip_hdr(skb)->saddr, /* XXX */
645 arg.iov[0].iov_len, IPPROTO_TCP, 0);
646 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
647 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
649 net = dev_net(skb_dst(skb)->dev);
650 arg.tos = ip_hdr(skb)->tos;
651 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
652 &arg, arg.iov[0].iov_len);
654 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
655 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
658 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
659 outside socket context is ugly, certainly. What can I do?
662 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
663 u32 win, u32 ts, int oif,
664 struct tcp_md5sig_key *key,
665 int reply_flags, u8 tos)
667 const struct tcphdr *th = tcp_hdr(skb);
670 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
671 #ifdef CONFIG_TCP_MD5SIG
672 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
676 struct ip_reply_arg arg;
677 struct net *net = dev_net(skb_dst(skb)->dev);
679 memset(&rep.th, 0, sizeof(struct tcphdr));
680 memset(&arg, 0, sizeof(arg));
682 arg.iov[0].iov_base = (unsigned char *)&rep;
683 arg.iov[0].iov_len = sizeof(rep.th);
685 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
686 (TCPOPT_TIMESTAMP << 8) |
688 rep.opt[1] = htonl(tcp_time_stamp);
689 rep.opt[2] = htonl(ts);
690 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
693 /* Swap the send and the receive. */
694 rep.th.dest = th->source;
695 rep.th.source = th->dest;
696 rep.th.doff = arg.iov[0].iov_len / 4;
697 rep.th.seq = htonl(seq);
698 rep.th.ack_seq = htonl(ack);
700 rep.th.window = htons(win);
702 #ifdef CONFIG_TCP_MD5SIG
704 int offset = (ts) ? 3 : 0;
706 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
708 (TCPOPT_MD5SIG << 8) |
710 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
711 rep.th.doff = arg.iov[0].iov_len/4;
713 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
714 key, ip_hdr(skb)->saddr,
715 ip_hdr(skb)->daddr, &rep.th);
718 arg.flags = reply_flags;
719 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
720 ip_hdr(skb)->saddr, /* XXX */
721 arg.iov[0].iov_len, IPPROTO_TCP, 0);
722 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
724 arg.bound_dev_if = oif;
726 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
727 &arg, arg.iov[0].iov_len);
729 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
732 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
734 struct inet_timewait_sock *tw = inet_twsk(sk);
735 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
737 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
738 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
741 tcp_twsk_md5_key(tcptw),
742 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
749 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
750 struct request_sock *req)
752 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
753 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
756 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
758 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
763 * Send a SYN-ACK after having received a SYN.
764 * This still operates on a request_sock only, not on a big
767 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
768 struct request_sock *req,
769 struct request_values *rvp)
771 const struct inet_request_sock *ireq = inet_rsk(req);
774 struct sk_buff * skb;
776 /* First, grab a route. */
777 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
780 skb = tcp_make_synack(sk, dst, req, rvp);
783 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
785 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
788 err = net_xmit_eval(err);
795 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
796 struct request_values *rvp)
798 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
799 return tcp_v4_send_synack(sk, NULL, req, rvp);
803 * IPv4 request_sock destructor.
805 static void tcp_v4_reqsk_destructor(struct request_sock *req)
807 kfree(inet_rsk(req)->opt);
811 * Return 1 if a syncookie should be sent
813 int tcp_syn_flood_action(struct sock *sk,
814 const struct sk_buff *skb,
817 const char *msg = "Dropping request";
819 struct listen_sock *lopt;
823 #ifdef CONFIG_SYN_COOKIES
824 if (sysctl_tcp_syncookies) {
825 msg = "Sending cookies";
827 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
830 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
832 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
833 if (!lopt->synflood_warned) {
834 lopt->synflood_warned = 1;
835 pr_info("%s: Possible SYN flooding on port %d. %s. "
836 " Check SNMP counters.\n",
837 proto, ntohs(tcp_hdr(skb)->dest), msg);
841 EXPORT_SYMBOL(tcp_syn_flood_action);
844 * Save and compile IPv4 options into the request_sock if needed.
846 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
849 const struct ip_options *opt = &(IPCB(skb)->opt);
850 struct ip_options_rcu *dopt = NULL;
852 if (opt && opt->optlen) {
853 int opt_size = sizeof(*dopt) + opt->optlen;
855 dopt = kmalloc(opt_size, GFP_ATOMIC);
857 if (ip_options_echo(&dopt->opt, skb)) {
866 #ifdef CONFIG_TCP_MD5SIG
868 * RFC2385 MD5 checksumming requires a mapping of
869 * IP address->MD5 Key.
870 * We need to maintain these in the sk structure.
873 /* Find the Key structure for an address. */
874 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
875 const union tcp_md5_addr *addr,
878 struct tcp_sock *tp = tcp_sk(sk);
879 struct tcp_md5sig_key *key;
880 struct hlist_node *pos;
881 unsigned int size = sizeof(struct in_addr);
883 if (!tp->md5sig_info)
885 #if IS_ENABLED(CONFIG_IPV6)
886 if (family == AF_INET6)
887 size = sizeof(struct in6_addr);
889 hlist_for_each_entry_rcu(key, pos, &tp->md5sig_info->head, node) {
890 if (key->family != family)
892 if (!memcmp(&key->addr, addr, size))
897 EXPORT_SYMBOL(tcp_md5_do_lookup);
899 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
900 struct sock *addr_sk)
902 union tcp_md5_addr *addr;
904 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
905 return tcp_md5_do_lookup(sk, addr, AF_INET);
907 EXPORT_SYMBOL(tcp_v4_md5_lookup);
909 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
910 struct request_sock *req)
912 union tcp_md5_addr *addr;
914 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
915 return tcp_md5_do_lookup(sk, addr, AF_INET);
918 /* This can be called on a newly created socket, from other files */
919 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
920 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
922 /* Add Key to the list */
923 struct tcp_md5sig_key *key;
924 struct tcp_sock *tp = tcp_sk(sk);
925 struct tcp_md5sig_info *md5sig;
927 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
929 /* Pre-existing entry - just update that one. */
930 memcpy(key->key, newkey, newkeylen);
931 key->keylen = newkeylen;
935 md5sig = tp->md5sig_info;
937 md5sig = kmalloc(sizeof(*md5sig), gfp);
941 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
942 INIT_HLIST_HEAD(&md5sig->head);
943 tp->md5sig_info = md5sig;
946 key = sock_kmalloc(sk, sizeof(*key), gfp);
949 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
950 sock_kfree_s(sk, key, sizeof(*key));
954 memcpy(key->key, newkey, newkeylen);
955 key->keylen = newkeylen;
956 key->family = family;
957 memcpy(&key->addr, addr,
958 (family == AF_INET6) ? sizeof(struct in6_addr) :
959 sizeof(struct in_addr));
960 hlist_add_head_rcu(&key->node, &md5sig->head);
963 EXPORT_SYMBOL(tcp_md5_do_add);
965 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
967 struct tcp_sock *tp = tcp_sk(sk);
968 struct tcp_md5sig_key *key;
970 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
973 hlist_del_rcu(&key->node);
974 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
976 if (hlist_empty(&tp->md5sig_info->head))
977 tcp_free_md5sig_pool();
980 EXPORT_SYMBOL(tcp_md5_do_del);
982 void tcp_clear_md5_list(struct sock *sk)
984 struct tcp_sock *tp = tcp_sk(sk);
985 struct tcp_md5sig_key *key;
986 struct hlist_node *pos, *n;
988 if (!hlist_empty(&tp->md5sig_info->head))
989 tcp_free_md5sig_pool();
990 hlist_for_each_entry_safe(key, pos, n, &tp->md5sig_info->head, node) {
991 hlist_del_rcu(&key->node);
992 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
997 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1000 struct tcp_md5sig cmd;
1001 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1003 if (optlen < sizeof(cmd))
1006 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1009 if (sin->sin_family != AF_INET)
1012 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1013 if (!tcp_sk(sk)->md5sig_info)
1015 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1019 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1022 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1023 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1027 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1028 __be32 daddr, __be32 saddr, int nbytes)
1030 struct tcp4_pseudohdr *bp;
1031 struct scatterlist sg;
1033 bp = &hp->md5_blk.ip4;
1036 * 1. the TCP pseudo-header (in the order: source IP address,
1037 * destination IP address, zero-padded protocol number, and
1043 bp->protocol = IPPROTO_TCP;
1044 bp->len = cpu_to_be16(nbytes);
1046 sg_init_one(&sg, bp, sizeof(*bp));
1047 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1050 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1051 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1053 struct tcp_md5sig_pool *hp;
1054 struct hash_desc *desc;
1056 hp = tcp_get_md5sig_pool();
1058 goto clear_hash_noput;
1059 desc = &hp->md5_desc;
1061 if (crypto_hash_init(desc))
1063 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1065 if (tcp_md5_hash_header(hp, th))
1067 if (tcp_md5_hash_key(hp, key))
1069 if (crypto_hash_final(desc, md5_hash))
1072 tcp_put_md5sig_pool();
1076 tcp_put_md5sig_pool();
1078 memset(md5_hash, 0, 16);
1082 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1083 const struct sock *sk, const struct request_sock *req,
1084 const struct sk_buff *skb)
1086 struct tcp_md5sig_pool *hp;
1087 struct hash_desc *desc;
1088 const struct tcphdr *th = tcp_hdr(skb);
1089 __be32 saddr, daddr;
1092 saddr = inet_sk(sk)->inet_saddr;
1093 daddr = inet_sk(sk)->inet_daddr;
1095 saddr = inet_rsk(req)->loc_addr;
1096 daddr = inet_rsk(req)->rmt_addr;
1098 const struct iphdr *iph = ip_hdr(skb);
1103 hp = tcp_get_md5sig_pool();
1105 goto clear_hash_noput;
1106 desc = &hp->md5_desc;
1108 if (crypto_hash_init(desc))
1111 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1113 if (tcp_md5_hash_header(hp, th))
1115 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1117 if (tcp_md5_hash_key(hp, key))
1119 if (crypto_hash_final(desc, md5_hash))
1122 tcp_put_md5sig_pool();
1126 tcp_put_md5sig_pool();
1128 memset(md5_hash, 0, 16);
1131 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1133 static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1136 * This gets called for each TCP segment that arrives
1137 * so we want to be efficient.
1138 * We have 3 drop cases:
1139 * o No MD5 hash and one expected.
1140 * o MD5 hash and we're not expecting one.
1141 * o MD5 hash and its wrong.
1143 const __u8 *hash_location = NULL;
1144 struct tcp_md5sig_key *hash_expected;
1145 const struct iphdr *iph = ip_hdr(skb);
1146 const struct tcphdr *th = tcp_hdr(skb);
1148 unsigned char newhash[16];
1150 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1152 hash_location = tcp_parse_md5sig_option(th);
1154 /* We've parsed the options - do we have a hash? */
1155 if (!hash_expected && !hash_location)
1158 if (hash_expected && !hash_location) {
1159 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1163 if (!hash_expected && hash_location) {
1164 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1168 /* Okay, so this is hash_expected and hash_location -
1169 * so we need to calculate the checksum.
1171 genhash = tcp_v4_md5_hash_skb(newhash,
1175 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1176 if (net_ratelimit()) {
1177 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1178 &iph->saddr, ntohs(th->source),
1179 &iph->daddr, ntohs(th->dest),
1180 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1189 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1191 .obj_size = sizeof(struct tcp_request_sock),
1192 .rtx_syn_ack = tcp_v4_rtx_synack,
1193 .send_ack = tcp_v4_reqsk_send_ack,
1194 .destructor = tcp_v4_reqsk_destructor,
1195 .send_reset = tcp_v4_send_reset,
1196 .syn_ack_timeout = tcp_syn_ack_timeout,
1199 #ifdef CONFIG_TCP_MD5SIG
1200 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1201 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1202 .calc_md5_hash = tcp_v4_md5_hash_skb,
1206 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1208 struct tcp_extend_values tmp_ext;
1209 struct tcp_options_received tmp_opt;
1210 const u8 *hash_location;
1211 struct request_sock *req;
1212 struct inet_request_sock *ireq;
1213 struct tcp_sock *tp = tcp_sk(sk);
1214 struct dst_entry *dst = NULL;
1215 __be32 saddr = ip_hdr(skb)->saddr;
1216 __be32 daddr = ip_hdr(skb)->daddr;
1217 __u32 isn = TCP_SKB_CB(skb)->when;
1218 int want_cookie = 0;
1220 /* Never answer to SYNs send to broadcast or multicast */
1221 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1224 /* TW buckets are converted to open requests without
1225 * limitations, they conserve resources and peer is
1226 * evidently real one.
1228 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1229 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1234 /* Accept backlog is full. If we have already queued enough
1235 * of warm entries in syn queue, drop request. It is better than
1236 * clogging syn queue with openreqs with exponentially increasing
1239 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1242 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1246 #ifdef CONFIG_TCP_MD5SIG
1247 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1250 tcp_clear_options(&tmp_opt);
1251 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1252 tmp_opt.user_mss = tp->rx_opt.user_mss;
1253 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1255 if (tmp_opt.cookie_plus > 0 &&
1256 tmp_opt.saw_tstamp &&
1257 !tp->rx_opt.cookie_out_never &&
1258 (sysctl_tcp_cookie_size > 0 ||
1259 (tp->cookie_values != NULL &&
1260 tp->cookie_values->cookie_desired > 0))) {
1262 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1263 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1265 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1266 goto drop_and_release;
1268 /* Secret recipe starts with IP addresses */
1269 *mess++ ^= (__force u32)daddr;
1270 *mess++ ^= (__force u32)saddr;
1272 /* plus variable length Initiator Cookie */
1275 *c++ ^= *hash_location++;
1277 want_cookie = 0; /* not our kind of cookie */
1278 tmp_ext.cookie_out_never = 0; /* false */
1279 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1280 } else if (!tp->rx_opt.cookie_in_always) {
1281 /* redundant indications, but ensure initialization. */
1282 tmp_ext.cookie_out_never = 1; /* true */
1283 tmp_ext.cookie_plus = 0;
1285 goto drop_and_release;
1287 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1289 if (want_cookie && !tmp_opt.saw_tstamp)
1290 tcp_clear_options(&tmp_opt);
1292 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1293 tcp_openreq_init(req, &tmp_opt, skb);
1295 ireq = inet_rsk(req);
1296 ireq->loc_addr = daddr;
1297 ireq->rmt_addr = saddr;
1298 ireq->no_srccheck = inet_sk(sk)->transparent;
1299 ireq->opt = tcp_v4_save_options(sk, skb);
1301 if (security_inet_conn_request(sk, skb, req))
1304 if (!want_cookie || tmp_opt.tstamp_ok)
1305 TCP_ECN_create_request(req, tcp_hdr(skb));
1308 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1309 req->cookie_ts = tmp_opt.tstamp_ok;
1311 struct inet_peer *peer = NULL;
1314 /* VJ's idea. We save last timestamp seen
1315 * from the destination in peer table, when entering
1316 * state TIME-WAIT, and check against it before
1317 * accepting new connection request.
1319 * If "isn" is not zero, this request hit alive
1320 * timewait bucket, so that all the necessary checks
1321 * are made in the function processing timewait state.
1323 if (tmp_opt.saw_tstamp &&
1324 tcp_death_row.sysctl_tw_recycle &&
1325 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1326 fl4.daddr == saddr &&
1327 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1328 inet_peer_refcheck(peer);
1329 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1330 (s32)(peer->tcp_ts - req->ts_recent) >
1332 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1333 goto drop_and_release;
1336 /* Kill the following clause, if you dislike this way. */
1337 else if (!sysctl_tcp_syncookies &&
1338 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1339 (sysctl_max_syn_backlog >> 2)) &&
1340 (!peer || !peer->tcp_ts_stamp) &&
1341 (!dst || !dst_metric(dst, RTAX_RTT))) {
1342 /* Without syncookies last quarter of
1343 * backlog is filled with destinations,
1344 * proven to be alive.
1345 * It means that we continue to communicate
1346 * to destinations, already remembered
1347 * to the moment of synflood.
1349 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1350 &saddr, ntohs(tcp_hdr(skb)->source));
1351 goto drop_and_release;
1354 isn = tcp_v4_init_sequence(skb);
1356 tcp_rsk(req)->snt_isn = isn;
1357 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1359 if (tcp_v4_send_synack(sk, dst, req,
1360 (struct request_values *)&tmp_ext) ||
1364 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1374 EXPORT_SYMBOL(tcp_v4_conn_request);
1378 * The three way handshake has completed - we got a valid synack -
1379 * now create the new socket.
1381 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1382 struct request_sock *req,
1383 struct dst_entry *dst)
1385 struct inet_request_sock *ireq;
1386 struct inet_sock *newinet;
1387 struct tcp_sock *newtp;
1389 #ifdef CONFIG_TCP_MD5SIG
1390 struct tcp_md5sig_key *key;
1392 struct ip_options_rcu *inet_opt;
1394 if (sk_acceptq_is_full(sk))
1397 newsk = tcp_create_openreq_child(sk, req, skb);
1401 newsk->sk_gso_type = SKB_GSO_TCPV4;
1403 newtp = tcp_sk(newsk);
1404 newinet = inet_sk(newsk);
1405 ireq = inet_rsk(req);
1406 newinet->inet_daddr = ireq->rmt_addr;
1407 newinet->inet_rcv_saddr = ireq->loc_addr;
1408 newinet->inet_saddr = ireq->loc_addr;
1409 inet_opt = ireq->opt;
1410 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1412 newinet->mc_index = inet_iif(skb);
1413 newinet->mc_ttl = ip_hdr(skb)->ttl;
1414 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1416 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1417 newinet->inet_id = newtp->write_seq ^ jiffies;
1419 if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1422 sk_setup_caps(newsk, dst);
1424 tcp_mtup_init(newsk);
1425 tcp_sync_mss(newsk, dst_mtu(dst));
1426 newtp->advmss = dst_metric_advmss(dst);
1427 if (tcp_sk(sk)->rx_opt.user_mss &&
1428 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1429 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1431 tcp_initialize_rcv_mss(newsk);
1432 if (tcp_rsk(req)->snt_synack)
1433 tcp_valid_rtt_meas(newsk,
1434 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1435 newtp->total_retrans = req->retrans;
1437 #ifdef CONFIG_TCP_MD5SIG
1438 /* Copy over the MD5 key from the original socket */
1439 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1443 * We're using one, so create a matching key
1444 * on the newsk structure. If we fail to get
1445 * memory, then we end up not copying the key
1448 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1449 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1450 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1454 if (__inet_inherit_port(sk, newsk) < 0)
1456 __inet_hash_nolisten(newsk, NULL);
1461 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1465 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1468 tcp_clear_xmit_timers(newsk);
1469 tcp_cleanup_congestion_control(newsk);
1470 bh_unlock_sock(newsk);
1474 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1476 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1478 struct tcphdr *th = tcp_hdr(skb);
1479 const struct iphdr *iph = ip_hdr(skb);
1481 struct request_sock **prev;
1482 /* Find possible connection requests. */
1483 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1484 iph->saddr, iph->daddr);
1486 return tcp_check_req(sk, skb, req, prev);
1488 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1489 th->source, iph->daddr, th->dest, inet_iif(skb));
1492 if (nsk->sk_state != TCP_TIME_WAIT) {
1496 inet_twsk_put(inet_twsk(nsk));
1500 #ifdef CONFIG_SYN_COOKIES
1502 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1507 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1509 const struct iphdr *iph = ip_hdr(skb);
1511 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1512 if (!tcp_v4_check(skb->len, iph->saddr,
1513 iph->daddr, skb->csum)) {
1514 skb->ip_summed = CHECKSUM_UNNECESSARY;
1519 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1520 skb->len, IPPROTO_TCP, 0);
1522 if (skb->len <= 76) {
1523 return __skb_checksum_complete(skb);
1529 /* The socket must have it's spinlock held when we get
1532 * We have a potential double-lock case here, so even when
1533 * doing backlog processing we use the BH locking scheme.
1534 * This is because we cannot sleep with the original spinlock
1537 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1540 #ifdef CONFIG_TCP_MD5SIG
1542 * We really want to reject the packet as early as possible
1544 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1545 * o There is an MD5 option and we're not expecting one
1547 if (tcp_v4_inbound_md5_hash(sk, skb))
1551 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1552 sock_rps_save_rxhash(sk, skb);
1553 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1560 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1563 if (sk->sk_state == TCP_LISTEN) {
1564 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1569 sock_rps_save_rxhash(nsk, skb);
1570 if (tcp_child_process(sk, nsk, skb)) {
1577 sock_rps_save_rxhash(sk, skb);
1579 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1586 tcp_v4_send_reset(rsk, skb);
1589 /* Be careful here. If this function gets more complicated and
1590 * gcc suffers from register pressure on the x86, sk (in %ebx)
1591 * might be destroyed here. This current version compiles correctly,
1592 * but you have been warned.
1597 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1600 EXPORT_SYMBOL(tcp_v4_do_rcv);
1606 int tcp_v4_rcv(struct sk_buff *skb)
1608 const struct iphdr *iph;
1609 const struct tcphdr *th;
1612 struct net *net = dev_net(skb->dev);
1614 if (skb->pkt_type != PACKET_HOST)
1617 /* Count it even if it's bad */
1618 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1620 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1625 if (th->doff < sizeof(struct tcphdr) / 4)
1627 if (!pskb_may_pull(skb, th->doff * 4))
1630 /* An explanation is required here, I think.
1631 * Packet length and doff are validated by header prediction,
1632 * provided case of th->doff==0 is eliminated.
1633 * So, we defer the checks. */
1634 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1639 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1640 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1641 skb->len - th->doff * 4);
1642 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1643 TCP_SKB_CB(skb)->when = 0;
1644 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1645 TCP_SKB_CB(skb)->sacked = 0;
1647 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1652 if (sk->sk_state == TCP_TIME_WAIT)
1655 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1656 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1657 goto discard_and_relse;
1660 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1661 goto discard_and_relse;
1664 if (sk_filter(sk, skb))
1665 goto discard_and_relse;
1669 bh_lock_sock_nested(sk);
1671 if (!sock_owned_by_user(sk)) {
1672 #ifdef CONFIG_NET_DMA
1673 struct tcp_sock *tp = tcp_sk(sk);
1674 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1675 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1676 if (tp->ucopy.dma_chan)
1677 ret = tcp_v4_do_rcv(sk, skb);
1681 if (!tcp_prequeue(sk, skb))
1682 ret = tcp_v4_do_rcv(sk, skb);
1684 } else if (unlikely(sk_add_backlog(sk, skb))) {
1686 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1687 goto discard_and_relse;
1696 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1699 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1701 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1703 tcp_v4_send_reset(NULL, skb);
1707 /* Discard frame. */
1716 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1717 inet_twsk_put(inet_twsk(sk));
1721 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1722 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1723 inet_twsk_put(inet_twsk(sk));
1726 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1728 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1730 iph->daddr, th->dest,
1733 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1734 inet_twsk_put(inet_twsk(sk));
1738 /* Fall through to ACK */
1741 tcp_v4_timewait_ack(sk, skb);
1745 case TCP_TW_SUCCESS:;
1750 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1752 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1753 struct inet_sock *inet = inet_sk(sk);
1754 struct inet_peer *peer;
1757 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1758 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1762 rt_bind_peer(rt, inet->inet_daddr, 1);
1764 *release_it = false;
1769 EXPORT_SYMBOL(tcp_v4_get_peer);
1771 void *tcp_v4_tw_get_peer(struct sock *sk)
1773 const struct inet_timewait_sock *tw = inet_twsk(sk);
1775 return inet_getpeer_v4(tw->tw_daddr, 1);
1777 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1779 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1780 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1781 .twsk_unique = tcp_twsk_unique,
1782 .twsk_destructor= tcp_twsk_destructor,
1783 .twsk_getpeer = tcp_v4_tw_get_peer,
1786 const struct inet_connection_sock_af_ops ipv4_specific = {
1787 .queue_xmit = ip_queue_xmit,
1788 .send_check = tcp_v4_send_check,
1789 .rebuild_header = inet_sk_rebuild_header,
1790 .conn_request = tcp_v4_conn_request,
1791 .syn_recv_sock = tcp_v4_syn_recv_sock,
1792 .get_peer = tcp_v4_get_peer,
1793 .net_header_len = sizeof(struct iphdr),
1794 .setsockopt = ip_setsockopt,
1795 .getsockopt = ip_getsockopt,
1796 .addr2sockaddr = inet_csk_addr2sockaddr,
1797 .sockaddr_len = sizeof(struct sockaddr_in),
1798 .bind_conflict = inet_csk_bind_conflict,
1799 #ifdef CONFIG_COMPAT
1800 .compat_setsockopt = compat_ip_setsockopt,
1801 .compat_getsockopt = compat_ip_getsockopt,
1804 EXPORT_SYMBOL(ipv4_specific);
1806 #ifdef CONFIG_TCP_MD5SIG
1807 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1808 .md5_lookup = tcp_v4_md5_lookup,
1809 .calc_md5_hash = tcp_v4_md5_hash_skb,
1810 .md5_parse = tcp_v4_parse_md5_keys,
1814 /* NOTE: A lot of things set to zero explicitly by call to
1815 * sk_alloc() so need not be done here.
1817 static int tcp_v4_init_sock(struct sock *sk)
1819 struct inet_connection_sock *icsk = inet_csk(sk);
1820 struct tcp_sock *tp = tcp_sk(sk);
1822 skb_queue_head_init(&tp->out_of_order_queue);
1823 tcp_init_xmit_timers(sk);
1824 tcp_prequeue_init(tp);
1826 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1827 tp->mdev = TCP_TIMEOUT_INIT;
1829 /* So many TCP implementations out there (incorrectly) count the
1830 * initial SYN frame in their delayed-ACK and congestion control
1831 * algorithms that we must have the following bandaid to talk
1832 * efficiently to them. -DaveM
1834 tp->snd_cwnd = TCP_INIT_CWND;
1836 /* See draft-stevens-tcpca-spec-01 for discussion of the
1837 * initialization of these values.
1839 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1840 tp->snd_cwnd_clamp = ~0;
1841 tp->mss_cache = TCP_MSS_DEFAULT;
1843 tp->reordering = sysctl_tcp_reordering;
1844 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1846 sk->sk_state = TCP_CLOSE;
1848 sk->sk_write_space = sk_stream_write_space;
1849 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1851 icsk->icsk_af_ops = &ipv4_specific;
1852 icsk->icsk_sync_mss = tcp_sync_mss;
1853 #ifdef CONFIG_TCP_MD5SIG
1854 tp->af_specific = &tcp_sock_ipv4_specific;
1857 /* TCP Cookie Transactions */
1858 if (sysctl_tcp_cookie_size > 0) {
1859 /* Default, cookies without s_data_payload. */
1861 kzalloc(sizeof(*tp->cookie_values),
1863 if (tp->cookie_values != NULL)
1864 kref_init(&tp->cookie_values->kref);
1866 /* Presumed zeroed, in order of appearance:
1867 * cookie_in_always, cookie_out_never,
1868 * s_data_constant, s_data_in, s_data_out
1870 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1871 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1874 sock_update_memcg(sk);
1875 sk_sockets_allocated_inc(sk);
1881 void tcp_v4_destroy_sock(struct sock *sk)
1883 struct tcp_sock *tp = tcp_sk(sk);
1885 tcp_clear_xmit_timers(sk);
1887 tcp_cleanup_congestion_control(sk);
1889 /* Cleanup up the write buffer. */
1890 tcp_write_queue_purge(sk);
1892 /* Cleans up our, hopefully empty, out_of_order_queue. */
1893 __skb_queue_purge(&tp->out_of_order_queue);
1895 #ifdef CONFIG_TCP_MD5SIG
1896 /* Clean up the MD5 key list, if any */
1897 if (tp->md5sig_info) {
1898 tcp_clear_md5_list(sk);
1899 kfree(tp->md5sig_info);
1900 tp->md5sig_info = NULL;
1904 #ifdef CONFIG_NET_DMA
1905 /* Cleans up our sk_async_wait_queue */
1906 __skb_queue_purge(&sk->sk_async_wait_queue);
1909 /* Clean prequeue, it must be empty really */
1910 __skb_queue_purge(&tp->ucopy.prequeue);
1912 /* Clean up a referenced TCP bind bucket. */
1913 if (inet_csk(sk)->icsk_bind_hash)
1917 * If sendmsg cached page exists, toss it.
1919 if (sk->sk_sndmsg_page) {
1920 __free_page(sk->sk_sndmsg_page);
1921 sk->sk_sndmsg_page = NULL;
1924 /* TCP Cookie Transactions */
1925 if (tp->cookie_values != NULL) {
1926 kref_put(&tp->cookie_values->kref,
1927 tcp_cookie_values_release);
1928 tp->cookie_values = NULL;
1931 sk_sockets_allocated_dec(sk);
1932 sock_release_memcg(sk);
1934 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1936 #ifdef CONFIG_PROC_FS
1937 /* Proc filesystem TCP sock list dumping. */
1939 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1941 return hlist_nulls_empty(head) ? NULL :
1942 list_entry(head->first, struct inet_timewait_sock, tw_node);
1945 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1947 return !is_a_nulls(tw->tw_node.next) ?
1948 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1952 * Get next listener socket follow cur. If cur is NULL, get first socket
1953 * starting from bucket given in st->bucket; when st->bucket is zero the
1954 * very first socket in the hash table is returned.
1956 static void *listening_get_next(struct seq_file *seq, void *cur)
1958 struct inet_connection_sock *icsk;
1959 struct hlist_nulls_node *node;
1960 struct sock *sk = cur;
1961 struct inet_listen_hashbucket *ilb;
1962 struct tcp_iter_state *st = seq->private;
1963 struct net *net = seq_file_net(seq);
1966 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1967 spin_lock_bh(&ilb->lock);
1968 sk = sk_nulls_head(&ilb->head);
1972 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1976 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1977 struct request_sock *req = cur;
1979 icsk = inet_csk(st->syn_wait_sk);
1983 if (req->rsk_ops->family == st->family) {
1989 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1992 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1994 sk = sk_nulls_next(st->syn_wait_sk);
1995 st->state = TCP_SEQ_STATE_LISTENING;
1996 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1998 icsk = inet_csk(sk);
1999 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2000 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2002 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2003 sk = sk_nulls_next(sk);
2006 sk_nulls_for_each_from(sk, node) {
2007 if (!net_eq(sock_net(sk), net))
2009 if (sk->sk_family == st->family) {
2013 icsk = inet_csk(sk);
2014 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2015 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2017 st->uid = sock_i_uid(sk);
2018 st->syn_wait_sk = sk;
2019 st->state = TCP_SEQ_STATE_OPENREQ;
2023 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025 spin_unlock_bh(&ilb->lock);
2027 if (++st->bucket < INET_LHTABLE_SIZE) {
2028 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2029 spin_lock_bh(&ilb->lock);
2030 sk = sk_nulls_head(&ilb->head);
2038 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2040 struct tcp_iter_state *st = seq->private;
2045 rc = listening_get_next(seq, NULL);
2047 while (rc && *pos) {
2048 rc = listening_get_next(seq, rc);
2054 static inline int empty_bucket(struct tcp_iter_state *st)
2056 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2057 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2061 * Get first established socket starting from bucket given in st->bucket.
2062 * If st->bucket is zero, the very first socket in the hash is returned.
2064 static void *established_get_first(struct seq_file *seq)
2066 struct tcp_iter_state *st = seq->private;
2067 struct net *net = seq_file_net(seq);
2071 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2073 struct hlist_nulls_node *node;
2074 struct inet_timewait_sock *tw;
2075 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2077 /* Lockless fast path for the common case of empty buckets */
2078 if (empty_bucket(st))
2082 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2083 if (sk->sk_family != st->family ||
2084 !net_eq(sock_net(sk), net)) {
2090 st->state = TCP_SEQ_STATE_TIME_WAIT;
2091 inet_twsk_for_each(tw, node,
2092 &tcp_hashinfo.ehash[st->bucket].twchain) {
2093 if (tw->tw_family != st->family ||
2094 !net_eq(twsk_net(tw), net)) {
2100 spin_unlock_bh(lock);
2101 st->state = TCP_SEQ_STATE_ESTABLISHED;
2107 static void *established_get_next(struct seq_file *seq, void *cur)
2109 struct sock *sk = cur;
2110 struct inet_timewait_sock *tw;
2111 struct hlist_nulls_node *node;
2112 struct tcp_iter_state *st = seq->private;
2113 struct net *net = seq_file_net(seq);
2118 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2122 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2129 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2130 st->state = TCP_SEQ_STATE_ESTABLISHED;
2132 /* Look for next non empty bucket */
2134 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2137 if (st->bucket > tcp_hashinfo.ehash_mask)
2140 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2141 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2143 sk = sk_nulls_next(sk);
2145 sk_nulls_for_each_from(sk, node) {
2146 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2150 st->state = TCP_SEQ_STATE_TIME_WAIT;
2151 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2159 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2161 struct tcp_iter_state *st = seq->private;
2165 rc = established_get_first(seq);
2168 rc = established_get_next(seq, rc);
2174 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2177 struct tcp_iter_state *st = seq->private;
2179 st->state = TCP_SEQ_STATE_LISTENING;
2180 rc = listening_get_idx(seq, &pos);
2183 st->state = TCP_SEQ_STATE_ESTABLISHED;
2184 rc = established_get_idx(seq, pos);
2190 static void *tcp_seek_last_pos(struct seq_file *seq)
2192 struct tcp_iter_state *st = seq->private;
2193 int offset = st->offset;
2194 int orig_num = st->num;
2197 switch (st->state) {
2198 case TCP_SEQ_STATE_OPENREQ:
2199 case TCP_SEQ_STATE_LISTENING:
2200 if (st->bucket >= INET_LHTABLE_SIZE)
2202 st->state = TCP_SEQ_STATE_LISTENING;
2203 rc = listening_get_next(seq, NULL);
2204 while (offset-- && rc)
2205 rc = listening_get_next(seq, rc);
2210 case TCP_SEQ_STATE_ESTABLISHED:
2211 case TCP_SEQ_STATE_TIME_WAIT:
2212 st->state = TCP_SEQ_STATE_ESTABLISHED;
2213 if (st->bucket > tcp_hashinfo.ehash_mask)
2215 rc = established_get_first(seq);
2216 while (offset-- && rc)
2217 rc = established_get_next(seq, rc);
2225 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2227 struct tcp_iter_state *st = seq->private;
2230 if (*pos && *pos == st->last_pos) {
2231 rc = tcp_seek_last_pos(seq);
2236 st->state = TCP_SEQ_STATE_LISTENING;
2240 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2243 st->last_pos = *pos;
2247 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2249 struct tcp_iter_state *st = seq->private;
2252 if (v == SEQ_START_TOKEN) {
2253 rc = tcp_get_idx(seq, 0);
2257 switch (st->state) {
2258 case TCP_SEQ_STATE_OPENREQ:
2259 case TCP_SEQ_STATE_LISTENING:
2260 rc = listening_get_next(seq, v);
2262 st->state = TCP_SEQ_STATE_ESTABLISHED;
2265 rc = established_get_first(seq);
2268 case TCP_SEQ_STATE_ESTABLISHED:
2269 case TCP_SEQ_STATE_TIME_WAIT:
2270 rc = established_get_next(seq, v);
2275 st->last_pos = *pos;
2279 static void tcp_seq_stop(struct seq_file *seq, void *v)
2281 struct tcp_iter_state *st = seq->private;
2283 switch (st->state) {
2284 case TCP_SEQ_STATE_OPENREQ:
2286 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2287 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2289 case TCP_SEQ_STATE_LISTENING:
2290 if (v != SEQ_START_TOKEN)
2291 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2293 case TCP_SEQ_STATE_TIME_WAIT:
2294 case TCP_SEQ_STATE_ESTABLISHED:
2296 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2301 int tcp_seq_open(struct inode *inode, struct file *file)
2303 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2304 struct tcp_iter_state *s;
2307 err = seq_open_net(inode, file, &afinfo->seq_ops,
2308 sizeof(struct tcp_iter_state));
2312 s = ((struct seq_file *)file->private_data)->private;
2313 s->family = afinfo->family;
2317 EXPORT_SYMBOL(tcp_seq_open);
2319 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2322 struct proc_dir_entry *p;
2324 afinfo->seq_ops.start = tcp_seq_start;
2325 afinfo->seq_ops.next = tcp_seq_next;
2326 afinfo->seq_ops.stop = tcp_seq_stop;
2328 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2329 afinfo->seq_fops, afinfo);
2334 EXPORT_SYMBOL(tcp_proc_register);
2336 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2338 proc_net_remove(net, afinfo->name);
2340 EXPORT_SYMBOL(tcp_proc_unregister);
2342 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2343 struct seq_file *f, int i, int uid, int *len)
2345 const struct inet_request_sock *ireq = inet_rsk(req);
2346 int ttd = req->expires - jiffies;
2348 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2349 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2352 ntohs(inet_sk(sk)->inet_sport),
2354 ntohs(ireq->rmt_port),
2356 0, 0, /* could print option size, but that is af dependent. */
2357 1, /* timers active (only the expire timer) */
2358 jiffies_to_clock_t(ttd),
2361 0, /* non standard timer */
2362 0, /* open_requests have no inode */
2363 atomic_read(&sk->sk_refcnt),
2368 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2371 unsigned long timer_expires;
2372 const struct tcp_sock *tp = tcp_sk(sk);
2373 const struct inet_connection_sock *icsk = inet_csk(sk);
2374 const struct inet_sock *inet = inet_sk(sk);
2375 __be32 dest = inet->inet_daddr;
2376 __be32 src = inet->inet_rcv_saddr;
2377 __u16 destp = ntohs(inet->inet_dport);
2378 __u16 srcp = ntohs(inet->inet_sport);
2381 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2383 timer_expires = icsk->icsk_timeout;
2384 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2386 timer_expires = icsk->icsk_timeout;
2387 } else if (timer_pending(&sk->sk_timer)) {
2389 timer_expires = sk->sk_timer.expires;
2392 timer_expires = jiffies;
2395 if (sk->sk_state == TCP_LISTEN)
2396 rx_queue = sk->sk_ack_backlog;
2399 * because we dont lock socket, we might find a transient negative value
2401 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2403 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2404 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2405 i, src, srcp, dest, destp, sk->sk_state,
2406 tp->write_seq - tp->snd_una,
2409 jiffies_to_clock_t(timer_expires - jiffies),
2410 icsk->icsk_retransmits,
2412 icsk->icsk_probes_out,
2414 atomic_read(&sk->sk_refcnt), sk,
2415 jiffies_to_clock_t(icsk->icsk_rto),
2416 jiffies_to_clock_t(icsk->icsk_ack.ato),
2417 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2419 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2423 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2424 struct seq_file *f, int i, int *len)
2428 int ttd = tw->tw_ttd - jiffies;
2433 dest = tw->tw_daddr;
2434 src = tw->tw_rcv_saddr;
2435 destp = ntohs(tw->tw_dport);
2436 srcp = ntohs(tw->tw_sport);
2438 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2439 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2440 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2441 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2442 atomic_read(&tw->tw_refcnt), tw, len);
2447 static int tcp4_seq_show(struct seq_file *seq, void *v)
2449 struct tcp_iter_state *st;
2452 if (v == SEQ_START_TOKEN) {
2453 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2454 " sl local_address rem_address st tx_queue "
2455 "rx_queue tr tm->when retrnsmt uid timeout "
2461 switch (st->state) {
2462 case TCP_SEQ_STATE_LISTENING:
2463 case TCP_SEQ_STATE_ESTABLISHED:
2464 get_tcp4_sock(v, seq, st->num, &len);
2466 case TCP_SEQ_STATE_OPENREQ:
2467 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2469 case TCP_SEQ_STATE_TIME_WAIT:
2470 get_timewait4_sock(v, seq, st->num, &len);
2473 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2478 static const struct file_operations tcp_afinfo_seq_fops = {
2479 .owner = THIS_MODULE,
2480 .open = tcp_seq_open,
2482 .llseek = seq_lseek,
2483 .release = seq_release_net
2486 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2489 .seq_fops = &tcp_afinfo_seq_fops,
2491 .show = tcp4_seq_show,
2495 static int __net_init tcp4_proc_init_net(struct net *net)
2497 return tcp_proc_register(net, &tcp4_seq_afinfo);
2500 static void __net_exit tcp4_proc_exit_net(struct net *net)
2502 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2505 static struct pernet_operations tcp4_net_ops = {
2506 .init = tcp4_proc_init_net,
2507 .exit = tcp4_proc_exit_net,
2510 int __init tcp4_proc_init(void)
2512 return register_pernet_subsys(&tcp4_net_ops);
2515 void tcp4_proc_exit(void)
2517 unregister_pernet_subsys(&tcp4_net_ops);
2519 #endif /* CONFIG_PROC_FS */
2521 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2523 const struct iphdr *iph = skb_gro_network_header(skb);
2525 switch (skb->ip_summed) {
2526 case CHECKSUM_COMPLETE:
2527 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2529 skb->ip_summed = CHECKSUM_UNNECESSARY;
2535 NAPI_GRO_CB(skb)->flush = 1;
2539 return tcp_gro_receive(head, skb);
2542 int tcp4_gro_complete(struct sk_buff *skb)
2544 const struct iphdr *iph = ip_hdr(skb);
2545 struct tcphdr *th = tcp_hdr(skb);
2547 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2548 iph->saddr, iph->daddr, 0);
2549 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2551 return tcp_gro_complete(skb);
2554 struct proto tcp_prot = {
2556 .owner = THIS_MODULE,
2558 .connect = tcp_v4_connect,
2559 .disconnect = tcp_disconnect,
2560 .accept = inet_csk_accept,
2562 .init = tcp_v4_init_sock,
2563 .destroy = tcp_v4_destroy_sock,
2564 .shutdown = tcp_shutdown,
2565 .setsockopt = tcp_setsockopt,
2566 .getsockopt = tcp_getsockopt,
2567 .recvmsg = tcp_recvmsg,
2568 .sendmsg = tcp_sendmsg,
2569 .sendpage = tcp_sendpage,
2570 .backlog_rcv = tcp_v4_do_rcv,
2572 .unhash = inet_unhash,
2573 .get_port = inet_csk_get_port,
2574 .enter_memory_pressure = tcp_enter_memory_pressure,
2575 .sockets_allocated = &tcp_sockets_allocated,
2576 .orphan_count = &tcp_orphan_count,
2577 .memory_allocated = &tcp_memory_allocated,
2578 .memory_pressure = &tcp_memory_pressure,
2579 .sysctl_wmem = sysctl_tcp_wmem,
2580 .sysctl_rmem = sysctl_tcp_rmem,
2581 .max_header = MAX_TCP_HEADER,
2582 .obj_size = sizeof(struct tcp_sock),
2583 .slab_flags = SLAB_DESTROY_BY_RCU,
2584 .twsk_prot = &tcp_timewait_sock_ops,
2585 .rsk_prot = &tcp_request_sock_ops,
2586 .h.hashinfo = &tcp_hashinfo,
2587 .no_autobind = true,
2588 #ifdef CONFIG_COMPAT
2589 .compat_setsockopt = compat_tcp_setsockopt,
2590 .compat_getsockopt = compat_tcp_getsockopt,
2592 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2593 .init_cgroup = tcp_init_cgroup,
2594 .destroy_cgroup = tcp_destroy_cgroup,
2595 .proto_cgroup = tcp_proto_cgroup,
2598 EXPORT_SYMBOL(tcp_prot);
2600 static int __net_init tcp_sk_init(struct net *net)
2602 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2603 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2606 static void __net_exit tcp_sk_exit(struct net *net)
2608 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2611 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2613 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2616 static struct pernet_operations __net_initdata tcp_sk_ops = {
2617 .init = tcp_sk_init,
2618 .exit = tcp_sk_exit,
2619 .exit_batch = tcp_sk_exit_batch,
2622 void __init tcp_v4_init(void)
2624 inet_hashinfo_init(&tcp_hashinfo);
2625 if (register_pernet_subsys(&tcp_sk_ops))
2626 panic("Failed to create the TCP control socket.\n");